Datasets:

ArXiv:
License:
File size: 8,999 Bytes
0c72583
 
 
 
 
 
 
 
36680c8
0c72583
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
36680c8
0c72583
 
 
 
 
 
 
3060c16
0c72583
 
 
 
 
 
 
 
 
 
 
 
 
 
 
a10de01
107a243
 
0c72583
 
 
 
 
 
 
 
 
 
 
 
 
 
 
a10de01
0c72583
 
 
 
 
 
 
 
 
 
 
 
 
 
 
b53992d
0c72583
 
edc339a
 
 
0c72583
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
fb124e7
0c72583
 
fb124e7
0c72583
 
fb124e7
0c72583
38896f7
 
 
 
 
 
1252c62
0c72583
 
 
 
57a2830
 
0c72583
 
 
 
 
 
 
 
 
 
c459c15
 
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
211
212
213
214
215
216
217
218
219
220
221
222
223
224
225
226
227
228
229
230
---
language:
- code
- en
multilinguality:
- multiprogramming languages
task_categories:
- text-generation
license: mit
dataset_info:
  features:
  - name: identifier
    dtype: string
  - name: return_type
    dtype: string
  - name: repo
    dtype: string
  - name: path
    dtype: string
  - name: language
    dtype: string
  - name: code
    dtype: string
  - name: code_tokens
    dtype: string
  - name: original_docstring
    dtype: string
  - name: comment
    dtype: string
  - name: docstring_tokens
    dtype: string
  - name: docstring
    dtype: string
  - name: original_string
    dtype: string
  splits:
  - name: python
    num_bytes: 30797754227
    num_examples: 9893858
  - name: java
    num_bytes: 23130202517
    num_examples: 7886299
  - name: javascript
    num_bytes: 6833869001
    num_examples: 2562158
  - name: php
    num_bytes: 13072500520
    num_examples: 5455989
  - name: c_sharp
    num_bytes: 11144245789
    num_examples: 4011467
  - name: c
    num_bytes: 6205820571
    num_examples: 1978551
  - name: cpp
    num_bytes: 6228306797
    num_examples: 1934958
  - name: go
    num_bytes: 11339059495
    num_examples: 5649158
  - name: rust
    num_bytes: 2661037428
    num_examples: 1076588
  - name: ruby
    num_bytes: 1224195690
    num_examples: 544867
  download_size: 26404353470
  dataset_size: 112636992035
pretty_name: The Vault
viewer: true
---



## Table of Contents
- [Dataset Description](#dataset-description)
- [Dataset Summary](#dataset-summary)
- [Supported Tasks](#supported-tasks)
- [Languages](#languages)
- [Dataset Structure](#dataset-structure)
  - [Data Instances](#data-instances)
  - [Data Fields](#data-fields)
  - [Data Splits](#data-splits)
- [Dataset Statistics](#dataset-statistics)
- [Usage](#usage)
- [Additional Information](#additional-information)
  - [Licensing Information](#licensing-information)
  - [Citation Information](#citation-information)
  - [Contributions](#contributions)


## Dataset Description

- **Repository:** [FSoft-AI4Code/TheVault](https://github.com/FSoft-AI4Code/TheVault)
- **Paper:** [The Vault: A Comprehensive Multilingual Dataset for Advancing Code Understanding and Generation](https://arxiv.org/abs/2305.06156)
- **Contact:** [email protected]
- **Website:** https://www.fpt-aicenter.com/ai-residency/


![thevault-logo](https://raw.githubusercontent.com/FSoft-AI4Code/TheVault/main/assets/thevault-title.png)

## Dataset Summary
The Vault is a multilingual code-text dataset with over 40 million pairs covering 10 popular programming languages. It is the largest corpus containing parallel code-text data. By building upon [The Stack](https://huggingface.co/datasets/bigcode/the-stack), a massive raw code sample collection, the Vault offers a comprehensive and clean resource for advancing research in code understanding and generation. It provides a high-quality dataset that includes code-text pairs at multiple levels, such as class and inline-level, in addition to the function level. The Vault can serve many purposes at multiple levels.

## Supported Tasks
The Vault can be used for pretraining LLMs or downstream code-text interaction tasks. A number of tasks can be constructed using The Vault such as *code summarization*, *text-to-code generation* and *code search*.

## Languages
The natural language text (docstring) is in English.

10 programming languages are supported in The Vault: `Python`, `Java`, `JavaScript`, `PHP`, `C`, `C#`, `C++`, `Go`, `Ruby`, `Rust`

## Dataset Structure
### Data Instances
```
{
  "repo": "irshadbhat/sndpcs",
  "path": "arc_eager.py",
  "license": "MIT"
  "identifier": "REDUCE",
  "return_type": "<not_specify>"
  "language": "Python",
  "code": "def REDUCE(self, configuration, label=None):\n        b0 = configuration.b0\n        configuration.stack.pop()",
  "code_tokens": "def REDUCE ( self , configuration , label = None ) : b0 = configuration . b0 configuration . stack . pop ( )",
  "original_docstring": "\n        pops the top of the stack if it has got its head.\n        ",
  "comment": "\"\"\"\n        pops the top of the stack if it has got its head.\n        \"\"\"",
  "docstring_tokens": "pops the top of the stack if it has got its head .",
  "docstring": "pops the top of the stack if it has got its head."
}
```
### Data Fields

Data fields for function level:

- **repo** (string): the owner/repo
- **path** (string): the full path to the original file
- **license** (string): license in the repo
- **language** (string): the programming language
- **identifier** (string): the function or method name
- **return_type** (string): the type returned by the function
- **original_string** (string): original version of function/class node
- **original_docstring** (string): the raw string before tokenization or parsing
- **code** (string): the part of the original that is code
- **code_tokens** (string): tokenized version of `code`, separated by whitespace
- **short_docstring** (string): short, brief summarization (first line of the docstring)
- **short_docstring_tokens** (string): tokenized version of `short_docstring`, separated by whitespace
- **docstring** (string): the top-level comment or docstring (docstring version without param’s doc, return, exception, etc)
- **docstring_tokens** tokenized version of docstring, separated by whitespace
- **comment** (string): comment (line) inside the function/class, separated by `$SEP$` token
- **parameters** (dict):  Dictionary of parameters and its type (type can be None)
- **docstring_params** (dict): Dictionary of the parsed information from docstring

Due to the limitation of the huggingface data structure, we do not contain **parameters** and **docstring_params** fields in this repo. The detail of data fields can be found in [The Vault data format](https://github.com/FSoft-AI4Code/TheVault/blob/main/data/README.md) and the full dataset version can be downloaded [here](https://github.com/FSoft-AI4Code/TheVault/).
### Data Splits

In this repo, The Vault is divided into 5 subsets, where three training versions are split based on dataset size, and the remains are validation set and test set (20,000 samples in each). The statistic for each language is illustrated in the following section.

There are 3 versions of training set that are small (5%), medium (20%) and large (100%).

## Dataset Statistics

- Compare to other benchmarks

| Dataset                   | #Language | #Code-text pair |
|:--------------------------|----------:|-----------------:|
| PyMT5                     | 1         | ≈ 7,700,000      |
| CoDesc                    | 1         | 4,211,516        |
| CodeSearchNet             | 6         | 2,326,976        |
| CodeSearchNet (CodeXGLUE) | 6         | 1,005,474        |
| Deepcom                   | 1         | 424,028          |
| CONCODE                   | 1         | 2,184,310        |
| Funcom                    | 1         | 2,149,121        |
| CodeT5                    | 8         | 3,158,313        |
| **The Vault**             | **10**    | **40,993,893**   |

- Statistic for each language in The Vault

| Language   | #Code-text pair | #Repository |
|:-----------|-----------------:|------------:|
| Python     | 9,893,858        | 628,069     |
| PHP        | 5,455,989        | 439,514     |
| JavaScript | 2,562,158        | 355,761     |
| Java       | 7,886,299        | 321,129     |
| C#         | 4,011,467        | 150,657     |
| C++        | 1,934,958        | 116,897     |
| C          | 1,978,551        | 88,556      |
| Go         | 5,649,158        | 241,238     |
| Rust       | 1,076,588        | 68,615      |
| Ruby       | 544,867          | 61,804      |

## Usage
You can load The Vault dataset using datasets library: ```pip install datasets```

```python
from datasets import load_dataset

# Load full function level dataset (40M samples)
dataset = load_dataset("Fsoft-AIC/the-vault-function")

# Load function level train/validation/test set
dataset = load_dataset("Fsoft-AIC/the-vault-function", split_set=["train"])

# Load "small" (or "medium", "large") function level training set
dataset = load_dataset("Fsoft-AIC/the-vault-function", split_set=["train/small"])

# specific language (e.g. Python) 
dataset = load_dataset("Fsoft-AIC/the-vault-function", split_set=["train"], languages=['Python'])

# dataset streaming
data = load_dataset("Fsoft-AIC/the-vault-function", split_set= ["train"])
for sample in iter(data['train']): 
    print(sample)
```

## Additional information
### Licensing Information
[More information needed]

### Citation Information

```
@misc{manh2023vault,
    title={The Vault: A Comprehensive Multilingual Dataset for Advancing Code Understanding and Generation}, 
    author={Dung Nguyen Manh and Nam Le Hai and Anh T. V. Dau and Anh Minh Nguyen and Khanh Nghiem and Jin Guo and Nghi D. Q. Bui},
    year={2023},
}
```

### Contributions
This dataset is developed by [FSOFT AI4Code team](https://github.com/FSoft-AI4Code).