Francesco commited on
Commit
0b502f0
1 Parent(s): 9e85466

Upload README.md with huggingface_hub

Browse files
Files changed (1) hide show
  1. README.md +110 -14
README.md CHANGED
@@ -25,19 +25,115 @@ dataset_info:
25
  '0': axial-MRI
26
  '1': negative
27
  '2': positive
28
- splits:
29
- - name: train
30
- num_bytes: 4395159.0
31
- num_examples: 253
32
- - name: validation
33
- num_bytes: 669879.0
34
- num_examples: 39
35
- - name: test
36
- num_bytes: 1166160.0
37
- num_examples: 79
38
- download_size: 4786695
39
- dataset_size: 6231198.0
 
 
 
 
 
 
 
 
40
  ---
41
- # Dataset Card for "axial-mri"
42
 
43
- [More Information needed](https://github.com/huggingface/datasets/blob/main/CONTRIBUTING.md#how-to-contribute-to-the-dataset-cards)
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
25
  '0': axial-MRI
26
  '1': negative
27
  '2': positive
28
+ annotations_creators:
29
+ - crowdsourced
30
+ language_creators:
31
+ - found
32
+ language:
33
+ - en
34
+ license:
35
+ - cc
36
+ multilinguality:
37
+ - monolingual
38
+ size_categories:
39
+ - 1K<n<10K
40
+ source_datasets:
41
+ - original
42
+ task_categories:
43
+ - object-detection
44
+ task_ids: []
45
+ pretty_name: axial-mri
46
+ tags:
47
+ - rf100
48
  ---
 
49
 
50
+ # Dataset Card for axial-mri
51
+
52
+ ** The original COCO dataset is stored at `dataset.tar.gz`**
53
+
54
+ ## Dataset Description
55
+
56
+ - **Homepage:** https://universe.roboflow.com/object-detection/axial-mri
57
+ - **Point of Contact:** [email protected]
58
+
59
+ ### Dataset Summary
60
+
61
+ axial-mri
62
+
63
+ ### Supported Tasks and Leaderboards
64
+
65
+ - `object-detection`: The dataset can be used to train a model for Object Detection.
66
+
67
+ ### Languages
68
+
69
+ English
70
+
71
+ ## Dataset Structure
72
+
73
+ ### Data Instances
74
+
75
+ A data point comprises an image and its object annotations.
76
+
77
+ ```
78
+ {
79
+ 'image_id': 15,
80
+ 'image': <PIL.JpegImagePlugin.JpegImageFile image mode=RGB size=640x640 at 0x2373B065C18>,
81
+ 'width': 964043,
82
+ 'height': 640,
83
+ 'objects': {
84
+ 'id': [114, 115, 116, 117],
85
+ 'area': [3796, 1596, 152768, 81002],
86
+ 'bbox': [
87
+ [302.0, 109.0, 73.0, 52.0],
88
+ [810.0, 100.0, 57.0, 28.0],
89
+ [160.0, 31.0, 248.0, 616.0],
90
+ [741.0, 68.0, 202.0, 401.0]
91
+ ],
92
+ 'category': [4, 4, 0, 0]
93
+ }
94
+ }
95
+ ```
96
+
97
+ ### Data Fields
98
+
99
+ - `image`: the image id
100
+ - `image`: `PIL.Image.Image` object containing the image. Note that when accessing the image column: `dataset[0]["image"]` the image file is automatically decoded. Decoding of a large number of image files might take a significant amount of time. Thus it is important to first query the sample index before the `"image"` column, *i.e.* `dataset[0]["image"]` should **always** be preferred over `dataset["image"][0]`
101
+ - `width`: the image width
102
+ - `height`: the image height
103
+ - `objects`: a dictionary containing bounding box metadata for the objects present on the image
104
+ - `id`: the annotation id
105
+ - `area`: the area of the bounding box
106
+ - `bbox`: the object's bounding box (in the [coco](https://albumentations.ai/docs/getting_started/bounding_boxes_augmentation/#coco) format)
107
+ - `category`: the object's category.
108
+
109
+
110
+ #### Who are the annotators?
111
+
112
+ Annotators are Roboflow users
113
+
114
+ ## Additional Information
115
+
116
+ ### Licensing Information
117
+
118
+ See original homepage https://universe.roboflow.com/object-detection/axial-mri
119
+
120
+ ### Citation Information
121
+
122
+ ```
123
+ @misc{ axial-mri,
124
+ title = { axial mri Dataset },
125
+ type = { Open Source Dataset },
126
+ author = { Roboflow 100 },
127
+ howpublished = { \url{ https://universe.roboflow.com/object-detection/axial-mri } },
128
+ url = { https://universe.roboflow.com/object-detection/axial-mri },
129
+ journal = { Roboflow Universe },
130
+ publisher = { Roboflow },
131
+ year = { 2022 },
132
+ month = { nov },
133
+ note = { visited on 2023-03-29 },
134
+ }"
135
+ ```
136
+
137
+ ### Contributions
138
+
139
+ Thanks to [@mariosasko](https://github.com/mariosasko) for adding this dataset.