Datasets:

Modalities:
Text
Formats:
json
Size:
< 1K
Libraries:
Datasets
Dask
License:
DataPilot
frist
a91978f verified
{"text": "自然界の様々な現象は、人間にとって良い面もあります。しかし、自然災害で生活を危うくしてしまいます。日本は地震や火山噴火などの自然災害が他国と比べても非常に多くなっています。これまでどのような災害を火山や地震からもたらしましたか?\n大きな地震があると、強い地震動で建物の倒壊や土砂災害などをもたらします。また、土地の隆起や沈降、水平方向のずれから被害が出るかもしれません。さらに、火災・停電・断水などの複雑的な災害に見舞われるかもしれません。大きな地震があると、砂地の地盤(河川沿いや埋め立て地など)も動きます。この時、地下水が砂層と混じり合い、砂層が一時的に液体のようになります(液状化現象)。2024年の能登半島地震は、建物の倒壊や火災で大きな被害を出しました。[1]2011年の東北地方太平洋沖地震は、強い地震動や津波で大きな被害を出しました。福島第一原子力発電所も東北地方太平洋沖地震で電源を全て失い、水素爆発や火災を招きました。その後、大量の放射性物質が空気中に運んでしまいました(福島第一原子力発電所事故)。\n地震で海底の断層が動いたり、海底地滑りがあったりすると、大きな波(津波)が出来ます。津波の波長(波の山から山の長さ・谷から谷の長さ)は数キロから数百キロメートルと非常に長く、津波の周期(波の山から次の山・谷から次の谷がくるまでの時間)も数10分と非常に長くなっています[2]。なお、波浪の波長は最大で数m~数十m程度と非常に短く、波浪の周期も数10秒と非常に短くなっています。津波は、地震の震源が海域で、あまり深くなく、マグニチュードも大きい時によく発生します。海底から海面までの水が全て動くので、津波は通常の波よりもはるかに大きなエネルギーを持ちます。2011年の東北地方太平洋沖地震後、約20mの津波が宮城県女川町を襲いました。また、宮城県女川町笠貝島で最大約43mの標高まで津波が来ました。\n★津波が出来るまで[3]\n津波は、一度海面が下がってから押し寄せてきます。また、津波は第2波と第3波と繰り返すうちに大きくなります。このように、地震の数時間後でも津波が押し寄せるかもしれないので、津波が完全に収まるまで海岸付近に近づかないでください。津波の高さは、海岸の地形で変わります。岬の先端やリアス式海岸の奥に集まると、津波の波高も高くなってしまいます。\n火山弾や溶岩流などが、近くの建物を壊したり燃やしたりします。火山灰はとても小さな粒子で作られているので、上空に送られて遠くの場所に飛んでいきます。大量の火山灰は、人々の健康や農作物に悪いかもしれません。また、雨と混ざると、家屋の倒壊も起こりやすくなります(泥流)。溶岩ドームの崩落なども火砕流の原因になります。火山ガスは火口とその周辺から出ており、人体に有害な成分を含まれています。\n1991年、長崎県の雲仙岳で火砕流が起こり、43名が亡くなりました。2000年、東京都の三宅島で火山が噴火すると、高濃度の火山ガスが流れ込み、全島民が島外に逃げ出しました。2014年、長野県の御嶽山で水蒸気爆発があり、58名が亡くなりました。気象庁の説明から、火山が噴火すると風に乗って火山礫を遠くまで運ばれます(小さな噴石)。また、火山が噴火すると火口から放物線を描くように火山岩を運びます。この時、火山岩はおよそ2~4kmの間に落ちます(大きな噴石)。大きな噴石は建物を丸ごと壊してしまうような力もあります。さらに、昔は大きな火山活動もありました。例えば、約9万年前に熊本県の阿蘇山で大きな火砕流が半径180km(鹿児島県以外の九州全域と山口県)まで流れています。この研究は火山周辺の地層から分かっています。\n火山性地震や火山性微動は、噴火や地下のマグマ活動からよく起こります。マグマの上昇で地盤が変わると、断層も出来ます。また、地震動や火山体内部のマグマの圧力上昇から火山体が崩れ、岩塊も砕けながら高速で斜面から流れるかもしれません(岩屑流・岩雪崩・岩屑雪崩)。岩屑流や火山砕屑物などの堆積物が河川をせき止めます。そして、河川が決壊すると土砂と水が一緒に動きます(土石流・泥流)。1985年、コロンビアのネバド・デル・ルイス山で、大きな泥流が発生しました。その結果、山麓で大勢の人が亡くなりました。2018年、インドネシアのクラカタウ山が噴火すると海に土砂が流れ込みました。そして、その土砂が津波を発生させ、沿岸地域に被害をもたらしました。\n", "url": "https://ja.wikibooks.org/wiki/%E9%AB%98%E7%AD%89%E5%AD%A6%E6%A0%A1_%E5%9C%B0%E5%AD%A6%E5%9F%BA%E7%A4%8E/%E5%9C%B0%E9%9C%87%E7%81%BD%E5%AE%B3%E3%83%BB%E7%81%AB%E5%B1%B1%E7%81%BD%E5%AE%B3"}
{"text": "これらの突風は、大気の状態がはっきりしない時に起こりやすくなります。毎年7月から10月は、前線や台風が頻繁に通るので、大気の状態もはっきりしません。年間発生数の約60%がこの4か月間に発生しています。\n東アジア大陸内部の砂漠地域や黄土高原から、大量の砂塵(黄砂)が強風で大気中に舞い上がります。その後、大量の砂塵(黄砂)は上空の偏西風で流されて地面に落ちます(黄砂現象)。3月から5月にかけて、日本の上空に移動性高気圧がよく見られます。この時、空全体が黄褐色に煙ります。\n冬になると、日本海側は大雪の被害を受けやすくなります。また、冬の終わりから春の初め頃(1月~3月)になると、大陸の寒気も弱まります。この時、温帯低気圧が日本の南岸沿いを進みます(南岸低気圧)。その結果、関東から西日本までの太平洋側に大雪を降らせます。さらに、低気圧は急速に発達しながら北海道の東の海上に抜けるので、暴風雪と高波の被害が北日本で大きくなります。大雪が降ると、交通機関にも影響を与えます。加えて、山地に大雪が降ると、雪崩の被害をもたらします。\n", "url": "https://ja.wikibooks.org/wiki/%E9%AB%98%E7%AD%89%E5%AD%A6%E6%A0%A1_%E5%9C%B0%E5%AD%A6%E5%9F%BA%E7%A4%8E/%E6%B0%97%E8%B1%A1%E7%81%BD%E5%AE%B3"}
{"text": "(※ 未記述)\n地球はいつから球形であると考えられていたのだろうか。ギリシアのアリストテレスは、月食のときの地球の影の形から地球が球形であると考えていた。紀元前230年ごろにアレキサンドリアの南のシエネ(現在のアスワン)では、夏至の日の正午に深い井戸の底まで太陽の光が届くのをエラトステネスが知り、同じ時刻の夏至の日のアレキサンドリアでは鉛直に立てた棒に影ができて太陽が頭上より約7.2°傾いている(つまり太陽高度 82.8°)のを知り、アレキサンドリアとシエネの距離は5000スタジア(925km)であるので、このことから、\nとして、解の x=250000スタジア から、地球の半径を7361kmと算出した。実際の半径は、6371kmであり、当時とすれば妥当な結果であろう。\n地球の形は、赤道付近がやや膨らんだ回転楕円体(かいてん だえんたい)である。これを 地球楕円体(ちきゅう だえんたい) という。楕円の「楕」の字が難しいので、教科書によっては「地球だ円体」と書いている場合もある。\n1671年〜1672年、フランスの天文学者リシェは、ギアナでは、フランスで調整した振り子時計が1日に約2分30秒おくれることに気付いた。振り子は重力によって振動している事が分かっていて、重力が小さいほど振り子が遅くなることが分かっていたので、ニュートンは振り子の遅れの原因として、地球の形は遠心力によって赤道方向がふくらんだ形になっていると考えられた。(オレンジ型)\nこれに対し、パリ天文台のカッシーニなどのフランスの学者などが、地球は極方向(つまり南北方向)にふくらんでいると考えていた。(レモン型)\nそこでフランス学士院は、スカンジナビア半島とペルーに調査団を派遣し、緯度差1度に対する子午線の長さを測定した結果、極付近の方が緯度1度に対する弧が長いことが証明され、ニュートンの説が正しいことが証明された。\n緯度と緯度1°あたりの弧長は\nであった。\nこれより、ニュートンの仮説(オレンジ型)が正しいことになり、\n地球の大きさは、\nとなり、よって\n扁平率(へんぺいりつ) は (赤道半径 ー 極半径)/(赤道半径) =(a-b)/a= 1/298となる。\n扁平率は非常に小さく、実用上は地球を球形とみなして問題ない。\nすべての物体どうしには、おたがいに引きよせ合う力があり、これを万有引力(ばんゆう いんりょく)という。\nで表される。(※ 物理IIの範囲なので、低学年の生徒は、まだ、この式を覚えなくて良い。) Mとmは2つの物体の質量。距離をrとしている。Gは万有引力定数であり、G=6.67×10^-11 m3/(kg・s2) である。\n単に引力という場合も多い。\n物体が大きいほど、引き寄せあう力が大きくなる。私たちが地上で感じる下方向への引力は、地球によって引き寄せられる引力である。\n地震波の観測によって、地球内部での地震波の伝わる速度が分かる。地震波の速度の解析から、地下の深さ30km〜60kmあたりで、地震波の速度が急激に変化する深さがあることが発見された。これは、地殻とマントルとの境界である。この境界面をモホロビチッチ不連続面(モホ面)(英:Mohorovičić discontinuity)という。モホ面より上が地殻(ちかく、crust)である。モホ面より下をマントル(mantle)としている。\n地震波が観測地点に到達するまでの時間を走時(そうじ)という。\n横軸に震央からの距離を取り、縦軸に走時を取ってグラフにしたものを走時曲線(そうじきょくせん)という。\n地殻の厚さは、大陸の地殻と海洋下の地殻とでは、厚さが大きく違う。\n一般に大陸地殻は厚さ 30km〜60km であり、海洋地殻は厚さ 5km〜10km である。\n地球の半径は 約6400km であるので、地球半径と比べると、地殻は、とてもうすい。\n大陸下の地殻を大陸地殻(たいりく ちかく、continental crust)という。海洋下の地殻を海洋地殻(かいよう ちかく、oceanic crust)という。\n大陸地殻の上部は花こう岩質であり、大陸地殻の下部は、玄武岩(げんぶがん)質である。この上部地殻と下部地殻の境界をコンラッド不連続面という。\n海洋地殻は、ほとんど玄武岩質である。\n地殻より下に、地殻よりも密度の大きい固体のマントルがあり、深さ2900kmほどまでマントルが続いている。\n2900kmより深いあたりが核(かく)である。核は2層に分けられ、外側が液体であり外核(がいかく)といい、内側が固体であり内核(ないかく)という。\n水には、木などの密度の低い物質が浮かぶ。さて、マントルの密度と比べて、地殻の密度は小さい。よって地殻はマントルの上に浮かぶような浮力を受けていると見なせる。たとえば、海中に氷山が浮かぶようなものである。\nさてマントルに浮かぶ地殻について、ある地点の付近での、地殻が安定するためには、力学的に直感的に考えれば、標高の高い地殻は、そのぶん浮力も多く必要なので、地下深くにまで地殻が続いている必要がある。\nこのような地殻とマントルの、浮力と重力の釣り合いを、アイソスタシー(isostacy)という。\nある一定深さでは、その地点付近では、ある面にかかる圧力は同じである。\nこのように地殻が地下まで続いているため、ブーゲー異常については、山などの高い地形がある場所では、アイソスタシーによって地下に密度の低い地殻があるため、山の付近ではブーゲー異常が負になるのが一般である。\nヨーロッパにあるスカンジナビア半島では、少しづつ、土地が上昇している。これは、氷期の、氷河が地殻に乗っていた時代に、アイソスタシーが成立していたため、氷期が終わり、アイソスタシーのつりあいが無くなったため、地面が上昇して、釣り合おうとしている最中だと考えられている。\n走時曲線を分析してみると、震央距離を地球中心からの角度で表した場合(これを角距離(かくきょり)という)、角103°から\n先の領域にはS波が伝わらない。この領域を「S波のシャドーゾーン」と言う。また震央距離の角103°から角143°にあたる地域はP波が直接伝わらない。これを「P波のシャドーゾーン」という。結局、角距離103°〜143°にあたる地域ではP波もS波も伝わらない。このような、地震波の伝わらない地域をシャドーゾーンという。シャドーゾーンのできる理由は、深さ2900kmのあたりで地下の構成物質が変わるため、P波の速度が急に遅くなり、よって物理でいう「波の屈折の法則」により、地震波が地表の方向へと屈折するためである。\nこの深さ2900kmあたりから、地球内部に向けて存在している物質を核(かく、英:core コア)という。核の存在は、グーテンベルクによって、1926年に発見された。\n復習として、モホロビッチ不連続面は地殻とマントルとの不連続面であることを指摘しておく。\n核は、さらに内核と外核に分けられる。これは、P波の速さが5100kmに相当する場所で不連続になるからである。\nまた、外核はS波が伝わらないことから、外核は液体であると考えられている。内核は、P波が速くなることから、固体であると考えられている。\nS波は横波であるので、固体にしか伝わることができない。(水面などの表面波は、横波ではなく、べつの機構の波である。) P波は、固体・液体・気体中を伝わる。固い物質ほど、地震波が速く伝わる。\nマグマオーシャンから分離した鉄が地球中心部に核を形成したが,時代を経るにつれて冷え,鉄が固体となって中心部に沈み,内核を形成した。\n(※ この節であつかう地球の中心部の温度の調べ方については、おもに地学II(専門地学)の範囲。低学年は、まだ深入りしなくて良い。まだ、物理で熱力学も習ってないだろうし、ここよりも物理を優先してもらいたい。)\n地球に火山活動があることからも分かるように、地中の内部には、高温・高エネルギーの物体がある。\n地中の温度は、深くなるほど、温度が上昇する。地表から約 30km までの地殻内では、 100m の深さにつき、約 2℃〜3℃ 、温度が上昇する。\nなお、この温度上昇の割合を地下増温率(ちか ぞうおんりつ)という。\n地球の中心部の温度は、さまざまな理論から推定される結果によると、 4000℃〜5000℃ の高温であるが、推定値であり、直接の観測は出来ていない。\nこの熱源のひとつは、ウランやトリウムなどの放射性同位体の原子が壊れるときに発生する熱である。\nもう一つの熱源は、地球の原始の時代に、地球ができるときに小惑星などとの衝突で発生した熱であり、まだ地中にその熱が、たまっている。\n", "url": "https://ja.wikibooks.org/wiki/%E9%AB%98%E7%AD%89%E5%AD%A6%E6%A0%A1%E7%90%86%E7%A7%91/%E5%9C%B0%E5%AD%A6%E5%9F%BA%E7%A4%8E/%E6%83%91%E6%98%9F%E3%81%A8%E3%81%97%E3%81%A6%E3%81%AE%E5%9C%B0%E7%90%83"}
{"text": "示準化石によって、地層の新旧は分かるが、具体的に何年前のものかは分からない。具体的な年代は、放射性年代測定によって測定される。放射性同位体は、一定の速さで壊変して最終的に安定な原子に変わっていく。(と考えられている。実際に古代から現在までの放射同位体の壊変速度を測定した人はいない。)\n放射性同位体のもとの原子の総数が、もとの半分になるまでの間にかかる時間のことを、半減期(はんげんき、half-life)といい、放射性同位体の種類によって異なる。\n半減期は、その原子ごとに一定であり、変わらない。この法則を利用して、化石の年代を測定する。\n元素の種類によって、測定方法は細かくちがう。\n生物の化石の場合、つぎに述べる炭素の放射性同位体がよく利用される。\n地上の大気にふくまれる炭素Cは、太陽光線などの影響により、いくらかの割合で一部の炭素が放射性同位体の炭素 14C に変わる。生きている植物体は光合成などにより、放射性炭素ごと、炭素を取り込む。このため、生きている植物体は、一定の割合で放射性炭素をふくむ。放射性炭素の半減期は、約5700年である。\n植物体が死ぬと、大気との循環が止まるので、新たな放射性炭素が増えなくなるので、これを利用して化石の年代を測定できる。\n炭素の半減期は、約5700年と、地球の歴史の中では短いほうなので、数万年以内という新しい時代の年代を測定するときに用いる。\n古い地質時代の年代測定は、ウラン(238U)などの半減期の長い元素の放射性同位体による。ウラン238Uの半減期は4.5×109 年。\n化石や地層の古さを数値で具体的に、たとえば「約200万年前」「約2500万年前」のように表した年代を、絶対年代(ぜったい ねんだい)とか数値年代(すうち ねんだい)という。\n放射性同位体による測定を利用して数値年代を測定する場合が多いので、放射性年代(ほうしゃせい ねんだい)ともいう。\n一方、示準化石などを利用して、「この地層は、あの地層よりも古い」などというように地層の新旧関係のみを考えた場合の年代を相対年代(そうたい ねんだい、reklative age)という。\n地球は約46億年前に誕生した。誕生したばかりの原始の地球(ancient earth)は、熱いマグマで覆われていたと考えられている。この状態をマグマオーシャンという。そのころは、まだ生命は存在していなかったと考えられている。\nしだいに表面が冷えていき、水蒸気が冷えて雨になって海が形成されていった。\n海ができる前までの、地球の誕生からマグマオーシャンの時代を冥王代という。\nマグマオーシャンが固まっていく時、重い鉄は重力によってマグマオーシャンの下にしずみ、地球の中心部に鉄が集まり、こうして地球は中心部に主に鉄からなる核(かく)を形成したと考えられる。\nこの原始の海の中または、その付近で、最初の生命が誕生したという可能性が考えられている。\nこの説とは別に、隕石に有機物が含まれてる場合があることから、有機物の起源を宇宙に求める説もある。\n地球で最古の岩石(the oldest rock)は、カナダ北部のほうにある40億年前の変成岩である。変成岩とは、熱や圧力によって、既存の岩石が変成してできた岩石のことである。\nまた、最古の地層は、グリーンランド南西部にある約38億年前の変成岩からなる地層であり、れき岩や玄武岩の変成したものである。\n浸食作用や堆積作用で出来る れき岩 があることから、この約38億年前の時代には海洋がすでにあった事が分かる。\n27億年前の地層から、ストロマトライトとよばれる岩石状の層状構造が見つかっており、この構造は原核生物のシアノバクテリアが作る構造として知られている。この時代以降の地層で、世界各地からストロマトライトの地層が見つかっている。よって、この時代にシアノバクテリアが大繁殖していたと考えられている。\n光合成をシアノバクテリアは行う。光合成で酸素が放出される。そのため、シアノバクテリアが繁栄していれば、海洋や大気で酸素が増加する。はじめは海洋中に解けていた鉄イオンと酸素が結びつき、酸化鉄として海底に沈殿していったと考えられている。(なお、今日、海底や地中にある鉄鉱床は、この時代に作られたと考えられている。) 海水中の鉄イオンが酸化して沈殿していくので、しだいに海洋中の鉄イオン濃度が低下していき、こんどは大気中で酸素濃度が増大することになった。この大気中での酸素の増加によって、酸素を好む好気性細菌が増加したと考えられている。\n地球上で最古の岩石ができてから現在までを地質時代(ちしつ じだい)という。\n地質時代の区分は、先カンブリア時代・古生代(こせいだい)・中生代(ちゅうせいだい)・新生代(しんせいだい)に分けられる。\n最古の生物が現れてから真核生物が現れるまでの時期は、先カンブリア時代にふくまれる。\n各代は、さらに、いくつかの紀に分けられる。たとえば古生代は、カンブリア紀・オルドビス紀・シルル紀・デボン紀・石炭紀・ベルム紀に分けられる。\nなおカンブリア紀は、古生代であり、先カンブリア時代ではない。\n三葉虫(さんようちゅう)は古生代の生物であり、アンモナイトは中生代の生物である。三葉虫は古生代末に絶滅してしまう。よって、三葉虫の化石がある地層から出土すれば、その地層が形成された年代は古生代であることが分かる。このような、時代を知れる化石を示準化石という。三葉虫の化石は、示準化石である。いっぽう、サンゴは暖かくて浅い海に生息するので、サンゴの化石があれば、その化石ができた時代に、その場所は暖かくて浅い海底だったことが分かる。このサンゴの化石のように、場所の特徴を知れる化石を示相化石(しそう かせき)という。\n先カンブリア時代の後半である約7億年前、地球が寒冷化して、地球の大半が氷河で覆われた。これを全球凍結(ぜんきゅう とうけつ、Snowball Earth スノーボール・アース)という。全球凍結によって、多くの生物が絶滅した。一部の生物は絶滅をまぬがれて、生き残った。\n最初の多細胞生物が出現した時期は不明だが、おそらく約10億年前の先カンブリア時代だと考えられている。最古の多細胞生物の化石が、約6.5億年前とされる地層から見つかっている。世界各地で、同時期の地層から、この時代の生物の化石が見つかっている。オーストラリアのエディアカラという地域が、そのような化石の産出地として代表的であるので、この6.5億年前ごろの時代の生物群をエディアカラ生物群(エディアカラせいぶつぐん)という。エディアカラ生物群のほとんどは、体がやわらかく、殻を持たず、扁平な形をしている。\n体が扁平なことから、移動能力は低いと考えられ、また、海中から酸素を直接に取り入れていたと考えられる。\nクラゲのような生物の化石も見つかっている。\nこのエディアカラ生物群は、気候の変動などにより、ほとんどの種が絶滅した。先カンブリア時代の後半である約7億年前、地球が寒冷化して、地球の大半が氷河で覆われた。これを全球凍結(ぜんきゅう とうけつ、Snowball Earth スノーボール・アース)という。全球凍結によって、多くの生物が絶滅した。一部の生物は絶滅をまぬがれて、生き残った。\nそして、約5億4000年前に先カンブリア時代が終わる。\n軟体動物や節足動物、環形動物など、多くの種類の動物が誕生した。このような、カンブリア時代での生物の多様化を「カンブリア大爆発」という。\nカナダのロッキー山脈のバージェスで化石が発見されたことから、この時代の生物群をバージェス動物群という。\n三葉虫、アノマロカリスなどが、バージェス動物群である。\n殻の成分としてカルシウムを持つ生物が多くいることから、海水中にカルシウムが豊富だったと考えらている。また、硬い殻は、捕食者に対抗するためのものだと考えられており、つまり、捕食者-被食者の関係が、この時代の生物群で既に存在していたと考えられている。\nカンブリア紀の末までに多くが絶滅した。\nカンブリア紀末~オルドビス紀(古生代)の魚には、顎(あご)が無く、ヤツメウナギの仲間である無顎類(むがくるい)だった。\n古生代シルル紀~デボン紀に、顎のある魚が出現し、シーラカンスなどが出現した。\n中生代の動物では、ハ虫類の大型化した恐竜類が出現して繁栄した。また、三畳紀(さんじょうき、別名:トリアス紀)には哺乳類(ほにゅうるい)が出現した。\nジュラ紀には、恐竜から進化した鳥類が出現した。始祖鳥(しそちょう)が、中生代ジュラ紀には出現していた。ジュラ紀の地層から始祖鳥の化石が見つかっている。中生代の海中ではアンモナイトが繁栄した。\n中生代の最後の白亜紀(はくあき)には、現在でいうカンガルーにあたる、有袋類(ゆうたいるい)が出現していた。白亜紀には、草本の被子植物が出現した。\n中生代の末期、大量絶滅が起きた。中生代末期である約6600万年前に、大型の隕石が地球に衝突したことが分かっているので、この隕石衝突による気候変動が原因だろうという説が有力である。\n新生代末期の白亜紀の地層と、新生代の初めの地層から、高濃度のイリジウムが多く見つかっているが、このイリジウムは小惑星に多いことが知られている。また、メキシコのユカタン半島に巨大なクレーターがあり(クレーター直径は100km以上)、この時代の隕石衝突によるものだろうと考えられている。ここに衝突した隕石の直径は10kmだろうと計算されている。\n大きな隕石の衝突により、粉塵などが舞い上がり、太陽光がさえぎられて、植物の光合成が低下し、\nそのため、植物の衰退および、食物連鎖で繋がっている動物が死亡し、動植物が大量絶滅した、などという説が考えられている。\n中生代の末期ごろ、恐竜類は絶滅し、アンモナイトも絶滅した。なお、恐竜の色素は化石としては残りづらく、そのため恐竜の表皮などの色は不明である。\n新生代に入り、哺乳類が繁栄し始め、また哺乳類は多様化していった。\nヒトは哺乳類の一種の霊長類(れいちょうるい、別名:サル類)である。霊長類が出現したのは、新生代に入ってからである。\n霊長類でヒトに、遺伝子が、もっとも近いヒト以外の動物は、チンパンジーであり、DNAの塩基配列の違いが1.2%程度である。\n霊長類に含まれる動物はゴリラやチンパンジーだけでなく、キツネザルやテナガザルなども霊長類である。\n霊長類の祖先は、現在でいうツバイに似た食虫類だと考えられている。\nこのような食虫類が進化して、現在でいうキツネザルに似た霊長類が出現した。\n霊長類は、樹上で生活するように進化していった。霊長類は目が顔面の前のほうに集中しており、そのため立体視ができる。この立体視は樹上での素早い移動のために獲得された特徴だと考えられている。また、手は、親指が他の指と向かい合っており(ぼ指対向性、「ぼしたいこうせい」)、指の爪は鉤爪(かぎづめ)ではなく平爪(ひらづめ)になっているので、枝をつかみやすい。\n新生代の第三期に、ゴリラ、チンパンジー、オランウータン、テナガザル、ボノボなどの類人猿(るいじんえん)の祖先が出現した。\n人類はアフリカ大陸で誕生した。人類と類人猿の違いとして、人類は直立二足歩行(ちょくりつにそくほこう)が可能である。\n最初の人類は 猿人(えんじん) である。アフリカで440万年以上前の地層(ちそう)からラミダス猿人(アルディピテクス・ラミダス)の化石が発見されている。猿人は二本足で立って歩ける直立二足歩行(ちょくりつにそくほこう)が可能だった。\n二足歩行ができるようになった結果、手で使う道具が発達していき、それにともなって知能も発達していったと考えられている。\nまた、東アフリカの300万年ほど前の地層からアウストラロピテクス類 の足跡化石が見つかっており、直立二足歩行をしていたことが分かっている。アウストラロピテクスの脳容積は500mLであり、現生人類の半分以下である。なお、現生人類の脳容積は約1500mLである。\nラミダス猿人やアウストラロピテクス類をまとめて、猿人といい、初期の人類と見なしている。また、これら猿人の化石がアフリカからのみ見つかっていることから、人類はアフリカで誕生したと考えられている。\nなお、猿人は石を打ち砕いてつくった打製石器(だせいせっき)を使っていた。打製石器は旧石器(きゅうせっき)とも呼ばれる。このような打製石器までしか使っていない時代を旧石器時代(きゅうせっき じだい)という。\nその後の100万年〜200万年後の時代の間に、人類はアフリカから出て、各地に散らばっていった。\n今から200万年ほど前に 原人(げんじん、hominid) があらわれた。\n中国大陸の中国の北京(ペキン)の近くの周口店(しゅうこうてん)からは、 北京原人(ペキンげんじん、シナントロプス=ペキネンシス) のあとが発見されている。\n原人の脳容積は約1000mLであり、猿人と現生人類の中間である。\n北京原人は火を使用していたことが分かっている。\nインドネシアのジャワ島からはジャワ原人のあとが発見されている。\nドイツからはハイデルベルグ人が発見されている。\n原人は、言葉を話せた。\n石器は、打製石器を使っている。旧石器時代にふくまれる。\n旧人のうちの一種の ネアンデルタール人(ホモ・ネアンデルターレンシス) の化石が、ドイツのネアンデルタールから発見されている。ネアンデルタール人は、約3万年前に絶滅した。ネアンデルタール人の脳容積は、現生人類とほぼ同じである。(ネアンデルタール人の脳容積は約1500mL)\n私達、現在の人間の直接の祖先である 新人(しんじん) が、4万年前には、あらわれていた。\n新人を、現生人類(げんせいじんるい)とも言い、また、 ホモ=サピエンス(Homo sapiens) とも言う。ホモ・サピエンスの最古の化石がアフリカのエチオピアで見つかっていることから、現生人類はアフリカで誕生したと考えられている。また、ミトコンドリアのDNAの解析も、アフリカで現生人類が誕生したことと一致している。\n人類は約10万年前にアフリカ大陸を出て、世界中に散らばった。\n", "url": "https://ja.wikibooks.org/wiki/%E9%AB%98%E7%AD%89%E5%AD%A6%E6%A0%A1%E7%90%86%E7%A7%91/%E5%9C%B0%E5%AD%A6%E5%9F%BA%E7%A4%8E/%E7%A7%BB%E3%82%8A%E5%A4%89%E3%82%8F%E3%82%8B%E5%9C%B0%E7%90%83"}
{"text": "大気圏の構造について、大気圏は地表から順に、対流圏、成層圏、中間圏、熱圏の4つに分けられる。\n地表から約10kmの高度までを対流圏(たいりゅうけん)という。\n対流圏では、高度が100m高くなるごとに気温が約 0.65 ℃ 下がる。なお、対流圏での この気温低下の度合いの事を気温減率(きおん げんりつ)という。\n対流圏と成層圏の境界のことを対流圏界面(けんかいめん)という。対流圏界面のことを単に「圏界面」と省略する場合もよくある。対流圏界面の高度は、場所や地方によって異なる。\n一般の雲は対流圏までしか上昇せず、対流圏界面のあたりで上限になり、それ以上の高度には、ほとんど上昇しない。(※ 参考文献: 東京書籍などの教科書)\n積乱雲(いわゆる入道雲)が上空で横に広がる場合があるのも、圏界面に達したので横に広がると考えられている(第一学習社の見解, 雲の写真のページ)。\nまた、降雨などの天気の現象は、ほとんどが、この対流圏にある雲の影響である。\nまた、ほかの圏と比較して対流圏は水分が多く、大気中のほとんどの水分は対流圏であると言われている。\n対流圏では、その名のとおり、対流が起きていると考えられており、太陽光で熱せられた地面や海面の熱が対流の原因であるとされている。\n対流圏界面から高度 約50km までを成層圏(せいそうけん)という。\n成層圏にはオゾン層が存在する。\nなお、オゾン層の化学式は O3 である。オゾン層は酸素(元素記号: O )がもとになっている。\n右図のグラフを見ると高度20km以上の上空では高度が上がるにつれて温度が上がるが、これはオゾン層の影響であると考えられている。\nオゾン層は紫外線のエネルギーを吸収し、大気をあたためている。\nなお、高度 約50km で気温は約0℃になる。\nさて、いまさっき説明したようにオゾン層は紫外線を吸収するので、地上の生命はオゾン層によって紫外線の害から守られている。\n紫外線には、生物のDNAを損傷する作用がある。\nなお、ラジオゾンデが飛ぶ高度は一般的に、成層圏である。\n高度 約50km 〜 80km が中間圏である。\n中間圏の気温については対流圏と同様に、高度が高くなるにつれて気温が下がる。\nしかし、中間圏の気温減率は、対流圏ほど大きくはない。\n中間圏では、夜光雲(やこううん)という特殊なうすい雲が観測される場合もある。\n高度 約80km以上から数百kmが熱圏である。\nオーロラは熱圏の高度100kmのあたりで観測される。なお、一般にオーロラは北極または南極に近い高緯度地方で観測され、また、両極でほぼ同時にオーロラは発生する(※ 時発生についての参考文献: 実教出版の教科書)。\nオーロラは、太陽風などによって地球に流れ込んできた 電荷(でんか)を帯びた微粒子が、極地方の磁力線にとらえれれて、その微粒子が地球大気の酸素分子や窒素分子などに衝突する事により発光現象が起きていると考えられている。\n流星が見られる高度も熱圏である。\n高度が上がるにつれて熱圏は温度が上昇していくが、この理由としては、太陽からのX線や紫外線を吸収しているためだと考えられている。\n地表からの電波をよく反射する電離層(でんりそう)は、熱圏にある。\n電離層として複数の層があり、下から順にD層、E層、F1層、F2層 である。\nこれらすべての電離層をまとめて電離圏(でんりけん)という。それぞれの層は、反射しやすい電波の波長が異なる。\n無線による遠距離通信(漁業無線など)では、電離層・電離圏の影響が強く表れるとされている。\n熱圏よりも上空は外気圏といい、宇宙空間に通じている。\n地学「地球のエネルギー収支」を見てください。\n海水の主成分は塩化ナトリウム(NaCl)であり、そのほか塩化マグネシウム(MgCL2)などの塩類が溶けている。海水1kgあたりの、すべての塩類の量を塩分(えんぶん)という。塩分の単位はgや%(パーセント)、‰(パーミル)で表す。\n海水の塩分は、3.3%〜3.8%であり(つまり33g〜38g)、およそ平均で3.5%(つまり35g)である。\n地域によって、海面付近での塩分の濃度は異なる。赤道付近では降雨が多いので、雨で海水がうすめられ、塩分が低くなる。いっぽう、緯度30°付近の亜熱帯では、蒸発が多いので、塩分が高くなる。\n海水温は、季節や地域によって異なるが、地域によって温度が違うのは表面付近の数百メートルの範囲だけである。海水の深さ数千メートルの深部では、世界のどの地域でも、水温は約2℃である。なお、表層の温度と、地域についての関係は、一般に、赤道付近の低緯度ほど、表層の水温は高温である。\n海水の表面付近は風や波で混ぜられるので、鉛直方向の温度差が少ない層が数十mほどあり、これを混合層(こんごうそう)あるいは表層混合層(ひょうそう こんごうそう)という。\n表層混合層のことを単に「表層」(ひょうそう)という場合もある。\n混合層よりも下には、水温が急激に下がる層があり、これを水温躍層(すいおんやくそう)といい、深さ500mあたりまで続く。\n深さが2000mほどになると、世界中のどの地域でも(緯度によらない、という意味)、それ以降の深さでは温度はあまり急変せず約2℃で一様になり、ゆるやかに温度が低下していく。\nなお、水温躍層では、温度のほかにも、塩分も深くなるにつれて急激に濃くなっていく。また、海水の密度は、海水の塩分と温度によって決まるので、よって水温躍層では海水の密度も急激に上昇していく。\n深層の塩分濃度は、緯度によらず、ほぼ一定である。\n海洋は水平方向と鉛直方向に運動するが、海洋の水平方向の運動のことを海流という。\n日本近海にある 黒潮(くろしお) や 親潮(おやしお) も、それぞれ海流である。日本近海にある 対馬海流(つしま かいりゅう) や リマン海流 も、その名の通り当然に海流である。\n海流の生じる原因としては、地球の自転と、貿易風や偏西風などの地上を吹く大規模な風の影響が原因だろうと考えられている。\n海水の密度は、温度が低いほど密度が大きく、また、塩分濃度が高いほど海水の密度が大きい。北大西洋のグリーンランド付近では、寒さのため海水の表面が凍るので、そのため海水の塩分が増加するので、海水の密度が大きくなる。この密度の高い海水が、海底に向かって沈み込み、図(「海水の大循環。」)のような海の表層と深層との大循環の一部を形成する。このような深層もふくむ海底の大循環を深層循環(しんそう じゅんかん)などという。深層循環のことをコンベアーベルトともいう。\n循環の速度はきわめて遅く、約2000年程も掛かって、北大西洋で沈んだ海水が、北太平洋で上昇する。(一部、インド洋でも北大西洋で沈んだ海水が上昇している。)\n", "url": "https://ja.wikibooks.org/wiki/%E9%AB%98%E7%AD%89%E5%AD%A6%E6%A0%A1_%E5%9C%B0%E5%AD%A6%E5%9F%BA%E7%A4%8E/%E5%A4%A7%E6%B0%97%E3%81%A8%E6%B5%B7%E6%B4%8B"}
{"text": "太平洋の赤道付近の南アメリカのペルー沖あたりで2〜5年に一度、海面の水温が上昇する現象があり、この現象をエルニーニョという。\nなお、エルニーニョはクリスマスの頃に発生し、またエルニーニョとはスペイン語で「神の子」という意味である。\nエルニーニョが起きると、影響はペルー周辺だけではなく東南アジアまでの広い太平洋全体に気象の変化を及ぼし、また赤道周辺だけでなく(日本やオーストラリアといった)中緯度の地域にまで影響を及ぼす。つまりエルニーニョは太平洋地域の気象に広く影響を及ぼす。\n日本ではエルニーニョの年は、夏は冷夏になり、冬は暖冬になる場合が多いとされている。\nエルニーニョの発生していない平年は、この地域には貿易風が強く存在していると言われている。エルニーニョの発生原因として考えられている説は、何らかの原因で貿易風(東風)が弱まり、冷水の上昇も止まるのが原因だろうとされている。\nいっぽう、エルニーニョとは逆に、ペルー沖の海面水温が低くなる年もあり、この現象をラニーニャという。なお、ラニーニャとはスペイン語で「女の子」という意味である。ラニーニャが発生すると、太平洋地域の気象に広く影響を及ぼす。\n日本ではラニーニャの年は、夏はかなり暑く、冬はかなり寒くなる場合が多いとされている。ラニーニャの年は、貿易風が強いと言われている。\n観測事実として、大地震の時などに、埋立地の地面が、水分の多い泥のような液体状になるという現象が発生する場合のある事実があり、このような地震などで地盤が液体のように軟弱になる現象のことを液状化(えきじょうか)という。「液状化現象」という場合もある。\n単に泥水が出現するだけでなく、さらに地盤が軟弱になった事により建物が倒れたりするので、被害が拡大する場合もある。\n図のように、地震のない時には砂どうしが結合している地盤に、地震によって砂が浮き上がりスキマが生じて、そのスキマに水が入ることで砂どうしの結合が破壊されるという仕組みが、液状化の仕組みとして提唱されていて定説として普及している。\n", "url": "https://ja.wikibooks.org/wiki/%E9%AB%98%E7%AD%89%E5%AD%A6%E6%A0%A1%E7%90%86%E7%A7%91/%E5%9C%B0%E5%AD%A6%E5%9F%BA%E7%A4%8E/%E5%9C%B0%E7%90%83%E3%81%AE%E7%92%B0%E5%A2%83"}
{"text": "プリズムを通った光は、赤から紫までの波長の光に分かれる。このような光の帯をスペクトルという。\n光は、電磁波という波の一つである。光の色の違いは、波長の違いである。電磁波のうち、私たちが色や明るさとして見ることができる電磁波を、可視光(かしこう)または可視光線という。私たちヒトが見ている光は、可視光である。\n可視光の波長は、おおむね380nm〜770nmである。( nm は長さの単位 ナノメートル のこと。)\nまた、光の速度は常に一定であることが物理学によって分かっている。\n光には、私たちヒトの目に見えない光もある。赤外線や紫外線なども電磁波であるが、赤外線や紫外線は、私たちヒトの目には見えない。\n水素を発光させたものやナトリウム灯のスペクトルを調べると、特定の波長だけが線上に表れる輝線スペクトル(きせんスペクトル)になる。どの波長が表れれるかは元素の種類によって異なる。ちなみにナトリウム灯のスペクトルは、オレンジ色の線が2本ほど表れる。(※ ウィキに図が無いので、参考書などで各自、調べてください。)\n逆に、太陽光のスペクトルを調べると、特定の波長が、いくつか抜けていて、その波長の部分だけ黒い線になっているスペクトルが表れる。これは、太陽大気などの物質に、その波長の光が吸収されたためである。よって、この抜けているスペクトルの波長と、知られている元素のスペクトルの波長とを、比べることで、太陽大気の元素の組成を調べることができる。\nなおスペクトルで、物質に吸収されたため、暗くなって抜けていて黒い線の部分を、吸収線(きゅうしゅうせん)あるいは暗線(あんせん)という。\nこうして太陽の元素の組成を調べたところ、太陽の元素のほとんどは水素であり、水素が92%ちかくある。残りのほとんどはヘリウムで、ヘリウムが約7%ある。\nなお、太陽の吸収線のことをフラウンホーファー線という。\nまた、恒星のスペクトルでの各色の光の強さを調べることで、その恒星の温度が分かる。その理由は、つぎのような理由である。\nまず、近代のヨーロッパの科学者たちの調査で、製鉄所などで加熱されて造られている金属などのように、とても高温の物から出てくる光に含まれる色を調べたところ、温度が1000度や2000度くらいの時は、赤い光が多いが、もっと温度を上げていくと、だんだん白い光が多くなってくることが分かってきた。\nさらに、もっともっと、温度を上げていくと、物体から出る光は、青白い光が多くなってくることが分かってきた。\n近代の科学者は考えた。「地上の物体では、温度が高いほど、赤い光から青白い光になるという法則があるんだから、夜空にうかぶ星の色も、地上と同じように、青い星は、きっと温度が高いにちがいない」と、近代の科学者は考えた。\n実際に、この考えが正しいことが、さまざまな研究から、確かめられている。\nこのようにして、太陽のスペクトルから求めた太陽表面の温度は、およそ6000℃である。温度の数値の根拠は、以降の「シュテファン=ボルツマンの法則」の章の解説を参照せよ。\nウィーンの変位法則は、黒体の温度が高いほど、放射エネルギーが最大になる波長が短くなっていることを表し、その波長をλ(μm)・温度をT (K)としたとき以下の式で示せる。\nウィーンは、ウィーンの法則を確かめる測定実験をする際、熱エネルギーの測定器にはボロメーターという装置を用いた。\n[1]\n(※ ボロメーターについて、くわしくは、発展の節で説明する。)\nシュテファン=ボルツマンの法則は、恒星の放射するエネルギーE は絶対温度T の4乗に比例するというもので、次の式で表される。\n1900年ごろ、すでに天文学者のラングレーによって、熱エネルギーの測定器としてボロメータという測定器が実用化していた。ボロメータとは、金属が温度変化した際の電気抵抗の変化を利用して、電気抵抗の変化から温度変化を読みとり、その温度変化から熱エネルギーなどのエネルギーを測定する装置である。\nこのボロメータを用いて、光の放射エネルギーも測定できた。\nウィーンは、ウィーンの法則を確かめる測定実験をする際、光のエネルギー測定のために、ボロメーターを用いた。この当時のボロメーターの精度の例として、温度が10-5上昇すると、抵抗値の変化率の3×10-8を読み取れるという高精度であったと言う。\nラングレーやヴィーンが用いていた頃のボロメーターでの測温用の金属には、白金が用いられていた。\nそして、ボロメーターの精度の向上のため、ホイートストン・ブリッジ回路の中に、この電気抵抗を組み込むことで、精度を得ていた。\nなお、21世紀の現在でも、白金は、電気抵抗式の測温素子として、よく用いられている。また、ホイートストン・ブリッジも、アナログ電気式の測定器で精度を得るための手法として、よく用いられている。さらに、ホイットストーン・ブリッジと測温素子の組み合わせによる温度測定器や放射エネルギー測定器などすらも、現在でもよく用いられている。\nこの1900年ごろのウィーンの時代、光の波長測定の方法では、回折格子が用いられた。すでにローランドなどによって光の波長測定の手段として実用化していたローランド式などの回折格子が、よく用いられた。\nそもそも、光の波長は、どうやって測定されたのだろうか。\n1821年にドイツのレンズの研磨工だったフラウンホーファーが、回折格子を作るために細い針金を用いた加工装置を製作し、その加工機で製作された回折格子を用いて、光の波長の測定をし始めたのが、研究の始まりである。フラウンホーファーは、1cmあたり格子を130本も並べた回折格子を製作した。[2]\nまた、1870年にはアメリカのラザフォードがスペキュラムという合金を用いた反射型の回折格子を製作し(このスペキュラム合金は光の反射性が高い)、これによって1mmあたり700本もの格子のある回折格子を製作した。\nより高精度な波長測定が、のちの時代の物理学者マイケルソンによって、干渉計(かんしょうけい)というものを用いて(相対性理論の入門書によく出てくる装置である。高校生は、まだ相対性理論を習ってないので、気にしなくてよい。)、干渉計の反射鏡を精密ネジで細かく動かすことにより、高精度な波長測定器をつくり、この測定器によってカドミウムの赤色スペクトル線を測定し、結果の波長は643.84696nmだった。マイケルソンの測定方法は、赤色スペクトル光の波長を、当時のメートル原器と比較することで測定した。[3]\nなお、現代でも、研究用として干渉計を用いた波長測定器が用いられている。メートル原器は、マイケルソンの実験の当時は長さのおおもとの標準だったが、1983年以降はメートル原器は長さの標準には用いられていない。現在のメートル定義は以下の通り。\n宇宙は膨張している。1929年、天文学者のハッブルは、つぎのような観測事実をもとに、銀河が遠ざかっていることを発見した。\nハッブルは観測によって、恒星から地球にとどく光のスペクトルが、地球から遠い星ほど、ドップラー効果によって、赤くなっていることを発見した。\n地上で測定された各元素の輝線スペクトルよりも、星の光から観測したスペクトルのほうが距離に比例して赤く偏位しているのである。\nこの、遠い星ほど光が赤いという事実を、赤方偏移(せきほう へんい)という。\nサイレンを鳴らした車が自分の近くを通りすぎるとき、通りすぎる前と通り過ぎたあとで、音の高さが違って聴こえるのもドップラー効果である。\n光にもドップラー効果はあり、私たちが作ったような自動車などが運動するような速度では速度が低すぎて光のドップラー効果は観測できないが、宇宙の規模での速度だと、もっと高い速度なので、光のドップラー効果も観測できる。\nドップラー効果では、波の発生源が遠ざかるほど、波長は長くなり、つまり振動数が低くなる。\n青い光と比べて、赤い光は、波長が長く、振動数が低い。つまり、赤くなるほど、波長が長くなっている。\nそして、地球から遠い恒星ほど、赤い光になっているのだから、遠い星ほど、より速く遠ざかっていることになる。\nつまり、遠ざかる速度 v が、観測地点である地球からの距離 r に比例している。比例定数を H とすれば、式は\nで表される。\nこの比例定数Hを、発見者のハッブルの名前にちなんで、ハッブル定数という。\nそして、このような事実から、宇宙は膨張している事がわかる。\nこのような宇宙の膨張の法則をハッブルの法則という。\nさて、このように、宇宙にある星どうしは、おたがいに、どんどん遠ざかっている。つまり、宇宙は、膨張している。\n裏をかえせば、過去にさかのぼると、昔は今よりも、星どうしの距離が近かったのである。ならば、宇宙が誕生した瞬間は、すべての星が、一点に集まっているはずである。\n膨張の速度から逆算すると、宇宙が誕生した時期が分かる。宇宙は約137億年前に誕生した。\n宇宙の始まりの瞬間は、以上の論理から、物質の密度がとても高かったことが考えられている。現在の宇宙にある物質すべてが、一点に集まっていたからである。\nまた、宇宙の始まりのときの温度については、宇宙での元素の種類や割合などの理由から、宇宙の始まりの温度は、とても高温であったと考えられている。\n宇宙の始まりの瞬間は、きわめて高温・高密度であったと考えられている。そして、それが急激に膨張していったと考えられている。このような説をビッグバンといい、1948年に物理学者のガモフによって提唱された。\n皆既日食のときに光球の外側にピンク色っぽい大気の層が見え、この層を彩層(さいそう)という。このピンク色の光の原因は、水素のスペクトル光であるHα線(エイチ・アルファーせん)の赤色である。また、彩層の外側にうすく広がる気体の部分をコロナという。彩層の一部が突然明くなることがあり、この現象をフレアという。\nフレアのときに、強いX線や紫外線が放出されることで、地球では通信障害を起こすことがあり、この通信障害の現象をデリンジャー現象という。\n太陽からは、水素や電子などの粒子が、数百km/s の速さで、大量に流れだしてる。これを太陽風(たいようふう、solar wind)という。太陽風は電離しており、電気を帯びている。これは、太陽の内部はとても高温のため、水素やヘリウムなどの原子核から電子が電離してしまうためである。\n太陽風が地球に打ちつけられた時、北極・南極の極付近では、発光現象を起こすことが知られており、この極付近での発光現象をオーロラという。\n太陽の光かがやく原動力は、水素の核融合であると考えられている。そして太陽での水素の核融合の結果、ヘリウムが生成していると考えられている。\n太陽にかぎらず、このように天体の中心部で水素の核融合が起き続けている状態の恒星のことを主系列星(しゅけいれつ せい)という。\n現在の太陽は主系列星である。\nいっぽう、宇宙には観測事実として、赤くて巨大(と考えられている)な恒星が存在する。おうし座のアルデバラン、さそり座のアンタレスなどが、そのような赤くて巨大な星である。\nこれらの赤くて巨大な星は、主系列星が中心部の水素を核融合で使い果たした状態だろうと考えられている。\n太陽も、中心部の水素を核融合で使い果たすと、主系列星ではなくなり、赤くて巨大な星になると考えられている。\n主系列星は星の一生のうちの比較的に前半であり、赤くて巨大な星は星の一生うちの比較的に後半である。\n(※ 範囲外 :)赤くて巨大な星がなぜ星の一生の後半であるかが分かったかというと、参考文献 『星の進化論とHR図表』、小暮智一(元 京都大学教授) 著 、天文教育 2011年5月号によると、(20世紀前半の科学者が?)地球から観測できる数万光年は離れた複数の赤くて巨大な星どうしを比べたところ、性質がどれも似ており、そのことから、数万光年ぶんの時間よりも遥かに長い時代(つまり数億年)を過ごした星の寿命の後半であると20世紀当時の人は判断したようである。\n現在は主系列星の太陽の水素は核融合で消耗しつづけており、その水素が尽きるであろう約50億年後に、太陽はヘリウムを中心核にもつ星へと変化するだろうと考えられている。\nそして、ヘリウムを中心核にもつ結果、重力によってヘリウムは中心に集まり収縮していく。\nいっぽう、その頃には太陽を囲む外側で水素による核融合が起き、その結果、太陽は膨張し、太陽は赤く見える星になると考えられている。\n太陽にかぎらず、このような状態(中心部の水素が尽きて、周辺部の水素で核融合している状態)の恒星のことを赤色巨星(せきしょく きょせい)という。\nおうし座のアルデバラン、さそり座のアンタレスなどが赤色巨星である。\n赤色巨星になったあとの星では、ヘリウムは当初は核融合しないで、核融合しないので重力によって中心部に ヘリウム が収縮していく。\nしかし、収縮によって温度も上昇するので、約1億℃になり、ヘリウムが核融合するようになる。\nこのヘリウムの核融合により、酸素と炭素が作られる。\nそして、太陽は巨星になる。\n太陽はどうだか知らないが、歴史上、実際に上空で消滅した星があり、平安時代の『明月紀』などの古文書などにも記載されている(同時期に中国や中東などの文献にも同類の天文学の記録があり、史実だろうと思われている)。\nこのように、恒星は寿命を迎える。\n太陽の場合、水素もヘリウムも使い果たして巨星になったあと、ガスが散逸していき、小さくなり(とはいっても、地球よりかは遥かに大きいが)中心部の密度の高い白色矮星(はくしょくわいせい)という状態になると考えられ、ガスを放出して、しだいに冷却していく。残った酸素や炭素は、核融合を起こさないと考えられている。\n太陽よりも質量が8~10倍以上はある恒星の場合、水素を中心部も周辺部もすべて水素を使い果たすと爆発を起こすと考えられており、この現象を超新星(ちょうしんせい)または超新星爆発という。\n(※ 範囲外 :)近年にも、2006年にペルセウス座の超新星が観測されている。歴史的にも、1604年にケプラーがヘビ使い座で超新星を観測しており、1885年にアンドロメダ銀河で超新星爆発が観測されている。また、平安時代の『明月紀』にある記述もおうし座の超新星だろうと考えられている。\n宇宙には、どんな波長の電磁波も吸収してしまうブラックホールという場所がいくつもある事が分かっている。\nブラックホールは、ある天体の密度が大きすぎて重力が大きくなりすぎた結果、光すらも外に出ない結果、ブラックホールが発生すると考えられている。(※ 高校の範囲外だが、物理学におけるアインシュタインなどの相対性理論によると、重力によって光は曲がる。なので、重力が強すぎると、光は外に出ていないと考えられている。)\nブラックホールの種類にもよるが、一般にブラックホールの密度は、太陽の数百万倍ほどであると考えらている。\nブラックホールは、寿命の尽きた恒星のうち、密度が比較的に大きめだった天体が超新星爆発を経ての変化の結果だという説もある。(※ 啓林館や第一学習社の検定教科書が紹介している。)\n地球から見ると、天の川 の いて座 の方向にブラックホールだと思われている場所がある。\n曲線運動をしている銀河は、その曲線運動の中心あたりに、円運動の中心になるような重力の発生源があると考えられている。\nこのように、運動の形状や速度などを分析することにより、銀河での重力の分布を算出することができる。\nそのようにして算出した重力分布をみると、電磁波では何も観測されていない場所にも強い重力をもつものが分布している場所も多くある。なので宇宙には、電磁波では観測できないが重力を発生させる事のできる物質のような何かが存在すると考えられており、そのような重力発生を引き起こしているのに見えない宇宙の物質のことを暗黒物質あるいは英語でダークマターという。\nダークマターの正体は、まだ不明である。\n", "url": "https://ja.wikibooks.org/wiki/%E9%AB%98%E7%AD%89%E5%AD%A6%E6%A0%A1%E7%90%86%E7%A7%91/%E5%9C%B0%E5%AD%A6%E5%9F%BA%E7%A4%8E/%E5%AE%87%E5%AE%99%E3%81%AE%E6%A7%8B%E6%88%90"}
{"text": "地球は、大きく分けて次の2つです。\n固体地球は、地殻、マントル、外核、内核の4つの区分に分かれています。これらを作るのに、地震波の伝わり方の変化が利用されています。大気は、地表から上空に向かって、対流圏、成層圏、中間圏、熱圏の順に構成されています。これらは、高度によって大気の温度がどのように変化するかに基づいています。\n気球や人工衛星、ロケットなどを使って様々な高さから大気圏を観測すると、その構造や成り立ちが明らかになります。しかし、地表の岩石や地層の調査だけだと、地下の構造や成分は断片的にしか分かりません。そこで、以下のような方法で、地球の内部の構造を探ってみます。\n地球の重力は、地球の内部構造や地形を示しています。地下に密度の大きい物質があれば、その部分の重力は他の場所より強まります。地球の重さを見れば、地下を構成している物質の密度がどれくらいあるかが分かります。\n地震は特定の場所でしか起こりませんが、地震が出す波はどこでも感じられます。地震波は、通過する物質や形の良し悪しによって、動く速度が異なります。そこで、地球上の様々な場所から送られてくる地震波を見ると、地下の深さによって波がどこに行くのか、どのくらいの速さで動いているのかが分かります。その結果、地球内部の物質や構造を推測出来ます。\n地球内部を知るもう一つの重要な手段は、地球が発する熱を見れば分かります。火山の噴火や高温のマグマの存在などから、地球の内部には熱いものがあると推測出来ます。火山が噴火している場所では、マグマが上昇し、地球内部の熱がその場所に伝わります。日本列島やアイスランドのように火山が多い地域では、地球内部の熱が地表にたくさん出てきています。一方、北欧やユーラシア大陸北部、アメリカのグレートプレーンズ中央部など、火山がない地域では、地球の中心からあまり熱が出てきません。かつて、地球内部から地表に出る熱量(地殻熱流量)は、大陸より海の底の方が少ないように思われていました。しかし、地球内部が海底でどれだけ熱を発しているかを注意深く測定した結果、海底の方が大陸よりも多くの熱を出していました。地球内部を知る1つの方法は、地球の熱を調べれば分かります。\n方位磁針のN極は、一般的な北の方角を指しています。これは、方位磁針のN極が、北極に近い地球内部の磁石のS極に引き寄せられるからです。地殻やマントルよりも深い部分にある外核液の流れが電流を作り、この磁力を生み出していると考えられています。地球の磁場の強さや方向(地磁気)を見れば、外核の状態や運動を知る手掛かりになります。\n", "url": "https://ja.wikibooks.org/wiki/%E9%AB%98%E7%AD%89%E5%AD%A6%E6%A0%A1_%E5%9C%B0%E5%AD%A6/%E5%9C%B0%E7%90%83%E3%81%AE%E8%A6%B3%E6%B8%AC"}
{"text": "水には、木などの密度の低い物質が浮かびます。地殻は、マントルよりも小さな密度なので、地殻はマントルの上に浮かぶような浮力を受けていると見なせます。例えば、海中に氷山が浮かぶようなものです。\nさてマントルに浮かぶ地殻について、ある地点の付近での、地殻が安定するためには、力学的に直感的に考えれば、標高の高い地殻は、そのぶん浮力も多く必要なので、地下深くにまで地殻が続いている必要があります。\nこのような地殻とマントルの、浮力と重力の釣り合いを、アイソスタシー(isostacy)といいます。\nある一定深さでは、その地点付近では、ある面にかかる圧力は同じです。\nこのように地殻が地下まで続いているため、ブーゲー異常については、山などの高い地形がある場所では、アイソスタシーによって地下に密度の低い地殻があるため、山の付近ではブーゲー異常が負になるのが一般です。\n", "url": "https://ja.wikibooks.org/wiki/%E9%AB%98%E7%AD%89%E5%AD%A6%E6%A0%A1_%E5%9C%B0%E5%AD%A6/%E5%9C%B0%E7%90%83%E3%81%AE%E5%86%85%E9%83%A8%EF%BC%88%E5%9C%B0%E9%9C%87%E6%B3%A2%EF%BC%89"}
{"text": "火山の噴火は、地球の中に高温の物質が含まれています。その熱はどこから来ているのでしょうか?地球表面の熱の出入りを見ると、地球の熱収支だけでなく、マントル対流など、マントルや核の様子も読み取れます。\n地球内部から熱を出す場所の1つとして、高温の核があると考えられています。これは、小さな惑星が衝突して地球が出来た時に、地球の中心部に残された熱です。地殻やマントルを作る岩石には、カリウム・ウラン・トリウムなどの放射性同位体が含まれているので、自然崩壊する時にも熱を出します。火成岩(花崗岩・玄武岩・橄欖岩)に含まれる放射性同位元素が1年間にどれだけの熱を出すのかを調べます。その結果、大陸地殻上部の花崗岩が一番高い発熱量を持っています。\n", "url": "https://ja.wikibooks.org/wiki/%E9%AB%98%E7%AD%89%E5%AD%A6%E6%A0%A1_%E5%9C%B0%E5%AD%A6/%E7%86%B1%E3%81%A7%E6%8E%A2%E3%82%8B%E5%9C%B0%E7%90%83%E3%81%AE%E5%86%85%E9%83%A8"}
{"text": "1960年代の終わり頃までに、ほとんどの人がプレートテクトニクスの考え方に納得しました。現在、プレートテクトニクスは、マントルがどのように動いていて、地球全体がどのように動いているかという視点から理解されています。\nプレートテクトニクスは、造山帯がどこから来て、どのように大陸が組み合わされるのかを改めて考えるきっかけとなりました。その結果、次の内容が明らかになりました。\n多くの観測結果から、プレートが移動したため、大陸が移動して海溝や尾根、山脈などの大きな地形が出来たと考えられるようになりました。アルフレッド・ウェゲナーの大陸移動説は、プレートテクトニクスに変わり、その事実が証明されました。\nクエーサーと呼ばれる遠方の天体からの電波を利用して、地表の2点間の距離を精密に測定するVLBI(超長基線干渉法)という方法を使います。その結果、2000年から2010年にかけて太平洋プレート上の日本列島とハワイ諸島の距離が約61cm(1年あたり約6.1cm)縮んでいる様子が明らかになりました。\n現在、最も速く動いているのは太平洋プレートです。日本列島周辺では、1年に10cmも動いており、これは回転運動と考えても構いません。一方、ユーラシアプレートはゆっくり動いています。\n", "url": "https://ja.wikibooks.org/wiki/%E9%AB%98%E7%AD%89%E5%AD%A6%E6%A0%A1_%E5%9C%B0%E5%AD%A6/%E3%83%97%E3%83%AC%E3%83%BC%E3%83%88%E3%83%86%E3%82%AF%E3%83%88%E3%83%8B%E3%82%AF%E3%82%B9%E3%81%A8%E3%83%9E%E3%83%B3%E3%83%88%E3%83%AB%E3%81%AE%E5%8B%95%E3%81%8D"}
{"text": "地殻変動や火山活動、風化、侵食、運搬、堆積などによって、地形が変化しています。地表が急に変わってしまうと、しばしば災害が発生します。\n地殻変動や火山活動などによって、むき出しになった岩石や地層は破壊されて、化学変化を起こしたりします。それを風化といいます。風化によって、岩石は細かく砕かれた粒子(砕屑物)となり、成分の一部も溶け出します。\n物理的風化(機械的風化)とは、地層や岩盤が物理的な作用によって破壊される現象です。温度が変化すると、岩石を構成する鉱物が伸びたり縮んだりします。膨張の速度は鉱物によって違うので、岩石には小さな罅割れが出来ます。その罅割れに入り込んだ水が凍ると、さらに罅割れが大きくなります。その結果、罅割れが大きくなり、岩石はさらに破壊されます。海水に溶けている塩類(硫酸ナトリウム、炭酸カルシウムなど)が結晶化して成長する場合があり、これを塩類風化と呼びます。また、生物的風化では、植物の根によって罅割れを広げます。\n化学的風化とは、岩石が雨水や地下水と反応して、一部の鉱物が流出したり、他の鉱物に変化したりする現象をいいます。\n石灰岩や花崗岩に含まれるカリ長石は、二酸化炭素の溶けた水と反応して化学的風化が進みます。熱帯地方では、カリ長石が化学的に分解してカオリンとなり、これが水と反応して水酸化アルミニウムになります。アルミニウムの原料となるボーキサイトの主成分は水酸化アルミニウムです。\n以上から、化学的風化は温暖湿潤な熱帯・亜熱帯に多く、物理的風化は乾燥・寒冷で温度変化の激しい場所によく見られます。\n水は、大気、海洋、陸を循環しながらその状態を変化させています。太陽放射エネルギーを吸収して海面から蒸発した水の一部は、雨や雪として地上に降り、海面より高い位置にあるため再び海へ流れます。この時、流水による侵食作用・運搬作用・堆積作用がはたらき、地表は多様な姿に変化しています。陸上で作られ、運搬した砕屑物の多くは海底にたどり着き、地層を作ります。\n川底を削る下方侵食と川幅を広げる側方侵食は、どちらも河川侵食の1つです。侵食の強さは流速の2乗に関係するため、川が運ぶ最大の岩石の破片の大きさは流速の6乗にほぼ比例します。流水作用は、流水の速さと粒子の大きさの関係で決まります。流水によって運ばれた小さな岩片は、時間とともに砕かれたり、すり減ったりして、小さな砕屑物へと変化します。流速が遅くなると、河川の運搬能力は急速に下がり、堆積作用がはたらきます。\n河川の縦断面図は、源流部から河口までの様子を示しています。縦断面図のうち、横軸は河口からの水平距離、縦軸は川底の高さです。一般に、河川の縦断面は下に凸の形をしており、中流域付近で河床の傾斜が大きく変化する地点があります。河川が流れる地域の地形や地質によって、下に凸になる度合いは変わります。\n地形の傾斜が大きい上流部では、下方浸食が強く働き、川底も低くなっています。傾斜の変化が大きい中流部付近では、流速が大きく下がり、運搬力も弱まり、砂利や砂などの大粒の砕屑物が堆積します。一方、傾斜が緩やかな下流部では堆積が進み、平坦化が進みます。このように、流域ごとに水の流れも変わるため、河川の断面図は緩やかな曲線を描くように変化していきます。\n大陸の河川と比べると、地殻変動の激しい日本の河川では、上流の山岳地帯から下流の平野部や河口部までの距離が短くなっています。また、これらの河川の縦断面は非常に急な勾配となっています。\n険しい山地や斜面では、河川は速く流れ、土砂を浸食して運搬します。その結果、谷底が深くなると、V字谷になり、谷底に土砂が堆積すると谷底平野になります。\n河川が山地から平野のような平坦な土地へ出てくる地域では、地形の傾斜が急に小さくなります。そのため、流れが悪くなり、運搬も遅くなり、礫や砂のような大きな砕屑物が集まって扇状地を作ります。\n平野部の河川は、側面の侵食によって曲がりくねっています。洪水時には、砂や泥が堆積して氾濫原になります。河口では流れが緩やかになり、土砂が堆積して三角州になります。\n河川の中流から下流の比較的平坦な地域では、川底にある土砂を削って運搬するよりも川を広げ、土砂が堆積しやすくなります。しかし、海面が上がったり、地盤が嵩上げしたりすると、海面との標高差が拡大します。しばらくの間、川の流速が大きくなります。川底にある土砂を削って、運びやすくなり、川底が階段状に削られると、河岸段丘が出来ます。\n日本列島のように地殻変動が激しい地域では、河川が土砂を侵食して、運んで、堆積させるので、地形の変化に大きな影響を与えています。\n潮の流れによって河口から運ばれてきた土砂の一部が海岸近くに堆積すると、砂嘴(嘴状の陸地)が出来上がります。砂嘴が成長した地形は砂州とよばれ、砂州と海岸の間には潟(ラグーン)が出来ます。\n岩石海岸に波が当たると、岩が砕けて崖(海食崖)になります。海岸近くの土地が高くなると、海底に沈んでいた部分が再び地表に上がってきます。この浮き出た部分を、再び波によって削り取ります。これを海食台(波食台)といいます。以上のような流れが繰り返されると、海岸段丘が出来ます[1]。\n大陸棚とは、海岸から沖に向けて小さな傾斜で平らな場所をいいます。大陸棚は、海岸から水深200mくらいまで傾き0.06度(\n\n\n\n1\n1000\n\n\n{\\displaystyle {\\tfrac {1}{1000}}}\nの勾配)以下の起伏の少ない平坦面から出来ています。南極海では水深約400mの深さまであります。大陸棚の幅は平均で約80kmですが、北極海では400km以上ある場所もあります。大陸棚は、約1万8000年前の最終氷期で海面が現在より約120m低下した時に出来た海岸近くの広い平地と考えられています。大陸棚の端から水深数千メートルの海底まで、大陸斜面と呼ばれる急斜面があります。大陸棚の傾斜より3〜6度(\n\n\n\n5\n100\n\n\n{\\displaystyle {\\tfrac {5}{100}}}\n〜\n\n\n\n10\n100\n\n\n{\\displaystyle {\\tfrac {10}{100}}}\nの傾斜)ほど急な斜面になっています。大陸斜面下部の深海底には、陸源砕屑物が非常に厚く堆積して出来た海底扇状地があります。\n海岸付近の海底に沈殿した細かい砂や泥は、大陸棚に移動して再堆積します。大陸棚末端や大陸斜面上部にしか堆積しない土砂は、不安定な状態にあり、地震などで海底地すべりや海底土石流が発生するきっかけとなります。また、この時、水と混じった砂が高密度に流れ、時速100kmで大陸斜面を移動する場合もあります。これを混濁流(乱泥流)といいます。タービダイトとは、混濁流によって形成された岩石層をいいます。タービダイトでは、級化構造、クロスラミナ(斜方葉理)など、様々な種類の堆積構造が見られます。級化構造とは、堆積物が粒径の大きいものから小さいものへと積み重なった構造をいいます。\n堆積物重力流とは、海底地滑りや海底土石流、濁流など、重力の作用で下へ下へと移動する流れをいいます。堆積物重力流は、大陸の斜面を侵食して、深い海底谷を作り出します。また、陸上から大陸斜面下の深海底に大量の瓦礫を運んでしまいます。\n水深数千メートル以上の深海底には、陸上の砕屑物がほとんどありません。深海底によく堆積するのは、放散虫の殻や珪質軟泥です。堆積速度は非常に遅く、1000年に数ミリ程度しか堆積しません。珪質軟泥が固まってチャートになります。深海底には、風に運ばれてきた非常に細かい火山灰や風化生成物もあります。\n深海底のほとんどは平らですが、海嶺という巨大山脈や海底火山列などの起伏があります。多くの海山はホットスポットとして始まり、その上に石灰岩を載せています。\n海嶺で新しく出来た玄武岩質岩石の海洋底(海洋地殻)の表面に、珪質軟泥がゆっくりと堆積し、チャートとなります。大陸に近づくにつれて、陸上の火山灰や粘土が風に運ばれて堆積するようになり、珪質泥岩となります。海溝に近づくにつれて、陸からの砕屑物が重なります。これを海洋プレート層序といいます。\n太陽光が届かない深海では、海水中の酸素が有機物の分解に役立っています。有機物が分解されると、二酸化炭素が発生します。すると、海水中の二酸化炭素の量が増え、炭酸カルシウムが溶けやすくなります。また、炭酸カルシウムは温度が低いほど溶けやすくなります。つまり、水が冷たいほど炭酸カルシウムは溶けやすくなります。そのため、ある水深以上では、炭酸カルシウムは深海底に沈まなくなります。代わりに、代表的な堆積物(珪質軟泥)が沈殿します。\n炭酸塩補償深度は、時代と場所によって3000mから4500mの深さまであります。日本では約4000mです。\nこれまで学習した一般的な地形以外にも、地球上には様々な種類の地形が見られます。特殊な地形は、高緯度地域、山岳地帯、乾燥地帯、海面下に沈む島などで作られています。\n沿岸流と波によって、海底の砂が海岸に押し寄せます。その砂は、北西からの強い風によって内陸に移動します。これを長期間にわたって繰り返すと、砂丘になります。砂丘の砂はよく磨かれ、粒の大きさも全て同じになります。また、圧倒的に硬くて壊れにくい石英粒も増えます[2]。\n一方、砂漠は乾燥していて、水分も蒸発しやすい土地に出来ます。\n緯度が高く、山が多い場所では、夏でも気温が低いため、雪が積もって氷になります。長い年月をかけて氷は厚くなり、ゆっくりと移動して氷河となります。南極やグリーンランドには、氷床(大陸氷河)という厚い氷河があります。ヒマラヤやアルプスなどの山岳地帯の氷河は山岳氷河(谷氷河)といいます。氷河は固体ですが、1年に数十〜数百メートルの速さで下に向かって流れます。\n氷河の侵食作用や運搬作用は、水よりもはるかに強力です。氷河は、カール(圏谷)やスプーンで削ったようなU字谷をつくります。氷河は岩盤を削り、直線状の引っかき傷(擦痕)を残します。氷河の両側や末端には、様々な形や大きさの礫が堆積して、モレーン(氷堆石)とよばれる小丘をつくります。\n造礁性珊瑚は、熱帯・亜熱帯の浅瀬で成長し、珊瑚礁を作ります。裾礁とは、海岸からまっすぐ伸びている珊瑚礁をいいます。地殻変動や海面変動で島が沈むと、珊瑚礁は陸から離れ、島を取り囲むように成長します。これを堡礁といいます。島がどんどん沈み、陸地が海中に沈むと、珊瑚礁は水面近くにドーナツ状に残ります。これを環礁といいます。礁湖とは、湾の中で珊瑚礁によって海から隔てられている部分をいいます。\n地質や地質現象に由来する地表の変化は、災害を引き起こします。これを地質災害といいます。地質災害には、開発によって起こる地質関連の災害も含まれます。地質災害には、地震や火山などのほか、斜面崩壊や地盤沈下など、地盤に起因する災害(地盤災害)があります。\n地震が起きると、斜面が崩れたり、たくさんの土砂が移動したり、流れ出したりして、人々の生活に被害をもたらします。地盤の液状化は、沖積層やかつて農耕に使われていた土地など、水を多く含んだ柔らかい地盤が地震で揺れた時に起こります。沖積層とは、河床、氾濫原、低湿地、扇状地、河口などの河川堆積物の名称です。これらの堆積物は、現在の河川の作用によって作られました。また、砂のような土砂を多く含んだ水が地表の割れ目から上がってくる噴砂も起こります。\n火山が噴火すると、火山砕屑物が降り積もり、その周辺地域に被害をもたらします。斜面などに大量に堆積した火山砕屑物は、大雨や雪解け水と混ざり合って土石流や火山泥流となって、下流の地域に大きな被害をもたらします。\n日本列島は、火山灰や花崗岩の層が崩れ、真砂や真砂土と呼ばれる柔らかい堆積物で出来ている地域が各地に見られます。このような場所で、地震で地面が揺れたり、大雨が降ったりすると、土砂災害が起こります。斜面災害は、山の崖のような斜面で岩や土が動いて発生します。日本の国土の\n\n\n\n3\n4\n\n\n{\\displaystyle {\\tfrac {3}{4}}}\nは山で、山の斜面の近くには多くの人が住んでいます。毎年、斜面災害は多くの被害をもたらしています。\n斜面災害の多くは、崖崩れ(急傾斜地崩壊)、土石流、地滑りの3つに分類されます。崖崩れは30度以上の急斜面で起こり、大量の雨や地震による揺れで地盤がゆるみ、一瞬にして崩れ落ちます。地盤の動きが急激で、あっという間に起こるので、避難の目安がつかめません。土石流は、崖や谷の底に溜まった土砂が、長時間続く大雨や集中的に降る雨によって水と混ざり合い、一気に下流に流されて発生します。動きが早く、破壊力も大きいため、大きな災害をもたらします。また、地滑りは、粘土層や帯水層によって地盤が滑りやすくなり、緩やかな斜面を土砂が滑り落ちる現象です。動きはゆっくりですが、広い範囲が一度に動くため、災害が大きくなり、その影響が長く続きます。\n平野部に広がる沖積層には、土砂の粒子と粒子の間に多くの水を蓄えた層があります。この層から、ボーリングして地面の重さ(圧力)を利用すると、地下水を取り出せます。工業地帯で地下水の必要性が高まり、地下水を汲み上げ過ぎると、水を保持していた土砂粒子の間が小さくなり、地層が締まって、地面が沈み、周囲より低くなってしまいます。これを地盤沈下といいます。地盤沈下すると、建物が傾き、水害が起こりやすくなります。\n岩石が時間の経過とともに細かく砕けた砕屑物(砂利、砂、泥)、火山の噴火によって噴出した火山砕屑物(火山岩塊、火山礫、火山灰)、生物の遺骸(貝殻、殻など)、化学的に堆積した堆積物などが含まれます。堆積岩とは、堆積物が固まって岩石になった状態を指します。緩い堆積物が圧密作用・膠結作用(セメンテーション)を経て、硬い堆積岩に変化します。この過程を続成作用といいます。\n下の表は、堆積岩を堆積物の種類とその成因によってグループ分けした表です。堆積岩の種類は、それがどのような場所でつくられたかを示しています。\n岩石を砕いた状態を砕屑物、砕屑物から作られた岩石を砕屑岩といいます。岩石を構成する破片の大きさによって、礫岩、砂岩、泥岩などと呼ばれます。一般に、粒径が細かく均一なものほど、岩屑が供給源から遠くへ、長く移動する傾向があります。地層に含まれる砕屑物の多くは、海洋大陸棚、大陸斜面、その底にある深海底に堆積しました。陸上では、侵食と移動が最も重要なプロセスなので、河道や湖のような場所で堆積が起こり、砕屑岩が作られます。\n火山砕屑岩は、火山が噴火した後に残ったマグマの破片から作られる岩石です。火山砕屑岩は、砕屑岩と同じように、出来た粒子の大きさによって、凝灰角礫岩、火山礫凝灰岩、凝灰岩の3種類に分類されます。火山砕屑岩は、火山がどのようなマグマで出来ていて、どのように噴火しているのかを知るために役立ちます。\n生物岩とは、主に生物の死骸で出来た堆積岩をいいます。石灰岩を支えているのは、フズリナ(紡錘虫)などの有孔虫や貝殻、珊瑚などで、炭酸カルシウムを主成分としています。熱帯から亜熱帯の温かく浅い海では、珊瑚礁の石灰岩が出来ました。\nチャートの多くは、深海の堆積物の底に残された二酸化珪素からなる放散虫の殻で出来ています。珪藻土では、植物プランクトンの一種(珪藻類)が集まっています。\n地殻変動によって、海が内陸に取り残されてしまう場合もあります。海水が蒸発する時、海水の一部が化学的に結合し、化学岩とよばれる岩石をつくります。塩化ナトリウムが主成分の岩塩や石膏(主成分は硫酸カルシウムと水)がその代表的な例です。また、石灰岩やチャートの一部もこのようにして出来たと考えられています。\n啓林館教科書の記述がかなり大人向けで、読みやすい文章に直しにくかったので、以下のホームページも参照しています。\n", "url": "https://ja.wikibooks.org/wiki/%E9%AB%98%E7%AD%89%E5%AD%A6%E6%A0%A1_%E5%9C%B0%E5%AD%A6/%E5%9C%B0%E8%A1%A8%E3%81%AE%E5%A4%89%E5%8C%96%E3%81%A8%E5%A0%86%E7%A9%8D%E7%89%A9"}
{"text": "地層や堆積岩は、過去の地球表層の環境(古環境)をよく知るために使われます。地層がどのように移動し、重なり合っているかを調べると、過去の環境がどのように変化したかを実感出来ます。\n地層は、水によって運ばれた砂や泥の堆積物です。水の流れなどによって、粒子の大きさ、形、種類、並び方などから、地層にいろいろな模様が作られます。地層に含まれる化石や堆積構造から、地層が出来た当時の環境を解明出来ます。\n地層は、一般に、ほぼ水平に敷き詰められた板と考えられています。ある地点での地層の方向を見れば、他の場所の地層や地下の地層の大きさや厚さを推測出来ます。\n層理面(地層面)が水平面に接する方向を地層の走向といい、それらが接する線を走向線といいます。地層の傾斜は、層理面(地層面)と水平面が作る角度とその角度の方向です。地盤がどのように傾いているか、どの方向に走っているかを測定するためにクリノメーターが使われます。走向と角度の2方向から、地層がどの程度離れているかを計算出来ます。水平な地表では、地上の瓦礫の層理面(地層面)は走向方向に一直線に見えます。\n地形図には、地層や岩石の特徴、化石、走向・傾斜など、野外調査で入手したデータを記号や模様で記録しています。このようにして作られた作業用の地図がルートマップです。ルートマップの情報は、その地域の地質がどのような仕組みで、どこから来たのかを知るために使われます。\n地質図には、その地域の岩石、地層、地質構造が示されています。ただし、表土・植生・建物などは示されていません。地表の層理面は、ほとんどが地表の形に合わせて折れ曲がっています。\n地質図は、地層や岩石の種類とその境界(地層境界線)、走向・傾斜、断層・褶曲などの地質構造を記号や模様・色で表現しています。\n調査地域の地層を見やすく整理して表すために、地質柱状図が使われています。地質柱状図には、地層の上下関係や厚さ、特徴、産出化石などが示されています。継続的な調査データがなくても、複数の地質柱状図を比較すると、その地域の地質の全体像をつかめます。\n地層の切り口や曲がり方、割れ方などの構造は、 その地層やその地域が過去に受けてきた変化を表しています。\n地層や岩盤に引張っている力や圧縮している力が働き、破断面で地層や岩盤が移動してずれた地層が断層です。断層は、力に応じて素早く起こる地層や岩盤の形状の変化です。\nこれに対して、大きな圧縮の力が地層や岩盤にゆっくりと長い時間加えられると、地層や岩盤は壊れずにゆっくりと折れ曲がっていきます。この変形を褶曲といいます。\n断層や褶曲のような構造は、2枚のプレートが合わさった場所に作られます。\n地層累重の法則に従うと、地層は海底に堆積するような形で作られます。大きな地殻変動や気候変動の影響を受けず、堆積環境が同じなら、連続した地層が次々と作られます。このような地層の関係を整合といいます。一方、堆積が長期間中断したり、侵食作用によって地層の一部が削られたりすると、地層同士が合わない部分が見られます。このような地層同士の関係を不整合といいます。\n地殻変動や気候変動によって海底が陸地に移動すると、堆積作用は停止して風化や侵食が進みます。その後、地殻変動で陸地が海面よりも下に沈むと、堆積作用が再開され、新しい地層が加わると、古い地層と新しい地層の間に区切りが出来ます。これを不整合面といいます。不整合の真上には、基底礫岩と呼ばれる岩石層が出来る場合があります。この地層には、下層の岩石が風化・侵食されて出来た礫がよく見られます。\n断層や褶曲などの不整合は、地層の変形、堆積の中断・浸食などを表し、過去に地殻や気候がどのように変化したかを表しています。\n", "url": "https://ja.wikibooks.org/wiki/%E9%AB%98%E7%AD%89%E5%AD%A6%E6%A0%A1_%E5%9C%B0%E5%AD%A6/%E5%9C%B0%E5%B1%A4%E3%81%AE%E9%80%A3%E7%B6%9A%E3%81%A8%E3%81%9D%E3%81%AE%E5%88%86%E5%B8%83"}
{"text": "地球の天気は常に変化しています。過去にどのように気候が変化したかを知るために、地質学的な記録が利用されてきました。\n地質時代、地球の気候は大きく変化し、寒冷化と温暖化のサイクルを繰り返してきました。約23億年前と7億年前のように、世界中が凍りついた時代もありました。一方、白亜紀のように温暖で、極地でも氷河がほとんどない時代もありました。これらの過去の気候変動は、それぞれの時代に堆積した土砂の層や作られた化石、その層の厚さの変化から推測される海水面の変化などから復元されています。\n過去の正確な気温を把握するのは非常に困難です。しかし、地層や氷に含まれる安定した酸素同位体の比率から、第四紀にどれくらいの氷があり、どれくらいの気温であったかを突き止めました。\n有孔虫の殻には、有孔虫が生息していた海水の酸素同位体比が記録されています。この事実は、過去に水温や気候がどのように変化したかを知る上で重要です。有孔虫の殻に含まれる酸素同位体比から、約300万年前に気候が寒冷化し、第四紀の氷河期が終わるまでその状態が続いていました。\n太陽の熱は、地球表面の天候を支配する大きな要素となっています。太陽の働きや、太陽の周りを回る地球の動きが変わると、地球が受ける熱の量に影響が出ます。そのため、地球の気候に大きな影響を与えます。ケプラーの法則によると、地球は太陽の周りを10万年ごとに円や長い楕円に近づく楕円の軌道で回っています。地球の自転軸は公転面に対して傾いている。この傾きの角度は時間とともに約22度〜25度変化するため、太陽に対して傾きが変化します(歳差運動)。ミランコビッチサイクルは、このような変化に最初に気づき、数学的に記述する方法を考え出したセルビアの気象学者の名前にちなんで名づけられました。その後、有孔虫化石に含まれる酸素同位体比の研究から、この温暖化と寒冷化の周期は、極域に当たる太陽光の量が変化した結果、発生した現象だと確認されています。\n", "url": "https://ja.wikibooks.org/wiki/%E9%AB%98%E7%AD%89%E5%AD%A6%E6%A0%A1_%E5%9C%B0%E5%AD%A6/%E9%95%B7%E6%9C%9F%E3%81%AE%E6%B0%97%E5%80%99%E5%A4%89%E5%8B%95"}
{"text": "大気圏とは、地球を取り囲む大気の層を指します。地球の上空や宇宙に行くにつれて、地球の大気はどんどん薄くなっていきます。\n地球の大気の大部分は、窒素と酸素で出来ています。100kmくらいまでは、大気が何で出来ているかはほとんど変わりません。これは、この辺りの空気は対流があるため、よく混ざり合っているからです。100km以上の高度になると、軽くなる分子や原子の量が増えていきます。170km以上では酸素原子の割合が増え、1000km以上ではヘリウム原子の割合が増えます。\n空気中には少量の水蒸気、二酸化炭素、オゾンが存在しますが、上から下への温度変化に大きな影響を与えます。水蒸気のほとんどは対流圏にあり、その体積のうち地表に近い部分は3%ほどしかありません。\n大気中の二酸化炭素の濃度は、年々高くなる傾向にあります。これに、夏には小さくなり、冬には大きくなるという変化が重なります。これは、植物が光合成によって作る酸素が夏に多く、冬に少なくなるのが主な理由です。二酸化炭素の濃度は、植物が多く、陸地が多い北半球では、夏に減少し始め、秋に最も下がります。\n対流圏は、高度が高く、緯度が高いほど単位質量あたりの水蒸気量が少なくなります。これは、温度が上がると、より多くの水蒸気を保持出来るためです。水蒸気は、次のような働きをしているので、地球のエネルギー収支に重要な役割を果たしています。\n対流圏、成層圏、中間圏、熱圏は、高度による温度の変化をもとに、地球の大気を下から上に向かって4層に分けたものです。このような複雑な温度構造は、地球の大気圏にしかありません。火星や金星にはありません。地球の大気圏では、成層圏のオゾン層が太陽の紫外線を吸収して空気を温めています。この現象は、空気が最も暖かい高度50km付近で起こります。\n熱圏の窒素や酸素の分子は、太陽の紫外線やX線を吸収し、熱圏の温度を高くしています。\n大気を構成する原子や分子は、あちこちに散らばっています。これを熱運動といいます。温度とは、この熱運動の強さを示す数値です。熱圏の上の空気は高温ですが、熱運動が激しいといっても、大気の密度があまり高くないので、単位体積あたりのエネルギーはそれほど多くありません。\nその高さより上の大気の単位面積あたりの重さが気圧です。高度が上がるにつれて、大気中の圧力は16kmごとに約\n\n\n1\n10\n\n\n{\\displaystyle {\\frac {1}{10}}}\nずつ下がっていきます。例えば、高度50kmでは海面気圧(海抜0m)の約\n\n\n1\n1000\n\n\n{\\displaystyle {\\frac {1}{1000}}}\n、高度100kmでは約100万分の1になります。\n水蒸気や二酸化炭素などの温室効果ガスは、それぞれの惑星の暑さや寒さを考える上で大きな役割を担っています。金星と火星は、高度が低いほど大気の温度が上昇します。これは、大気が温室効果を持っているのが主な理由です。\nオゾン層があるため、地球の気温は地表から50km付近でピークを迎えます。一方、火星や金星にはオゾン層がないため、地球のようなホットスポットは存在しません。\n大気中の水蒸気のほとんどは対流圏に存在します。大気が動くと、この水蒸気から雲や雨が発生し、毎日の天候を変化させています。対流圏と成層圏の境界である対流圏界面(圏界面)は、高緯度では約9km、中緯度では約12km、低緯度では約17kmの高さになっています。日本付近では、低緯度の球面界面は夏に多く見られ、低緯度と中緯度の球面界面(二重圏界面)は夏以外でもよく見られるようになりました。\n対流圏では、高度が上がるにつれて空気が冷たくなります。高度が高くなるにつれて気温が下がる割合を気温減率といいます。平均すると、高度100mあたり約0.65℃の低下となります。\n大気境界層は、対流圏のうち、地表の影響を受ける最も低い部分です。大気境界層では、地表に接する空気が日中の太陽によって暖められるため、気温は日々変化しています。上昇気流も起こり、地上から1〜1.5kmくらいまでの空気は非常によく混ざっています。\n空が澄んでいる夜、上空は暖かくなります。逆転層とは、このような層をいいます。夜、放射冷却によって地球の表面温度が下がると、地表に近い大気も冷やされます。これが地盤逆転の原因となります。逆転層の中では、空気はとても安定しています。上空に逆転層があると、煙や埃などの汚染物質が逆転層の下に集まりやすくなります。逆転層では対流が起こりにくいからです。\n対流圏界面の上では、宇宙空間の温度が上昇し、50〜60km上空で最も高くなります。この領域を成層圏といい、成層圏界面は成層圏の最上部を表す名称です。成層圏下部の約15〜30kmの高さには、大気中に多くのオゾンが存在します。この部分をオゾン層といいます。オゾン層は太陽の紫外線を吸収して大気を暖めるので、成層圏の気温が高くなる仕組みになっています。オゾン層の上部は紫外線を多く吸収しますが、上に行くほど大気の密度が低くなり、熱を保持出来なくなるので、最高気温は50kmくらいになります。オゾン層は、生物に悪い紫外線のほとんどを吸収してしまいます。\nオゾンの多くは、熱帯地方の上部成層圏で、紫外線が酸素の分子にぶつかって作られます。しかし、オゾンの量は、低緯度よりも高緯度の方が多く見られます。これは、低緯度の成層圏で作られたオゾンが、大気の大規模な循環によって高緯度へ移動するためです。この循環は遅く、熱帯対流圏のオゾンが極域に到達するのに4〜5年かかるといわれています。\n1980年代には、実験室で作られるフロンがオゾン層を薄くしている事実が明らかになりました。フロンの製造や使用には規制があるのに、まだ多くのフロンが大気中で残っています。オゾンホールとは、毎年春先(9〜10月頃)、主に南極に現れるオゾンが非常に少ない領域をいいます。\nオゾンホールは、秋から春にかけて、強いジェット気流(成層圏の極渦)が南極大陸の周りを時計回りに流れるため、同じような状態になります。そのため、中緯度ではオゾンを多く含んだ空気が混ざらないようになっています。極渦の内側には大きな低気圧があり、これが冷たいので極成層圏雲が形成されます。この雲の表面で、オゾンホールを作るものの一つであるフロンから出る物質が、激しいオゾン層破壊反応を起こします。夏になると、極域の気温が上がり、極成層圏の雲や極渦が消えます。その結果、オゾンを多く含む低緯度の空気がオゾンホールに流れ込み、オゾンホールが閉じてしまいます。\n成層圏は、夏には極域を中心とした安定した高気圧に覆われます。しかし、冬になると、対流圏で作られた大規模な大気の波が成層圏に伝わり、一時的に極渦が乱されます。この時、成層圏の温度は一気に数十度上昇します。これを成層圏突然昇温といいます。成層圏突然昇温は、陸と海が複雑に広がっている北極では起こりやすく、南極では起こりにくいといわれています。\n一方、赤道成層圏で起こる大規模な振動として、準2年周期振動があります。これは、26カ月ごとに東風と西風が入れ替わるものです。これは、対流圏で大小様々な波が作られ、伝わっていくためだと考えられています。また、対流圏の気候は、成層圏の急激な温暖化や、ほぼ2年ごとに起こる変化にも影響されます。\n成層圏と対流圏の境界である約50〜60km上空は、空気が冷たくなっています。この範囲は中間圏といわれています。高度80〜90kmでは、最も気温が下がります。中間圏界面は、中間圏の上端です。\n中間圏の上空で、高度が上がるにつれて気温が上昇するのが熱圏です。ここでは、酸素と窒素が太陽の紫外線やX線を吸収するため、大気が暖かくなります。波長の短い紫外線は熱圏で、波長の長い紫外線はオゾン層で吸収されます。オーロラは、熱圏のある高緯度地方で発生します。太陽からの荷電粒子が大気中の原子や分子にぶつかると、エネルギー状態が高まります。その結果、大気は光を放つようになります。太陽の動きに左右されますが、熱圏の上縁は地表から約500〜700kmの高さにあります。外気圏は、熱圏の上部にある宇宙空間です。\n高度約80〜500kmで、太陽からの紫外線が原子や分子を電離し、イオンや電子が多く存在する場所となります。電離圏とは、この領域の名称です。電離圏には、電子密度が非常に高い層(電離層)が数種類存在します。短波の電波は電離層でよく反射されるので、地球の裏側にいる人と話すのに使えます。\n一方、極中間圏雲は、夏に南極や北極の中間圏上部(上空約85km)に発生する雲です。夏場、ここの空気の温度は-140度程度まで下がり、少量の水蒸気が凝縮して氷雲となります。これは、地球の大気圏で見られる最も低い温度です。極域中間圏の雲を構成する水蒸気は、対流圏からやってくるのではありません。メタンが酸化され、近く(中間圏上部)で作られています。日没後や日の出前に太陽の光が当たると青白く見えるため、「夜光雲」とも呼ばれます。\n今では毎年のように見られる夜光雲も、産業革命以前にはなかったとされています。オゾンホールと同様、人間活動が原因ではないかと考えられています。最近では、極域だけでなく中緯度でもこの雲が見られるようになりました。2007年に打ち上げられたNASAの中間圏観測衛星AIMは、極中間圏の雲を確認出来ました。南極では、日本が大きな気象レーダーを設置し、極域中層雲の研究が始まっています。大気レーダーは、地上から空に向かって電波を送り、空気の乱れによって戻ってくる散乱波を拾うので、どんな天気でも風の速さや方向が必ず分かります。一方、気象レーダーは、雨粒で散乱した電波を拾うので、雨が降っている時しか使えません。\n新聞などでよく目にする地上天気図は、大気圏の底である地表の様子を示しています。しかし、地表の天気を調べるには、より広い範囲、地球の上空で大気がどのように動いているかを知る必要があります。\n気圧、気温、湿度、風向、風速、降水量、雲、地表の日照時間などは、船や露場(気象観測所)で計測出来る範囲です。アメダス(地域気象観測システム)や海洋気象ブイロボットによる自動観測も行われています。雨粒が散乱する電波は、気象レーダーで雨や風の強さを測定するのに使われています。気象レーダーとアメダスのデータを合わせて、30分ごとに1km四方の雨の降っている場所を地図上に表示出来ます。この地図には日本近海も含まれています。\nまた、地球大気環境の実態や長期変化を知るために、世界中で次の内容について研究が行われています。\nラジオゾンデは、気球に取り付けて、高度約30kmまでの気圧、気温、湿度、風向、風速を測定する装置です。\nウィンドプロファイラとは、上空の風速と風向きを常時測定する装置です。また、約5kmまでの大気の流れを3次元的に測定出来ます。ウィンドプロファイラでは、高度約5kmまでの大気の流れを立体的に測定できます。そのため、特定地域の大雨や竜巻の予測に役立っています。日本では、全国33カ所にウインドプロファイラを設置しています。\n気象衛星は、陸上から見えにくい海上の天候を観測出来ます。また、世界中の気象情報をリアルタイムで宇宙から伝えてくれます。地上からの観測と衛星からの観測は、それぞれ異なる高度で様々な気象要素を拾えるので、この2つの観測を組み合わせると、地球全体の気象情報をつかむのに有効です。気象衛星には、赤道上空を周回する静止気象衛星と極域を周回する極軌道気象衛星の2種類があります。\n静止気象衛星は、赤道から約3万5800kmの上空にあります。地球の自転と同じ長さで公転しているため、常に同じ経度帯を観測出来ます。2022年現在、日本のひまわり9号のほか、静止気象衛星は世界に11機あります。静止気象衛星は、1時間ごとに可視画像、赤外画像、水蒸気画像を撮影しています。これらの写真は、雲や水蒸気がどこにあり、どのように動いているかを調べるために使われます。また、小さな雲の動きから風速や風向きを測定したり、海面の温度を測定したりするのにも使われます。\n極軌道気象衛星は、高度850kmの地球を約100分で一周し、静止衛星では見えない極域を観測します。また、地球は自転しているので、1機の衛星で地球全体を観測出来ます。極軌道にある気象衛星は、約30km上空までの気温や水蒸気量などを測定します。さらに、エーロゾルの量や、オゾン、メタン、一酸化二窒素などの微量大気成分の濃度も測定しています。\n気象衛星以外にも、GPS衛星の信号も利用されています。大気中では、温度構造や水蒸気の影響により、真空に比べて電波の速度が遅くなります。この性質を利用して、各地点の水蒸気の量や気温を把握し、大雨の予想などに役立っています。また、レーダーで雨を測るGPM衛星や、温室効果ガス観測技術衛星いぶきの情報も天気予報に利用されています。\n正確な天気予報を行うためには、その時々の天候を正確に知る必要があります。そのため、世界中で目を光らせており、その情報は国ごとにまとめて送られています。また、衛星観測やレーダーなどの観測データもより多く集められるようになりました。これらの観測データはスーパーコンピュータにかけられ、天気図や予想天気図が作られます。この地図には、風、等圧面高度、水蒸気量、気温などの情報が含まれています。このように、観測データを一つ一つコンピュータに取り込み、大気の状態を予測するのが数値予報です。数値予報では、数日前までの天気を予測でき、地球の大気の動きも水平方向で数十km、日本付近で数kmの精度で計算出来ます。\n各地域の気象観測は、数値予報とともに、各地域の天気予報に利用されています。現在、3日先までの短期予報、1週間先までの週間天気予報、数カ月先までの季節予報など、様々な種類の予報が行われています。\n中緯度地方でいつ低気圧が発生するかを知るには、上空を調べなければなりません。そこで、天気を予測するためには、上空の天気図も必要です。上空の天気図には、ある気圧面の高度分布(等圧面)や気温などが示されています。つまり、気圧の分布を示す等圧線の代わりに、等圧面の高度分布を示す等圧面等高線が表示されます。気圧は下層ほど高いので、低気圧部分は低圧部、高気圧部分は高圧部となります。等圧面が上に行くのが気圧の尾根、下に行くのが気圧の谷です。このような上空天気図を等圧面天気図といい、毎日0時と12時(日本時間では9時と21時)に作成されます。\n※図についてはこちら:高層天気図の見方・ポイント解説\n", "url": "https://ja.wikibooks.org/wiki/%E9%AB%98%E7%AD%89%E5%AD%A6%E6%A0%A1_%E5%9C%B0%E5%AD%A6/%E5%A4%A7%E6%B0%97%E5%9C%8F"}
{"text": "地球は常に太陽からエネルギーを取り込んでいますが、取り込んだ量と同じだけのエネルギーを宇宙へ送り出しています。その結果、地球全体のエネルギー収支は0に保たれています。\n物体は、その表面の温度によって、エネルギーレベルや波長の長さが異なる電磁波を出しています。高温の太陽からは、主に紫外線や可視光線、波長が4μmより短い赤外線が放射されています(短波放射や太陽放射)。一方、冷たい地球からは、4μmより波長の長い赤外線が放射されています。長波放射や地球放射は、地球の表面や大気から出る放射線です。4μmでは、長波放射と短波放射の波長はあまり近づきません。\n太陽定数とは、太陽からの放射が地球の大気圏上部に到達する量です。この量は約1370ワット平方メートルです。地球に降り注ぐ太陽放射のうち、大気は約30%反射し、大気と雲は約20%、地表は約50%取り込むと考えられています。アルベドとは、地表に当たる光の量と反射する光の量の比(反射率)で表します。地球全体の平均的なアルベドは0.30ですが、地表によって差があります。海や森林はアルベドが低く、雪原や雲はアルベドが高くなっています。\n右の図は、外気、大気、地表にどれだけのエネルギーがあるのかを示しています。外気と大気のエネルギー収支が取れているだけでなく、大気と地表のエネルギー収支も平均して取れています。そのため、安定した環境が保たれています。熱伝導は、地表から空気中へと熱エネルギーを移動させます(顕熱)。また、水が蒸発する時、空気中に水蒸気を送り込みます。この水蒸気が蒸発熱(潜熱)を奪うので、地面から空気中への熱移動と考えられます。\n波長0.3マイクロメートル以下の紫外線は、熱圏では酸素に、成層圏ではオゾンにほとんど吸収されます。対流圏下部では、水蒸気と二酸化炭素が主に赤外光の一部を取り込んでいます。一方、可視光線の一部は大気や雲で反射・散乱して大気圏外に送り返されますが、残りの大部分は大気に吸収されずに地表へ届きます。\n地表から届く波長8〜13マイクロメートルの赤外線は、大気圏下層に含まれるガスに吸収されます。このガスには、水蒸気、二酸化炭素、メタンなどが含まれます。また、赤外線は大気からも放出され、大気は赤外線を吸収するため地表を暖めます。この放射の約3分の2は地表に戻り、地表を温めます。つまり、大気は可視光線を中心とした波長の短い太陽放射は通し、赤外線を中心とした波長の長い地球放射は吸収しています。これを大気の温室効果といい、その原因となる気体を温室効果ガスと呼びます。\n地球の赤外線のうち、波長8〜13マイクロメートルの部分は、大気が吸収せず、ほぼ全部が宇宙へ抜けるため大気の窓と呼ばれています。大気の影響を受けにくい大気の窓の波長帯の赤外線は、人工衛星で地表を見るために利用されています。\n1平方メートルあたり平均0.35キロワット平方メートルの太陽放射が地球全体に届いています。しかし、入射量は低緯度では多く、高緯度では減っています。これは、太陽の南中高度が低緯度では高く、高緯度では低いからです。\n一日中太陽が沈まない夏の極域(白夜)では、1日平均の入射量が最も高くなります。一日中太陽が昇らない冬の極域では、1日平均の入射量は0です(極夜)。しかし、平均すると赤道では入射量が多く、高緯度では入射量が少なめです。地球の海はすぐに熱くなったり冷たくなったりしないので、季節による入射放射量の変化で地表付近の温度変化がかなり緩やかになります。そのため、一年を通して低緯度の地表付近の温度は高く、極域の温度は低く保たれています。\n地球のエネルギー収支が均衡しているといっても、ある場所が受ける日射量と、その場所が出す地球放射量が均衡しているわけではありません。地球が太陽から取り入れる放射量の変化に比べて、地球が送り出す放射量の変化は僅かです。これは、太陽からの熱量が多い低緯度の方が、少ない高緯度よりも高温なので、高温の低緯度から低温の高緯度へ熱が流れるからです。\n低緯度から高緯度への熱の移動は、大きく分けて、大気中、大気中の水蒸気、海水の3つの経路で行われます。大気による移動、大気に含まれる水蒸気による移動、海水に含まれる水蒸気による移動です。大気中の水蒸気は、蒸発する時に潜熱を取り込み、凝縮する時に潜熱を出します。熱を移動させるものの一つです。全体として、北半球では北に、南半球では南に熱が移動し、緯度380付近で最も北に熱が移動します。そこでは、太陽の光を取り込むと同時に、地球の光を送り出しています。この3つの熱の動き方が、天気や気候にも大きな影響を与えています。気温の変化は大気中の熱の移動によって起こり、雨や雪は水蒸気中の潜熱の移動によって起こります。海の中では、海流が熱を動かしています。イギリスやノルウェーなどヨーロッパ北部の冬の気候が、サハリンやシベリアなど同じ緯度の他の地域よりもずっと穏やかなのは、ヨーロッパの北西海岸に沿って流れる暖流の影響もあります。\n", "url": "https://ja.wikibooks.org/wiki/%E9%AB%98%E7%AD%89%E5%AD%A6%E6%A0%A1_%E5%9C%B0%E5%AD%A6/%E5%9C%B0%E7%90%83%E3%81%AE%E3%82%A8%E3%83%8D%E3%83%AB%E3%82%AE%E3%83%BC%E5%8F%8E%E6%94%AF"}
{"text": "地球上では、酸素・二酸化炭素・水など、様々な物質が移動しています。つまり、気候は大気や海だけではなくて、森林などの生命圏とも関係があります。\n大気と海洋では、熱容量が違います。つまり、同じ量の太陽放射を浴びても、その温度変化の仕方は違います。季節風(モンスーン)や海陸風は、このような仕組みで発生します。また、海水は太陽放射のエネルギーを取り込んで蒸発するので、水蒸気となります。この水蒸気が蒸発する時、それまで蓄えていた熱(潜熱)を放出します。海洋は潜熱を放出しており、それが大気中に入り込み、暖かくなります。また、積乱雲を作り、台風や温帯低気圧のような大規模な大気現象を引き起こすエネルギーとなります。一方、風が海面を吹くと、水と摩擦するため、波(風浪)や海流が発生します。\nこのように、大気と海洋は、熱などのエネルギーと水などの物質をやりとりして、お互いに影響を与えます。これを大気と海洋の相互作用といいます。エルニーニョ現象はその代表例です。エルニーニョ現象が発生すると、熱帯地方の気候だけでなく、中高緯度の気候にも影響を与えます。このように、離れた場所の気象が連動する仕組みをテレコネクション(遠隔連鎖)といいます。\n太平洋赤道付近の海面水温は、通常、西部で高温、東部で低温となっています。また、暖水層は東部で薄く、西部で厚くなっています。これは、この地域を吹く貿易風(東風)の影響で、暖水層が西側に流されるからです。太平洋赤道付近の西側にある暖水層は、空気を暖めて、対流活動を活発にします。これが低気圧を作り、貿易風を維持します。また、赤道付近の海面温度は南北ともに低くなっています。何故なら、東から西へ吹く貿易風によって、赤道から中緯度に海水が流れるからです。このため、赤道上の深層から冷水が上がってきます。\nしかし、貿易風が弱くなると、赤道太平洋中部から東部の暖水層が厚くなり、冷水があまり上がってこなくなります。ここからエルニーニョ現象が始まります。暖水層が太平洋中部から東部へ移動すると、大気の活発な対流運動の領域も、太平洋中部から東部へ移動します。そうすると、エルニーニョの状態が続き、貿易風が弱くなります。一方、ラニーニャ現象とは、貿易風が平年より強く、赤道太平洋中部から東部にかけての海面水温が平年より低い状態をいいます。\nしたがって、エルニーニョ現象は大気と海洋が連動して起こります。大気側では、太平洋東部と西部の海面気圧がシーソーのように変化して、一方は高く、もう一方は低くなります。これを南方振動といいます。熱帯では転向力が弱いので、東西方向の転向力と気圧傾度力が等しくなるような地衡風にはなりません。貿易風の強さは、南方振動に大きく関係しています。そのため、これらの海洋・大気の現象をまとめてエルニーニョ・南方振動(El Niño-Southern Oscillation)という言葉がよく使われます。エルニーニョ現象は特に珍しい現象ではありません。エルニーニョ現象もラニーニャ現象も、自然変動で特に振れ幅が大きい現象です。\nエルニーニョ・南方振動は、テレコネクションを通じて、世界中の天候に様々な影響を与えています。エルニーニョ現象が発生すると、夏に北太平洋高気圧が弱くなります。そのため、梅雨が明けるまでに時間がかかり、日本の夏の平均気温は下がります。冬は季節風が弱くなるので、気温が上がります。エルニーニョ現象は、気象の長期予報を行う上で大きな役割を果たしています。いつ発生するのかを正確に予測するためには、赤道太平洋の海洋状況や大気の状態を注意深く観察しなければなりません。\n海洋から大気への熱移動は、太平洋と大西洋の西海岸を低緯度から高緯度へ流れる黒潮とメキシコ湾流付近で多く発生します。これは、この付近では海面の温度が空気の温度よりも高いために起こります。何故なら、熱帯からやってくる海流は暖かく、冬になると西の大陸からの季節風でこの海域の空気は冷たくなるからです。海水から大気への熱移動は、熱伝導(顕熱)でも行えますが、それよりも海水が蒸発して、水蒸気の潜熱を大気中に放出させる方が重要です。このように、海洋から大気への熱移動は効率的に行われます。ヨーロッパは暖かいメキシコ湾流の下流にあるため、高緯度に位置していながら、冬でも温暖な気候です。\n異常気象とは、これまでの平均的な気候(平年値)とは大きく違う気象をいいます。毎年、厳しい寒波・暖冬・猛暑・少雨・旱魃・洪水などの異常気象が世界各地で起こっています。これらの異常気象は、地球温暖化のような長期の気候変動が原因となっている場合もあれば、気候システムが働いている仕組みの中にある場合も考えられます。このうち、北極振動は日本に異常気象を招く自然現象の一つです。\n北極振動は、北半球全体に影響を与える気象の変化です。北極振動は、北極上空の気圧が平年より低くなると中緯度の気圧が上がり、北極上空の気圧が平年より高くなると中緯度の気圧が下がる変化です。正の北極振動は中緯度の気圧が上がる場合、負の北極振動は中緯度の気圧が下がる場合です。振動は数日から数十年続きますが、決まった周期をたどるわけではありません。北極振動が正の時は、偏西風が強く、蛇行がほとんどありません。そのため、日本付近の冬は暖かくなります。一方、北極振動が負の時は、偏西風が弱く蛇行するため、極域の空気が流れ込みやすくなります。そのため、日本付近の冬は寒く、雪が多くなります。\n日本付近の気候変動は、エルニーニョ現象なども原因になっているので、はっきり分かりません。北極振動の原因ははっきりしませんが、エルニーニョ現象と同じように、海面水温の変化や北極振動の気圧配置が成層圏までよく届くので、突然暖かくなるなど成層圏の変化も影響していると考えられています。\n南極振動は、南半球で起こる振動現象です。\n", "url": "https://ja.wikibooks.org/wiki/%E9%AB%98%E7%AD%89%E5%AD%A6%E6%A0%A1_%E5%9C%B0%E5%AD%A6/%E6%B0%97%E5%80%99%E5%A4%89%E5%8B%95"}
{"text": "1666年から1687年まで生きたイギリス出身のアイザック・ニュートンは、それが万有引力の法則だと発見しました。アイザック・ニュートンは、「慣性の法則」「運動の法則」「作用・反作用の法則」という力と運動の3つの法則を提唱して、近代力学の基礎としました。これにヨハネス・ケプラーの法則を組み合わせて、「あらゆる2つの物体の間には万有引力が働き、その大きさは2つの物体の質量の積に比例して、物体間の距離の2乗に反比例する」という万有引力の法則を考え出しました。\nティコ・ブラーエの観測からヨハネス・ケプラーの法則、アイザック・ニュートンの運動法則、万有引力の発見まで、天文学や物理学は、観測データと理論研究の相互作用により発展してきました。つまり、科学では、観察、実験、理論が車の両輪のように働いて、新しい知識を生み出していきます。\n", "url": "https://ja.wikibooks.org/wiki/%E9%AB%98%E7%AD%89%E5%AD%A6%E6%A0%A1_%E5%9C%B0%E5%AD%A6/%E6%83%91%E6%98%9F%E3%81%AE%E9%81%8B%E5%8B%95"}
{"text": "太陽を除いて、太陽系を作る惑星などの大きな天体は、全て同じ方向に、ほぼ同一平面上を、ほぼ円軌道で回っています。これは、太陽系の天体が約46億年前に、ゆっくりと回転する星間物質から作られたからだと考えられています。\n星間ガスが自身の重力で収縮し、真ん中に太陽が出来ました。これ以降は、万有引力の力に遠心力を加えたものを重力と呼ぶのではなく、2つの物体が引き合う力を重力とよびます。原始太陽系星雲は、残った星間ガスが円盤状に集まって出来ました。ここで原始惑星が誕生しました。火星の現在の半径と木星の軌道半径の距離から、その外側にある原始惑星は、原始太陽系星雲が尽きる前に周囲のガスを引き寄せ、巨大ガス惑星になりました。原始太陽系星雲は、太陽からの距離が遠いほど、ガスや塵の量が少なくなります。原始惑星は土星の軌道半径よりも太陽から遠いため、ガスはあまり得られませんが、氷を手に入れて巨大氷惑星となりました。\n火星の軌道半径と木星の軌道半径の距離が大きく変わらなければ、その中にある原始惑星はあまり成長しません。そのため、原始太陽系星雲からガスを引き込めません。金星、地球、火星の大気は、小惑星や微惑星が衝突してきた内部から生まれています。生物の働きによって、地球の大気の成り立ちも変わってきます。そのため、地球型惑星とガスやの巨大氷惑星では、大気が大きく違います。\n8個の惑星のうち、水星、金星、地球、火星は、太陽に近く、半径は小さくても平均密度が大きく、岩石の表面を持つため、地球型惑星と呼ばれています。木星、土星、天王星、海王星は、太陽から遠く離れていて、半径は大きいのに平均密度が低く、固体表面が見られないため、木星型惑星と呼ばれています。天王星と海王星は、木星型惑星のうちの1つです。氷が多く、水素やヘリウムが少ないので、巨大氷惑星と呼ばれています。\n水星は、地球に次ぐ2番目に平均密度が高く最も小さな惑星です。これは、鉄の核がその大部分を占めているからです。水星には大気や液体の水がないため、太陽系の初期の時代に小惑星が衝突して出来たクレーターがそのまま残っています。また、水星には大気がなく、太陽が北から南へ往復するのに約180日かかるため、太陽光が当たる場所と当たらない場所で大きな温度差があります。\n金星は地球とほぼ同じ大きさで、内部の化学組成も似ていますが、その表面は大きく異なっています。金星は二酸化炭素を主成分とする厚い大気を持ち、大気の圧力は地球の約90倍になります。温室として機能しているため、地表の温度は約460℃にもなります。金星は他の惑星に比べ、自転が遅れています。自転周期は約243日なので、公転周期(約225日)よりも長くなっています。上空約60キロメートルでは、空気が秒速100メートルの速さで動いており、金星を1周するのに約4日かかります。これはスーパーローテーションと呼ばれています。\n地球の内部が高温なのは、地球が出来た時からある熱と放射性同位体が分解する時に出来る熱だからです。そのため、マントルの対流やプレート運動が起こり、地震や火山、造山運動が起こり、地表に変化をもたらしています。また、適温を保つ大気があるおかげで液体の水が存在し、地球上では珍しい海を維持出来ました。海洋は、多くの生物の誕生と発展、そして大気の成り立ちに大きな影響を与えてきました。\n火星の表面環境は、地球と最もよく似ています。自転周期は約24.6時間、自転軸の傾きは公転面に対して約25.2度と地球とほぼ同じです。また、季節の変化も確認されています。季節によって、火星の極付近にある氷やドライアイスで出来た極冠の大きさが変化します。\n火星の大気は薄く、圧力は地球の約\n\n\n\n1\n170\n\n\n{\\displaystyle {\\tfrac {1}{170}}}\nです。これは、大きさが小さく、重力が小さいからです。大気のほとんどは二酸化炭素ですが、大気が薄いので温室効果はそれほどありません。場所や時期によって、地表の温度は約-125℃から20℃の幅があります。この温度差が、砂嵐やモンスーン風を引き起こします。地球でいう台風のような大きな大気の渦は、ハッブル宇宙望遠鏡でも確認されています。\n火星には、太陽系で最も荒れた地形と大きな火山があります。これまで複数の探査機が火星に着陸し、極付近を除く表面の砂の下に氷のような白い物質や液体の水が作ったような地形が見つかっています。かつて、火星にも液体の水が大量に存在したかもしれません。\n木星は、太陽系最大の惑星です。その平均密度や組成は、太陽と似ています。中心に近いほど圧力が高いので、表面付近の気体は水素とヘリウムですが、それ以下は液体水素で、中心では金属水素に変わります。ここで、金属元素とは、陽子と電子に分解された液体水素をいいます。科学者達は、その中心には岩石と氷で出来た核があり、その重さは地球全体の約10倍にもなると考えています。太陽系の始まり、原始太陽系星雲中では、重い鉄は太陽の方に引っ張られました。そのため、木星には地球型惑星のような鉄の核がありません。\n木星の大気は通常東西に動いていて、赤茶色と白の帯状になっています。上昇気流によって、明るい白い部分にアンモニアの雲が発生すると、太陽の光を強く反射します。暗い部分は下降気流です。南半球で見られる大赤斑の大きさは、地球の約3倍あります。\n木星の表面は、太陽から受けるエネルギーのほぼ2倍のエネルギーを放出しています。これは、木星が形成される時に自己重力によって収縮した時に出来た熱をゆっくりと放出するためだと考えられています。\n土星は、太陽系の惑星の中で最も平均密度が低い惑星です。水よりもさらに小さい密度です。また、土星の表面には縞模様や白斑がありますが、これは大気の動き方が原因です。地球から見ると、土星の環は円盤のように見えますが、実は無数の小さな氷と珪酸塩からなる岩石の集まりです。\n土星は磁場が強く、緯度の高い場所ではオーロラが見られる現象がハッブル宇宙望遠鏡で確認されています。また、他の木星型惑星にも磁場があります。木星も土星も自転が速く、大きな偏平率を持っています。\n天王星の大気に含まれるメタンが赤色光を吸収するため、地表が青く見えます。天王星は、自転軸が公転面から約98度、横に傾いており、これが他の惑星と違っています。そのため、天王星の衛星軌道も、天王星の公転面に対して同じように傾いた軌道を描いています。\n 海王星の大気にはメタンが含まれているため、天王星と同じように表面が青い色をしています。また、内部には水、アンモニア、メタンからなる氷が多くあると考えられています。他の木星型惑星と同じように、赤道と同じ方向に風が吹いているため、表面に黒い斑点や縞模様が見られます。\n近年の観測技術の向上により、太陽系の惑星以外の天体がより詳しく見えたり、初めて発見されたりするようになりました。\n1930年に発見された冥王星は、2006年まで第9惑星と考えられていました。1990年代には海王星以外の小天体が多数発見され、21世紀には冥王星より大きな天体(エリス)が発見されました。2006年に太陽系の惑星の定義が定められ、冥王星を含むこれらの天体は惑星ではなく太陽系外縁天体と呼ばれるようになりました。冥王星型天体は、冥王星や大きな天体のように太陽系外縁天体の中でも、かなり大きい天体を指します。\n太陽系外縁天体には、今後も多くの天体が発見される可能性があり、太陽系に関する考え方はどんどん広がっていくでしょう。\n小惑星の多くは、火星と木星の間にある小惑星帯と呼ばれる領域にあります。最も大きなセレスは、幅が480キロメートルほどしかありません。科学者達は、小惑星帯について、原始太陽系の微惑星がそのまま残っている場合や原始惑星に成長した後、衝突によって壊れた場合が混じっていると考えています。地球に落ちてくる隕石の多くは小惑星から飛来しています。\n隕石は、橄欖岩のような石質隕石、鉄やニッケルからなる鉄隕石、その中間の石質隕石の3つに分けられます。コンドライトとは、石質隕石の一部に含まれる球状の珪酸塩鉱物(コンドリュール)をいいます。コンドリュールとは、高温で溶けた珪酸塩が急速に冷えて、無重力状態で球状に固まった物質です。コンドリュールは、惑星形成時期の状態を保存していると考えられています。地球に落ちてくる隕石の約8割はコンドライト隕石です。鉄隕石は、太陽系が誕生したばかりの頃、原始惑星の中心部で出来た鉄とニッケルの合金が、原始惑星同士の衝突で破壊された破片と考えられています。このような理由から、隕石は地球や太陽系の歴史、そして地球の内部を知るために有効な手段です。\n直径数kmから数十kmの氷や塵で出来た天体が太陽に近づくと、コマや尾を作ります。これが彗星です。彗星の核と呼ばれる本体は、太陽系が若かった頃、太陽系外縁部で形成された物質で出来ていると考えられています。彗星の核が太陽に近づくと、揮発性成分(氷やドライアイス)が蒸発し、核の周りに雲をつくります。この雲をコマといいます。揮発性成分の一部は太陽風に吹き飛ばされたり、小さな固体粒子が太陽の光圧で吹き飛ばされたりして太陽の反対側へ移動します。これが尾になります。\nほとんどの彗星は、離心率をもつ大きな楕円軌道で太陽の周りを回っています。しかし、中には太陽に戻らない放物線軌道や双曲線軌道の彗星もあり、さらに惑星の重力が全てに影響するため、途中で軌道を変える彗星もあります。\n彗星がどこから来るかはまだはっきりしませんが、一説には、海王星が太陽の周りを回る距離の1000倍以上(太陽から約30天文単位)の距離からやってくると言われています。そこで、太陽系の周りには雲のような形をした天体が数多くあると考えられています。この雲は、オールトの雲と呼ばれています。しかし、この雲を作っている天体は、まだ科学者達でも見つかっていません。\n彗星の塵は軌道上に広がり、地球が公転してその軌道を横切ると、塵は地球の大気圏にぶつかり、流星として見られます。地球の軌道と彗星の軌道が交わると、毎年ある時期に彗星軌道の塵が大量に地球の大気に入り込み、多くの流星が見られるようになります。これを流星群といいます。\n衛星とは、宇宙空間で惑星や他の天体の周りを回っている天体をいいます。\n 月は地球の衛星です。表面は岩石から出来ていますが、平均密度は地球よりそれほど大きくありません。これは、月の中心部に地球ほど多くの鉄がないためだと考えられます。この理由として最も有力なのは、初期地球の核とマントルが分裂した頃に、火星ほどの大きさの原始惑星が衝突して、その破片が月となったというジャイアント・インパクト説です。\n木星には、イオ・エウロパ・ガニメデ・カリストの4つの大きなガリレオ衛星があります。月とほぼ同じ大きさのイオには、太陽系で最も活発な火山活動が見られます。木星探査機ガリレオは、現在も噴火を続けている18の火山を発見しています。これは、木星の起潮力によってイオの形が頻繁に変わり、内部が高温になるためと考えられます。また、木星の衛星エウロパの表面には、厚い氷で覆われているのがガリレオの観測で分かっています。地下には液体の水があり、生命が存在するかもしれないと考えられています。\nタイタンは土星最大の衛星です。その厚い大気中は、メタン、水蒸気、窒素で成り立っています。その中のメタンは、地球の水のように動き回り、気体から液体、固体に変化しているという説もあります。タイタンの大気には、タンパク質の元になる物質があります。タンパク質が出来るかもしれないので、タイタンには生命が存在するかもしれないと考えられています。\n", "url": "https://ja.wikibooks.org/wiki/%E9%AB%98%E7%AD%89%E5%AD%A6%E6%A0%A1_%E5%9C%B0%E5%AD%A6/%E5%A4%AA%E9%99%BD%E7%B3%BB%E3%81%AE%E5%A4%A9%E4%BD%93"}
{"text": "太陽は、安定して光を送り出しているように見えます。しかし、あらゆる観測により、活発に活動している様子が明らかになっています。\n太陽は、私達が見える光も含め、様々な長さの電磁波を発信しています。大気圏外や地上にある人工衛星は、この電磁波を観測出来ます。\n太陽までの距離と地球から見た太陽の大きさ(視半径)を使って、太陽の半径を求めます。地球から見た太陽の大きさは、時間の経過とともに変化します。これは、地球が楕円軌道を描くように回っているため、太陽との距離が変化するからです。\n1天文単位(astronomical unit)は、地球と太陽の平均距離を表し、およそ1.5×\n\n\n10\n8\n\n\n{\\displaystyle 10^{8}}\nkmです。\n太陽の距離は三角視差で求められます。これは三角関数の弧の長さの式(弧度法)を使います。\nl:2πr=\n\nθ\n\n{\\displaystyle \\theta }\n:2π\nこれを直せば弧の長さlは\nl=r\n\nθ\n\n{\\displaystyle \\theta }\nとなります。\nあとはl=r\n\nθ\n\n{\\displaystyle \\theta }\nの式を変形させていくといいでしょう。\n今、太陽の半径と地球の半径…\n\n\nR\n1\n\n\n{\\displaystyle R_{1}}\n、\n\n\nR\n2\n\n\n{\\displaystyle R_{2}}\n視半径[1](太陽側)…\n\n\nr\n″\n\n{\\displaystyle r''}\n視差(地球側)…\n\n\nθ\n″\n\n{\\displaystyle \\theta ''}\nとします。\n視半径\n\n\nr\n″\n\n{\\displaystyle r''}\nと視差\n\n\nθ\n″\n\n{\\displaystyle \\theta ''}\nはダッシュがついているので\n\nθ\n\n{\\displaystyle \\theta }\nに代入します。\nl=r\n\n\nθ\n″\n\n{\\displaystyle \\theta ''}\nl=r\n\n\nr\n″\n\n{\\displaystyle r''}\n半径\n\n\nR\n1\n\n\n{\\displaystyle R_{1}}\n、\n\n\nR\n2\n\n\n{\\displaystyle R_{2}}\nは、弧の長さlに代入します。\nR\n1\n\n\n{\\displaystyle R_{1}}\n=r\n\n\nθ\n″\n\n{\\displaystyle \\theta ''}\n…①\nR\n2\n\n\n{\\displaystyle R_{2}}\n=r\n\n\nr\n″\n\n{\\displaystyle r''}\n…②\n式を変形して、\nR\n1\n\nr\n″\n\n\n{\\displaystyle {\\frac {R_{1}}{r''}}}\n=r\nR\n2\n\nθ\n″\n\n\n{\\displaystyle {\\frac {R_{2}}{\\theta ''}}}\n=r\n両者はrで一致しているので、\nR\n1\n\nr\n″\n\n\n{\\displaystyle {\\frac {R_{1}}{r''}}}\n=\n\n\n\nR\n2\n\nθ\n″\n\n\n{\\displaystyle {\\frac {R_{2}}{\\theta ''}}}\n…③\n③を変形して、\nR\n1\n\n\n{\\displaystyle R_{1}}\n=\n\n\n\nr\n″\n\nθ\n″\n\n\nR\n2\n\n\n{\\displaystyle {\\frac {r''}{\\theta ''}}R_{2}}\nとなります。\n", "url": "https://ja.wikibooks.org/wiki/%E9%AB%98%E7%AD%89%E5%AD%A6%E6%A0%A1_%E5%9C%B0%E5%AD%A6/%E5%A4%AA%E9%99%BD"}
{"text": "ここでは、高等学校理科基礎の地学分野の内容について解説する。\n単元\n地球は、太陽の周りを公転している。そして、太陽も銀河系の中心部の周りを回っている。このように回転運動は、宇宙ではごく普通に見られる現象である。\n天体が1日ごとに繰り返す日周運動は、天球が観測者と天の北極を結んだ軸を縦にして反時計回りに1日に1回転していると考えれば説明が出来る。\n太陽の日没の位置と星座の位置に注意して数日間観察してみると星座から東へ東へ移動していることがわかる。1年後、この星座と太陽は同じ位置関係になるため、この運動は1年周期であることが分かる。これを年周運動といい、太陽が1年をかけて天球上を進む道を黄道という。\n北斗七星やはくちょう座は日や時刻によって位置は変わるが、形そのものが変化することはない。これらは、「つねなる星」恒星と呼ばれる。一方、月、水星、土星などはお互いどうしの位置関係もどの星座の場所にあるかも日々変わっていく。これらは、「惑う星」惑星と呼ばれる。その軌跡を観測してみると、S字型や輪をつくって進むことがある。この東から西へ動くことを逆行、西から東へ動くことを順行と呼ぶ。順行から逆行に、逆行から順行になるとき動きが止まるように見えることがあるが、これを留という。\n", "url": "https://ja.wikibooks.org/wiki/%E9%AB%98%E7%AD%89%E5%AD%A6%E6%A0%A1%E7%90%86%E7%A7%91%E5%9F%BA%E7%A4%8E%E5%9C%B0%E5%AD%A6%E5%88%86%E9%87%8E"}
{"text": "このページは高等学校理科総合Bのうち地学分野の内容をまとめたものである。\n単元\n地球の表面は、大気圏、水圏、岩石圏の3つに分けることができる。\nこのうち、大気圏と水圏を除いたものを、固体地球と言う。\nこのように、地形の変動には、地球内部のエネルギーや、太陽エネルギーが深く関わっていることがわかる。\n地球の高さ500m毎の面積を測ってみると、標高0mから500mの面積と-4500mから-5000mくらいの面積が目立って大きい。これらの高い地域が大陸地域、低いところが、海洋地域である。境界は、海岸線ではなく、水深1000mのところである。\n地球の内部は、地殻、マントル、核の三つに分けられる。\n地下70kmより先に、地震波の速さが遅くなる場所がある。ここを、低速度層という。\n低速度層は、地下250kmまで続いている。低速度層と、深さ600kmくらいまでのマントル上部の柔らかい層を合わせてアセノスフェアという。低速度層の上のかたい層をリソスフェアといい、プレートにあたるとされている。地球表面はいくつかのプレートにわかれている。プレートは常に動いており、それらの境界ではプレート同士が押し合ったり、離れて拡大したり、すれ違ったりしている。\nプレートが押し合っている境界では、プレートが沈み込んで海溝ができたり、大陸が衝突して山脈ができたりする。この考え方をプレートテクトニクスという。\n海洋プレートが沈み込むところでは、海溝ができ、火山活動も盛んで、島弧が発達する。この付近では、地震や、地殻の変動も盛んである。このようなところを島弧-海溝系といい、日本列島もこの1つである。\n島弧-海溝系の火山は、海溝から100~300km以上離れている。火山分布の海溝側の限界線を火山前線といい、海溝とほぼ平行している。プレートの沈み込みによる強い圧力のため、隆起し、地底でマグマができて、大山脈ができる。南アメリカのアンデス山脈は、このように形成された。インド大陸も、プレートの動きによって、ユーラシア大陸と衝突、ヒマラヤ山脈ができた。ヒマラヤ山脈では、数千メートルの高地からアンモナイトなどの化石が発見される。インドは、現在もユーラシア大陸を押し続け、ヒマラヤ山脈は隆起を続けている。\n約46億年前、宇宙空間の中にある、星間ガスの濃いかたまりが、収縮し、原始太陽が形成された。原始太陽の周りには、星間物質が、原始太陽とともに回転している。これが、原始太陽系星雲である。この中の個体微粒子が微惑星とよばれる1~10kmを形成した。微惑星が、衝突や、合体を繰り返し、大きくなって、原始惑星が誕生した。原始地球もこのように誕生した。微惑星が衝突した地球では、温度が上昇し、水蒸気、二酸化炭素、窒素を主成分とした、原始大気が誕生した。大気が発生した地球の表面は、ますます高温になり、1500~4700℃にも達したため、岩石が溶け、マグマオーシャンが形成された。マグマオーシャン内では、重い物質と軽い物質が分かれ、ニッケルや鉄でできたマントルと岩石質のマントルができた。地球に衝突する微惑星の数が減って、表面が冷却して、地殻ができた。また、水蒸気が冷えて、雨になり、原始海洋が形成され、地表の温度も100~200℃程度に冷やされた。二酸化炭素は、原始海洋中に溶け込んだ。\n生命の誕生についてはわかっていない部分が多いが、ミラーの実験から、タンパク質などから生命が誕生したと考えられる。\n惑星は、固体表面を持つ地球型惑星と、ガス状の表面を持つ木星型惑星に分けられる。これらは、惑星が誕生したときの原始太陽からの距離が関係していると考えられる。\n半径2400kmの小さな惑星で、昼間は300~400℃、夜は、氷点下170℃である。水や大気はなく、浸食作用がないので、クレーターなど、誕生当時の姿がそのまま残っている。\n半径6000kmで、地球とほぼ同じ大きさである。大気の96%を二酸化炭素が占めていて、気圧は90気圧である。二酸化炭素の温室効果により、表面温度は水星より高い460℃にもなっている。このような環境では、液体の水は存在できず、気体の水も紫外線によって水素と酸素に分解され、宇宙空間に逃げていってしまう。火山活動による地形は見られるが、地球のようなプレート活動は存在しないと考えられている。\n半径3400kmで、地球の約半分である。重力が小さいため、気圧は0.006気圧程度である。大気のほとんどが二酸化炭素であるが、僅かなため、温室効果が小さく、また、太陽から遠いため、平均気温は-58℃である。自転軸の傾きも自転周期も地球とほぼ同じなので、季節変化もみられる。火星には、二酸化炭素が凍った極冠といわれる場所がある。極冠は季節によって大きさが異なる。\nまた、火星の地形には、浸食の跡がみられ、過去には液体の水が存在したと考えられる。\n太陽系最大の惑星である。半径が地球の11倍以上で、大気の90%が水素、10%がヘリウムである。これは、太陽の化学組成に近い。木星のような木星型惑星は岩石や氷の周りにヘリウムを主成分としたガスが取り囲んでいるのが特徴である。木星には縞模様が見られ、明るいところが上昇気流、暗いところが下降気流である。木星には大赤斑という大きな渦があり、160年近く存在し続けている。\n太陽系で最も密度の小さい惑星。半径が地球の9倍ほどある大きな惑星だが、水素が96%を占めるため、もし土星を水に浮かべたら浮いてしまうほどである。土星にも木星のような縞模様が見られる。また、氷や岩石でできたリングがある。このようなリングは、木星型惑星ではどの惑星でも観測されているが、土星のそれは特に顕著である。土星の衛星のひとつにタイタンという衛星があり、濃い大気を持っている。その表面にはメタンの海が広がっていると推測されている。\n半径が地球の4倍程度で、大気は水素がやや少なく、メタンやヘリウムが多い。そのためやや青っぽく見える。太陽系の最も外側の冥王星は、地球型惑星にも木星型惑星にも属していない惑星であったが、今では準惑星として扱われる。太陽系で唯一惑星探査機が近づいていないので、詳しいデータはわからないが、メタンの凍った表面を持っていることがわかっている。また、軌道が変則的であり、海王星の内側にくることもあるなど、他の惑星とは、異なった特徴を持っている。冥王星の外側には惑星を構成できなかった微惑星が沢山存在していると考えられている。\n現在まで、地球が生命の存在を確認できている唯一の惑星である。太陽系の中では、金星と火星が似たような特徴を持っているが、金星は温室効果で水が蒸発し、失われてしまった。逆に火星は温室効果も少なく太陽から遠いため水も氷になってしまった。一方、太陽から適度な距離にある地球は水が液体として存在し、二酸化炭素が液中に溶け込み、適度に温暖な環境を維持できたのだ。\n地球の周りの大気の層を大気圏といい、上に行くに連れて薄くなり、宇宙空間までつながっている。単位面積に係る大気の重さを気圧という。1気圧は1013hPaで、水銀柱760mmの圧力に当たる。大気は、700kmほど上空まで広がっており、これより上はだんだん希薄になり、宇宙空間となる。大気の密度は地表付近で最も高く、高い山などでは低くなる。また、大気圏は温度変化の様子によって、いくつかに分けられる。\n窒素が78%を占め、酸素が21%である。残りはアルゴンが0.9%、0.03%が二酸化炭素、0.002%がネオン、0.0005%をヘリウムが占める。また、水蒸気は場所によって変化し、空気中の3パーセントを占めることもある。\n太陽とは、半径696000kmの恒星である。中心は非常に高圧で、水素原子核がヘリウム原子核に変化する核融合反応を起こしている。表面温度は6000K程度である。太陽から出てくる放射エネルギーは、可視光線(波長0.4〜0.7マイクロメートルの電磁波)が中心で、紫外線、赤外線もそれなりにあり、わずかだがX線、マイクロ波なども混ざっている。地球が受ける太陽放射のエネルギーを日射という。大気圏上面で太陽に直角な1平方メートルの面が単位時間に受ける日射量(直達日射量という)を太陽定数という。その値は、1.4kW/1平方メートルである。その半分は、大気中で吸収されたり反射したりする。地球全体が受ける日射量をEとすると、Eは、太陽定数×地球の断面積(4πr^2)である(地球の半径をr、円周率をπとした)。具体的には、E=1.77×10^14kWである。\n熱が大気圏外に逃げない状態を温室効果という。近年は温室効果により平均気温が上がりつつある。\n太陽放射のうち、地表に到達するのは約50%である。地表で吸収されたエネルギーの内、赤外放射によって直接大気圏に戻されるのはごく一部に過ぎない。大部分は温室効果で大気中に戻されるが、結局大気圏外に放射される。したがって、地球全体としたら得たエネルギーと放出されるエネルギーは釣り合っている。しかし、局地的に見たら赤道付近は日射量は多く、極付近は、少ないはずだが、赤道付近は非常に暑く、極付近では、寒くならなければならない。(地表の1平方メートルが受ける日射量をIとし、直達日射量をIoとするとその関係は、I=Io×sinθとなる。)しかし、そのようにはなっていない。これは、熱の輸送が起こっているためだからだ。\n高緯度と低緯度では、日射量と地球放射量が逆転するので、熱の輸送が起こる。赤道付近と極での対流が起こると考えられるが、実際は転向力(コリオリの力ともいう)が働いているため、大きく分けて3つの循環ができる。\nコリオリの力とは、中学で習った転向力と原理は同じで、地球が自転しているために、地球の自転と一緒に地表にいる観測者にとっては、北半球の場合、運動している物体が進行方向に対して右向きに曲がる様に見える、(「物理」科目でいうところの)見かけの力 の現象の一種である。\nなお、右図では円盤によってコリオリの力の原理を説明したが、実際の地球は円盤ではなくて球形に近い立体物なので、北極・南極に近い高緯度地方ほどコリオリの力が強く、赤道ではコリオリの力は0(ゼロ)になる。\nなお、コリオリの力の向きは、北半球の場合に、進行方向に対して右向きである。南半球では、コリオリの力は、進行方向に対して左向きになる。\nまたなお、コリオリの力の大きさは、速度にも比例する。また、このため、上空では一般的に風速が大きくなるので、上空の風についてはコリオリの力を無視できない。\n上空の風を引き起こす力は、気圧の差による力(「気圧傾度力」という)と、コリオリの力との、2つの力である。上空では、地面の摩擦の影響が無いため、上空の風には摩擦力は掛からない。\n重要な事として、この2つの力(気圧傾度力とコリオリ力)の向きと、風速の向きとは、ほぼ違っている。基本的に、気圧傾度力とコリオリ力の力の大きさは釣り合っており、風速はそれら2つの力の向きに垂直である。\nこのような風を地衡風(ちこうふう)という。\n\nいっぽう、地上付近では、摩擦力の影響により、地上風とそれに掛かる力とは右図のような関係になっている。\n地上の風は、季節によって変化することが多い。冬は大陸、夏は海洋に高気圧が発達する。北半球は陸地が多く、季節変化がはっきりしている。陸と海のバランスによって季節風の大きさが違う。\nしたがって、海洋から陸地に季節風が吹く。\n1日周期で吹く風である。昼は、陸地が高温で、海が低温のため、海風が吹く。夜は、陸地が低温で海が高温になるため、陸風がふく。海風と陸風が変わるとき、一時的に風が止まることがある。これを朝凪、夕凪という。\n私たちの日常生活に深く関わっている気象について考えてみよう。\n空気は暖められると上昇して、冷えると下降する。空気の塊(空気塊)が上昇すると、上空は気圧が低いので空気塊は膨張して冷える。この温度が下がる割合は、\n-1℃/100mで、これを乾燥断熱減率という。上昇して、温度が下がると、やがて露点に達し、水滴ができはじめ、雲ができる。このとき熱が放出されるので、割合は、-0.5℃/100mとなる。これを湿潤断熱減率という。このように雲は上昇気流のあるところに発生し、そこは低気圧となる。逆に空気塊が下降すると雲は消えてしまう。この場所は晴天であることが多く、ここは高気圧となる。\n空気が上昇する場合は、\n雲粒が成長し、1mm前後の雨粒、雪の結晶となる。氷晶を含む雲を冷たい雨、含まない雲を暖かい雨という。\n日本には一年を通じて、変化に富んでいる。\n冬、シベリア高気圧から千島方面に発達している温帯低気圧に寒気が吹き込む。これが、北西季節風であり、このときの状態を西高東低という。乾燥した空気は、日本海で湿気を含み、日本海側に雪を降らせる。そして、太平洋側で乾燥する。\n2月ごろになると海洋と大陸の温度差が小さくなり、季節風が弱まる。そして、3月下旬頃低気圧と高気圧(移動性高気圧)が交互に通過する。低気圧が日本海側を通過し、南風が吹くようになる。特に春先に吹く強い南風を春一番という。\n梅雨は、東アジアに特徴的な現象である。梅雨前線という停滞前線の一種が通過する。オホーツク海気団が優勢となる。\n北太平洋高気圧が日本全体を覆い、天気は快晴が多い。このとき弱い南風が吹き、南高北低型の気圧配置となる。\n夏から秋にかけて発生する熱帯低気圧で、風速が17.2m毎秒以上の物である。\n台風の渦巻きは北半球では左巻き、南半球では右巻きである。そのため進行方向の右側では風速に加えて進行速度が加わるので風速は大きくなる。\nこの記事の作成にあたっては、下記の書籍を参考にした。\n", "url": "https://ja.wikibooks.org/wiki/%E7%90%86%E7%A7%91%E7%B7%8F%E5%90%88B_%E5%9C%B0%E5%AD%A6%E5%88%86%E9%87%8E"}
{"text": "この項では、理科総合B 地学分野を履修しているものとして高等学校地学Iの解説を行う。\n地球はいつから球形であると考えられていたのだろうか。ギリシアのアリストテレスは、月食のときの地球の影の形から地球が球形であると考えていた。紀元前230年ごろにアレキサンドリアの南のシエネ(現在のアスワン)では、夏至の日の正午に深い井戸の底まで太陽の光が届くのをエラトステネスが知り、同じ時刻の夏至の日のアレキサンドリアでは鉛直に立てた棒に影ができて太陽が頭上より約7.2°傾いている(つまり太陽高度 82.8°)のを知り、アレキサンドリアとシエネの距離は5000スタジア(925km)であるので、このことから、\nとして、解の x=250000スタジア から、地球の半径を7361kmと算出した。実際の半径は、6371kmであり、当時とすれば妥当な結果であろう。\n地球の形は、赤道付近がやや膨らんだ回転楕円体(かいてん だえんたい)である。これを地球楕円体という。\n1671年〜1672年、フランスの天文学者リシェは、ギアナでは、フランスで調整した振り子時計が1日に約2分30秒おくれることに気付いた。振り子は重力によって振動している事が分かっていて、重力が小さいほど振り子が遅くなることが分かっていたので、ニュートンは振り子の遅れの原因として、地球の形は遠心力によって赤道方向がふくらんだ形になっていると考えられた。(オレンジ型)\nこれに対し、パリ天文台のカッシーニなどのフランスの学者などが、地球は極方向(つまり南北方向)にふくらんでいると考えていた。(レモン型)\nそこでフランス学士院は、スカンジナビア半島とペルーに調査団を派遣し、緯度差1度に対する子午線の長さを測定した結果、極付近の方が緯度1度に対する弧が長いことが証明され、ニュートンの説が正しいことが証明された。\n緯度と緯度1°あたりの弧長は\nであった。\nこれより、ニュートンの仮説(オレンジ型)が正しいことになり、\n地球の大きさは、\nとなり、よって\n扁平率(へんぺいりつ) は (赤道半径 ー 極半径)/(赤道半径) =(a-b)/a= 1/298となる。\n扁平率は非常に小く、実用上は地球を球形とみなして問題ない。\nすべての物体どうしには、おたがいに引きよせ合う力があり、これを万有引力(ばんゆう いんりょく)という。\nで表される。Mとmは2つの物体の質量。距離をrとしている。Gは万有引力定数であり、G=6.67×10^-11 m3/(kg・s2) である。\n単に引力という場合も多い。\n物体が大きいほど、引き寄せあう力が大きくなる。私たちが地上で感じる下方向への引力は、地球によって引き寄せられる引力である。\n地球は1つの大きな磁石であると考えられる。自転軸と地表面の交点からN極の指す方角は約11度ずれていて、方位磁石は真北を指さない。このずれる角度を偏角という。日本付近では磁場が下方向を向いていて水平面に対する角度を伏角という。地磁気の大きさを全磁力といい、偏角と伏角と全磁力が定まれば地磁気の様子がわかる。したがってこれら3つを地磁気の3要素という。\n(注)\n偏角と伏角と全磁力の組合せだけが,地磁気の三要素ではない。\n偏角は他の要素で表すことができないために,必ず三要素の一つに含めるが,他は,伏角と全磁力,伏角と水平分力(水平磁力)でも構わない。\n地温は深さとともに次第に高くなっていく。この割合を地下増温率(地温勾配)という。地下30kmまでの地下増温率は、平均して100mにつき2~3℃程度である。\n地球の内部は高温で、温度の低い地表に向かって熱が伝えられる。この熱量を地殻熱流量という。この平均的な値は、\n\n6.9\n×\n10\n−\n2\n\n[\nW\n/\n\nm\n2\n\n]\n\n{\\displaystyle 6.9\\times 10^{-2}[W/m^{2}]}\n\nである。\n地球の主な熱源は、岩石に含まれるウラン、トリウムなどの放射線同位体の自然崩壊に伴う熱と、地球生成時に地球内部に閉じこめられた熱である。核の生成に伴う潜熱も熱の要因である。とりわけ、大陸地殻を構成する花こう岩発熱量が多い。\n地震のゆれは波として地球内部を伝わっていく。これを地震波という。破壊が最初に生じたところを震源、震源の真上の地表の地点を震央という。\n波の伝わる速さは物質の状態や種類によって変化する。物質の種類や状態が変わると地震波の速さが変わり、屈折や反射が起きる。ゆえに、地震波の伝わり方を解析することによって、地球内部の構造や状態を推定できる。\n図1の下二つは表面波の伝わり方を示している。\n震源から観測地点まで伝わるまでに要する時間を走時(そうじ)と呼び、震源から観測地点までの距離と走時の関係とを表したグラフのことを走時曲線(そうじきょくせん)と呼ぶ。縦軸に走時をとり、横軸に各観測点の震央距離をとった時に描かれる曲線である。地震波は通常、一定の速度で伝わるため、走時曲線はほぼ直線になるはずである。しかし、クロアチアの地震学者であるアンドリア・モホロビチッチは、走時曲線は直線にはならずにどこかで折れ曲がるという法則を発見した。モホロビチッチは、1909年にクパ渓谷で発生した地震の走時曲線から、いくつかの地震波は他の波より速く伝わっていることに気づき、この事実をP波の速度が急に変わる不連続面によって解説し、モホロビチッチ不連続面と呼ばれるようになった。地下30kmから60kmの間にモホロビチッチ不連続面があるため、浅発地震の場合、震央距離150~300km程度の陸地で折れ曲がる。モホロビチッチ不連続面より上を地殻といい、下をマントルという。\n走時曲線を分析してみると、震央距離を地球中心からの角度で表した場合、103°から\n先の領域にはS波が伝わらない。この領域をS波のシャドーゾーンと言う。また震央距離103°から143°にはP波が直接伝わらない。これをP波のシャドーゾーンという。深さ2900kmよりも深部は液体となっているためで、これよりも深部を核という。核は深さ5100kmまでが液体の外核,それよりも深部を内核という。内核は固体である。\n マグマオーシャンから分離した鉄が地球中心部に核を形成したが,時代を経るにつれて冷え,鉄が固体となって中心部に沈み,内核を形成した。\n高温のマントル物質は中央海嶺でわきだし、冷えてプレートとなり、海溝に向かって移動する。\n(火山などで見られる)マグマの粘性(ねんせい)の原因の物質は二酸化ケイ素 SiO2 である。(粘性(ねんせい)とは、その物質の 粘りぐあい(ねばりぐあい) のこと。)\nなので、マグマの成分の割合で、ケイ素の割合が高いほど、そのマグマは粘性が高い。\n", "url": "https://ja.wikibooks.org/wiki/%E5%9C%B0%E5%AD%A6I/%E5%9C%B0%E7%90%83%E3%81%AE%E6%A6%82%E8%A6%B3"}
{"text": "地学I 地球の歴史は、地学Iのうち、地球史関連の事象を扱う。\n地球は46億年前、太陽の周りを回るガスやちりがだんだん集結して、小さな微惑星となり、その微惑星が衝突・合体したのが地球であると考えられている。太陽から近い星が岩石主体となり、木星より遠い星がガス主体である。その間には小惑星帯がある。\n月の誕生で最も有力視されているのが、ジャイアントインパクト説である。これは、地球に火星程度の微惑星が衝突し、そのかけらが月を形成したという物である。\n", "url": "https://ja.wikibooks.org/wiki/%E5%9C%B0%E5%AD%A6I_%E5%9C%B0%E7%90%83%E3%81%AE%E6%AD%B4%E5%8F%B2"}
{"text": "表面付近の風や波で混ざり、鉛直方向の温度差が少ない層を混合層という。その下の水温が急激に下がる層を水温躍層という。海水には塩化ナトリウムや塩化マグネシウムなどの塩類が溶けており、海水あたりの塩類の割合を塩分濃度という。循環している海流のことを環流とよび、黒潮の流れが強いのは地球の自転による影響で、西岸強化という。\n熱塩循環は、表面の熱および淡水の流入によって作られる密度勾配によって駆動される大規模な海洋循環の一部です。\n風によって駆動される表層流(例えば、メキシコ湾海流)は、赤道付近の大西洋から極地方へ向かって移動し、途中で冷却され、最終的に高緯度で沈んで(北大西洋深層水を形成して)海洋盆地に流れ込む。\nこの密度の高い水は、南極海で大部分が上昇する一方で、最も古い水(推定輸送時間約1000年)は北太平洋で上昇する。\nしたがって、広範な混合が海洋盆地間で行われ、それらの差異を減らして、地球の海洋を一体的なシステムとている。\nこれらの循環の水は、熱エネルギーおよび物質(溶存した固体および気体)を世界中に運ぶ。\n従って、循環の状態は地球の気候に大きな影響を与える。\nエルニーニョ・南方振動(El Niño-Southern Oscillation; ENSO)とは、熱帯東太平洋上の風と海面温度の不規則な周期的変動であり、熱帯および亜熱帯の気候に影響を与える。海水温度の上昇期はエルニーニョ、下降期はラニーニャとして知られている。\n海水温の変化と相まって、付随する大気成分として南方振動がある。エルニーニョは熱帯西太平洋で高気圧が伴い、ラニーニャはそこで低気圧が伴う。これら2つの期間はそれぞれ数ヶ月続き、数年ごとに発生し、期間ごとに異なる強度で発生する。\nこれら2つの期間は、20世紀初頭にギルバート・ウォーカーによって発見されたウォーカー循環に関係している。ウォーカー循環は、東太平洋上に高気圧があり、インドネシア上空に低気圧があることから生じる圧力勾配力によって引き起こされる。ウォーカー循環(貿易風を含む)の弱体化や逆転は、冷たい深海水の上昇を減少または停止させ、海面温度を平均より高くさせてエルニーニョを引き起こする。特に強いウォーカー循環はラニーニャを引き起こし、上昇が増加するため海水温度が下がる。\n振動を引き起こすメカニズムは現在も研究中である。この気候パターンの極端な振動は、世界中の多くの地域で洪水や干ばつなどの極端な気象を引き起こする。特に太平洋に接する農業や漁業に依存する発展途上国が最も影響を受ける。\n地球に入る太陽放射を日射といい、太陽光線に垂直な面が受ける日射量を太陽定数という。地球自身が外に出す電磁波を地球放射といい、地表からの赤外放射による温度低下を放射冷却という。大気中に存在する二酸化炭素やメタンなどの温室効果ガスが、太陽光線を大気中に入れながら、地球の表面に戻ってくる熱エネルギーを吸収する現象を温室効果という。\n赤道付近の空気が上昇し、亜熱帯ジェット気流により緯度20~30度で下降する循環をハドレー循環という。中緯度の偏西風が常に吹き、特に強い流れをジェット気流という。偏西風の蛇行は偏西風波動と呼ばれる。季節ごとに交代する風のことを季節風といい、晴れた日中に海から吹く風を海風、夜間に陸から吹く風を陸風という。両者を合わせて海陸風といい、限定された地域に吹く風を局地風という。山谷風も1日が周期の局地風である。\n気団とは、高気圧が停滞してできる巨大な空気の団塊である。接した気団の地表面には前線が形成され、温暖前線では暖気が寒気の斜面を這い上がり、寒冷前線では寒気が暖気を押し込み、急激な上昇により強いにわか雨が降る。寒冷前線が温暖前線に追いつき低気圧が閉じた部分の前線は閉塞前線と呼ばれる。\n最大風速が約17m/sを超える熱帯低気圧を台風という。台風の中心で雲がほとんどない場所を台風の目という。\n日本の冬において、シベリア高気圧から北西の季節風が吹く気圧配置を西高東低型という。海面から供給された潜熱でできた積雲が脊梁山脈にぶつかったあとの太平洋側ではからっ風が吹き降りる。春に日本の北側にある低気圧によって吹く強い南風を春一番という。温帯低気圧の間には移動性高気圧があり、偏西風帯に対応している。6・7月ごろには梅雨とよんでいる現象がある。寒気のオホーツク海高気圧と、暖気の北太平洋高気圧の間には梅雨前線と呼ばれる停滞前線がある。南西からは湿舌という暖湿気が伸び出てくる。ジェット気流の合流による下降流でできたオホーツク海高気圧は親潮で冷やされる。冷えて密度が高まると東日本の太平洋側にやませが吹き付け、長く続けば冷夏になる。このように偏西風の蛇行で切り離される高気圧をブロッキング高気圧という。夏型の気圧配置は南高北低型である。秋は北太平洋高気圧が弱まり、秋雨前線による秋雨がもたらされる。\n都市気候において、排熱によるヒートアイランドがよく見られる。化石燃料の燃焼により硫酸や硝酸が雨に混じると酸性雨が降る。\n単位面積当たりの大気の圧力のことを気圧という。1気圧は1013ヘクトパスカルである。高度が上がるに従って気温が下がっていく割合のことを気温減率といい、地表から高度11km前後までの上空ほど気温が下がる層のことを対流圏という。各圏同士の境界を圏界面といい、対流圏と成層圏の間は対流圏界面と呼ばれる。対流圏では高度が上がるほど気温が低くなるが、成層圏ではオゾン層での紫外線の吸収により、上に行くほど高くなる。中間圏では再び高度の上昇とともに低くなるが、熱圏では、また上のほうが高くなる。熱圏の高度100-300km前後には、分子が太陽の紫外線を吸収することによる電離が起きる電離層がある。\n物質が、気体・液体・固体というように状態を変化させることを相変化という。相変化に使われる熱を潜熱という。飽和したときの水蒸気量を飽和水蒸気量といい、そのときの水蒸気圧を飽和水蒸気圧という。ある温度における飽和水蒸気量(圧)に対する水蒸気量(圧)の百分率を相対湿度という。水蒸気圧が飽和水蒸気圧になり、凝結し始めたときの温度をw:露点という。水蒸気圧が飽和水蒸気圧を上回れば過飽和の状態である。雲をつくる非常に小さな水滴のことを雲粒という。\n周囲と熱のやり取りがない空気塊の温度変化を断熱変化という。飽和していない空気塊が断熱的に上昇したときの温度が降下する割合を乾燥断熱減率という。空気塊が凝結高度に達したあとの上昇による温度の低下率はw:湿潤断熱減率と呼ばれ、潜熱で暖められた分、温度の低下がゆるやかになる。風が山を湿潤断熱減率で上昇し、乾燥断熱減率で山を下降するとき、風下側の山麓が高温・乾燥になる現象のことをフェーン現象という。\n空気塊の温度が周囲の気温より高いと、大気の状態は不安定である。空気塊の温度が周囲の気温より低ければ、大気の状態は安定である。飽和していない空気塊には安定だが、飽和している空気塊には不安定な状態のことを条件つき不安定という。高度が上がるつれにて気温も上がっていく部分を逆転層という。氷晶が含まれている雲からの雨を冷たい雨(または氷晶雨)、水滴だけの雲でできている雨を温かい雨という。\n気圧差によって働く力のことを気圧傾度力という。地球の自転により運動の方向を曲げているように見える力のことを転向力(コリオリの力)という。気圧傾度力とコリオリ力がつり合った状態で吹く風を地衡風という。気圧傾度力と転向力と遠心力がつり合って吹く風は傾度風である。\n", "url": "https://ja.wikibooks.org/wiki/%E5%9C%B0%E5%AD%A6I/%E6%B5%B7%E6%B4%8B%E3%81%A8%E6%B0%97%E8%B1%A1"}
{"text": "単元\n南極の春にオゾンが減少することをオゾンホールという。酸性が強まった雨のことを酸性雨という。\n気象の観測データからその状態の変化をスーパーコンピュータで計算して行う天気予報を数値予報という。\n高層天気図には等圧面天気図が用いられ、ある気圧面が等高線で表される。偏西風帯の特に強い部分はジェット気流と呼ばれている。極高気圧は放射冷却で低層だけ密度が低いので背の低い高気圧である。亜熱帯高気圧は下降流によるものなので背の高い高気圧である。偏西風の蛇行は偏西風波動と呼ばれ、等高線が南に波打っている部分は気圧の谷で、北に張り出している部分は気圧の尾根である。熱帯収束帯と亜熱帯高圧帯の対流をハドレー循環といい、偏西風波動による熱の輸送をロスビー循環という。冬はシベリア高気圧が発達する西高東低の気圧配置で寒波が気圧の谷に向かって入ってくる。梅雨になるとオホーツク海高気圧と北太平洋高気圧の間で収束が起きる。\n氷河は山地にある山岳氷河と、大陸を覆うような大陸氷河(氷床)に分類することができる。波には風浪とうねりがあり、風浪はその場の風で起きる波で、うねりは遠くの風浪が伝わってくる波である。波しぶきが大気中で蒸発して残った小さな塩類の粒を海塩粒子といい、凝結核の元になる。\nペルー沖の海面水温が通常の年より高くなることをエルニーニョ現象といい、逆に平年より下がればラニーニャ現象と呼ばれる。偏西風と貿易風により環流が流れる。転向力が北半球では流れの向きに対して直角右に働くことで中央部の海面が高くなり圧力傾度力が生じる。両者のつり合いにより地衡流が流れる。コリオリの力が弱い分、北太平洋海流よりも北赤道海流の方が強くなるので西岸強化が生ずる。周期的に海水面が上下することを潮汐といい、最も高くなると満潮、最も低くなる時を干潮と呼ぶ。潮汐は起潮力で起こり、干満の差が大きいと大潮、それが小さいと小潮とよばれる。\n数千℃にねっした鉄が赤く発光したりするように、物体は、温度がとても高くなると、発光する。\nその発光の色は、温度が高くなるほど、発光のなかの光で波長が短い成分が多くなるので、赤から黄色をへて、しだいに青くなる。\n(赤い光は、黄色い光よりも波長が長い。黄色い光は、青い光よりも波長が長い。)\n光は電磁波であるので、つまり、熱した物体は、電磁波を放出するのである。\nより詳しくいうと、熱していない物体からも電磁波は放出されているのだが、その電磁波の波長のほとんどが赤外線の領域なので、人間の目では見えないのである。\nこのような現象での温度と波長ごとのエネルギー量の関係をあらわした法則が、ウィーンの変位法則である。ウィーンの変位則は、黒体の温度が高いほど、放射エネルギーが最大になる波長が短くなっていることを表し、その波長をλ(μm)・温度をT (K)としたとき以下の式で示せる。\nウィーンは、ウィーンの法則を確かめる測定実験をする際、熱エネルギーの測定器にはボロメーターという装置を用いた。\n[1]\n(※ ボロメーターについて、くわしくは、発展の節で説明する。)\nシュテファン=ボルツマンの法則は、恒星の放射するエネルギーE は絶対温度T の4乗に比例するというもので、次の式で表される。\n1900年ごろ、すでに天文学者のラングレーによって、熱エネルギーの測定器としてボロメータという測定器が実用化していた。ボロメータとは、金属が温度変化した際の電気抵抗の変化を利用して、電気抵抗の変化から温度変化を読みとり、その温度変化から熱エネルギーなどのエネルギーを測定する装置である。\nこのボロメータを用いて、光の放射エネルギーも測定できた。\nウィーンは、ウィーンの法則を確かめる測定実験をする際、光のエネルギー測定のために、ボロメーターを用いた。この当時のボロメーターの精度の例として、温度が10-5上昇すると、抵抗値の変化率の3×10-8を読み取れるという高精度であったと言う。\nラングレーやヴィーンが用いていた頃のボロメーターでの測温用の金属には、白金が用いられていた。\nそして、ボロメーターの精度の向上のため、ホイートストン・ブリッジ回路の中に、この電気抵抗を組み込むことで、精度を得ていた。\nなお、21世紀の現在でも、白金は、電気抵抗式の測温素子として、よく用いられている。また、ホイートストン・ブリッジも、アナログ電気式の測定器で精度を得るための手法として、よく用いられている。さらに、ホイットストーン・ブリッジと測温素子の組み合わせによる温度測定器や放射エネルギー測定器などすらも、現在でもよく用いられている。\nこの1900年ごろのウィーンの時代、光の波長測定の方法では、回折格子が用いられた。すでにローランドなどによって光の波長測定の手段として実用化していたローランド式などの回折格子が、よく用いられた。\nそもそも、光の波長は、どうやって測定されたのだろうか。\n1800年代のはじめごろ、ヤングの実験によって、ヤングらが、可視光の波長はおおむね数100nmのていどであろう、という予想を立てていた。\n回折格子を用いて、より正確な測定が、のちの1821年にドイツのレンズの研磨工だったフラウンホーファーによって行われた。フラウンホーファーは回折格子を作るために細い針金を用いた加工装置を製作し、その加工機で製作された回折格子を用いて、光の波長の測定をし始めたのが、研究の始まりである。フラウンホーファーは、1cmあたり格子を130本も並べた回折格子を製作した。[2]\nまた、1870年にはアメリカのラザフォードがスペキュラムという合金を用いた反射型の回折格子を製作し(このスペキュラム合金は光の反射性が高い)、これによって1mmあたり700本もの格子のある回折格子を製作した。\nより高精度な波長測定が、のちの時代の物理学者マイケルソンによって、干渉計(かんしょうけい)というものを用いて(相対性理論の入門書によく出てくる装置である。高校生は、まだ相対性理論を習ってないので、気にしなくてよい。)、干渉計の反射鏡を精密ネジで細かく動かすことにより、高精度な波長測定器をつくり、この測定器によってカドミウムの赤色スペクトル線を測定し、結果の波長は643.84696nmだった。マイケルソンの測定方法は、赤色スペクトル光の波長を、当時のメートル原器と比較することで測定した。[3]\nなお、現代でも、研究用として干渉計を用いた波長測定器が用いられている。メートル原器は、マイケルソンの実験の当時は長さのおおもとの標準だったが、1983年以降はメートル原器は長さの標準には用いられていない。現在のメートル定義は以下の通り。\n原子の種類によって、吸収される光の波長が違う。\nプリズムなどをもちいて宇宙から来る光を波長ごとに分けると、虹のような帯にわかれる。この、虹のような光の帯をスペクトルという。そして、スペクトルのところどころ、暗くなってる線がある。このような暗い線を暗線(あんせん)という。\n暗線は、なんらかの物質が光を吸収したため、生じている。\nこの暗線は、その宇宙からの光が、地球に来るまでの経路に多く存在していた物質の種類が分かる。\n太陽光のスペクトルにある暗線の波長を分析することによって、太陽の暗線の波長が、水素による暗線と一致することから、太陽を構成する物質はおもに水素であることが分かった。\nまた、太陽光が、ウィーンの法則の6000Kの光と、ほぼ一致することから、太陽の表面温度は約6000Kであることが分かっている。\nなお、太陽光のスペクトルにある暗線のことをフラウンホーファー線という。\n1965年、宇宙のどの方向からも温度3K(3ケルビン)に相当する電磁波が来ていることが、ベンジアスとウィルソンによって発見された。\nこの宇宙のどこにもある約3K相当の電磁波を、宇宙背景放射(うちゅう はいけいほうしゃ)という。\n現在の世界各国の科学の学会では「宇宙は膨張している」とする学説が有力である。\n(※ 範囲外:) 一般に、「ビッグバン宇宙論」とか「膨張宇宙論」、あるいは(定説になっているので)単に「宇宙論」という。\n宇宙から来た光の波長を測定すると、地球から遠い天体から発された光であるほど、その波長が長いほうにずれている(つまり、赤色や赤外線の側に、ズレていく)。これを赤方偏移(せきほう へんい)という。\n(膨張宇宙論では、)赤方偏移の原因は、宇宙が膨張しているため、地球から遠いほど、より大きな相対速度によって遠ざかっているので、ドップラー効果の影響が強くなるためである(としている)。\n(※ 範囲外: ) 膨張宇宙論に反する、「つかれた光」仮説というのもあって、「ドップラー効果とは別に、未知の物理法則があて、その未知の法則によって、光は航行距離が長くなるほど、赤色にズレていく」という仮説にもとづいて、「宇宙は膨張していない」とする仮説(定常宇宙論)もあるが、しかし定常宇宙論は現在の世界主要国の科学の学会では支持されていない。日本の学校教育でも、定常宇宙論は支持されてないので、大学入試や大学理系の授業では、定常宇宙論を用いないように。定常宇宙論では「宇宙背景放射」という実験事実が、説明できないとされており、その理由のため定常宇宙論が支持されてない。\nハッブルは、赤方偏移について、その光の発信元となった天体の、地球から遠ざかる後退速度 v を計算したところ、地球からの距離 r と比例関係にある事を発見した。\nつまり、Hを比例係数として、vを後退速度、rを距離とすれば、\nである。この法則をハッブルの法則という。この式の比例定数 H をハッブル定数という。\n地球は太陽のまわりを公転しており、公転の軌道は、ほぼ円の軌道であることが、中世には天文学者ケプラーなどの観測によって既に分かっていた。\nしかし、中世の天文学者ケプラーがよく調べたところ、太陽の周囲を公転する地球の公転軌道は、わずかに楕円である事が分かった。\nそして、さらに重要な事として、公転軌道上のどこに地球があっても、公転の面積速度は一定である事が分かった。惑星の公転の軌道に関する、これらの法則をまとめてケプラーの法則という。\n地球だけでなく、火星などの太陽を中心に公転する他の惑星もまたケプラーの法則を満たしている事が観測されている。\n歴史的には、ケプラーは地球と火星の軌道を細かく分析することにより、地球も火星も公転の軌道がそれぞれ楕円軌道である事を発見し、また、面積速度の一定の法則も発見した。\nなお、地球の公転軌道上で、地球が太陽から最も近い点を近日点(きんじつてん)という。いっぽう、地球の公転軌道上で、地球が太陽から最も遠い点を遠日点(えんじつてん)という。\n観測事実として、木星や土星にはオーロラが発生する。土星のオーロラはハッブル望遠鏡により確認されている(※ 参考文献: 啓林館の専門「地学」の検定教科書)。\nオーロラが発生するには磁場が必要であると考えられている事から、木星や土星には磁場が存在すると考えられている。\n他の木星型惑星にも磁場が存在すると考えらている。\nいっぽう、地球型惑星については、磁場について、次のような事が分かっている。\n(※ 根拠は範囲外: 検定教科書が惑星の性質の結果だけを羅列しており、解明の根拠が書かれておらず、理解の役に立たない。)\n天王星と海王星はともに色が青い。これは、天王星や海王星にあるメタンが赤い色を吸収している結果であると考えられている。\n土星のリングは、地球から見ると数本の輪にしか見えないが、探査船などの観測により数千個の輪から成り立っていることが分かっている。\nいっぽう木星については、宇宙探査船ボイジャー1号により、木星にもリングがある事が発見された。\n天王星のリングが1977年に発見された。これは、地球から見て天王星が恒星の前を通過する少し前に、恒星の明るさが減光したことにより、リングの存在が1977年に明らかになった。\nその後、1980年代の探査船ボイジャー2号により、直接的に天王星のリングが観測された。\nまた、さまざまな観測により、天王星は自転軸が横倒しになっている事が分かっている。\nボイジャー2号の観測により、天王星には磁場がある事が分かっているが、磁場の中心は自転軸からは大きくずれている。\n海王星についてはボイジャー2号の調査により、1989年にも海王星にもリングが発見されている。\n結局、木星型惑星(木星、土星、天王星、海王星)すべてにリングが発見されている。\n木星には、大気の渦が観測され、この渦は大赤斑(だいせきはん)という。\nまた、木星には、赤色と白色の縞(しま)模様がみられる。\n木星のこの渦(大赤斑)は、大気の流れによって出来た雲の模様だと考えられている。(※ 範囲外: )なお、木星の渦は地球からでも望遠鏡により観測でき、中世の後半には既に木星の渦が発見されていた。\nいっぽう、天王星は大気があるのに、渦が見られない。\n海王星は、大気の組成は天王星と同じでメタンが主成分なのに、海王星には渦のようなものが見られ、海王星のこの渦は黒っぽいので、この渦は黒斑(こくはん)または暗斑(あんはん)などという(※ 検定教科書の出版社により用語が違う)。\n水星は探査船などによる観測の結果、表面に多くのクレーターや大きな崖(がけ)が見られる。\nこの事から、水星には大気と水が無いと考えられている(もし水や大気があったら、クレーターが流されて平坦になってしまたり、風化して平坦になってしまうので)。なお、オーロラの発生しない事実とも、水星に大気の無いことは合致する。\n水星は大気が無いため、昼と夜との温度差が激しく、水星の昼の気温は約400℃、夜は約 −180℃ にも達する。(水星は自転の速度も、とても遅く、その事も昼夜の温度差に関係していると考えられている。 ※ 啓林館の見解)\n金星は、1970年代からのソ連のベネラ探査機やアメリカのパイオニアビーナス探査機などの調査により、磁場や気圧などが解明されている。水星の大気の気圧は地球の90倍くらいであり、また水星の大気の主成分は二酸化炭素である。\nそして、これら二酸化炭素の温室効果により、金星の気温はとても高く、数百℃に達する。\n金星の雲は硫酸で出きている。\n金星については、探査船などの写真の結果、火山活動のあとによるものと見られる地形が見られるので、金星には火山活動があると考えられている。\n※ 未記述\n火星については、1970年代にバイキング探査機が火星に降り立っている。\n火星には、二酸化炭素を主成分とする大気があるが、気圧は地球の100分の1以下である。\n(大気があるためか)火星では、砂嵐や雲などの気象現象が確認されている。\n火星の気温は寒めであり、20℃くらいになる場合もあるが、−100℃になる場合もある。これらの気温の事実もあり、二酸化炭素の温室効果については、火星には大気の量が少ないので温室効果が弱いと考えられている。\n現在の火星の表面には海は見えないが、しかし、あたかも過去に水の流れていたような地形があり、そのため、大昔の火星には海や湖のような水が存在していたとする説も有力である。\nなお、火星の表面の赤くみえる地面は、酸化鉄の赤鉄鉱(せきてっこう)であるとされる。このことから、火星には大昔は酸素があったとする説もある(※ 数研出版の『地学基礎』で紹介)。\n冥王星は、かつて大きな星だと考えられていたので惑星として扱われていたが、冥王星が月よりも小さいことが近年分かり、また冥王星の同程度の大きさの非惑星がいくつも発見された事などから、2006年頃から冥王星は惑星でないとして扱われるようになった。\nこうしたことなどから現在では、海王星の外側の、冥王星などの天体をまとめて太陽系外縁天体(たいようけい がいえんてんたい)と呼ぶようになった。\n木星の衛星イオについては、探査船など(ボイジャー)の撮影によって写真によって火山のような地形がある事が分かっており、各種の探査機による撮影の結果、火山の噴火のような光の写真も撮影されているので。イオには活火山があると考えられている。\n土星の衛星タイタンは、太陽系の衛星のなかで唯一、大気をもつ。\nタイタンについては探査機カッシーニによって性質が観測された。\n", "url": "https://ja.wikibooks.org/wiki/%E5%9C%B0%E5%AD%A6II"}