ArneBinder
commited on
Commit
•
7d57d43
1
Parent(s):
806621d
from https://github.com/ArneBinder/pie-datasets/pull/152
Browse files- scifact.py +245 -0
scifact.py
ADDED
@@ -0,0 +1,245 @@
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
1 |
+
import json
|
2 |
+
import logging
|
3 |
+
import os
|
4 |
+
from collections import defaultdict
|
5 |
+
from copy import copy
|
6 |
+
from typing import Any, Dict, Iterable, List
|
7 |
+
|
8 |
+
import datasets
|
9 |
+
from datasets import GeneratorBasedBuilder
|
10 |
+
|
11 |
+
logger = logging.getLogger(__name__)
|
12 |
+
|
13 |
+
_DESCRIPTION = """\
|
14 |
+
SciFact, a dataset of 1.4K expert-written scientific claims paired with evidence-containing abstracts, and annotated \\
|
15 |
+
with labels and rationales. This version differs from `allenai/scifact` on HF because we do not have separate splits \\
|
16 |
+
for claims and a corpus, instead we combine documents with claims that it supports or refutes, note that there are \\
|
17 |
+
also some documents that do not have any claims associated with them as well as there are some claims that do not \\
|
18 |
+
have any evidence. In the latter case we assign all such claims to the DUMMY document with ID -1 and without any text \\
|
19 |
+
(i.e. abstract sentences).
|
20 |
+
"""
|
21 |
+
|
22 |
+
DATA_URL = "https://scifact.s3-us-west-2.amazonaws.com/release/latest/data.tar.gz"
|
23 |
+
SUBDIR = "data"
|
24 |
+
|
25 |
+
VARIANT_DOCUMENTS = "as_documents"
|
26 |
+
VARIANT_CLAIMS = "as_claims"
|
27 |
+
|
28 |
+
|
29 |
+
class ScifactConfig(datasets.BuilderConfig):
|
30 |
+
"""BuilderConfig for Scifact."""
|
31 |
+
|
32 |
+
def __init__(self, **kwargs):
|
33 |
+
super().__init__(**kwargs)
|
34 |
+
|
35 |
+
|
36 |
+
class SciFact(GeneratorBasedBuilder):
|
37 |
+
BUILDER_CONFIGS = [
|
38 |
+
ScifactConfig(
|
39 |
+
name=VARIANT_DOCUMENTS,
|
40 |
+
description="Documents that serve as evidence for some claims that are split into train, test, dev",
|
41 |
+
),
|
42 |
+
ScifactConfig(
|
43 |
+
name=VARIANT_CLAIMS,
|
44 |
+
description="Documents that serve as evidence for some claims that are split into train, test, dev",
|
45 |
+
),
|
46 |
+
]
|
47 |
+
|
48 |
+
def _info(self):
|
49 |
+
# Specifies the datasets.DatasetInfo object
|
50 |
+
if self.config.name == VARIANT_DOCUMENTS:
|
51 |
+
features = {
|
52 |
+
"doc_id": datasets.Value("int32"), # document ID
|
53 |
+
"title": datasets.Value("string"), # document title
|
54 |
+
"abstract": datasets.features.Sequence(
|
55 |
+
datasets.Value("string")
|
56 |
+
), # document sentences
|
57 |
+
"structured": datasets.Value(
|
58 |
+
"bool"
|
59 |
+
), # whether the abstract is structured, i.e. has OBJECTIVE, CONCLUSION, METHODS marked in the text
|
60 |
+
"claims": datasets.features.Sequence(
|
61 |
+
feature={
|
62 |
+
"id": datasets.Value(dtype="int32", id=None),
|
63 |
+
"claim": datasets.Value(dtype="string", id=None),
|
64 |
+
"evidence": datasets.features.Sequence(
|
65 |
+
feature={
|
66 |
+
"label": datasets.Value(dtype="string", id=None),
|
67 |
+
"sentences": datasets.features.Sequence(
|
68 |
+
datasets.Value(dtype="int32", id=None)
|
69 |
+
),
|
70 |
+
}
|
71 |
+
),
|
72 |
+
}
|
73 |
+
), # list of claims associated with the document
|
74 |
+
}
|
75 |
+
elif self.config.name == VARIANT_CLAIMS:
|
76 |
+
features = {
|
77 |
+
"id": datasets.Value("int32"), # document ID
|
78 |
+
"claim": datasets.Value(dtype="string", id=None),
|
79 |
+
"cited_docs": datasets.features.Sequence(
|
80 |
+
feature={
|
81 |
+
"doc_id": datasets.Value(dtype="int32", id=None),
|
82 |
+
"title": datasets.Value("string"), # document title
|
83 |
+
"abstract": datasets.features.Sequence(
|
84 |
+
datasets.Value("string")
|
85 |
+
), # document sentences
|
86 |
+
"structured": datasets.Value(
|
87 |
+
"bool"
|
88 |
+
), # whether the abstract is structured, i.e. has OBJECTIVE, CONCLUSION, METHODS marked in the text
|
89 |
+
"evidence": datasets.features.Sequence(
|
90 |
+
feature={
|
91 |
+
"label": datasets.Value(dtype="string", id=None),
|
92 |
+
"sentences": datasets.features.Sequence(
|
93 |
+
datasets.Value(dtype="int32", id=None)
|
94 |
+
),
|
95 |
+
}
|
96 |
+
),
|
97 |
+
}
|
98 |
+
), # list of claims associated with the document
|
99 |
+
}
|
100 |
+
else:
|
101 |
+
raise ValueError(f"unknown dataset variant: {self.config.name}")
|
102 |
+
|
103 |
+
return datasets.DatasetInfo(
|
104 |
+
# This is the description that will appear on the datasets page
|
105 |
+
description=_DESCRIPTION,
|
106 |
+
features=datasets.Features(features),
|
107 |
+
supervised_keys=None,
|
108 |
+
# Homepage of the dataset for documentation
|
109 |
+
homepage="https://scifact.apps.allenai.org/",
|
110 |
+
)
|
111 |
+
|
112 |
+
def _generate_examples(self, claims_filepath: str, corpus_filepath: str):
|
113 |
+
"""Yields examples."""
|
114 |
+
with open(claims_filepath) as f:
|
115 |
+
claim_data = [json.loads(line) for line in f.readlines()]
|
116 |
+
|
117 |
+
with open(corpus_filepath) as f:
|
118 |
+
corpus_docs = [json.loads(line) for line in f.readlines()]
|
119 |
+
|
120 |
+
if self.config.name == VARIANT_DOCUMENTS:
|
121 |
+
doc_id2claims = defaultdict(list)
|
122 |
+
for claim in claim_data:
|
123 |
+
cited_doc_ids = claim.pop("cited_doc_ids", [-1])
|
124 |
+
evidence = claim.pop("evidence", dict())
|
125 |
+
for cited_doc_id in cited_doc_ids:
|
126 |
+
current_claim = claim.copy()
|
127 |
+
current_claim["evidence"] = evidence.get(str(cited_doc_id), [])
|
128 |
+
doc_id2claims[cited_doc_id].append(current_claim)
|
129 |
+
dummy_doc = {"doc_id": -1, "title": "", "abstract": [], "structured": False}
|
130 |
+
corpus_docs = [dummy_doc] + corpus_docs
|
131 |
+
|
132 |
+
for id_, doc in enumerate(corpus_docs):
|
133 |
+
doc = doc.copy()
|
134 |
+
doc["claims"] = doc_id2claims.get(doc["doc_id"], [])
|
135 |
+
yield id_, doc
|
136 |
+
elif self.config.name == VARIANT_CLAIMS:
|
137 |
+
doc_id2doc = {doc["doc_id"]: doc for doc in corpus_docs}
|
138 |
+
for _id, claim in enumerate(claim_data):
|
139 |
+
evidence = claim.pop("evidence", {})
|
140 |
+
cited_doc_ids = claim.pop("cited_doc_ids", [])
|
141 |
+
claim["cited_docs"] = []
|
142 |
+
for cited_doc_id in cited_doc_ids:
|
143 |
+
doc = copy(doc_id2doc[cited_doc_id])
|
144 |
+
doc["evidence"] = evidence.get(str(cited_doc_id), [])
|
145 |
+
claim["cited_docs"].append(doc)
|
146 |
+
yield _id, claim
|
147 |
+
else:
|
148 |
+
raise ValueError(f"unknown dataset variant: {self.config.name}")
|
149 |
+
|
150 |
+
def _split_generators(self, dl_manager):
|
151 |
+
"""We handle string, list and dicts in datafiles."""
|
152 |
+
if dl_manager.manual_dir is None:
|
153 |
+
data_dir = os.path.join(dl_manager.download_and_extract(DATA_URL), SUBDIR)
|
154 |
+
else:
|
155 |
+
# Absolute path of the manual_dir
|
156 |
+
data_dir = os.path.abspath(dl_manager.manual_dir)
|
157 |
+
|
158 |
+
return [
|
159 |
+
datasets.SplitGenerator(
|
160 |
+
name=datasets.Split.TRAIN,
|
161 |
+
# These kwargs will be passed to _generate_examples
|
162 |
+
gen_kwargs={
|
163 |
+
"claims_filepath": os.path.join(data_dir, "claims_train.jsonl"),
|
164 |
+
"corpus_filepath": os.path.join(data_dir, "corpus.jsonl"),
|
165 |
+
},
|
166 |
+
),
|
167 |
+
datasets.SplitGenerator(
|
168 |
+
name=datasets.Split.VALIDATION,
|
169 |
+
# These kwargs will be passed to _generate_examples
|
170 |
+
gen_kwargs={
|
171 |
+
"claims_filepath": os.path.join(data_dir, "claims_dev.jsonl"),
|
172 |
+
"corpus_filepath": os.path.join(data_dir, "corpus.jsonl"),
|
173 |
+
},
|
174 |
+
),
|
175 |
+
datasets.SplitGenerator(
|
176 |
+
name=datasets.Split.TEST,
|
177 |
+
# These kwargs will be passed to _generate_examples
|
178 |
+
gen_kwargs={
|
179 |
+
"claims_filepath": os.path.join(data_dir, "claims_test.jsonl"),
|
180 |
+
"corpus_filepath": os.path.join(data_dir, "corpus.jsonl"),
|
181 |
+
},
|
182 |
+
),
|
183 |
+
]
|
184 |
+
|
185 |
+
def _convert_to_output_eval_format(
|
186 |
+
self, data: Iterable[Dict[str, Any]]
|
187 |
+
) -> List[Dict[str, Any]]:
|
188 |
+
"""Output should have the format as specified here:
|
189 |
+
|
190 |
+
https://github.com/allenai/scifact/blob/68b98a56d93e0f9da0d2aab4e6c3294699a0f72e/doc/evaluation.md#submission-format
|
191 |
+
Each claim is represented as Dict with:
|
192 |
+
"id": int An integer claim ID.
|
193 |
+
"evidence": Dict[str, Dict] The evidence for the claim.
|
194 |
+
"doc_id": Dict[str, Any] The sentences and label for a single document.
|
195 |
+
"sentences": List[int]
|
196 |
+
"label": str
|
197 |
+
"""
|
198 |
+
if self.config.name == VARIANT_DOCUMENTS:
|
199 |
+
# Collect all claim-level annotations from all documents
|
200 |
+
claim2doc2sent_with_label = dict()
|
201 |
+
for document in data:
|
202 |
+
doc_id = document["doc_id"]
|
203 |
+
# Skip if document does not have any related claims
|
204 |
+
if len(document["claims"]["claim"]) == 0:
|
205 |
+
continue
|
206 |
+
for idx in range(len(document["claims"]["claim"])):
|
207 |
+
claim_id = document["claims"]["id"][idx]
|
208 |
+
claim_text = document["claims"]["claim"][idx]
|
209 |
+
claim_evidence = document["claims"]["evidence"][idx]
|
210 |
+
if claim_id not in claim2doc2sent_with_label:
|
211 |
+
claim2doc2sent_with_label[claim_id] = dict()
|
212 |
+
if doc_id not in claim2doc2sent_with_label[claim_id]:
|
213 |
+
if len(claim_evidence["label"]) > 0:
|
214 |
+
ev_label = claim_evidence["label"][0]
|
215 |
+
claim2doc2sent_with_label[claim_id][doc_id] = {
|
216 |
+
"label": ev_label,
|
217 |
+
"sentences": [],
|
218 |
+
}
|
219 |
+
for ev_sentences in claim_evidence["sentences"]:
|
220 |
+
claim2doc2sent_with_label[claim_id][doc_id]["sentences"].extend(
|
221 |
+
ev_sentences
|
222 |
+
)
|
223 |
+
|
224 |
+
outputs = []
|
225 |
+
for claim_id in claim2doc2sent_with_label:
|
226 |
+
claim_dict = {"id": claim_id, "evidence": dict()}
|
227 |
+
for doc_id in claim2doc2sent_with_label[claim_id]:
|
228 |
+
claim_dict["evidence"][doc_id] = {
|
229 |
+
"sentences": claim2doc2sent_with_label[claim_id][doc_id]["sentences"],
|
230 |
+
"label": claim2doc2sent_with_label[claim_id][doc_id]["label"],
|
231 |
+
}
|
232 |
+
outputs.append((int(claim_id), claim_dict.copy()))
|
233 |
+
|
234 |
+
outputs_sorted_by_claim_ids = [
|
235 |
+
claim for claim_id, claim in sorted(outputs, key=lambda x: x[0])
|
236 |
+
]
|
237 |
+
|
238 |
+
return outputs_sorted_by_claim_ids
|
239 |
+
|
240 |
+
elif self.config.name == VARIANT_CLAIMS:
|
241 |
+
raise NotImplementedError(
|
242 |
+
f"_convert_to_output_eval_format is not yet implemented for dataset variant {self.config.name}"
|
243 |
+
)
|
244 |
+
else:
|
245 |
+
raise ValueError(f"unknown dataset variant: {self.config.name}")
|