Datasets:
ArXiv:
License:
{ | |
"name": "49_Explainable_AI_LIME_Titanic_ML", | |
"query": "Hi there! I'm looking to create a project that explains model predictions using LIME, specifically with the Titanic survival prediction dataset. First, load the dataset in `src/data_loader.py`.Then, train a Random Forest classifier and save it under `models/saved_models/`? Finally, use LIME to explain the Random Forest classifier predictions and implement it in `src/visualize.py`. Generate a report including the explanations and save it as `results/model_explanation.md`. The report should be built with either Dash or Bokeh, implemented in `src/report.py`, so users can explore how different features affect the model's predictions. The explanation should be clear and easy to understand for non-tech folks. Additionally, save a well-labeled intuitive feature importance plot in `results/figures/feature_importance.png`. Thanks!", | |
"tags": [ | |
"Classification" | |
], | |
"requirements": [ | |
{ | |
"requirement_id": 0, | |
"prerequisites": [], | |
"criteria": "The \"Titanic\" survival prediction dataset is loaded in `src/data_loader.py`.", | |
"category": "Dataset or Environment", | |
"satisfied": null | |
}, | |
{ | |
"requirement_id": 1, | |
"prerequisites": [ | |
0 | |
], | |
"criteria": "A \"Random Forest classifier\" is trained for survival prediction.", | |
"category": "Machine Learning Method", | |
"satisfied": null | |
}, | |
{ | |
"requirement_id": 2, | |
"prerequisites": [ | |
0, | |
1 | |
], | |
"criteria": "\"LIME\" is used for model prediction explanation and implemented in `src/visualize.py`.", | |
"category": "Human Computer Interaction", | |
"satisfied": null | |
}, | |
{ | |
"requirement_id": 3, | |
"prerequisites": [ | |
0, | |
1, | |
2 | |
], | |
"criteria": "A model prediction explanation report is generated and saved as `results/model_explanation.md`.", | |
"category": "Other", | |
"satisfied": null | |
}, | |
{ | |
"requirement_id": 4, | |
"prerequisites": [ | |
2 | |
], | |
"criteria": "A feature importance plot is saved as `results/figures/feature_importance.png`.", | |
"category": "Visualization", | |
"satisfied": null | |
}, | |
{ | |
"requirement_id": 5, | |
"prerequisites": [ | |
0, | |
1, | |
2, | |
4 | |
], | |
"criteria": "An interactive report showcasing the impact of different features on predictions is created using \"Dash\" or \"Bokeh\" and implemented in `src/report.py`.", | |
"category": "Other", | |
"satisfied": null | |
}, | |
{ | |
"requirement_id": 6, | |
"prerequisites": [ | |
1 | |
], | |
"criteria": "The trained model is saved under `models/saved_models/`.", | |
"category": "Save Trained Model", | |
"satisfied": null | |
} | |
], | |
"preferences": [ | |
{ | |
"preference_id": 0, | |
"criteria": "The explanation report should be written in a clear and accessible style, making it understandable even for those without a deep technical background.", | |
"satisfied": null | |
}, | |
{ | |
"preference_id": 1, | |
"criteria": "The feature importance plot should be visually intuitive, with clear labels and descriptions.", | |
"satisfied": null | |
} | |
], | |
"is_kaggle_api_needed": false, | |
"is_training_needed": true, | |
"is_web_navigation_needed": false | |
} |