Datasets:
ArXiv:
License:
{ | |
"name": "20_Car_Price_Prediction_RandomForest_CarPrices_ML", | |
"query": "Can you help me create a car price prediction project using a Random Forest model with the Kaggle Car Prices dataset? Load the dataset and perform feature selection to identify important features in `src/data_loader.py`. Use cross-validation to evaluate the model in `src/train.py`. Save the R-squared score, Mean Squared Error (MSE), and Mean Absolute Error (MAE) to `results/metrics/results/metrics.txt`. Visualize the feature importance and save it to `results/figures/feature_importance.png`. Generate a Markdown report with insights into how the selected features contribute to the car price predictions. Saving the report as `results/report.md`.", | |
"tags": [ | |
"Financial Analysis", | |
"Regression", | |
"Supervised Learning" | |
], | |
"requirements": [ | |
{ | |
"requirement_id": 0, | |
"prerequisites": [], | |
"criteria": "The \"Kaggle Car Prices\" dataset is loaded in `src/data_loader.py`.", | |
"category": "Dataset or Environment", | |
"satisfied": null | |
}, | |
{ | |
"requirement_id": 1, | |
"prerequisites": [ | |
0 | |
], | |
"criteria": "Feature selection is implemented to identify important features in `src/data_loader.py`.", | |
"category": "Data preprocessing and postprocessing", | |
"satisfied": null | |
}, | |
{ | |
"requirement_id": 2, | |
"prerequisites": [], | |
"criteria": "The \"Random Forest\" regression model is used in `src/model.py`.", | |
"category": "Machine Learning Method", | |
"satisfied": null | |
}, | |
{ | |
"requirement_id": 3, | |
"prerequisites": [ | |
0, | |
1, | |
2 | |
], | |
"criteria": "Cross-validation is used to evaluate the model in `src/train.py`.", | |
"category": "Performance Metrics", | |
"satisfied": null | |
}, | |
{ | |
"requirement_id": 4, | |
"prerequisites": [ | |
1, | |
2, | |
3 | |
], | |
"criteria": "The \"R-squared\" score, \"Mean Squared Error (MSE),\" and \"Mean Absolute Error (MAE)\" are saved in `results/metrics/results/metrics.txt`.", | |
"category": "Performance Metrics", | |
"satisfied": null | |
}, | |
{ | |
"requirement_id": 5, | |
"prerequisites": [ | |
1, | |
2, | |
3 | |
], | |
"criteria": "Feature importances are visualized and saved as `results/figures/feature_importance.png`.", | |
"category": "Visualization", | |
"satisfied": null | |
}, | |
{ | |
"requirement_id": 6, | |
"prerequisites": [ | |
1, | |
2, | |
3, | |
4, | |
5 | |
], | |
"criteria": "A Markdown file containing results and visualizations is generated and saved as `results/report.md`.", | |
"category": "Visualization", | |
"satisfied": null | |
} | |
], | |
"preferences": [ | |
{ | |
"preference_id": 0, | |
"criteria": "The feature selection process should be thorough, ensuring that only the most relevant features are used in the model.", | |
"satisfied": null | |
}, | |
{ | |
"preference_id": 1, | |
"criteria": "The Markdown report should provide clear insights into how the selected features contribute to the car price predictions.", | |
"satisfied": null | |
} | |
], | |
"is_kaggle_api_needed": true, | |
"is_training_needed": true, | |
"is_web_navigation_needed": false | |
} |