File size: 4,199 Bytes
6822471
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
{
    "name": "40_Text_Summarization_BART_CNNDailyMail_DL",
    "query": "Develop a system that performs text summarization system using the BART model with the CNN/Daily Mail dataset. Start by loading and preparing the dataset in `src/data_loader.py`, then perform data preprocessing such as removing HTML tags and punctuation in `src/data_loader.py`. Import a pre-trained BART model for text summarization in `src/model.py` to generate summaries. Save the generated summaries to `results/summaries.txt`. Visualize the length distribution of these summaries using seaborn and save the visualization to `results/figures/summary_length_distribution.png`. Additionally, implement an interactive Streamlit web page in `src/visualize.py`, which allows users to view input texts and their generated summaries. Finally, generate a report covering data preprocessing and generation results, and save it as `results/text_summarization_report.pdf`.",
    "tags": [
        "Generative Models",
        "Natural Language Processing"
    ],
    "requirements": [
        {
            "requirement_id": 0,
            "prerequisites": [],
            "criteria": "The \"CNN/Daily Mail\" news dataset is used, including loading and preparing the dataset in `src/data_loader.py`.",
            "category": "Dataset or Environment",
            "satisfied": null
        },
        {
            "requirement_id": 1,
            "prerequisites": [
                0
            ],
            "criteria": "Data preprocessing is performed in `src/data_loader.py`, including removing HTML tags and punctuation.",
            "category": "Data preprocessing and postprocessing",
            "satisfied": null
        },
        {
            "requirement_id": 2,
            "prerequisites": [],
            "criteria": "A pre-trained \"BART\" model is imported for text summarization in `src/model.py`.",
            "category": "Machine Learning Method",
            "satisfied": null
        },
        {
            "requirement_id": 3,
            "prerequisites": [
                1,
                2
            ],
            "criteria": "The generated summary results are saved in `results/summary_results.txt`.",
            "category": "Other",
            "satisfied": null
        },
        {
            "requirement_id": 4,
            "prerequisites": [
                3
            ],
            "criteria": "The length distribution of the generated summaries is visualized using \"seaborn,\" and the plot is saved as `results/figures/summary_length_distribution.png`.",
            "category": "Visualization",
            "satisfied": null
        },
        {
            "requirement_id": 5,
            "prerequisites": [
                3
            ],
            "criteria": "An interactive web page is created using \"Streamlit\" to display input texts and their generated summaries and implemented in `src/visualize.py`.",
            "category": "Human Computer Interaction",
            "satisfied": null
        },
        {
            "requirement_id": 6,
            "prerequisites": [
                3
            ],
            "criteria": "A report covering data preprocessing, model training, and generation results is generated and saved as `results/text_summarization_report.pdf`.",
            "category": "Other",
            "satisfied": null
        }
    ],
    "preferences": [
        {
            "preference_id": 0,
            "criteria": "The interactive \"Streamlit\" webpage should allow users to input new text and generate summaries in real-time.",
            "satisfied": null
        },
        {
            "preference_id": 1,
            "criteria": "The report should include a discussion on how different hyperparameter settings affected the model's performance.",
            "satisfied": null
        },
        {
            "preference_id": 2,
            "criteria": "During development, the \"Streamlit\" application should be efficiently managed to avoid unnecessary resource usage.",
            "satisfied": null
        }
    ],
    "is_kaggle_api_needed": false,
    "is_training_needed": false,
    "is_web_navigation_needed": false
}