File size: 4,240 Bytes
6822471
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
{
    "name": "27_Image_Generation_DCGAN_MNIST_DL",
    "query": "I need to create a system for image generation using a DCGAN model with the MNIST`dataset. Load the MNIST dataset in `src/data_loader.py` and implement the DCGAN model in `src/model.py`. The system should ensure the use of the correct DCGAN architecture, save the generated images to `results/figures/`, monitor the model training by recording training loss under `results/metrics/` and generated images under `results/figures/`, and perform a hyperparameter search on the generation parameters such as noise vector dimensions and learning rate in `src/train.py` to improve performance. Additionally, create and save a GIF animation of the generated images to `results/figures/generated_images.gif`, present the training process and results in a well-structured Jupyter Notebook, and convert the Notebook into a polished PDF report saved as `results/training_report.pdf`. The DCGAN model architecture should be clearly documented in the Notebook to avoid confusion with other GAN variants.",
    "tags": [
        "Computer Vision",
        "Generative Models"
    ],
    "requirements": [
        {
            "requirement_id": 0,
            "prerequisites": [],
            "criteria": "The \"MNIST\" dataset is loaded in `src/data_loader.py`.",
            "category": "Dataset or Environment",
            "satisfied": null
        },
        {
            "requirement_id": 1,
            "prerequisites": [],
            "criteria": "The \"DCGAN\" model, not a standard GAN, is implemented in `src/model.py`.",
            "category": "Machine Learning Method",
            "satisfied": null
        },
        {
            "requirement_id": 2,
            "prerequisites": [
                0,
                1
            ],
            "criteria": "Generated images are saved to the specified folder `results/figures/`.",
            "category": "Save Trained Model",
            "satisfied": null
        },
        {
            "requirement_id": 3,
            "prerequisites": [
                0,
                1
            ],
            "criteria": "The model training is monitored by recording training loss saved under `results/metrics/`",
            "category": "Performance Metrics",
            "satisfied": null
        },
        {
            "requirement_id": 4,
            "prerequisites": [
                0,
                1
            ],
            "criteria": "A hyperparemeter search method to search parameters such as noise vector dimensions and learning rate is implemented in `src/train.py` to improve model performance.",
            "category": "Machine Learning Method",
            "satisfied": null
        },
        {
            "requirement_id": 5,
            "prerequisites": [
                1,
                2,
                3,
                4
            ],
            "criteria": "A GIF animation of generated images is created and saved as `results/figures/generated_images.gif`.",
            "category": "Visualization",
            "satisfied": null
        },
        {
            "requirement_id": 6,
            "prerequisites": [
                1,
                2,
                3,
                4
            ],
            "criteria": "The training process and results are presented in a Jupyter Notebook, and converted to a PDF report, and saved as `results/training_report.pdf`.",
            "category": "Visualization",
            "satisfied": null
        }
    ],
    "preferences": [
        {
            "preference_id": 0,
            "criteria": "The DCGAN model architecture should be clearly documented in the Notebook to avoid confusion with other GAN variants.",
            "satisfied": null
        },
        {
            "preference_id": 1,
            "criteria": "The PDF report should be well-structured, with clear sections for model architecture, training process, results, and future improvements.",
            "satisfied": null
        }
    ],
    "is_kaggle_api_needed": false,
    "is_training_needed": true,
    "is_web_navigation_needed": false,
    "hint": "Saving figures is mentioned twice, i.e., once in requirement 2 and once in requirement 3."
}