File size: 3,793 Bytes
6822471
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
{
    "name": "21_Iris_Classification_SVM_Iris_ML",
    "query": "I request a project to classify iris species utilizing the Iris dataset with a Support Vector Machine (SVM) classifier implemented in `src/model.py`. The project should standardize the data in and perform feature selection in `src/data_loader.py`. It will document the classification accuracy and save it as `results/metrics/classification_accuracy.txt`, and generate and save a confusion matrix as `results/figures/confusion_matrix.png`. It will further create an interactive web application in `src/app.py` using Streamlit to showcase classification results and model performance, with the figures stored in `results/figures/`. The web page should be user-friendly, with a brief explanation of the model to help users understand how the SVM classifier works.",
    "tags": [
        "Classification",
        "Supervised Learning"
    ],
    "requirements": [
        {
            "requirement_id": 0,
            "prerequisites": [],
            "criteria": "The \"Iris\" dataset is used.",
            "category": "Dataset or Environment",
            "satisfied": null
        },
        {
            "requirement_id": 1,
            "prerequisites": [
                0
            ],
            "criteria": "Data is standardized to ensure feature values are within the same range in `src/data_loader.py`.",
            "category": "Data preprocessing and postprocessing",
            "satisfied": null
        },
        {
            "requirement_id": 2,
            "prerequisites": [
                0
            ],
            "criteria": "Feature selection is performed to identify important features in `src/data_loader.py`.",
            "category": "Data preprocessing and postprocessing",
            "satisfied": null
        },
        {
            "requirement_id": 3,
            "prerequisites": [],
            "criteria": "The \"SVM classifier\" is implemented in `src/model.py`.",
            "category": "Machine Learning Method",
            "satisfied": null
        },
        {
            "requirement_id": 4,
            "prerequisites": [
                1,
                2,
                3
            ],
            "criteria": "Classification accuracy is saved in `results/metrics/classification_accuracy.txt`.",
            "category": "Performance Metrics",
            "satisfied": null
        },
        {
            "requirement_id": 5,
            "prerequisites": [
                1,
                2,
                3
            ],
            "criteria": "A confusion matrix is generated and saved as `results/figures/confusion_matrix.png`.",
            "category": "Visualization",
            "satisfied": null
        },
        {
            "requirement_id": 6,
            "prerequisites": [
                2,
                3,
                4,
                5
            ],
            "criteria": "An interactive web application `src/app.py` is created using \"Streamlit\"` to showcase classification results and model performance in results/figures/.",
            "category": "Human Computer Interaction",
            "satisfied": null
        }
    ],
    "preferences": [
        {
            "preference_id": 0,
            "criteria": "The Streamlit web page should be user-friendly, allowing users to easily explore different aspects of the model's performance.",
            "satisfied": null
        },
        {
            "preference_id": 1,
            "criteria": "A brief model explanation should be included on the web page, helping users understand how the SVM classifier works.",
            "satisfied": null
        }
    ],
    "is_kaggle_api_needed": false,
    "is_training_needed": true,
    "is_web_navigation_needed": false
}