Update README.md
Browse files
README.md
CHANGED
@@ -47,20 +47,20 @@ We offer a static set of evaluation datasets and a varied collection of training
|
|
47 |
- The bird species are translated to ebird_codes
|
48 |
- Snapshot date of XC: 03/10/2024
|
49 |
|
50 |
-
|
51 |
- Exclusively using focal audio data from Xeno-Canto (XC) with quality ratings A, B, C and excluding all recordings that are CC-ND.
|
52 |
- Each dataset is tailored for specific target species identified in the corresponding test soundscape files.
|
53 |
- We transform the scientific names of the birds into the corresponding ebird_code label.
|
54 |
- We offer detected events and corresponding cluster assignments to identify bird sounds in each recording.
|
55 |
- We provide the full recordings from XC. These can generate multiple samples from a single instance.
|
56 |
|
57 |
-
|
58 |
- Task: Multilabel ("ebird_code_multilabel")
|
59 |
- Only soundscape data from Zenodo formatted acoording to the Kaggle evaluation scheme.
|
60 |
- Each recording is segmented into 5-second intervals where each ground truth bird vocalization is assigned to.
|
61 |
- This contains segments without any labels which results in a [0] vector.
|
62 |
|
63 |
-
|
64 |
- Task: Multiclass ("ebird_code")
|
65 |
- Only soundscape data sourced from Zenodo.
|
66 |
- We provide the full recording with the complete label set and specified bounding boxes.
|
@@ -75,28 +75,28 @@ We offer a static set of evaluation datasets and a varied collection of training
|
|
75 |
|
76 |
| | format datasets. | description |
|
77 |
|------------------------|-------------------------------------------------------:|-------------------------:|
|
78 |
-
| audio | Audio(sampling_rate=32_000, mono=True, decode=True) |
|
79 |
-
| filepath | Value("string") |
|
80 |
-
| start_time | Value("float64") |
|
81 |
-
| end_time | Value("float64") |
|
82 |
-
| low_freq | Value("int64") |
|
83 |
-
| high_freq | Value("int64") |
|
84 |
-
| ebird_code | ClassLabel(names=class_list) |
|
85 |
-
| ebird_code_multilabel | Sequence(datasets.ClassLabel(names=class_list)) |
|
86 |
-
| call_type | Sequence(datasets.Value("string")) |
|
87 |
-
| sex | Value("string") |
|
88 |
-
| lat | Value("float64") |
|
89 |
-
| long | Value("float64") |
|
90 |
-
| length | Value("int64") |
|
91 |
-
| microphone | Value("string") |
|
92 |
-
| license | Value("string") |
|
93 |
-
| source | Value("string") |
|
94 |
-
| local_time | Value("string") |
|
95 |
-
| detected_events | Sequence(datasets.Sequence(datasets.Value("float64")))|
|
96 |
-
| event_cluster | Sequence(datasets.Value("int64")) |
|
97 |
-
| peaks | Sequence(datasets.Value("float64")) |
|
98 |
-
| quality | Value("string") |
|
99 |
-
| recordist | Value("string") |
|
100 |
|
101 |
#### Example Metadata Train
|
102 |
|
|
|
47 |
- The bird species are translated to ebird_codes
|
48 |
- Snapshot date of XC: 03/10/2024
|
49 |
|
50 |
+
**Train**
|
51 |
- Exclusively using focal audio data from Xeno-Canto (XC) with quality ratings A, B, C and excluding all recordings that are CC-ND.
|
52 |
- Each dataset is tailored for specific target species identified in the corresponding test soundscape files.
|
53 |
- We transform the scientific names of the birds into the corresponding ebird_code label.
|
54 |
- We offer detected events and corresponding cluster assignments to identify bird sounds in each recording.
|
55 |
- We provide the full recordings from XC. These can generate multiple samples from a single instance.
|
56 |
|
57 |
+
**Test_5s**
|
58 |
- Task: Multilabel ("ebird_code_multilabel")
|
59 |
- Only soundscape data from Zenodo formatted acoording to the Kaggle evaluation scheme.
|
60 |
- Each recording is segmented into 5-second intervals where each ground truth bird vocalization is assigned to.
|
61 |
- This contains segments without any labels which results in a [0] vector.
|
62 |
|
63 |
+
**Test**
|
64 |
- Task: Multiclass ("ebird_code")
|
65 |
- Only soundscape data sourced from Zenodo.
|
66 |
- We provide the full recording with the complete label set and specified bounding boxes.
|
|
|
75 |
|
76 |
| | format datasets. | description |
|
77 |
|------------------------|-------------------------------------------------------:|-------------------------:|
|
78 |
+
| audio | Audio(sampling_rate=32_000, mono=True, decode=True) | |
|
79 |
+
| filepath | Value("string") | |
|
80 |
+
| start_time | Value("float64") | |
|
81 |
+
| end_time | Value("float64") | |
|
82 |
+
| low_freq | Value("int64") | |
|
83 |
+
| high_freq | Value("int64") | |
|
84 |
+
| ebird_code | ClassLabel(names=class_list) | |
|
85 |
+
| ebird_code_multilabel | Sequence(datasets.ClassLabel(names=class_list)) | |
|
86 |
+
| call_type | Sequence(datasets.Value("string")) | |
|
87 |
+
| sex | Value("string") | |
|
88 |
+
| lat | Value("float64") | |
|
89 |
+
| long | Value("float64") | |
|
90 |
+
| length | Value("int64") | |
|
91 |
+
| microphone | Value("string") | |
|
92 |
+
| license | Value("string") | |
|
93 |
+
| source | Value("string") | |
|
94 |
+
| local_time | Value("string") | |
|
95 |
+
| detected_events | Sequence(datasets.Sequence(datasets.Value("float64")))| |
|
96 |
+
| event_cluster | Sequence(datasets.Value("int64")) | |
|
97 |
+
| peaks | Sequence(datasets.Value("float64")) | |
|
98 |
+
| quality | Value("string") | |
|
99 |
+
| recordist | Value("string") | |
|
100 |
|
101 |
#### Example Metadata Train
|
102 |
|