Upload preprocess.py
Browse files- preprocess.py +315 -0
preprocess.py
ADDED
@@ -0,0 +1,315 @@
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
1 |
+
from zipfile import ZipFile, ZIP_DEFLATED
|
2 |
+
import json
|
3 |
+
import os
|
4 |
+
import copy
|
5 |
+
import zipfile
|
6 |
+
from tqdm import tqdm
|
7 |
+
import re
|
8 |
+
from collections import Counter
|
9 |
+
from shutil import rmtree
|
10 |
+
from convlab.util.file_util import read_zipped_json, write_zipped_json
|
11 |
+
from pprint import pprint
|
12 |
+
import random
|
13 |
+
|
14 |
+
|
15 |
+
descriptions = {
|
16 |
+
"uber_lyft": {
|
17 |
+
"uber_lyft": "order a car for a ride inside a city",
|
18 |
+
"location.from": "pickup location",
|
19 |
+
"location.to": "destination of the ride",
|
20 |
+
"type.ride": "type of ride",
|
21 |
+
"num.people": "number of people",
|
22 |
+
"price.estimate": "estimated cost of the ride",
|
23 |
+
"duration.estimate": "estimated duration of the ride",
|
24 |
+
"time.pickup": "time of pickup",
|
25 |
+
"time.dropoff": "time of dropoff",
|
26 |
+
},
|
27 |
+
"movie_ticket": {
|
28 |
+
"movie_ticket": "book movie tickets for a film",
|
29 |
+
"name.movie": "name of the movie",
|
30 |
+
"name.theater": "name of the theater",
|
31 |
+
"num.tickets": "number of tickets",
|
32 |
+
"time.start": "start time of the movie",
|
33 |
+
"location.theater": "location of the theater",
|
34 |
+
"price.ticket": "price of the ticket",
|
35 |
+
"type.screening": "type of the screening",
|
36 |
+
"time.end": "end time of the movie",
|
37 |
+
"time.duration": "duration of the movie",
|
38 |
+
},
|
39 |
+
"restaurant_reservation": {
|
40 |
+
"restaurant_reservation": "searching for a restaurant and make reservation",
|
41 |
+
"name.restaurant": "name of the restaurant",
|
42 |
+
"name.reservation": "name of the person who make the reservation",
|
43 |
+
"num.guests": "number of guests",
|
44 |
+
"time.reservation": "time of the reservation",
|
45 |
+
"type.seating": "type of the seating",
|
46 |
+
"location.restaurant": "location of the restaurant",
|
47 |
+
},
|
48 |
+
"coffee_ordering": {
|
49 |
+
"coffee_ordering": "order a coffee drink from either Starbucks or Peets for pick up",
|
50 |
+
"location.store": "location of the coffee store",
|
51 |
+
"name.drink": "name of the drink",
|
52 |
+
"size.drink": "size of the drink",
|
53 |
+
"num.drink": "number of drinks",
|
54 |
+
"type.milk": "type of the milk",
|
55 |
+
"preference": "user preference of the drink",
|
56 |
+
},
|
57 |
+
"pizza_ordering": {
|
58 |
+
"pizza_ordering": "order a pizza",
|
59 |
+
"name.store": "name of the pizza store",
|
60 |
+
"name.pizza": "name of the pizza",
|
61 |
+
"size.pizza": "size of the pizza",
|
62 |
+
"type.topping": "type of the topping",
|
63 |
+
"type.crust": "type of the crust",
|
64 |
+
"preference": "user preference of the pizza",
|
65 |
+
"location.store": "location of the pizza store",
|
66 |
+
},
|
67 |
+
"auto_repair": {
|
68 |
+
"auto_repair": "set up an auto repair appointment with a repair shop",
|
69 |
+
"name.store": "name of the repair store",
|
70 |
+
"name.customer": "name of the customer",
|
71 |
+
"date.appt": "date of the appointment",
|
72 |
+
"time.appt": "time of the appointment",
|
73 |
+
"reason.appt": "reason of the appointment",
|
74 |
+
"name.vehicle": "name of the vehicle",
|
75 |
+
"year.vehicle": "year of the vehicle",
|
76 |
+
"location.store": "location of the repair store",
|
77 |
+
}
|
78 |
+
}
|
79 |
+
|
80 |
+
def normalize_domain_name(domain):
|
81 |
+
if domain == 'auto':
|
82 |
+
return 'auto_repair'
|
83 |
+
elif domain == 'pizza':
|
84 |
+
return 'pizza_ordering'
|
85 |
+
elif domain == 'coffee':
|
86 |
+
return 'coffee_ordering'
|
87 |
+
elif domain == 'uber':
|
88 |
+
return 'uber_lyft'
|
89 |
+
elif domain == 'restaurant':
|
90 |
+
return 'restaurant_reservation'
|
91 |
+
elif domain == 'movie':
|
92 |
+
return 'movie_ticket'
|
93 |
+
assert 0
|
94 |
+
|
95 |
+
|
96 |
+
def format_turns(ori_turns):
|
97 |
+
# delete invalid turns and merge continuous turns
|
98 |
+
new_turns = []
|
99 |
+
previous_speaker = None
|
100 |
+
utt_idx = 0
|
101 |
+
for i, turn in enumerate(ori_turns):
|
102 |
+
speaker = 'system' if turn['speaker'] == 'ASSISTANT' else 'user'
|
103 |
+
turn['speaker'] = speaker
|
104 |
+
if turn['text'] == '(deleted)':
|
105 |
+
continue
|
106 |
+
if not previous_speaker:
|
107 |
+
# first turn
|
108 |
+
assert speaker != previous_speaker
|
109 |
+
if speaker != previous_speaker:
|
110 |
+
# switch speaker
|
111 |
+
previous_speaker = speaker
|
112 |
+
new_turns.append(copy.deepcopy(turn))
|
113 |
+
utt_idx += 1
|
114 |
+
else:
|
115 |
+
# continuous speaking of the same speaker
|
116 |
+
last_turn = new_turns[-1]
|
117 |
+
# skip repeated turn
|
118 |
+
if turn['text'] in ori_turns[i-1]['text']:
|
119 |
+
continue
|
120 |
+
# merge continuous turns
|
121 |
+
index_shift = len(last_turn['text']) + 1
|
122 |
+
last_turn['text'] += ' '+turn['text']
|
123 |
+
if 'segments' in turn:
|
124 |
+
last_turn.setdefault('segments', [])
|
125 |
+
for segment in turn['segments']:
|
126 |
+
segment['start_index'] += index_shift
|
127 |
+
segment['end_index'] += index_shift
|
128 |
+
last_turn['segments'] += turn['segments']
|
129 |
+
return new_turns
|
130 |
+
|
131 |
+
|
132 |
+
def preprocess():
|
133 |
+
original_data_dir = 'Taskmaster-master'
|
134 |
+
new_data_dir = 'data'
|
135 |
+
|
136 |
+
if not os.path.exists(original_data_dir):
|
137 |
+
original_data_zip = 'master.zip'
|
138 |
+
if not os.path.exists(original_data_zip):
|
139 |
+
raise FileNotFoundError(f'cannot find original data {original_data_zip} in tm1/, should manually download master.zip from https://github.com/google-research-datasets/Taskmaster/archive/refs/heads/master.zip')
|
140 |
+
else:
|
141 |
+
archive = ZipFile(original_data_zip)
|
142 |
+
archive.extractall()
|
143 |
+
|
144 |
+
os.makedirs(new_data_dir, exist_ok=True)
|
145 |
+
|
146 |
+
ontology = {'domains': {},
|
147 |
+
'intents': {
|
148 |
+
'inform': {'description': 'inform the value of a slot or general information.'},
|
149 |
+
'accept': {'description': 'accept the value of a slot or a transaction'},
|
150 |
+
'reject': {'description': 'reject the value of a slot or a transaction'}
|
151 |
+
},
|
152 |
+
'state': {},
|
153 |
+
'dialogue_acts': {
|
154 |
+
"categorical": {},
|
155 |
+
"non-categorical": {},
|
156 |
+
"binary": {}
|
157 |
+
}}
|
158 |
+
global descriptions
|
159 |
+
ori_ontology = {}
|
160 |
+
for _, item in json.load(open(os.path.join(original_data_dir, "TM-1-2019/ontology.json"))).items():
|
161 |
+
ori_ontology[item["id"]] = item
|
162 |
+
|
163 |
+
for domain, item in ori_ontology.items():
|
164 |
+
ontology['domains'][domain] = {'description': descriptions[domain][domain], 'slots': {}}
|
165 |
+
ontology['state'][domain] = {}
|
166 |
+
for slot in item['required']+item['optional']:
|
167 |
+
ontology['domains'][domain]['slots'][slot] = {
|
168 |
+
'description': descriptions[domain][slot],
|
169 |
+
'is_categorical': False,
|
170 |
+
'possible_values': [],
|
171 |
+
}
|
172 |
+
ontology['state'][domain][slot] = ''
|
173 |
+
|
174 |
+
dataset = 'tm1'
|
175 |
+
splits = ['train', 'validation', 'test']
|
176 |
+
dialogues_by_split = {split:[] for split in splits}
|
177 |
+
dialog_files = ["TM-1-2019/self-dialogs.json", "TM-1-2019/woz-dialogs.json"]
|
178 |
+
for file_idx, filename in enumerate(dialog_files):
|
179 |
+
data = json.load(open(os.path.join(original_data_dir, filename)))
|
180 |
+
if file_idx == 0:
|
181 |
+
# original split for self dialogs
|
182 |
+
dial_id2split = {}
|
183 |
+
for data_split in ['train', 'dev', 'test']:
|
184 |
+
with open(os.path.join(original_data_dir, f"TM-1-2019/train-dev-test/{data_split}.csv")) as f:
|
185 |
+
for line in f:
|
186 |
+
dial_id = line.split(',')[0]
|
187 |
+
dial_id2split[dial_id] = data_split if data_split != 'dev' else 'validation'
|
188 |
+
else:
|
189 |
+
# random split for woz dialogs 8:1:1
|
190 |
+
random.seed(42)
|
191 |
+
dial_ids = [d['conversation_id'] for d in data]
|
192 |
+
random.shuffle(dial_ids)
|
193 |
+
dial_id2split = {}
|
194 |
+
for dial_id in dial_ids[:int(0.8*len(dial_ids))]:
|
195 |
+
dial_id2split[dial_id] = 'train'
|
196 |
+
for dial_id in dial_ids[int(0.8*len(dial_ids)):int(0.9*len(dial_ids))]:
|
197 |
+
dial_id2split[dial_id] = 'validation'
|
198 |
+
for dial_id in dial_ids[int(0.9*len(dial_ids)):]:
|
199 |
+
dial_id2split[dial_id] = 'test'
|
200 |
+
|
201 |
+
for d in tqdm(data, desc='processing taskmaster-{}'.format(filename)):
|
202 |
+
# delete empty dialogs and invalid dialogs
|
203 |
+
if len(d['utterances']) == 0:
|
204 |
+
continue
|
205 |
+
if len(set([t['speaker'] for t in d['utterances']])) == 1:
|
206 |
+
continue
|
207 |
+
data_split = dial_id2split[d["conversation_id"]]
|
208 |
+
dialogue_id = f'{dataset}-{data_split}-{len(dialogues_by_split[data_split])}'
|
209 |
+
cur_domains = [normalize_domain_name(d["instruction_id"].split('-', 1)[0])]
|
210 |
+
assert len(cur_domains) == 1 and cur_domains[0] in ontology['domains']
|
211 |
+
domain = cur_domains[0]
|
212 |
+
dialogue = {
|
213 |
+
'dataset': dataset,
|
214 |
+
'data_split': data_split,
|
215 |
+
'dialogue_id': dialogue_id,
|
216 |
+
'original_id': d["conversation_id"],
|
217 |
+
'domains': cur_domains,
|
218 |
+
'turns': []
|
219 |
+
}
|
220 |
+
turns = format_turns(d['utterances'])
|
221 |
+
prev_state = {}
|
222 |
+
prev_state.setdefault(domain, copy.deepcopy(ontology['state'][domain]))
|
223 |
+
|
224 |
+
for utt_idx, uttr in enumerate(turns):
|
225 |
+
speaker = uttr['speaker']
|
226 |
+
turn = {
|
227 |
+
'speaker': speaker,
|
228 |
+
'utterance': uttr['text'],
|
229 |
+
'utt_idx': utt_idx,
|
230 |
+
'dialogue_acts': {
|
231 |
+
'binary': [],
|
232 |
+
'categorical': [],
|
233 |
+
'non-categorical': [],
|
234 |
+
},
|
235 |
+
}
|
236 |
+
in_span = [0] * len(turn['utterance'])
|
237 |
+
|
238 |
+
if 'segments' in uttr:
|
239 |
+
# sort the span according to the length
|
240 |
+
segments = sorted(uttr['segments'], key=lambda x: len(x['text']))
|
241 |
+
for segment in segments:
|
242 |
+
# Each conversation was annotated by two workers.
|
243 |
+
# only keep the first annotation for the span
|
244 |
+
item = segment['annotations'][0]
|
245 |
+
intent = 'inform' # default intent
|
246 |
+
slot = item['name'].split('.', 1)[-1]
|
247 |
+
if slot.endswith('.accept') or slot.endswith('.reject'):
|
248 |
+
# intent=accept/reject
|
249 |
+
intent = slot[-6:]
|
250 |
+
slot = slot[:-7]
|
251 |
+
if slot not in ontology['domains'][domain]['slots']:
|
252 |
+
# no slot, only general reference to a transaction, binary dialog act
|
253 |
+
turn['dialogue_acts']['binary'].append({
|
254 |
+
'intent': intent,
|
255 |
+
'domain': domain,
|
256 |
+
'slot': '',
|
257 |
+
})
|
258 |
+
else:
|
259 |
+
assert turn['utterance'][segment['start_index']:segment['end_index']] == segment['text']
|
260 |
+
# skip overlapped spans, keep the shortest one
|
261 |
+
if sum(in_span[segment['start_index']: segment['end_index']]) > 0:
|
262 |
+
continue
|
263 |
+
else:
|
264 |
+
in_span[segment['start_index']: segment['end_index']] = [1]*(segment['end_index']-segment['start_index'])
|
265 |
+
turn['dialogue_acts']['non-categorical'].append({
|
266 |
+
'intent': intent,
|
267 |
+
'domain': domain,
|
268 |
+
'slot': slot,
|
269 |
+
'value': segment['text'],
|
270 |
+
'start': segment['start_index'],
|
271 |
+
'end': segment['end_index']
|
272 |
+
})
|
273 |
+
|
274 |
+
turn['dialogue_acts']['non-categorical'] = sorted(turn['dialogue_acts']['non-categorical'], key=lambda x: x['start'])
|
275 |
+
|
276 |
+
bdas = set()
|
277 |
+
for da in turn['dialogue_acts']['binary']:
|
278 |
+
da_tuple = (da['intent'], da['domain'], da['slot'],)
|
279 |
+
bdas.add(da_tuple)
|
280 |
+
turn['dialogue_acts']['binary'] = [{'intent':bda[0],'domain':bda[1],'slot':bda[2]} for bda in sorted(bdas)]
|
281 |
+
# add to dialogue_acts dictionary in the ontology
|
282 |
+
for da_type in turn['dialogue_acts']:
|
283 |
+
das = turn['dialogue_acts'][da_type]
|
284 |
+
for da in das:
|
285 |
+
ontology["dialogue_acts"][da_type].setdefault((da['intent'], da['domain'], da['slot']), {})
|
286 |
+
ontology["dialogue_acts"][da_type][(da['intent'], da['domain'], da['slot'])][speaker] = True
|
287 |
+
|
288 |
+
for da in turn['dialogue_acts']['non-categorical']:
|
289 |
+
slot, value = da['slot'], da['value']
|
290 |
+
assert slot in prev_state[domain]
|
291 |
+
# not add reject slot-value into state
|
292 |
+
if da['intent'] != 'reject':
|
293 |
+
prev_state[domain][slot] = value
|
294 |
+
|
295 |
+
if speaker == 'user':
|
296 |
+
turn['state'] = copy.deepcopy(prev_state)
|
297 |
+
|
298 |
+
dialogue['turns'].append(turn)
|
299 |
+
dialogues_by_split[data_split].append(dialogue)
|
300 |
+
|
301 |
+
for da_type in ontology['dialogue_acts']:
|
302 |
+
ontology["dialogue_acts"][da_type] = sorted([str({'user': speakers.get('user', False), 'system': speakers.get('system', False), 'intent':da[0],'domain':da[1], 'slot':da[2]}) for da, speakers in ontology["dialogue_acts"][da_type].items()])
|
303 |
+
dialogues = dialogues_by_split['train']+dialogues_by_split['validation']+dialogues_by_split['test']
|
304 |
+
json.dump(dialogues[:10], open(f'dummy_data.json', 'w', encoding='utf-8'), indent=2, ensure_ascii=False)
|
305 |
+
json.dump(ontology, open(f'{new_data_dir}/ontology.json', 'w', encoding='utf-8'), indent=2, ensure_ascii=False)
|
306 |
+
json.dump(dialogues, open(f'{new_data_dir}/dialogues.json', 'w', encoding='utf-8'), indent=2, ensure_ascii=False)
|
307 |
+
with ZipFile('data.zip', 'w', ZIP_DEFLATED) as zf:
|
308 |
+
for filename in os.listdir(new_data_dir):
|
309 |
+
zf.write(f'{new_data_dir}/{filename}')
|
310 |
+
rmtree(original_data_dir)
|
311 |
+
rmtree(new_data_dir)
|
312 |
+
return dialogues, ontology
|
313 |
+
|
314 |
+
if __name__ == '__main__':
|
315 |
+
preprocess()
|