# coding=utf-8 # Copyright 2020 HuggingFace Datasets Authors. # # Licensed under the Apache License, Version 2.0 (the "License"); # you may not use this file except in compliance with the License. # You may obtain a copy of the License at # # http://www.apache.org/licenses/LICENSE-2.0 # # Unless required by applicable law or agreed to in writing, software # distributed under the License is distributed on an "AS IS" BASIS, # WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied. # See the License for the specific language governing permissions and # limitations under the License. # Lint as: python3 import os import datasets logger = datasets.logging.get_logger(__name__) _CITATION = "" _DESCRIPTION = "" #_URL = "." _TRAINING_FILE = "train.txt" _DEV_FILE = "validation.txt" _TEST_FILE = "test.txt" class UBBDemoConfig(datasets.BuilderConfig): """BuilderConfig for UBBDemo""" def __init__(self, **kwargs): """BuilderConfig for UBBDemo. Args: **kwargs: keyword arguments forwarded to super. """ super(UBBDemoConfig, self).__init__(**kwargs) class UBBDemo(datasets.GeneratorBasedBuilder): """UBBDemo dataset.""" BUILDER_CONFIGS = [ UBBDemoConfig(name="UBBDemo", version=datasets.Version("1.0.0"), description="UBBDemo dataset"), ] def _info(self): return datasets.DatasetInfo( description=_DESCRIPTION, features=datasets.Features( { "id": datasets.Value("string"), "tokens": datasets.Sequence(datasets.Value("string")), "ner_tags": datasets.Sequence( datasets.features.ClassLabel( names=[ "O", "B-PER", "I-PER", "B-ORG", "I-ORG", "B-LOC", "I-LOC", "B-MISC", "I-MISC", "B-PROJ", "I-PROJ", "B-ROLE", "I-ROLE", "B-TEAM", "I-TEAM", "B-FILE", "I-FILE" ] ) ), } ), supervised_keys=None, homepage="", citation=_CITATION, ) def _split_generators(self, dl_manager): """Returns SplitGenerators.""" path = "./" data_files = { "train": os.path.join(path, _TRAINING_FILE), "validation": os.path.join(path, _DEV_FILE), "test": os.path.join(path, _TEST_FILE), } downloaded_file = dl_manager.download_and_extract(data_files) return [ datasets.SplitGenerator(name=datasets.Split.TRAIN, gen_kwargs={"filepath": downloaded_file ["train"]}), datasets.SplitGenerator(name=datasets.Split.VALIDATION, gen_kwargs={"filepath": downloaded_file ["validation"]}), datasets.SplitGenerator(name=datasets.Split.TEST, gen_kwargs={"filepath": downloaded_file ["test"]}), ] def _generate_examples(self, filepath): print("I am here" + filepath) logger.info("⏳ Generating examples from = %s", filepath) with open(filepath, encoding="utf-8") as f: guid = 0 tokens = [] ner_tags = [] for line in f: if line.startswith("-DOCSTART-") or line == "" or line == "\n": if tokens: yield guid, { "id": str(guid), "tokens": tokens, "ner_tags": ner_tags, } guid += 1 tokens = [] ner_tags = [] else: # UBBDemo tokens are space separated splits = line.split(" ") tokens.append(splits[0]) ner_tags.append(splits[3].rstrip()) # last example yield guid, { "id": str(guid), "tokens": tokens, "ner_tags": ner_tags, }