File size: 4,568 Bytes
e672fc9 |
1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27 28 29 30 31 32 33 34 35 36 37 38 39 40 41 42 43 44 45 46 47 48 49 50 51 52 53 54 55 56 57 58 59 60 61 62 63 64 65 66 67 68 69 70 71 72 73 74 75 76 77 78 79 80 81 82 83 84 85 86 87 88 89 90 91 92 93 94 95 96 97 98 99 100 101 102 103 104 105 106 107 108 109 110 111 112 113 114 115 116 117 118 119 120 121 122 123 124 125 126 127 128 129 130 131 132 133 134 135 136 137 |
# coding=utf-8
# Copyright 2020 HuggingFace Datasets Authors.
#
# Licensed under the Apache License, Version 2.0 (the "License");
# you may not use this file except in compliance with the License.
# You may obtain a copy of the License at
#
# http://www.apache.org/licenses/LICENSE-2.0
#
# Unless required by applicable law or agreed to in writing, software
# distributed under the License is distributed on an "AS IS" BASIS,
# WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied.
# See the License for the specific language governing permissions and
# limitations under the License.
# Lint as: python3
import os
import datasets
logger = datasets.logging.get_logger(__name__)
_CITATION = ""
_DESCRIPTION = ""
#_URL = "."
_TRAINING_FILE = "train.txt"
_DEV_FILE = "validation.txt"
_TEST_FILE = "test.txt"
class UBBDemoConfig(datasets.BuilderConfig):
"""BuilderConfig for UBBDemo"""
def __init__(self, **kwargs):
"""BuilderConfig for UBBDemo.
Args:
**kwargs: keyword arguments forwarded to super.
"""
super(UBBDemoConfig, self).__init__(**kwargs)
class UBBDemo(datasets.GeneratorBasedBuilder):
"""UBBDemo dataset."""
BUILDER_CONFIGS = [
UBBDemoConfig(name="UBBDemo", version=datasets.Version("1.0.0"), description="UBBDemo dataset"),
]
def _info(self):
return datasets.DatasetInfo(
description=_DESCRIPTION,
features=datasets.Features(
{
"id": datasets.Value("string"),
"tokens": datasets.Sequence(datasets.Value("string")),
"ner_tags": datasets.Sequence(
datasets.features.ClassLabel(
names=[
"O",
"B-PER",
"I-PER",
"B-ORG",
"I-ORG",
"B-LOC",
"I-LOC",
"B-MISC",
"I-MISC",
"B-PROJ",
"I-PROJ",
"B-ROLE",
"I-ROLE",
"B-TEAM",
"I-TEAM",
"B-FILE",
"I-FILE"
]
)
),
}
),
supervised_keys=None,
homepage="",
citation=_CITATION,
)
def _split_generators(self, dl_manager):
"""Returns SplitGenerators."""
path = "./"
data_files = {
"train": os.path.join(path, _TRAINING_FILE),
"validation": os.path.join(path, _DEV_FILE),
"test": os.path.join(path, _TEST_FILE),
}
downloaded_file = dl_manager.download_and_extract(data_files)
return [
datasets.SplitGenerator(name=datasets.Split.TRAIN, gen_kwargs={"filepath": downloaded_file ["train"]}),
datasets.SplitGenerator(name=datasets.Split.VALIDATION, gen_kwargs={"filepath": downloaded_file ["validation"]}),
datasets.SplitGenerator(name=datasets.Split.TEST, gen_kwargs={"filepath": downloaded_file ["test"]}),
]
def _generate_examples(self, filepath):
print("I am here" + filepath)
logger.info("⏳ Generating examples from = %s", filepath)
with open(filepath, encoding="utf-8") as f:
guid = 0
tokens = []
ner_tags = []
for line in f:
if line.startswith("-DOCSTART-") or line == "" or line == "\n":
if tokens:
yield guid, {
"id": str(guid),
"tokens": tokens,
"ner_tags": ner_tags,
}
guid += 1
tokens = []
ner_tags = []
else:
# UBBDemo tokens are space separated
splits = line.split(" ")
tokens.append(splits[0])
ner_tags.append(splits[3].rstrip())
# last example
yield guid, {
"id": str(guid),
"tokens": tokens,
"ner_tags": ner_tags,
} |