File size: 4,257 Bytes
3d65d03
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
# coding=utf-8
# Copyright 2020 HuggingFace Datasets Authors.
#
# Licensed under the Apache License, Version 2.0 (the "License");
# you may not use this file except in compliance with the License.
# You may obtain a copy of the License at
#
#     http://www.apache.org/licenses/LICENSE-2.0
#
# Unless required by applicable law or agreed to in writing, software
# distributed under the License is distributed on an "AS IS" BASIS,
# WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied.
# See the License for the specific language governing permissions and
# limitations under the License.

# Lint as: python3


import os

import datasets


logger = datasets.logging.get_logger(__name__)


_CITATION = ""

_DESCRIPTION = ""

#_URL = "."
_TRAINING_FILE = "train.txt"
_DEV_FILE = "validation.txt"
_TEST_FILE = "test.txt"


class UBBDemoConfig(datasets.BuilderConfig):
    """BuilderConfig for UBBDemo"""

    def __init__(self, **kwargs):
        """BuilderConfig for UBBDemo.
        Args:
          **kwargs: keyword arguments forwarded to super.
        """
        super(UBBDemoConfig, self).__init__(**kwargs)


class UBBDemo(datasets.GeneratorBasedBuilder):
    """UBBDemo dataset."""

    BUILDER_CONFIGS = [
        UBBDemoConfig(name="UBBDemo", version=datasets.Version("1.0.0"), description="UBBDemo dataset"),
    ]

    def _info(self):
        return datasets.DatasetInfo(
            description=_DESCRIPTION,
            features=datasets.Features(
                {
                    "id": datasets.Value("string"),
                    "tokens": datasets.Sequence(datasets.Value("string")),
                    "ner_tags": datasets.Sequence(
                        datasets.features.ClassLabel(
                            names=[
                                "O",
                                "B-PER",
                                "I-PER",
                                "B-ORG",
                                "I-ORG",
                                "B-LOC",
                                "I-LOC",
                                "B-MISC",
                                "I-MISC",
                       
                            ]
                        )
                    ),
                }
            ),
            supervised_keys=None,
            homepage="",
            citation=_CITATION,
        )

    def _split_generators(self, dl_manager):
        """Returns SplitGenerators."""
        
        path = "./"
        data_files = {
            "train": os.path.join(path, _TRAINING_FILE),
            "validation": os.path.join(path, _DEV_FILE),
            "test": os.path.join(path, _TEST_FILE),
        }

        downloaded_file = dl_manager.download_and_extract(data_files)
        return [
            datasets.SplitGenerator(name=datasets.Split.TRAIN, gen_kwargs={"filepath": downloaded_file ["train"]}),
            datasets.SplitGenerator(name=datasets.Split.VALIDATION, gen_kwargs={"filepath": downloaded_file ["validation"]}),
            datasets.SplitGenerator(name=datasets.Split.TEST, gen_kwargs={"filepath": downloaded_file ["test"]}),
        ]

    def _generate_examples(self, filepath):
        print("I am here" + filepath)
        logger.info("⏳ Generating examples from = %s", filepath)
        with open(filepath, encoding="utf-8") as f:
            guid = 0
            tokens = []
            ner_tags = []
            for line in f:
                if line.startswith("-DOCSTART-") or line == "" or line == "\n":
                    if tokens:
                        yield guid, {
                            "id": str(guid),
                            "tokens": tokens,
                            "ner_tags": ner_tags,
                        }
                        guid += 1
                        tokens = []
                        ner_tags = []
                else:
                    # UBBDemo tokens are space separated
                    splits = line.split(" ")
                    tokens.append(splits[0])
                    ner_tags.append(splits[3].rstrip())
            # last example
            yield guid, {
                "id": str(guid),
                "tokens": tokens,
                "ner_tags": ner_tags,
            }