nthakur commited on
Commit
aa883c4
1 Parent(s): 9e43ba0

added corpus.jsonl.gz

Browse files
Files changed (2) hide show
  1. README.md +255 -1
  2. corpus.jsonl.gz +3 -0
README.md CHANGED
@@ -1,3 +1,257 @@
1
  ---
2
- license: apache-2.0
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
3
  ---
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
1
  ---
2
+ annotations_creators: []
3
+ language_creators: []
4
+ languages:
5
+ - en
6
+ licenses:
7
+ - cc-by-sa-4.0
8
+ multilinguality:
9
+ - monolingual
10
+ paperswithcode_id: beir
11
+ pretty_name: BEIR Benchmark (TREC-COVID)
12
+ size_categories:
13
+ trec-covid:
14
+ - 100k<n<1M
15
+ source_datasets: []
16
+ task_categories:
17
+ - text-retrieval
18
+ - zero-shot-retrieval
19
+ - information-retrieval
20
+ - zero-shot-information-retrieval
21
+ task_ids:
22
+ - passage-retrieval
23
+ - entity-linking-retrieval
24
+ - fact-checking-retrieval
25
+ - tweet-retrieval
26
+ - citation-prediction-retrieval
27
+ - duplication-question-retrieval
28
+ - argument-retrieval
29
+ - news-retrieval
30
+ - biomedical-information-retrieval
31
+ - question-answering-retrieval
32
  ---
33
+
34
+ # Dataset Card for BEIR Benchmark
35
+
36
+ ## Table of Contents
37
+ - [Dataset Description](#dataset-description)
38
+ - [Dataset Summary](#dataset-summary)
39
+ - [Supported Tasks and Leaderboards](#supported-tasks-and-leaderboards)
40
+ - [Languages](#languages)
41
+ - [Dataset Structure](#dataset-structure)
42
+ - [Data Instances](#data-instances)
43
+ - [Data Fields](#data-fields)
44
+ - [Data Splits](#data-splits)
45
+ - [Dataset Creation](#dataset-creation)
46
+ - [Curation Rationale](#curation-rationale)
47
+ - [Source Data](#source-data)
48
+ - [Annotations](#annotations)
49
+ - [Personal and Sensitive Information](#personal-and-sensitive-information)
50
+ - [Considerations for Using the Data](#considerations-for-using-the-data)
51
+ - [Social Impact of Dataset](#social-impact-of-dataset)
52
+ - [Discussion of Biases](#discussion-of-biases)
53
+ - [Other Known Limitations](#other-known-limitations)
54
+ - [Additional Information](#additional-information)
55
+ - [Dataset Curators](#dataset-curators)
56
+ - [Licensing Information](#licensing-information)
57
+ - [Citation Information](#citation-information)
58
+ - [Contributions](#contributions)
59
+
60
+ ## Dataset Description
61
+
62
+ - **Homepage:** https://github.com/UKPLab/beir
63
+ - **Repository:** https://github.com/UKPLab/beir
64
+ - **Paper:** https://openreview.net/forum?id=wCu6T5xFjeJ
65
+ - **Leaderboard:** https://docs.google.com/spreadsheets/d/1L8aACyPaXrL8iEelJLGqlMqXKPX2oSP_R10pZoy77Ns
66
+ - **Point of Contact:** [email protected]
67
+
68
+ ### Dataset Summary
69
+
70
+ BEIR is a heterogeneous benchmark that has been built from 18 diverse datasets representing 9 information retrieval tasks:
71
+
72
+ - Fact-checking: [FEVER](http://fever.ai), [Climate-FEVER](http://climatefever.ai), [SciFact](https://github.com/allenai/scifact)
73
+ - Question-Answering: [NQ](https://ai.google.com/research/NaturalQuestions), [HotpotQA](https://hotpotqa.github.io), [FiQA-2018](https://sites.google.com/view/fiqa/)
74
+ - Bio-Medical IR: [TREC-COVID](https://ir.nist.gov/covidSubmit/index.html), [BioASQ](http://bioasq.org), [NFCorpus](https://www.cl.uni-heidelberg.de/statnlpgroup/nfcorpus/)
75
+ - News Retrieval: [TREC-NEWS](https://trec.nist.gov/data/news2019.html), [Robust04](https://trec.nist.gov/data/robust/04.guidelines.html)
76
+ - Argument Retrieval: [Touche-2020](https://webis.de/events/touche-20/shared-task-1.html), [ArguAna](tp://argumentation.bplaced.net/arguana/data)
77
+ - Duplicate Question Retrieval: [Quora](https://www.quora.com/q/quoradata/First-Quora-Dataset-Release-Question-Pairs), [CqaDupstack](http://nlp.cis.unimelb.edu.au/resources/cqadupstack/)
78
+ - Citation-Prediction: [SCIDOCS](https://allenai.org/data/scidocs)
79
+ - Tweet Retrieval: [Signal-1M](https://research.signal-ai.com/datasets/signal1m-tweetir.html)
80
+ - Entity Retrieval: [DBPedia](https://github.com/iai-group/DBpedia-Entity/)
81
+
82
+ All these datasets have been preprocessed and can be used for your experiments.
83
+
84
+
85
+ ```python
86
+
87
+ ```
88
+
89
+ ### Supported Tasks and Leaderboards
90
+
91
+ The dataset supports a leaderboard that evaluates models against task-specific metrics such as F1 or EM, as well as their ability to retrieve supporting information from Wikipedia.
92
+
93
+ The current best performing models can be found [here](https://eval.ai/web/challenges/challenge-page/689/leaderboard/).
94
+
95
+ ### Languages
96
+
97
+ All tasks are in English (`en`).
98
+
99
+ ## Dataset Structure
100
+
101
+ All BEIR datasets must contain a corpus, queries and qrels (relevance judgments file). They must be in the following format:
102
+ - `corpus` file: a `.jsonl` file (jsonlines) that contains a list of dictionaries, each with three fields `_id` with unique document identifier, `title` with document title (optional) and `text` with document paragraph or passage. For example: `{"_id": "doc1", "title": "Albert Einstein", "text": "Albert Einstein was a German-born...."}`
103
+ - `queries` file: a `.jsonl` file (jsonlines) that contains a list of dictionaries, each with two fields `_id` with unique query identifier and `text` with query text. For example: `{"_id": "q1", "text": "Who developed the mass-energy equivalence formula?"}`
104
+ - `qrels` file: a `.tsv` file (tab-seperated) that contains three columns, i.e. the `query-id`, `corpus-id` and `score` in this order. Keep 1st row as header. For example: `q1 doc1 1`
105
+
106
+ ### Data Instances
107
+
108
+ A high level example of any beir dataset:
109
+
110
+ ```python
111
+ corpus = {
112
+ "doc1" : {
113
+ "title": "Albert Einstein",
114
+ "text": "Albert Einstein was a German-born theoretical physicist. who developed the theory of relativity, \
115
+ one of the two pillars of modern physics (alongside quantum mechanics). His work is also known for \
116
+ its influence on the philosophy of science. He is best known to the general public for his mass–energy \
117
+ equivalence formula E = mc2, which has been dubbed 'the world's most famous equation'. He received the 1921 \
118
+ Nobel Prize in Physics 'for his services to theoretical physics, and especially for his discovery of the law \
119
+ of the photoelectric effect', a pivotal step in the development of quantum theory."
120
+ },
121
+ "doc2" : {
122
+ "title": "", # Keep title an empty string if not present
123
+ "text": "Wheat beer is a top-fermented beer which is brewed with a large proportion of wheat relative to the amount of \
124
+ malted barley. The two main varieties are German Weißbier and Belgian witbier; other types include Lambic (made\
125
+ with wild yeast), Berliner Weisse (a cloudy, sour beer), and Gose (a sour, salty beer)."
126
+ },
127
+ }
128
+
129
+ queries = {
130
+ "q1" : "Who developed the mass-energy equivalence formula?",
131
+ "q2" : "Which beer is brewed with a large proportion of wheat?"
132
+ }
133
+
134
+ qrels = {
135
+ "q1" : {"doc1": 1},
136
+ "q2" : {"doc2": 1},
137
+ }
138
+ ```
139
+
140
+ ### Data Fields
141
+
142
+ Examples from all configurations have the following features:
143
+
144
+ ### Corpus
145
+ - `corpus`: a `dict` feature representing the document title and passage text, made up of:
146
+ - `_id`: a `string` feature representing the unique document id
147
+ - `title`: a `string` feature, denoting the title of the document.
148
+ - `text`: a `string` feature, denoting the text of the document.
149
+
150
+ ### Queries
151
+ - `queries`: a `dict` feature representing the query, made up of:
152
+ - `_id`: a `string` feature representing the unique query id
153
+ - `text`: a `string` feature, denoting the text of the query.
154
+
155
+ ### Qrels
156
+ - `qrels`: a `dict` feature representing the query document relevance judgements, made up of:
157
+ - `_id`: a `string` feature representing the query id
158
+ - `_id`: a `string` feature, denoting the document id.
159
+ - `score`: a `int32` feature, denoting the relevance judgement between query and document.
160
+
161
+
162
+ ### Data Splits
163
+
164
+ | Dataset | Website| BEIR-Name | Type | Queries | Corpus | Rel D/Q | Down-load | md5 |
165
+ | -------- | -----| ---------| --------- | ----------- | ---------| ---------| :----------: | :------:|
166
+ | MSMARCO | [Homepage](https://microsoft.github.io/msmarco/)| ``msmarco`` | ``train``<br>``dev``<br>``test``| 6,980 | 8.84M | 1.1 | [Link](https://public.ukp.informatik.tu-darmstadt.de/thakur/BEIR/datasets/msmarco.zip) | ``444067daf65d982533ea17ebd59501e4`` |
167
+ | TREC-COVID | [Homepage](https://ir.nist.gov/covidSubmit/index.html)| ``trec-covid``| ``test``| 50| 171K| 493.5 | [Link](https://public.ukp.informatik.tu-darmstadt.de/thakur/BEIR/datasets/trec-covid.zip) | ``ce62140cb23feb9becf6270d0d1fe6d1`` |
168
+ | NFCorpus | [Homepage](https://www.cl.uni-heidelberg.de/statnlpgroup/nfcorpus/) | ``nfcorpus`` | ``train``<br>``dev``<br>``test``| 323 | 3.6K | 38.2 | [Link](https://public.ukp.informatik.tu-darmstadt.de/thakur/BEIR/datasets/nfcorpus.zip) | ``a89dba18a62ef92f7d323ec890a0d38d`` |
169
+ | BioASQ | [Homepage](http://bioasq.org) | ``bioasq``| ``train``<br>``test`` | 500 | 14.91M | 8.05 | No | [How to Reproduce?](https://github.com/UKPLab/beir/blob/main/examples/dataset#2-bioasq) |
170
+ | NQ | [Homepage](https://ai.google.com/research/NaturalQuestions) | ``nq``| ``train``<br>``test``| 3,452 | 2.68M | 1.2 | [Link](https://public.ukp.informatik.tu-darmstadt.de/thakur/BEIR/datasets/nq.zip) | ``d4d3d2e48787a744b6f6e691ff534307`` |
171
+ | HotpotQA | [Homepage](https://hotpotqa.github.io) | ``hotpotqa``| ``train``<br>``dev``<br>``test``| 7,405 | 5.23M | 2.0 | [Link](https://public.ukp.informatik.tu-darmstadt.de/thakur/BEIR/datasets/hotpotqa.zip) | ``f412724f78b0d91183a0e86805e16114`` |
172
+ | FiQA-2018 | [Homepage](https://sites.google.com/view/fiqa/) | ``fiqa`` | ``train``<br>``dev``<br>``test``| 648 | 57K | 2.6 | [Link](https://public.ukp.informatik.tu-darmstadt.de/thakur/BEIR/datasets/fiqa.zip) | ``17918ed23cd04fb15047f73e6c3bd9d9`` |
173
+ | Signal-1M(RT) | [Homepage](https://research.signal-ai.com/datasets/signal1m-tweetir.html)| ``signal1m`` | ``test``| 97 | 2.86M | 19.6 | No | [How to Reproduce?](https://github.com/UKPLab/beir/blob/main/examples/dataset#4-signal-1m) |
174
+ | TREC-NEWS | [Homepage](https://trec.nist.gov/data/news2019.html) | ``trec-news`` | ``test``| 57 | 595K | 19.6 | No | [How to Reproduce?](https://github.com/UKPLab/beir/blob/main/examples/dataset#1-trec-news) |
175
+ | ArguAna | [Homepage](http://argumentation.bplaced.net/arguana/data) | ``arguana``| ``test`` | 1,406 | 8.67K | 1.0 | [Link](https://public.ukp.informatik.tu-darmstadt.de/thakur/BEIR/datasets/arguana.zip) | ``8ad3e3c2a5867cdced806d6503f29b99`` |
176
+ | Touche-2020| [Homepage](https://webis.de/events/touche-20/shared-task-1.html) | ``webis-touche2020``| ``test``| 49 | 382K | 19.0 | [Link](https://public.ukp.informatik.tu-darmstadt.de/thakur/BEIR/datasets/webis-touche2020.zip) | ``46f650ba5a527fc69e0a6521c5a23563`` |
177
+ | CQADupstack| [Homepage](http://nlp.cis.unimelb.edu.au/resources/cqadupstack/) | ``cqadupstack``| ``test``| 13,145 | 457K | 1.4 | [Link](https://public.ukp.informatik.tu-darmstadt.de/thakur/BEIR/datasets/cqadupstack.zip) | ``4e41456d7df8ee7760a7f866133bda78`` |
178
+ | Quora| [Homepage](https://www.quora.com/q/quoradata/First-Quora-Dataset-Release-Question-Pairs) | ``quora``| ``dev``<br>``test``| 10,000 | 523K | 1.6 | [Link](https://public.ukp.informatik.tu-darmstadt.de/thakur/BEIR/datasets/quora.zip) | ``18fb154900ba42a600f84b839c173167`` |
179
+ | DBPedia | [Homepage](https://github.com/iai-group/DBpedia-Entity/) | ``dbpedia-entity``| ``dev``<br>``test``| 400 | 4.63M | 38.2 | [Link](https://public.ukp.informatik.tu-darmstadt.de/thakur/BEIR/datasets/dbpedia-entity.zip) | ``c2a39eb420a3164af735795df012ac2c`` |
180
+ | SCIDOCS| [Homepage](https://allenai.org/data/scidocs) | ``scidocs``| ``test``| 1,000 | 25K | 4.9 | [Link](https://public.ukp.informatik.tu-darmstadt.de/thakur/BEIR/datasets/scidocs.zip) | ``38121350fc3a4d2f48850f6aff52e4a9`` |
181
+ | FEVER | [Homepage](http://fever.ai) | ``fever``| ``train``<br>``dev``<br>``test``| 6,666 | 5.42M | 1.2| [Link](https://public.ukp.informatik.tu-darmstadt.de/thakur/BEIR/datasets/fever.zip) | ``5a818580227bfb4b35bb6fa46d9b6c03`` |
182
+ | Climate-FEVER| [Homepage](http://climatefever.ai) | ``climate-fever``|``test``| 1,535 | 5.42M | 3.0 | [Link](https://public.ukp.informatik.tu-darmstadt.de/thakur/BEIR/datasets/climate-fever.zip) | ``8b66f0a9126c521bae2bde127b4dc99d`` |
183
+ | SciFact| [Homepage](https://github.com/allenai/scifact) | ``scifact``| ``train``<br>``test``| 300 | 5K | 1.1 | [Link](https://public.ukp.informatik.tu-darmstadt.de/thakur/BEIR/datasets/scifact.zip) | ``5f7d1de60b170fc8027bb7898e2efca1`` |
184
+ | Robust04 | [Homepage](https://trec.nist.gov/data/robust/04.guidelines.html) | ``robust04``| ``test``| 249 | 528K | 69.9 | No | [How to Reproduce?](https://github.com/UKPLab/beir/blob/main/examples/dataset#3-robust04) |
185
+
186
+
187
+ ## Dataset Creation
188
+
189
+ ### Curation Rationale
190
+
191
+ [Needs More Information]
192
+
193
+ ### Source Data
194
+
195
+ #### Initial Data Collection and Normalization
196
+
197
+ [Needs More Information]
198
+
199
+ #### Who are the source language producers?
200
+
201
+ [Needs More Information]
202
+
203
+ ### Annotations
204
+
205
+ #### Annotation process
206
+
207
+ [Needs More Information]
208
+
209
+ #### Who are the annotators?
210
+
211
+ [Needs More Information]
212
+
213
+ ### Personal and Sensitive Information
214
+
215
+ [Needs More Information]
216
+
217
+ ## Considerations for Using the Data
218
+
219
+ ### Social Impact of Dataset
220
+
221
+ [Needs More Information]
222
+
223
+ ### Discussion of Biases
224
+
225
+ [Needs More Information]
226
+
227
+ ### Other Known Limitations
228
+
229
+ [Needs More Information]
230
+
231
+ ## Additional Information
232
+
233
+ ### Dataset Curators
234
+
235
+ [Needs More Information]
236
+
237
+ ### Licensing Information
238
+
239
+ [Needs More Information]
240
+
241
+ ### Citation Information
242
+
243
+ Cite as:
244
+ ```
245
+ @inproceedings{
246
+ thakur2021beir,
247
+ title={{BEIR}: A Heterogeneous Benchmark for Zero-shot Evaluation of Information Retrieval Models},
248
+ author={Nandan Thakur and Nils Reimers and Andreas R{\"u}ckl{\'e} and Abhishek Srivastava and Iryna Gurevych},
249
+ booktitle={Thirty-fifth Conference on Neural Information Processing Systems Datasets and Benchmarks Track (Round 2)},
250
+ year={2021},
251
+ url={https://openreview.net/forum?id=wCu6T5xFjeJ}
252
+ }
253
+ ```
254
+
255
+ ### Contributions
256
+
257
+ Thanks to [@Nthakur20](https://github.com/Nthakur20) for adding this dataset.
corpus.jsonl.gz ADDED
@@ -0,0 +1,3 @@
 
 
 
 
1
+ version https://git-lfs.github.com/spec/v1
2
+ oid sha256:1bcbb294282f84a6c38d3881af2c7f392afcf88c1247e7599546cb33f33cb48c
3
+ size 73452199