Datasets:
Tasks:
Multiple Choice
Modalities:
Text
Formats:
parquet
Sub-tasks:
multiple-choice-qa
Languages:
English
Size:
10M - 100M
ArXiv:
License:
Commit
•
c7871a3
1
Parent(s):
e12fccd
Delete legacy dataset_infos.json
Browse files- dataset_infos.json +0 -59
dataset_infos.json
DELETED
@@ -1,59 +0,0 @@
|
|
1 |
-
{
|
2 |
-
"default": {
|
3 |
-
"description": "ASNQ is a dataset for answer sentence selection derived from\nGoogle's Natural Questions (NQ) dataset (Kwiatkowski et al. 2019).\n\nEach example contains a question, candidate sentence, label indicating whether or not\nthe sentence answers the question, and two additional features --\nsentence_in_long_answer and short_answer_in_sentence indicating whether ot not the\ncandidate sentence is contained in the long_answer and if the short_answer is in the candidate sentence.\n\nFor more details please see\nhttps://arxiv.org/pdf/1911.04118.pdf\n\nand\n\nhttps://research.google/pubs/pub47761/\n",
|
4 |
-
"citation": "@article{garg2019tanda,\n title={TANDA: Transfer and Adapt Pre-Trained Transformer Models for Answer Sentence Selection},\n author={Siddhant Garg and Thuy Vu and Alessandro Moschitti},\n year={2019},\n eprint={1911.04118},\n}\n",
|
5 |
-
"homepage": "https://github.com/alexa/wqa_tanda#answer-sentence-natural-questions-asnq",
|
6 |
-
"license": "",
|
7 |
-
"features": {
|
8 |
-
"question": {
|
9 |
-
"dtype": "string",
|
10 |
-
"_type": "Value"
|
11 |
-
},
|
12 |
-
"sentence": {
|
13 |
-
"dtype": "string",
|
14 |
-
"_type": "Value"
|
15 |
-
},
|
16 |
-
"label": {
|
17 |
-
"names": [
|
18 |
-
"neg",
|
19 |
-
"pos"
|
20 |
-
],
|
21 |
-
"_type": "ClassLabel"
|
22 |
-
},
|
23 |
-
"sentence_in_long_answer": {
|
24 |
-
"dtype": "bool",
|
25 |
-
"_type": "Value"
|
26 |
-
},
|
27 |
-
"short_answer_in_sentence": {
|
28 |
-
"dtype": "bool",
|
29 |
-
"_type": "Value"
|
30 |
-
}
|
31 |
-
},
|
32 |
-
"builder_name": "parquet",
|
33 |
-
"dataset_name": "asnq",
|
34 |
-
"config_name": "default",
|
35 |
-
"version": {
|
36 |
-
"version_str": "1.0.0",
|
37 |
-
"major": 1,
|
38 |
-
"minor": 0,
|
39 |
-
"patch": 0
|
40 |
-
},
|
41 |
-
"splits": {
|
42 |
-
"train": {
|
43 |
-
"name": "train",
|
44 |
-
"num_bytes": 3656865072,
|
45 |
-
"num_examples": 20377568,
|
46 |
-
"dataset_name": null
|
47 |
-
},
|
48 |
-
"validation": {
|
49 |
-
"name": "validation",
|
50 |
-
"num_bytes": 168004403,
|
51 |
-
"num_examples": 930062,
|
52 |
-
"dataset_name": null
|
53 |
-
}
|
54 |
-
},
|
55 |
-
"download_size": 2496835395,
|
56 |
-
"dataset_size": 3824869475,
|
57 |
-
"size_in_bytes": 6321704870
|
58 |
-
}
|
59 |
-
}
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|