As the rapid adoption of chat bots and QandA models continues, so do the concerns for their reliability and safety. In response to this, many state-of-the-art models are being tuned to act as Safety Guardrails to protect against malicious usage and avoid undesired, harmful output. I published a Hugging Face blog introducing a simple, proof-of-concept, RoBERTa-based LLM that my team and I finetuned to detect toxic prompt inputs into chat-style LLMs. The article explores some of the tradeoffs of fine-tuning larger decoder vs. smaller encoder models and asks the question if "simpler is better" in the arena of toxic prompt detection.