--- language: en library_name: bm25s tags: - bm25 - bm25s - retrieval - search - lexical --- # BM25S Index This is a BM25S index created with the [`bm25s` library](https://github.com/xhluca/bm25s) (version `{version}`), an ultra-fast implementation of BM25. It can be used for lexical retrieval tasks. BM25S Related Links: * 🏠[Homepage](https://bm25s.github.io) * πŸ’»[GitHub Repository](https://github.com/xhluca/bm25s) * πŸ€—[Blog Post](https://huggingface.co/blog/xhluca/bm25s) * πŸ“[Technical Report](https://arxiv.org/abs/2407.03618) ## Installation You can install the `bm25s` library with `pip`: ```bash pip install "bm25s==0.2.0" # For huggingface hub usage pip install huggingface_hub ``` ## Loading a `bm25s` index You can use this index for information retrieval tasks. Here is an example: ```python import bm25s from bm25s.hf import BM25HF # Load the index retriever = BM25HF.load_from_hub("{username}/{repo_name}}") # You can retrieve now query = "a cat is a feline" results = retriever.retrieve(bm25s.tokenize(query), k=3) ``` ## Saving a `bm25s` index You can save a `bm25s` index to the Hugging Face Hub. Here is an example: ```python import bm25s from bm25s.hf import BM25HF corpus = [ "a cat is a feline and likes to purr", "a dog is the human's best friend and loves to play", "a bird is a beautiful animal that can fly", "a fish is a creature that lives in water and swims", ] retriever = BM25HF(corpus=corpus) retriever.index(bm25s.tokenize(corpus)) token = None # You can get a token from the Hugging Face website retriever.save_to_hub("{username}/{repo_name}", token=token) ``` ## Advanced usage You can leverage more advanced features of the BM25S library during `load_from_hub`: ```python # Load corpus and index in memory-map (mmap=True) to reduce memory retriever = BM25HF.load_from_hub("{username}/{repo_name}", load_corpus=True, mmap=True) # Load a different branch/revision retriever = BM25HF.load_from_hub("{username}/{repo_name}", revision="main") # Change directory where the local files should be downloaded retriever = BM25HF.load_from_hub("{username}/{repo_name}", local_dir="/path/to/dir") # Load private repositories with a token: retriever = BM25HF.load_from_hub("{username}/{repo_name}", token=token) ``` ## Stats This dataset was created using the following data: | Statistic | Value | | --- | --- | | Number of documents | {num_docs} | | Number of tokens | {num_tokens} | | Average tokens per document | {avg_tokens_per_doc} | ## Parameters The index was created with the following parameters: | Parameter | Value | | --- | --- | | k1 | `{k1}` | | b | `{b}` | | delta | `{delta}` | | method | `{method}` | | idf method | `{idf_method}` | ## Citation To cite `bm25s`, please use the following bibtex: ``` @misc{lu_2024_bm25s, title={BM25S: Orders of magnitude faster lexical search via eager sparse scoring}, author={Xing Han LΓΉ}, year={2024}, eprint={2407.03618}, archivePrefix={arXiv}, primaryClass={cs.IR}, url={https://arxiv.org/abs/2407.03618}, } ```