model uploaded.
Browse files- README.md +40 -0
- config.json +26 -0
- pytorch_model.bin +3 -0
- tokenizer.json +0 -0
README.md
CHANGED
@@ -1,3 +1,43 @@
|
|
1 |
---
|
|
|
|
|
|
|
|
|
2 |
license: cc-by-nc-sa-4.0
|
|
|
|
|
3 |
---
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
1 |
---
|
2 |
+
language:
|
3 |
+
- tr
|
4 |
+
tags:
|
5 |
+
- roberta
|
6 |
license: cc-by-nc-sa-4.0
|
7 |
+
datasets:
|
8 |
+
- oscar
|
9 |
---
|
10 |
+
|
11 |
+
# RoBERTa Turkish medium Morph-level 7k (uncased)
|
12 |
+
|
13 |
+
Pretrained model on Turkish language using a masked language modeling (MLM) objective. The model is uncased.
|
14 |
+
The pretrained corpus is OSCAR's Turkish split, but it is further filtered and cleaned.
|
15 |
+
|
16 |
+
Model architecture is similar to bert-medium (8 layers, 8 heads, and 512 hidden size). Tokenization algorithm is Morph-level, which means that text is split according to a Turkish morphological analyzer (Zemberek). Vocabulary size is 7.5k.
|
17 |
+
|
18 |
+
## Note that this model needs a preprocessing step before running, because the tokenizer file is not a morphological anaylzer. That is, the test dataset can not be split into morphemes with the tokenizer file. The user needs to process any test dataset by a Turkish morphological analyzer (Zemberek in this case) before running evaluation.
|
19 |
+
|
20 |
+
The details can be found at this paper:
|
21 |
+
https://arxiv.org/...
|
22 |
+
|
23 |
+
The following code can be used for model loading and tokenization, example max length (514) can be changed:
|
24 |
+
```
|
25 |
+
model = AutoModel.from_pretrained([model_path])
|
26 |
+
#for sequence classification:
|
27 |
+
#model = AutoModelForSequenceClassification.from_pretrained([model_path], num_labels=[num_classes])
|
28 |
+
|
29 |
+
tokenizer = PreTrainedTokenizerFast(tokenizer_file=[file_path])
|
30 |
+
tokenizer.mask_token = "[MASK]"
|
31 |
+
tokenizer.cls_token = "[CLS]"
|
32 |
+
tokenizer.sep_token = "[SEP]"
|
33 |
+
tokenizer.pad_token = "[PAD]"
|
34 |
+
tokenizer.unk_token = "[UNK]"
|
35 |
+
tokenizer.bos_token = "[CLS]"
|
36 |
+
tokenizer.eos_token = "[SEP]"
|
37 |
+
tokenizer.model_max_length = 514
|
38 |
+
```
|
39 |
+
|
40 |
+
### BibTeX entry and citation info
|
41 |
+
```bibtex
|
42 |
+
@article{}
|
43 |
+
```
|
config.json
ADDED
@@ -0,0 +1,26 @@
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
1 |
+
{
|
2 |
+
"architectures": [
|
3 |
+
"RobertaForMaskedLM"
|
4 |
+
],
|
5 |
+
"attention_probs_dropout_prob": 0.1,
|
6 |
+
"bos_token_id": 0,
|
7 |
+
"classifier_dropout": null,
|
8 |
+
"eos_token_id": 2,
|
9 |
+
"hidden_act": "gelu",
|
10 |
+
"hidden_dropout_prob": 0.1,
|
11 |
+
"hidden_size": 512,
|
12 |
+
"initializer_range": 0.02,
|
13 |
+
"intermediate_size": 3072,
|
14 |
+
"layer_norm_eps": 1e-05,
|
15 |
+
"max_position_embeddings": 516,
|
16 |
+
"model_type": "roberta",
|
17 |
+
"num_attention_heads": 8,
|
18 |
+
"num_hidden_layers": 8,
|
19 |
+
"pad_token_id": 1,
|
20 |
+
"position_embedding_type": "absolute",
|
21 |
+
"torch_dtype": "float32",
|
22 |
+
"transformers_version": "4.12.5",
|
23 |
+
"type_vocab_size": 1,
|
24 |
+
"use_cache": true,
|
25 |
+
"vocab_size": 7494
|
26 |
+
}
|
pytorch_model.bin
ADDED
@@ -0,0 +1,3 @@
|
|
|
|
|
|
|
|
|
1 |
+
version https://git-lfs.github.com/spec/v1
|
2 |
+
oid sha256:127430079b883b5990cdbe36595d16556667fc03f8c7da7f2cf890e80e2ba864
|
3 |
+
size 152018283
|
tokenizer.json
ADDED
The diff for this file is too large to render.
See raw diff
|
|