File size: 60,641 Bytes
9e9cca9
 
 
 
 
f75f5ac
 
9e9cca9
f75f5ac
 
9e9cca9
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
eeba323
9e9cca9
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
4bddd45
9e9cca9
 
 
0568479
9e9cca9
4bddd45
9e9cca9
 
 
 
 
 
 
 
 
 
 
 
4bddd45
9e9cca9
 
4bddd45
9e9cca9
 
 
0568479
9e9cca9
4bddd45
9e9cca9
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
4bddd45
 
9e9cca9
 
 
 
 
4bddd45
 
 
 
 
9e9cca9
 
 
 
 
 
 
 
0568479
 
 
9e9cca9
 
4bddd45
 
9e9cca9
 
 
 
0568479
 
 
 
9e9cca9
 
 
 
 
 
 
4bddd45
9e9cca9
 
4bddd45
 
 
 
 
9e9cca9
 
 
0568479
9e9cca9
4bddd45
9e9cca9
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
0568479
 
 
9e9cca9
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
0568479
9e9cca9
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
4bddd45
 
 
9e9cca9
 
 
 
 
 
 
eeba323
9e9cca9
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
4bddd45
9e9cca9
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
4bddd45
 
 
9e9cca9
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
eeba323
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
9e9cca9
eeba323
 
9e9cca9
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
4bddd45
9e9cca9
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
4bddd45
 
 
9e9cca9
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
4bddd45
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
9e9cca9
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
0568479
 
9e9cca9
0568479
 
 
 
9e9cca9
 
 
 
 
 
0568479
9e9cca9
 
 
 
 
 
 
 
 
 
0568479
 
 
 
 
 
 
 
 
 
 
 
4bddd45
 
 
 
 
 
 
 
 
0568479
 
 
 
 
 
 
 
 
4bddd45
 
 
 
 
 
 
 
 
0568479
 
 
 
 
 
 
 
 
 
 
 
 
 
 
4bddd45
0568479
 
 
 
 
9e9cca9
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
4bddd45
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
0568479
4bddd45
 
 
 
 
 
 
 
 
 
 
 
 
 
 
0568479
 
 
4bddd45
 
 
 
 
 
 
 
 
 
 
0568479
 
 
4bddd45
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
0568479
4bddd45
 
 
 
9e9cca9
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
0568479
9e9cca9
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
0568479
9e9cca9
 
eeba323
9e9cca9
 
 
 
 
 
 
 
 
 
eeba323
9e9cca9
 
 
 
 
eeba323
 
9e9cca9
 
eeba323
9e9cca9
 
eeba323
 
9e9cca9
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
eeba323
9e9cca9
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
eeba323
9e9cca9
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
211
212
213
214
215
216
217
218
219
220
221
222
223
224
225
226
227
228
229
230
231
232
233
234
235
236
237
238
239
240
241
242
243
244
245
246
247
248
249
250
251
252
253
254
255
256
257
258
259
260
261
262
263
264
265
266
267
268
269
270
271
272
273
274
275
276
277
278
279
280
281
282
283
284
285
286
287
288
289
290
291
292
293
294
295
296
297
298
299
300
301
302
303
304
305
306
307
308
309
310
311
312
313
314
315
316
317
318
319
320
321
322
323
324
325
326
327
328
329
330
331
332
333
334
335
336
337
338
339
340
341
342
343
344
345
346
347
348
349
350
351
352
353
354
355
356
357
358
359
360
361
362
363
364
365
366
367
368
369
370
371
372
373
374
375
376
377
378
379
380
381
382
383
384
385
386
387
388
389
390
391
392
393
394
395
396
397
398
399
400
401
402
403
404
405
406
407
408
409
410
411
412
413
414
415
416
417
418
419
420
421
422
423
424
425
426
427
428
429
430
431
432
433
434
435
436
437
438
439
440
441
442
443
444
445
446
447
448
449
450
451
452
453
454
455
456
457
458
459
460
461
462
463
464
465
466
467
468
469
470
471
472
473
474
475
476
477
478
479
480
481
482
483
484
485
486
487
488
489
490
491
492
493
494
495
496
497
498
499
500
501
502
503
504
505
506
507
508
509
510
511
512
513
514
515
516
517
518
519
520
521
522
523
524
525
526
527
528
529
530
531
532
533
534
535
536
537
538
539
540
541
542
543
544
545
546
547
548
549
550
551
552
553
554
555
556
557
558
559
560
561
562
563
564
565
566
567
568
569
570
571
572
573
574
575
576
577
578
579
580
581
582
583
584
585
586
587
588
589
590
591
592
593
594
595
596
597
598
599
600
601
602
603
604
605
606
607
608
609
610
611
612
613
614
615
616
617
618
619
620
621
622
623
624
625
626
627
628
629
630
631
632
633
634
635
636
637
638
639
640
641
642
643
644
645
646
647
648
649
650
651
652
653
654
655
656
657
658
659
660
661
662
663
664
665
666
667
668
669
670
671
672
673
674
675
676
677
678
679
680
681
682
683
684
685
686
687
688
689
690
691
692
693
694
695
696
697
698
699
700
701
702
703
704
705
706
707
708
709
710
711
712
713
714
715
716
717
718
719
720
721
722
723
724
725
726
727
728
729
730
731
732
733
734
735
736
737
738
739
740
741
742
743
744
745
746
747
748
749
750
751
752
753
754
755
756
757
758
759
760
761
762
763
764
765
766
767
768
769
770
771
772
773
774
775
776
777
778
779
780
781
782
783
784
785
786
787
788
789
790
791
792
793
794
795
796
797
798
799
800
801
802
803
804
805
806
807
808
809
810
811
812
813
814
815
816
817
818
819
820
821
822
823
824
825
826
827
828
829
830
831
832
833
834
835
836
837
838
839
840
841
842
843
844
845
846
847
848
849
850
851
852
853
854
855
856
857
858
859
860
861
862
863
864
865
866
867
868
869
870
871
872
873
874
875
876
877
878
879
880
881
882
883
884
885
886
887
888
889
890
891
892
893
894
895
896
897
898
899
900
901
902
903
904
905
906
907
908
909
910
911
912
913
914
915
916
917
918
919
920
921
922
923
924
925
926
927
928
929
930
931
932
933
934
935
936
937
938
939
940
941
942
943
944
945
946
947
948
949
950
951
952
953
954
955
956
957
958
959
960
961
962
963
964
965
966
967
968
969
970
971
972
973
974
975
976
977
978
979
980
981
982
983
984
985
986
987
988
989
990
991
992
993
994
995
996
997
998
999
1000
1001
1002
1003
1004
1005
1006
1007
1008
1009
1010
1011
1012
1013
1014
1015
1016
1017
1018
1019
1020
1021
1022
1023
1024
1025
1026
1027
1028
1029
1030
1031
1032
1033
1034
1035
1036
1037
1038
1039
1040
1041
1042
1043
1044
1045
1046
1047
1048
1049
1050
1051
1052
1053
1054
1055
1056
1057
1058
1059
1060
1061
1062
1063
1064
1065
1066
1067
1068
1069
1070
1071
1072
1073
1074
1075
1076
1077
1078
1079
1080
1081
1082
1083
1084
1085
1086
1087
1088
1089
1090
1091
1092
1093
1094
1095
1096
1097
1098
1099
1100
1101
1102
1103
1104
1105
1106
1107
1108
1109
1110
1111
1112
1113
1114
1115
1116
1117
1118
1119
1120
1121
1122
1123
1124
1125
1126
1127
1128
1129
1130
1131
1132
1133
1134
1135
1136
1137
1138
1139
1140
1141
1142
1143
1144
1145
1146
1147
1148
1149
1150
1151
1152
1153
1154
1155
1156
1157
1158
1159
1160
1161
1162
1163
1164
1165
1166
1167
1168
1169
1170
1171
1172
1173
1174
1175
1176
1177
1178
1179
1180
1181
1182
1183
1184
1185
1186
1187
1188
1189
1190
1191
1192
1193
1194
1195
1196
1197
1198
1199
1200
1201
1202
1203
1204
1205
1206
1207
1208
1209
1210
1211
1212
1213
1214
1215
1216
1217
1218
1219
1220
1221
1222
1223
1224
1225
1226
1227
1228
1229
1230
1231
1232
1233
1234
1235
1236
1237
1238
1239
1240
1241
1242
1243
1244
1245
1246
1247
1248
1249
1250
1251
1252
1253
1254
1255
1256
1257
1258
1259
1260
1261
1262
1263
1264
1265
1266
1267
1268
1269
1270
1271
1272
1273
1274
1275
1276
1277
1278
1279
1280
1281
1282
1283
1284
1285
1286
1287
1288
1289
1290
1291
1292
1293
1294
1295
1296
1297
1298
1299
1300
1301
1302
1303
1304
1305
1306
1307
1308
1309
1310
1311
1312
1313
1314
1315
1316
1317
1318
1319
1320
1321
1322
1323
1324
1325
1326
1327
1328
1329
1330
1331
1332
1333
1334
1335
1336
1337
1338
1339
1340
1341
1342
1343
1344
1345
1346
1347
1348
1349
1350
1351
1352
1353
1354
1355
1356
1357
1358
1359
1360
1361
1362
1363
1364
1365
1366
1367
1368
1369
1370
1371
1372
1373
1374
1375
1376
1377
1378
1379
1380
1381
1382
1383
1384
1385
1386
1387
1388
1389
1390
1391
1392
1393
1394
1395
1396
1397
1398
1399
1400
1401
1402
1403
1404
1405
1406
1407
1408
1409
1410
1411
1412
1413
1414
1415
1416
1417
1418
1419
1420
1421
1422
1423
1424
1425
1426
1427
1428
1429
1430
1431
1432
1433
1434
1435
1436
1437
1438
1439
1440
1441
1442
1443
1444
1445
1446
1447
1448
1449
1450
1451
1452
1453
1454
1455
1456
1457
1458
1459
1460
1461
1462
1463
1464
1465
"""
Geneformer classifier.

**Input data:**

| Cell state classifier:
| Single-cell transcriptomes as Geneformer rank value encodings with cell state labels in Geneformer .dataset format (generated from single-cell RNAseq data by tokenizer.py)

| Gene classifier:
| Dictionary in format {Gene_label: list(genes)} for gene labels and single-cell transcriptomes as Geneformer rank value encodings in Geneformer .dataset format (generated from single-cell RNAseq data by tokenizer.py)

**Usage:**

.. code-block :: python

    >>> from geneformer import Classifier
    >>> cc = Classifier(classifier="cell",  # example of cell state classifier
    ...                 cell_state_dict={"state_key": "disease", "states": "all"},
    ...                 filter_data={"cell_type":["Cardiomyocyte1","Cardiomyocyte2","Cardiomyocyte3"]},
    ...                 training_args=training_args,
    ...                 freeze_layers = 2,
    ...                 num_crossval_splits = 1,
    ...                 forward_batch_size=200,
    ...                 nproc=16)
    >>> cc.prepare_data(input_data_file="path/to/input_data",
    ...                 output_directory="path/to/output_directory",
    ...                 output_prefix="output_prefix")
    >>> all_metrics = cc.validate(model_directory="path/to/model",
    ...                           prepared_input_data_file=f"path/to/output_directory/{output_prefix}_labeled.dataset",
    ...                           id_class_dict_file=f"path/to/output_directory/{output_prefix}_id_class_dict.pkl",
    ...                           output_directory="path/to/output_directory",
    ...                           output_prefix="output_prefix",
    ...                           predict_eval=True)
    >>> cc.plot_conf_mat(conf_mat_dict={"Geneformer": all_metrics["conf_matrix"]},
    ...                  output_directory="path/to/output_directory",
    ...                  output_prefix="output_prefix",
    ...                  custom_class_order=["healthy","disease1","disease2"])
    >>> cc.plot_predictions(predictions_file=f"path/to/output_directory/datestamp_geneformer_cellClassifier_{output_prefix}/ksplit1/predictions.pkl",
    ...                     id_class_dict_file=f"path/to/output_directory/{output_prefix}_id_class_dict.pkl",
    ...                     title="disease",
    ...                     output_directory="path/to/output_directory",
    ...                     output_prefix="output_prefix",
    ...                     custom_class_order=["healthy","disease1","disease2"])
"""

import datetime
import logging
import os
import pickle
import subprocess
from pathlib import Path

import numpy as np
import pandas as pd
import seaborn as sns
from tqdm.auto import tqdm, trange
from transformers import Trainer
from transformers.training_args import TrainingArguments

from . import DataCollatorForCellClassification, DataCollatorForGeneClassification
from . import classifier_utils as cu
from . import evaluation_utils as eu
from . import perturber_utils as pu
from .tokenizer import TOKEN_DICTIONARY_FILE

sns.set()


logger = logging.getLogger(__name__)


class Classifier:
    valid_option_dict = {
        "classifier": {"cell", "gene"},
        "cell_state_dict": {None, dict},
        "gene_class_dict": {None, dict},
        "filter_data": {None, dict},
        "rare_threshold": {int, float},
        "max_ncells": {None, int},
        "max_ncells_per_class": {None, int},
        "training_args": {None, dict},
        "freeze_layers": {int},
        "num_crossval_splits": {0, 1, 5},
        "split_sizes": {None, dict},
        "no_eval": {bool},
        "stratify_splits_col": {None, str},
        "forward_batch_size": {int},
        "token_dictionary_file": {None, str},
        "nproc": {int},
        "ngpu": {int},
    }

    def __init__(
        self,
        classifier=None,
        cell_state_dict=None,
        gene_class_dict=None,
        filter_data=None,
        rare_threshold=0,
        max_ncells=None,
        max_ncells_per_class=None,
        training_args=None,
        ray_config=None,
        freeze_layers=0,
        num_crossval_splits=1,
        split_sizes={"train": 0.8, "valid": 0.1, "test": 0.1},
        stratify_splits_col=None,
        no_eval=False,
        forward_batch_size=100,
        token_dictionary_file=None,
        nproc=4,
        ngpu=1,
    ):
        """
        Initialize Geneformer classifier.

        **Parameters:**

        classifier : {"cell", "gene"}
            | Whether to fine-tune a cell state or gene classifier.
        cell_state_dict : None, dict
            | Cell states to fine-tune model to distinguish.
            | Two-item dictionary with keys: state_key and states
            | state_key: key specifying name of column in .dataset that defines the states to model
            | states: list of values in the state_key column that specifies the states to model
            | Alternatively, instead of a list of states, can specify "all" to use all states in that state key from input data.
            | Of note, if using "all", states will be defined after data is filtered.
            | Must have at least 2 states to model.
            | For example: {"state_key": "disease",
            |               "states": ["nf", "hcm", "dcm"]}
            |               or
            |               {"state_key": "disease",
            |               "states": "all"}
        gene_class_dict : None, dict
            | Gene classes to fine-tune model to distinguish.
            | Dictionary in format: {Gene_label_A: list(geneA1, geneA2, ...),
            |                        Gene_label_B: list(geneB1, geneB2, ...)}
            | Gene values should be Ensembl IDs.
        filter_data : None, dict
            | Default is to fine-tune with all input data.
            | Otherwise, dictionary specifying .dataset column name and list of values to filter by.
        rare_threshold : float
            | Threshold below which rare cell states should be removed.
            | For example, setting to 0.05 will remove cell states representing
            | < 5% of the total cells from the cell state classifier's possible classes.
        max_ncells : None, int
            | Maximum number of cells to use for fine-tuning.
            | Default is to fine-tune with all input data.
        max_ncells_per_class : None, int
            | Maximum number of cells per cell class to use for fine-tuning.
            | Of note, will be applied after max_ncells above.
            | (Only valid for cell classification.)
        training_args : None, dict
            | Training arguments for fine-tuning.
            | If None, defaults will be inferred for 6 layer Geneformer.
            | Otherwise, will use the Hugging Face defaults:
            | https://huggingface.co/docs/transformers/main_classes/trainer#transformers.TrainingArguments
            | Note: Hyperparameter tuning is highly recommended, rather than using defaults.
        ray_config : None, dict
            | Training argument ranges for tuning hyperparameters with Ray.
        freeze_layers : int
            | Number of layers to freeze from fine-tuning.
            | 0: no layers will be frozen; 2: first two layers will be frozen; etc.
        num_crossval_splits : {0, 1, 5}
            | 0: train on all data without splitting
            | 1: split data into train and eval sets by designated split_sizes["valid"]
            | 5: split data into 5 folds of train and eval sets by designated split_sizes["valid"]
        split_sizes : None, dict
            | Dictionary of proportion of data to hold out for train, validation, and test sets
            | {"train": 0.8, "valid": 0.1, "test": 0.1} if intending 80/10/10 train/valid/test split
        stratify_splits_col : None, str
            | Name of column in .dataset to be used for stratified splitting.
            | Proportion of each class in this column will be the same in the splits as in the original dataset.
        no_eval : bool
            | If True, will skip eval step and use all data for training.
            | Otherwise, will perform eval during training.
        forward_batch_size : int
            | Batch size for forward pass (for evaluation, not training).
        token_dictionary_file : None, str
            | Default is to use token dictionary file from Geneformer
            | Otherwise, will load custom gene token dictionary.
        nproc : int
            | Number of CPU processes to use.
        ngpu : int
            | Number of GPUs available.

        """

        self.classifier = classifier
        if self.classifier == "cell":
            self.model_type = "CellClassifier"
        elif self.classifier == "gene":
            self.model_type = "GeneClassifier"
        self.cell_state_dict = cell_state_dict
        self.gene_class_dict = gene_class_dict
        self.filter_data = filter_data
        self.rare_threshold = rare_threshold
        self.max_ncells = max_ncells
        self.max_ncells_per_class = max_ncells_per_class
        self.training_args = training_args
        self.ray_config = ray_config
        self.freeze_layers = freeze_layers
        self.num_crossval_splits = num_crossval_splits
        self.split_sizes = split_sizes
        self.train_size = self.split_sizes["train"]
        self.valid_size = self.split_sizes["valid"]
        self.oos_test_size = self.split_sizes["test"]
        self.eval_size = self.valid_size / (self.train_size + self.valid_size)
        self.stratify_splits_col = stratify_splits_col
        self.no_eval = no_eval
        self.forward_batch_size = forward_batch_size
        self.token_dictionary_file = token_dictionary_file
        self.nproc = nproc
        self.ngpu = ngpu

        if self.training_args is None:
            logger.warning(
                "Hyperparameter tuning is highly recommended for optimal results. "
                "No training_args provided; using default hyperparameters."
            )

        self.validate_options()

        if self.filter_data is None:
            self.filter_data = dict()

        if self.classifier == "cell":
            if self.cell_state_dict["states"] != "all":
                self.filter_data[
                    self.cell_state_dict["state_key"]
                ] = self.cell_state_dict["states"]

        # load token dictionary (Ensembl IDs:token)
        if self.token_dictionary_file is None:
            self.token_dictionary_file = TOKEN_DICTIONARY_FILE
        with open(token_dictionary_file, "rb") as f:
            self.gene_token_dict = pickle.load(f)

        self.token_gene_dict = {v: k for k, v in self.gene_token_dict.items()}

        # filter genes for gene classification for those in token dictionary
        if self.classifier == "gene":
            all_gene_class_values = set(pu.flatten_list(self.gene_class_dict.values()))
            missing_genes = [
                gene
                for gene in all_gene_class_values
                if gene not in self.gene_token_dict.keys()
            ]
            if len(missing_genes) == len(all_gene_class_values):
                logger.error(
                    "None of the provided genes to classify are in token dictionary."
                )
                raise
            elif len(missing_genes) > 0:
                logger.warning(
                    f"Genes to classify {missing_genes} are not in token dictionary."
                )
            self.gene_class_dict = {
                k: set([self.gene_token_dict.get(gene) for gene in v])
                for k, v in self.gene_class_dict.items()
            }
            empty_classes = []
            for k, v in self.gene_class_dict.items():
                if len(v) == 0:
                    empty_classes += [k]
            if len(empty_classes) > 0:
                logger.error(
                    f"Class(es) {empty_classes} did not contain any genes in the token dictionary."
                )
                raise

    def validate_options(self):
        # confirm arguments are within valid options and compatible with each other
        for attr_name, valid_options in self.valid_option_dict.items():
            attr_value = self.__dict__[attr_name]
            if not isinstance(attr_value, (list, dict)):
                if attr_value in valid_options:
                    continue
            valid_type = False
            for option in valid_options:
                if (option in [int, float, list, dict, bool, str]) and isinstance(
                    attr_value, option
                ):
                    valid_type = True
                    break
            if valid_type:
                continue
            logger.error(
                f"Invalid option for {attr_name}. "
                f"Valid options for {attr_name}: {valid_options}"
            )
            raise

        if self.filter_data is not None:
            for key, value in self.filter_data.items():
                if not isinstance(value, list):
                    self.filter_data[key] = [value]
                    logger.warning(
                        "Values in filter_data dict must be lists. "
                        f"Changing {key} value to list ([{value}])."
                    )

        if self.classifier == "cell":
            if set(self.cell_state_dict.keys()) != set(["state_key", "states"]):
                logger.error(
                    "Invalid keys for cell_state_dict. "
                    "The cell_state_dict should have only 2 keys: state_key and states"
                )
                raise

            if self.cell_state_dict["states"] != "all":
                if not isinstance(self.cell_state_dict["states"], list):
                    logger.error(
                        "States in cell_state_dict should be list of states to model."
                    )
                    raise
                if len(self.cell_state_dict["states"]) < 2:
                    logger.error(
                        "States in cell_state_dict should contain at least 2 states to classify."
                    )
                    raise

        if self.classifier == "gene":
            if len(self.gene_class_dict.keys()) < 2:
                logger.error(
                    "Gene_class_dict should contain at least 2 gene classes to classify."
                )
                raise
        if sum(self.split_sizes.values()) != 1:
            logger.error("Train, validation, and test proportions should sum to 1.")
            raise

    def prepare_data(
        self,
        input_data_file,
        output_directory,
        output_prefix,
        split_id_dict=None,
        test_size=None,
        attr_to_split=None,
        attr_to_balance=None,
        max_trials=100,
        pval_threshold=0.1,
    ):
        """
        Prepare data for cell state or gene classification.

        **Parameters**

        input_data_file : Path
            | Path to directory containing .dataset input
        output_directory : Path
            | Path to directory where prepared data will be saved
        output_prefix : str
            | Prefix for output file
        split_id_dict : None, dict
            | Dictionary of IDs for train and test splits
            | Three-item dictionary with keys: attr_key, train, test
            | attr_key: key specifying name of column in .dataset that contains the IDs for the data splits
            | train: list of IDs in the attr_key column to include in the train split
            | test: list of IDs in the attr_key column to include in the test split
            | For example: {"attr_key": "individual",
            |               "train": ["patient1", "patient2", "patient3", "patient4"],
            |               "test": ["patient5", "patient6"]}
        test_size : None, float
            | Proportion of data to be saved separately and held out for test set
            | (e.g. 0.2 if intending hold out 20%)
            | If None, will inherit from split_sizes["test"] from Classifier
            | The training set will be further split to train / validation in self.validate
            | Note: only available for CellClassifiers
        attr_to_split : None, str
            | Key for attribute on which to split data while balancing potential confounders
            | e.g. "patient_id" for splitting by patient while balancing other characteristics
            | Note: only available for CellClassifiers
        attr_to_balance : None, list
            | List of attribute keys on which to balance data while splitting on attr_to_split
            | e.g. ["age", "sex"] for balancing these characteristics while splitting by patient
            | Note: only available for CellClassifiers
        max_trials : None, int
            | Maximum number of trials of random splitting to try to achieve balanced other attributes
            | If no split is found without significant (p<0.05) differences in other attributes, will select best
            | Note: only available for CellClassifiers
        pval_threshold : None, float
            | P-value threshold to use for attribute balancing across splits
            | E.g. if set to 0.1, will accept trial if p >= 0.1 for all attributes in attr_to_balance
        """

        if test_size is None:
            test_size = self.oos_test_size

        # prepare data and labels for classification
        data = pu.load_and_filter(self.filter_data, self.nproc, input_data_file)

        if self.classifier == "cell":
            if "label" in data.features:
                logger.error(
                    "Column name 'label' must be reserved for class IDs. Please rename column."
                )
                raise
        elif self.classifier == "gene":
            if "labels" in data.features:
                logger.error(
                    "Column name 'labels' must be reserved for class IDs. Please rename column."
                )
                raise

        if self.classifier == "cell":
            # remove cell states representing < rare_threshold of cells
            data = cu.remove_rare(
                data, self.rare_threshold, self.cell_state_dict["state_key"], self.nproc
            )
            # downsample max cells and max per class
            data = cu.downsample_and_shuffle(
                data, self.max_ncells, self.max_ncells_per_class, self.cell_state_dict
            )
            # rename cell state column to "label"
            data = cu.rename_cols(data, self.cell_state_dict["state_key"])

        # convert classes to numerical labels and save as id_class_dict
        # of note, will label all genes in gene_class_dict
        # if (cross-)validating, genes will be relabeled in column "labels" for each split
        # at the time of training with Classifier.validate
        data, id_class_dict = cu.label_classes(
            self.classifier, data, self.gene_class_dict, self.nproc
        )

        # save id_class_dict for future reference
        id_class_output_path = (
            Path(output_directory) / f"{output_prefix}_id_class_dict"
        ).with_suffix(".pkl")
        with open(id_class_output_path, "wb") as f:
            pickle.dump(id_class_dict, f)

        if split_id_dict is not None:
            data_dict = dict()
            data_dict["train"] = pu.filter_by_dict(
                data, {split_id_dict["attr_key"]: split_id_dict["train"]}, self.nproc
            )
            data_dict["test"] = pu.filter_by_dict(
                data, {split_id_dict["attr_key"]: split_id_dict["test"]}, self.nproc
            )
            train_data_output_path = (
                Path(output_directory) / f"{output_prefix}_labeled_train"
            ).with_suffix(".dataset")
            test_data_output_path = (
                Path(output_directory) / f"{output_prefix}_labeled_test"
            ).with_suffix(".dataset")
            data_dict["train"].save_to_disk(train_data_output_path)
            data_dict["test"].save_to_disk(test_data_output_path)
        elif (test_size is not None) and (self.classifier == "cell"):
            if 1 > test_size > 0:
                if attr_to_split is None:
                    data_dict = data.train_test_split(
                        test_size=test_size,
                        stratify_by_column=self.stratify_splits_col,
                        seed=42,
                    )
                    train_data_output_path = (
                        Path(output_directory) / f"{output_prefix}_labeled_train"
                    ).with_suffix(".dataset")
                    test_data_output_path = (
                        Path(output_directory) / f"{output_prefix}_labeled_test"
                    ).with_suffix(".dataset")
                    data_dict["train"].save_to_disk(train_data_output_path)
                    data_dict["test"].save_to_disk(test_data_output_path)
                else:
                    data_dict, balance_df = cu.balance_attr_splits(
                        data,
                        attr_to_split,
                        attr_to_balance,
                        test_size,
                        max_trials,
                        pval_threshold,
                        self.cell_state_dict["state_key"],
                        self.nproc,
                    )
                    balance_df.to_csv(
                        f"{output_directory}/{output_prefix}_train_test_balance_df.csv"
                    )
                    train_data_output_path = (
                        Path(output_directory) / f"{output_prefix}_labeled_train"
                    ).with_suffix(".dataset")
                    test_data_output_path = (
                        Path(output_directory) / f"{output_prefix}_labeled_test"
                    ).with_suffix(".dataset")
                    data_dict["train"].save_to_disk(train_data_output_path)
                    data_dict["test"].save_to_disk(test_data_output_path)
            else:
                data_output_path = (
                    Path(output_directory) / f"{output_prefix}_labeled"
                ).with_suffix(".dataset")
                data.save_to_disk(data_output_path)
                print(data_output_path)
        else:
            data_output_path = (
                Path(output_directory) / f"{output_prefix}_labeled"
            ).with_suffix(".dataset")
            data.save_to_disk(data_output_path)

    def train_all_data(
        self,
        model_directory,
        prepared_input_data_file,
        id_class_dict_file,
        output_directory,
        output_prefix,
        save_eval_output=True,
    ):
        """
        Train cell state or gene classifier using all data.

        **Parameters**

        model_directory : Path
            | Path to directory containing model
        prepared_input_data_file : Path
            | Path to directory containing _labeled.dataset previously prepared by Classifier.prepare_data
        id_class_dict_file : Path
            | Path to _id_class_dict.pkl previously prepared by Classifier.prepare_data
            | (dictionary of format: numerical IDs: class_labels)
        output_directory : Path
            | Path to directory where model and eval data will be saved
        output_prefix : str
            | Prefix for output files
        save_eval_output : bool
            | Whether to save cross-fold eval output
            | Saves as pickle file of dictionary of eval metrics

        **Output**

        Returns trainer after fine-tuning with all data.

        """

        ##### Load data and prepare output directory #####
        # load numerical id to class dictionary (id:class)
        with open(id_class_dict_file, "rb") as f:
            id_class_dict = pickle.load(f)
        class_id_dict = {v: k for k, v in id_class_dict.items()}

        # load previously filtered and prepared data
        data = pu.load_and_filter(None, self.nproc, prepared_input_data_file)
        data = data.shuffle(seed=42)  # reshuffle in case users provide unshuffled data

        # define output directory path
        current_date = datetime.datetime.now()
        datestamp = f"{str(current_date.year)[-2:]}{current_date.month:02d}{current_date.day:02d}"
        if output_directory[-1:] != "/":  # add slash for dir if not present
            output_directory = output_directory + "/"
        output_dir = f"{output_directory}{datestamp}_geneformer_{self.classifier}Classifier_{output_prefix}/"
        subprocess.call(f"mkdir {output_dir}", shell=True)

        # get number of classes for classifier
        num_classes = cu.get_num_classes(id_class_dict)

        if self.classifier == "gene":
            targets = pu.flatten_list(self.gene_class_dict.values())
            labels = pu.flatten_list(
                [
                    [class_id_dict[label]] * len(targets)
                    for label, targets in self.gene_class_dict.items()
                ]
            )
            assert len(targets) == len(labels)
            data = cu.prep_gene_classifier_all_data(
                data, targets, labels, self.max_ncells, self.nproc
            )

        trainer = self.train_classifier(
            model_directory, num_classes, data, None, output_dir
        )

        return trainer

    def validate(
        self,
        model_directory,
        prepared_input_data_file,
        id_class_dict_file,
        output_directory,
        output_prefix,
        split_id_dict=None,
        attr_to_split=None,
        attr_to_balance=None,
        max_trials=100,
        pval_threshold=0.1,
        save_eval_output=True,
        predict_eval=True,
        predict_trainer=False,
        n_hyperopt_trials=0,
    ):
        """
        (Cross-)validate cell state or gene classifier.

        **Parameters**

        model_directory : Path
            | Path to directory containing model
        prepared_input_data_file : Path
            | Path to directory containing _labeled.dataset previously prepared by Classifier.prepare_data
        id_class_dict_file : Path
            | Path to _id_class_dict.pkl previously prepared by Classifier.prepare_data
            | (dictionary of format: numerical IDs: class_labels)
        output_directory : Path
            | Path to directory where model and eval data will be saved
        output_prefix : str
            | Prefix for output files
        split_id_dict : None, dict
            | Dictionary of IDs for train and eval splits
            | Three-item dictionary with keys: attr_key, train, eval
            | attr_key: key specifying name of column in .dataset that contains the IDs for the data splits
            | train: list of IDs in the attr_key column to include in the train split
            | eval: list of IDs in the attr_key column to include in the eval split
            | For example: {"attr_key": "individual",
            |               "train": ["patient1", "patient2", "patient3", "patient4"],
            |               "eval": ["patient5", "patient6"]}
            | Note: only available for CellClassifiers with 1-fold split (self.classifier="cell"; self.num_crossval_splits=1)
        attr_to_split : None, str
            | Key for attribute on which to split data while balancing potential confounders
            | e.g. "patient_id" for splitting by patient while balancing other characteristics
            | Note: only available for CellClassifiers with 1-fold split (self.classifier="cell"; self.num_crossval_splits=1)
        attr_to_balance : None, list
            | List of attribute keys on which to balance data while splitting on attr_to_split
            | e.g. ["age", "sex"] for balancing these characteristics while splitting by patient
        max_trials : None, int
            | Maximum number of trials of random splitting to try to achieve balanced other attribute
            | If no split is found without significant (p < pval_threshold) differences in other attributes, will select best
        pval_threshold : None, float
            | P-value threshold to use for attribute balancing across splits
            | E.g. if set to 0.1, will accept trial if p >= 0.1 for all attributes in attr_to_balance
        save_eval_output : bool
            | Whether to save cross-fold eval output
            | Saves as pickle file of dictionary of eval metrics
        predict_eval : bool
            | Whether or not to save eval predictions
            | Saves as a pickle file of self.evaluate predictions
        predict_trainer : bool
            | Whether or not to save eval predictions from trainer
            | Saves as a pickle file of trainer predictions
        n_hyperopt_trials : int
            | Number of trials to run for hyperparameter optimization
            | If 0, will not optimize hyperparameters
        """
        if self.num_crossval_splits == 0:
            logger.error("num_crossval_splits must be 1 or 5 to validate.")
            raise

        # ensure number of genes in each class is > 5 if validating model
        if self.classifier == "gene":
            insuff_classes = [k for k, v in self.gene_class_dict.items() if len(v) < 5]
            if (self.num_crossval_splits > 0) and (len(insuff_classes) > 0):
                logger.error(
                    f"Insufficient # of members in class(es) {insuff_classes} to (cross-)validate."
                )
                raise

        ##### Load data and prepare output directory #####
        # load numerical id to class dictionary (id:class)
        with open(id_class_dict_file, "rb") as f:
            id_class_dict = pickle.load(f)
        class_id_dict = {v: k for k, v in id_class_dict.items()}

        # load previously filtered and prepared data
        data = pu.load_and_filter(None, self.nproc, prepared_input_data_file)
        data = data.shuffle(seed=42)  # reshuffle in case users provide unshuffled data

        # define output directory path
        current_date = datetime.datetime.now()
        datestamp = f"{str(current_date.year)[-2:]}{current_date.month:02d}{current_date.day:02d}"
        if output_directory[-1:] != "/":  # add slash for dir if not present
            output_directory = output_directory + "/"
        output_dir = f"{output_directory}{datestamp}_geneformer_{self.classifier}Classifier_{output_prefix}/"
        subprocess.call(f"mkdir {output_dir}", shell=True)

        # get number of classes for classifier
        num_classes = cu.get_num_classes(id_class_dict)

        ##### (Cross-)validate the model #####
        results = []
        all_conf_mat = np.zeros((num_classes, num_classes))
        iteration_num = 1
        if self.classifier == "cell":
            for i in trange(self.num_crossval_splits):
                print(
                    f"****** Validation split: {iteration_num}/{self.num_crossval_splits} ******\n"
                )
                ksplit_output_dir = os.path.join(output_dir, f"ksplit{iteration_num}")
                if self.num_crossval_splits == 1:
                    # single 1-eval_size:eval_size split
                    if split_id_dict is not None:
                        data_dict = dict()
                        data_dict["train"] = pu.filter_by_dict(
                            data,
                            {split_id_dict["attr_key"]: split_id_dict["train"]},
                            self.nproc,
                        )
                        data_dict["test"] = pu.filter_by_dict(
                            data,
                            {split_id_dict["attr_key"]: split_id_dict["eval"]},
                            self.nproc,
                        )
                    elif attr_to_split is not None:
                        data_dict, balance_df = cu.balance_attr_splits(
                            data,
                            attr_to_split,
                            attr_to_balance,
                            self.eval_size,
                            max_trials,
                            pval_threshold,
                            self.cell_state_dict["state_key"],
                            self.nproc,
                        )

                        balance_df.to_csv(
                            f"{output_dir}/{output_prefix}_train_valid_balance_df.csv"
                        )
                    else:
                        data_dict = data.train_test_split(
                            test_size=self.eval_size,
                            stratify_by_column=self.stratify_splits_col,
                            seed=42,
                        )
                    train_data = data_dict["train"]
                    eval_data = data_dict["test"]
                else:
                    # 5-fold cross-validate
                    num_cells = len(data)
                    fifth_cells = num_cells * 0.2
                    num_eval = min((self.eval_size * num_cells), fifth_cells)
                    start = i * fifth_cells
                    end = start + num_eval
                    eval_indices = [j for j in range(start, end)]
                    train_indices = [
                        j for j in range(num_cells) if j not in eval_indices
                    ]
                    eval_data = data.select(eval_indices)
                    train_data = data.select(train_indices)
                if n_hyperopt_trials == 0:
                    trainer = self.train_classifier(
                        model_directory,
                        num_classes,
                        train_data,
                        eval_data,
                        ksplit_output_dir,
                        predict_trainer,
                    )
                else:
                    trainer = self.hyperopt_classifier(
                        model_directory,
                        num_classes,
                        train_data,
                        eval_data,
                        ksplit_output_dir,
                        n_trials=n_hyperopt_trials,
                    )
                    if iteration_num == self.num_crossval_splits:
                        return
                    else:
                        iteration_num = iteration_num + 1
                        continue

                result = self.evaluate_model(
                    trainer.model,
                    num_classes,
                    id_class_dict,
                    eval_data,
                    predict_eval,
                    ksplit_output_dir,
                    output_prefix,
                )
                results += [result]
                all_conf_mat = all_conf_mat + result["conf_mat"]
                iteration_num = iteration_num + 1

        elif self.classifier == "gene":
            # set up (cross-)validation splits
            targets = pu.flatten_list(self.gene_class_dict.values())
            labels = pu.flatten_list(
                [
                    [class_id_dict[label]] * len(targets)
                    for label, targets in self.gene_class_dict.items()
                ]
            )
            assert len(targets) == len(labels)
            n_splits = int(1 / (1 - self.train_size))
            skf = cu.StratifiedKFold3(n_splits=n_splits, random_state=0, shuffle=True)
            # (Cross-)validate
            test_ratio = self.oos_test_size / (self.eval_size + self.oos_test_size)
            for train_index, eval_index, test_index in tqdm(
                skf.split(targets, labels, test_ratio)
            ):
                print(
                    f"****** Validation split: {iteration_num}/{self.num_crossval_splits} ******\n"
                )
                ksplit_output_dir = os.path.join(output_dir, f"ksplit{iteration_num}")
                # filter data for examples containing classes for this split
                # subsample to max_ncells and relabel data in column "labels"
                train_data, eval_data = cu.prep_gene_classifier_train_eval_split(
                    data,
                    targets,
                    labels,
                    train_index,
                    eval_index,
                    self.max_ncells,
                    iteration_num,
                    self.nproc,
                )

                if self.oos_test_size > 0:
                    test_data = cu.prep_gene_classifier_split(
                        data,
                        targets,
                        labels,
                        test_index,
                        "test",
                        self.max_ncells,
                        iteration_num,
                        self.nproc,
                    )

                if n_hyperopt_trials == 0:
                    trainer = self.train_classifier(
                        model_directory,
                        num_classes,
                        train_data,
                        eval_data,
                        ksplit_output_dir,
                        predict_trainer,
                    )
                    result = self.evaluate_model(
                        trainer.model,
                        num_classes,
                        id_class_dict,
                        eval_data,
                        predict_eval,
                        ksplit_output_dir,
                        output_prefix,
                    )
                else:
                    trainer = self.hyperopt_classifier(
                        model_directory,
                        num_classes,
                        train_data,
                        eval_data,
                        ksplit_output_dir,
                        n_trials=n_hyperopt_trials,
                    )

                    model = cu.load_best_model(
                        ksplit_output_dir, self.model_type, num_classes
                    )

                    if self.oos_test_size > 0:
                        result = self.evaluate_model(
                            model,
                            num_classes,
                            id_class_dict,
                            test_data,
                            predict_eval,
                            ksplit_output_dir,
                            output_prefix,
                        )
                    else:
                        if iteration_num == self.num_crossval_splits:
                            return
                        else:
                            iteration_num = iteration_num + 1
                            continue
                results += [result]
                all_conf_mat = all_conf_mat + result["conf_mat"]
                # break after 1 or 5 splits, each with train/eval proportions dictated by eval_size
                if iteration_num == self.num_crossval_splits:
                    break
                iteration_num = iteration_num + 1

        all_conf_mat_df = pd.DataFrame(
            all_conf_mat, columns=id_class_dict.values(), index=id_class_dict.values()
        )
        all_metrics = {
            "conf_matrix": all_conf_mat_df,
            "macro_f1": [result["macro_f1"] for result in results],
            "acc": [result["acc"] for result in results],
        }
        all_roc_metrics = None  # roc metrics not reported for multiclass
        if num_classes == 2:
            mean_fpr = np.linspace(0, 1, 100)
            all_tpr = [result["roc_metrics"]["interp_tpr"] for result in results]
            all_roc_auc = [result["roc_metrics"]["auc"] for result in results]
            all_tpr_wt = [result["roc_metrics"]["tpr_wt"] for result in results]
            mean_tpr, roc_auc, roc_auc_sd = eu.get_cross_valid_roc_metrics(
                all_tpr, all_roc_auc, all_tpr_wt
            )
            all_roc_metrics = {
                "mean_tpr": mean_tpr,
                "mean_fpr": mean_fpr,
                "all_roc_auc": all_roc_auc,
                "roc_auc": roc_auc,
                "roc_auc_sd": roc_auc_sd,
            }
        all_metrics["all_roc_metrics"] = all_roc_metrics
        if save_eval_output is True:
            eval_metrics_output_path = (
                Path(output_dir) / f"{output_prefix}_eval_metrics_dict"
            ).with_suffix(".pkl")
            with open(eval_metrics_output_path, "wb") as f:
                pickle.dump(all_metrics, f)

        return all_metrics

    def hyperopt_classifier(
        self,
        model_directory,
        num_classes,
        train_data,
        eval_data,
        output_directory,
        n_trials=100,
    ):
        """
        Fine-tune model for cell state or gene classification.

        **Parameters**

        model_directory : Path
            | Path to directory containing model
        num_classes : int
            | Number of classes for classifier
        train_data : Dataset
            | Loaded training .dataset input
            | For cell classifier, labels in column "label".
            | For gene classifier, labels in column "labels".
        eval_data : None, Dataset
            | (Optional) Loaded evaluation .dataset input
            | For cell classifier, labels in column "label".
            | For gene classifier, labels in column "labels".
        output_directory : Path
            | Path to directory where fine-tuned model will be saved
        n_trials : int
            | Number of trials to run for hyperparameter optimization
        """

        # initiate runtime environment for raytune
        import ray
        from ray import tune
        from ray.tune.search.hyperopt import HyperOptSearch

        ray.shutdown()  # engage new ray session
        ray.init()

        ##### Validate and prepare data #####
        train_data, eval_data = cu.validate_and_clean_cols(
            train_data, eval_data, self.classifier
        )

        if (self.no_eval is True) and (eval_data is not None):
            logger.warning(
                "no_eval set to True; hyperparameter optimization requires eval, proceeding with eval"
            )

        # ensure not overwriting previously saved model
        saved_model_test = os.path.join(output_directory, "pytorch_model.bin")
        if os.path.isfile(saved_model_test) is True:
            logger.error("Model already saved to this designated output directory.")
            raise
        # make output directory
        subprocess.call(f"mkdir {output_directory}", shell=True)

        ##### Load model and training args #####
        model = pu.load_model(self.model_type, num_classes, model_directory, "train")
        def_training_args, def_freeze_layers = cu.get_default_train_args(
            model, self.classifier, train_data, output_directory
        )
        del model

        if self.training_args is not None:
            def_training_args.update(self.training_args)
        logging_steps = round(
            len(train_data) / def_training_args["per_device_train_batch_size"] / 10
        )
        def_training_args["logging_steps"] = logging_steps
        def_training_args["output_dir"] = output_directory
        if eval_data is None:
            def_training_args["evaluation_strategy"] = "no"
            def_training_args["load_best_model_at_end"] = False
        def_training_args.update(
            {"save_strategy": "epoch", "save_total_limit": 1}
        )  # only save last model for each run
        training_args_init = TrainingArguments(**def_training_args)

        ##### Fine-tune the model #####
        # define the data collator
        if self.classifier == "cell":
            data_collator = DataCollatorForCellClassification()
        elif self.classifier == "gene":
            data_collator = DataCollatorForGeneClassification()

        # define function to initiate model
        def model_init():
            model = pu.load_model(
                self.model_type, num_classes, model_directory, "train"
            )

            if self.freeze_layers is not None:
                def_freeze_layers = self.freeze_layers

            if def_freeze_layers > 0:
                modules_to_freeze = model.bert.encoder.layer[:def_freeze_layers]
                for module in modules_to_freeze:
                    for param in module.parameters():
                        param.requires_grad = False

            model = model.to("cuda:0")
            return model

        # create the trainer
        trainer = Trainer(
            model_init=model_init,
            args=training_args_init,
            data_collator=data_collator,
            train_dataset=train_data,
            eval_dataset=eval_data,
            compute_metrics=cu.compute_metrics,
        )

        # specify raytune hyperparameter search space
        if self.ray_config is None:
            logger.warning(
                "No ray_config provided. Proceeding with default, but ranges may need adjustment depending on model."
            )
            def_ray_config = {
                "num_train_epochs": tune.choice([1]),
                "learning_rate": tune.loguniform(1e-6, 1e-3),
                "weight_decay": tune.uniform(0.0, 0.3),
                "lr_scheduler_type": tune.choice(["linear", "cosine", "polynomial"]),
                "warmup_steps": tune.uniform(100, 2000),
                "seed": tune.uniform(0, 100),
                "per_device_train_batch_size": tune.choice(
                    [def_training_args["per_device_train_batch_size"]]
                ),
            }

        hyperopt_search = HyperOptSearch(metric="eval_macro_f1", mode="max")

        # optimize hyperparameters
        trainer.hyperparameter_search(
            direction="maximize",
            backend="ray",
            resources_per_trial={"cpu": int(self.nproc / self.ngpu), "gpu": 1},
            hp_space=lambda _: def_ray_config
            if self.ray_config is None
            else self.ray_config,
            search_alg=hyperopt_search,
            n_trials=n_trials,  # number of trials
            progress_reporter=tune.CLIReporter(
                max_report_frequency=600,
                sort_by_metric=True,
                max_progress_rows=n_trials,
                mode="max",
                metric="eval_macro_f1",
                metric_columns=["loss", "eval_loss", "eval_accuracy", "eval_macro_f1"],
            ),
            local_dir=output_directory,
        )

        return trainer

    def train_classifier(
        self,
        model_directory,
        num_classes,
        train_data,
        eval_data,
        output_directory,
        predict=False,
    ):
        """
        Fine-tune model for cell state or gene classification.

        **Parameters**

        model_directory : Path
            | Path to directory containing model
        num_classes : int
            | Number of classes for classifier
        train_data : Dataset
            | Loaded training .dataset input
            | For cell classifier, labels in column "label".
            | For gene classifier, labels in column "labels".
        eval_data : None, Dataset
            | (Optional) Loaded evaluation .dataset input
            | For cell classifier, labels in column "label".
            | For gene classifier, labels in column "labels".
        output_directory : Path
            | Path to directory where fine-tuned model will be saved
        predict : bool
            | Whether or not to save eval predictions from trainer
        """

        ##### Validate and prepare data #####
        train_data, eval_data = cu.validate_and_clean_cols(
            train_data, eval_data, self.classifier
        )

        if (self.no_eval is True) and (eval_data is not None):
            logger.warning(
                "no_eval set to True; model will be trained without evaluation."
            )
            eval_data = None

        if (self.classifier == "gene") and (predict is True):
            logger.warning(
                "Predictions during training not currently available for gene classifiers; setting predict to False."
            )
            predict = False

        # ensure not overwriting previously saved model
        saved_model_test = os.path.join(output_directory, "pytorch_model.bin")
        if os.path.isfile(saved_model_test) is True:
            logger.error("Model already saved to this designated output directory.")
            raise
        # make output directory
        subprocess.call(f"mkdir {output_directory}", shell=True)

        ##### Load model and training args #####
        model = pu.load_model(self.model_type, num_classes, model_directory, "train")

        def_training_args, def_freeze_layers = cu.get_default_train_args(
            model, self.classifier, train_data, output_directory
        )

        if self.training_args is not None:
            def_training_args.update(self.training_args)
        logging_steps = round(
            len(train_data) / def_training_args["per_device_train_batch_size"] / 10
        )
        def_training_args["logging_steps"] = logging_steps
        def_training_args["output_dir"] = output_directory
        if eval_data is None:
            def_training_args["evaluation_strategy"] = "no"
            def_training_args["load_best_model_at_end"] = False
        training_args_init = TrainingArguments(**def_training_args)

        if self.freeze_layers is not None:
            def_freeze_layers = self.freeze_layers

        if def_freeze_layers > 0:
            modules_to_freeze = model.bert.encoder.layer[:def_freeze_layers]
            for module in modules_to_freeze:
                for param in module.parameters():
                    param.requires_grad = False

        ##### Fine-tune the model #####
        # define the data collator
        if self.classifier == "cell":
            data_collator = DataCollatorForCellClassification()
        elif self.classifier == "gene":
            data_collator = DataCollatorForGeneClassification()

        # create the trainer
        trainer = Trainer(
            model=model,
            args=training_args_init,
            data_collator=data_collator,
            train_dataset=train_data,
            eval_dataset=eval_data,
            compute_metrics=cu.compute_metrics,
        )

        # train the classifier
        trainer.train()
        trainer.save_model(output_directory)
        if predict is True:
            # make eval predictions and save predictions and metrics
            predictions = trainer.predict(eval_data)
            prediction_output_path = f"{output_directory}/predictions.pkl"
            with open(prediction_output_path, "wb") as f:
                pickle.dump(predictions, f)
            trainer.save_metrics("eval", predictions.metrics)
        return trainer

    def evaluate_model(
        self,
        model,
        num_classes,
        id_class_dict,
        eval_data,
        predict=False,
        output_directory=None,
        output_prefix=None,
    ):
        """
        Evaluate the fine-tuned model.

        **Parameters**

        model : nn.Module
            | Loaded fine-tuned model (e.g. trainer.model)
        num_classes : int
            | Number of classes for classifier
        id_class_dict : dict
            | Loaded _id_class_dict.pkl previously prepared by Classifier.prepare_data
            | (dictionary of format: numerical IDs: class_labels)
        eval_data : Dataset
            | Loaded evaluation .dataset input
        predict : bool
            | Whether or not to save eval predictions
        output_directory : Path
            | Path to directory where eval data will be saved
        output_prefix : str
            | Prefix for output files
        """

        ##### Evaluate the model #####
        labels = id_class_dict.keys()
        y_pred, y_true, logits_list = eu.classifier_predict(
            model, self.classifier, eval_data, self.forward_batch_size
        )
        conf_mat, macro_f1, acc, roc_metrics = eu.get_metrics(
            y_pred, y_true, logits_list, num_classes, labels
        )
        if predict is True:
            pred_dict = {
                "pred_ids": y_pred,
                "label_ids": y_true,
                "predictions": logits_list,
            }
            pred_dict_output_path = (
                Path(output_directory) / f"{output_prefix}_pred_dict"
            ).with_suffix(".pkl")
            with open(pred_dict_output_path, "wb") as f:
                pickle.dump(pred_dict, f)
        return {
            "conf_mat": conf_mat,
            "macro_f1": macro_f1,
            "acc": acc,
            "roc_metrics": roc_metrics,
        }

    def evaluate_saved_model(
        self,
        model_directory,
        id_class_dict_file,
        test_data_file,
        output_directory,
        output_prefix,
        predict=True,
    ):
        """
        Evaluate the fine-tuned model.

        **Parameters**

        model_directory : Path
            | Path to directory containing model
        id_class_dict_file : Path
            | Path to _id_class_dict.pkl previously prepared by Classifier.prepare_data
            | (dictionary of format: numerical IDs: class_labels)
        test_data_file : Path
            | Path to directory containing test .dataset
        output_directory : Path
            | Path to directory where eval data will be saved
        output_prefix : str
            | Prefix for output files
        predict : bool
            | Whether or not to save eval predictions
        """

        # load numerical id to class dictionary (id:class)
        with open(id_class_dict_file, "rb") as f:
            id_class_dict = pickle.load(f)

        # get number of classes for classifier
        num_classes = cu.get_num_classes(id_class_dict)

        # load previously filtered and prepared data
        test_data = pu.load_and_filter(None, self.nproc, test_data_file)

        # load previously fine-tuned model
        model = pu.load_model(self.model_type, num_classes, model_directory, "eval")

        # evaluate the model
        result = self.evaluate_model(
            model,
            num_classes,
            id_class_dict,
            test_data,
            predict=predict,
            output_directory=output_directory,
            output_prefix=output_prefix,
        )

        all_conf_mat_df = pd.DataFrame(
            result["conf_mat"],
            columns=id_class_dict.values(),
            index=id_class_dict.values(),
        )
        all_metrics = {
            "conf_matrix": all_conf_mat_df,
            "macro_f1": result["macro_f1"],
            "acc": result["acc"],
        }
        all_roc_metrics = None  # roc metrics not reported for multiclass

        if num_classes == 2:
            mean_fpr = np.linspace(0, 1, 100)
            mean_tpr = result["roc_metrics"]["interp_tpr"]
            all_roc_auc = result["roc_metrics"]["auc"]
            all_roc_metrics = {
                "mean_tpr": mean_tpr,
                "mean_fpr": mean_fpr,
                "all_roc_auc": all_roc_auc,
            }
        all_metrics["all_roc_metrics"] = all_roc_metrics
        test_metrics_output_path = (
            Path(output_directory) / f"{output_prefix}_test_metrics_dict"
        ).with_suffix(".pkl")
        with open(test_metrics_output_path, "wb") as f:
            pickle.dump(all_metrics, f)

        return all_metrics

    def plot_conf_mat(
        self,
        conf_mat_dict,
        output_directory,
        output_prefix,
        custom_class_order=None,
    ):
        """
        Plot confusion matrix results of evaluating the fine-tuned model.

        **Parameters**

        conf_mat_dict : dict
            | Dictionary of model_name : confusion_matrix_DataFrame
            | (all_metrics["conf_matrix"] from self.validate)
        output_directory : Path
            | Path to directory where plots will be saved
        output_prefix : str
            | Prefix for output file
        custom_class_order : None, list
            | List of classes in custom order for plots.
            | Same order will be used for all models.
        """

        for model_name in conf_mat_dict.keys():
            eu.plot_confusion_matrix(
                conf_mat_dict[model_name],
                model_name,
                output_directory,
                output_prefix,
                custom_class_order,
            )

    def plot_roc(
        self,
        roc_metric_dict,
        model_style_dict,
        title,
        output_directory,
        output_prefix,
    ):
        """
        Plot ROC curve results of evaluating the fine-tuned model.

        **Parameters**

        roc_metric_dict : dict
            | Dictionary of model_name : roc_metrics
            | (all_metrics["all_roc_metrics"] from self.validate)
        model_style_dict : dict[dict]
            | Dictionary of model_name : dictionary of style_attribute : style
            | where style includes color and linestyle
            | e.g. {'Model_A': {'color': 'black', 'linestyle': '-'}, 'Model_B': ...}
        title : str
            | Title of plot (e.g. 'Dosage-sensitive vs -insensitive factors')
        output_directory : Path
            | Path to directory where plots will be saved
        output_prefix : str
            | Prefix for output file
        """

        eu.plot_ROC(
            roc_metric_dict, model_style_dict, title, output_directory, output_prefix
        )

    def plot_predictions(
        self,
        predictions_file,
        id_class_dict_file,
        title,
        output_directory,
        output_prefix,
        custom_class_order=None,
        kwargs_dict=None,
    ):
        """
        Plot prediction results of evaluating the fine-tuned model.

        **Parameters**

        predictions_file : path
            | Path of model predictions output to plot
            | (saved output from self.validate if predict_eval=True)
            | (or saved output from self.evaluate_saved_model)
        id_class_dict_file : Path
            | Path to _id_class_dict.pkl previously prepared by Classifier.prepare_data
            | (dictionary of format: numerical IDs: class_labels)
        title : str
            | Title for legend containing class labels.
        output_directory : Path
            | Path to directory where plots will be saved
        output_prefix : str
            | Prefix for output file
        custom_class_order : None, list
            | List of classes in custom order for plots.
            | Same order will be used for all models.
        kwargs_dict : None, dict
            | Dictionary of kwargs to pass to plotting function.
        """
        # load predictions
        with open(predictions_file, "rb") as f:
            predictions = pickle.load(f)

        # load numerical id to class dictionary (id:class)
        with open(id_class_dict_file, "rb") as f:
            id_class_dict = pickle.load(f)

        if isinstance(predictions, dict):
            if all(
                [
                    key in predictions.keys()
                    for key in ["pred_ids", "label_ids", "predictions"]
                ]
            ):
                # format is output from self.evaluate_saved_model
                predictions_logits = np.array(predictions["predictions"])
                true_ids = predictions["label_ids"]
        else:
            # format is output from self.validate if predict_eval=True
            predictions_logits = predictions.predictions
            true_ids = predictions.label_ids

        num_classes = len(id_class_dict.keys())
        num_predict_classes = predictions_logits.shape[1]
        assert num_classes == num_predict_classes
        classes = id_class_dict.values()
        true_labels = [id_class_dict[idx] for idx in true_ids]
        predictions_df = pd.DataFrame(predictions_logits, columns=classes)
        if custom_class_order is not None:
            predictions_df = predictions_df.reindex(columns=custom_class_order)
        predictions_df["true"] = true_labels
        custom_dict = dict(zip(classes, [i for i in range(len(classes))]))
        if custom_class_order is not None:
            custom_dict = dict(
                zip(custom_class_order, [i for i in range(len(custom_class_order))])
            )
        predictions_df = predictions_df.sort_values(
            by=["true"], key=lambda x: x.map(custom_dict)
        )

        eu.plot_predictions(
            predictions_df, title, output_directory, output_prefix, kwargs_dict
        )