File size: 1,862 Bytes
484b8c1
 
6bf4b19
 
974c331
6bf4b19
 
974c331
 
484b8c1
 
6bf4b19
 
 
974c331
6bf4b19
 
 
 
 
974c331
6bf4b19
974c331
 
 
 
 
 
 
 
 
 
 
1c53710
974c331
484b8c1
 
 
 
 
 
 
6bf4b19
 
 
 
484b8c1
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
---
base_model: openai/whisper-large-v3
datasets:
- BembaSpeech
license: apache-2.0
metrics:
- wer
tags:
- generated_from_trainer
model-index:
- name: whisper-large-v3-bem-fsv
  results:
  - task:
      type: automatic-speech-recognition
      name: Automatic Speech Recognition
    dataset:
      name: BembaSpeech bem
      type: BembaSpeech
      args: bem
    metrics:
    - type: wer
      value: 0.4033761652809272
      name: Wer
  - task:
      type: automatic-speech-recognition
      name: Automatic Speech Recognition
    dataset:
      name: BembaSpeech
      type: BembaSpeech
      config: en
      split: test
    metrics:
    - type: wer
      value: 47.3
      name: WER
---

<!-- This model card has been generated automatically according to the information the Trainer had access to. You
should probably proofread and complete it, then remove this comment. -->

# whisper-large-v3-bem-fsv

This model is a fine-tuned version of [openai/whisper-large-v3](https://huggingface.co/openai/whisper-large-v3) on the BembaSpeech bem dataset.
It achieves the following results on the evaluation set:
- Loss: 0.4783
- Wer: 0.4034

## Model description

More information needed

## Intended uses & limitations

More information needed

## Training and evaluation data

More information needed

## Training procedure

### Training hyperparameters

The following hyperparameters were used during training:
- learning_rate: 1.75e-05
- train_batch_size: 4
- eval_batch_size: 4
- seed: 42
- gradient_accumulation_steps: 6
- total_train_batch_size: 24
- optimizer: Adam with betas=(0.9,0.999) and epsilon=1e-08
- lr_scheduler_type: linear
- lr_scheduler_warmup_steps: 500
- num_epochs: 2.0
- mixed_precision_training: Native AMP

### Training results



### Framework versions

- Transformers 4.44.0
- Pytorch 2.4.0+cu121
- Datasets 2.21.0
- Tokenizers 0.19.1