nreimers
commited on
Commit
•
d87548d
1
Parent(s):
8b151e5
upload
Browse files- README.md +35 -0
- config.json +27 -0
- pytorch_model.bin +3 -0
- special_tokens_map.json +1 -0
- tokenizer_config.json +1 -0
- vocab.txt +0 -0
README.md
ADDED
@@ -0,0 +1,35 @@
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
1 |
+
# Cross-Encoder for MS Marco
|
2 |
+
|
3 |
+
This model uses [BERT-Tiny](https://github.com/google-research/bert), a tiny BERT model with only 2 layers, 2 attention heads and 128 dimension size.
|
4 |
+
|
5 |
+
It was trained on [MS Marco Passage Ranking](https://github.com/microsoft/MSMARCO-Passage-Ranking) task.
|
6 |
+
|
7 |
+
The model can be used for Information Retrieval: Given a query, encode the query will all possible passages (e.g. retrieved with ElasticSearch). Then sort the passages in a decreasing order. See [SBERT.net Information Retrieval](https://github.com/UKPLab/sentence-transformers/tree/master/examples/applications/information-retrieval) for more details. The training code is available here: [SBERT.net Training MS Marco](https://github.com/UKPLab/sentence-transformers/tree/master/examples/training/ms_marco)
|
8 |
+
|
9 |
+
## Usage and Performance
|
10 |
+
|
11 |
+
Pre-trained models can be used like this:
|
12 |
+
```
|
13 |
+
from sentence_transformers import CrossEncoder
|
14 |
+
model = CrossEncoder('model_name', max_length=512)
|
15 |
+
scores = model.predict([('Query', 'Paragraph1'), ('Query', 'Paragraph2') , ('Query', 'Paragraph3')])
|
16 |
+
```
|
17 |
+
|
18 |
+
In the following table, we provide various pre-trained Cross-Encoders together with their performance on the [TREC Deep Learning 2019](https://microsoft.github.io/TREC-2019-Deep-Learning/) and the [MS Marco Passage Reranking](https://github.com/microsoft/MSMARCO-Passage-Ranking/) dataset.
|
19 |
+
|
20 |
+
|
21 |
+
| Model-Name | NDCG@10 (TREC DL 19) | MRR@10 (MS Marco Dev) | Docs / Sec (BertTokenizerFast) | Docs / Sec (Python Tokenizer) |
|
22 |
+
| ------------- |:-------------| -----| --- | --- |
|
23 |
+
| cross-encoder/ms-marco-TinyBERT-L-2 | 67.43 | 30.15 | 9000 | 780
|
24 |
+
| cross-encoder/ms-marco-TinyBERT-L-4 | 68.09 | 34.50 | 2900 | 760
|
25 |
+
| cross-encoder/ms-marco-TinyBERT-L-6 | 69.57 | 36.13 | 680 | 660
|
26 |
+
| cross-encoder/ms-marco-electra-base | 71.99 | 36.41 | 340 | 340
|
27 |
+
| *Other models* | | | |
|
28 |
+
| nboost/pt-tinybert-msmarco | 63.63 | 28.80 | 2900 | 760
|
29 |
+
| nboost/pt-bert-base-uncased-msmarco | 70.94 | 34.75 | 340 | 340|
|
30 |
+
| nboost/pt-bert-large-msmarco | 73.36 | 36.48 | 100 | 100 |
|
31 |
+
| Capreolus/electra-base-msmarco | 71.23 | | 340 | 340 |
|
32 |
+
| amberoad/bert-multilingual-passage-reranking-msmarco | 68.40 | | 330 | 330
|
33 |
+
|
34 |
+
Note: Runtime was computed on a V100 GPU. A bottleneck for smaller models is the standard Python tokenizer from Huggingface in version 3. Replacing it with the fast tokenizer based on Rust, the throughput is significantly improved:
|
35 |
+
|
config.json
ADDED
@@ -0,0 +1,27 @@
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
1 |
+
{
|
2 |
+
"_name_or_path": "nreimers/BERT-Tiny_L-2_H-128_A-2",
|
3 |
+
"architectures": [
|
4 |
+
"BertForSequenceClassification"
|
5 |
+
],
|
6 |
+
"attention_probs_dropout_prob": 0.1,
|
7 |
+
"gradient_checkpointing": false,
|
8 |
+
"hidden_act": "gelu",
|
9 |
+
"hidden_dropout_prob": 0.1,
|
10 |
+
"hidden_size": 128,
|
11 |
+
"id2label": {
|
12 |
+
"0": "LABEL_0"
|
13 |
+
},
|
14 |
+
"initializer_range": 0.02,
|
15 |
+
"intermediate_size": 512,
|
16 |
+
"label2id": {
|
17 |
+
"LABEL_0": 0
|
18 |
+
},
|
19 |
+
"layer_norm_eps": 1e-12,
|
20 |
+
"max_position_embeddings": 512,
|
21 |
+
"model_type": "bert",
|
22 |
+
"num_attention_heads": 2,
|
23 |
+
"num_hidden_layers": 2,
|
24 |
+
"pad_token_id": 0,
|
25 |
+
"type_vocab_size": 2,
|
26 |
+
"vocab_size": 30522
|
27 |
+
}
|
pytorch_model.bin
ADDED
@@ -0,0 +1,3 @@
|
|
|
|
|
|
|
|
|
1 |
+
version https://git-lfs.github.com/spec/v1
|
2 |
+
oid sha256:74cfcb4bad39a47c89f21932bdd6c8061f97cca298d8a4d85cb851c8a90d74ac
|
3 |
+
size 17565609
|
special_tokens_map.json
ADDED
@@ -0,0 +1 @@
|
|
|
|
|
1 |
+
{"unk_token": "[UNK]", "sep_token": "[SEP]", "pad_token": "[PAD]", "cls_token": "[CLS]", "mask_token": "[MASK]"}
|
tokenizer_config.json
ADDED
@@ -0,0 +1 @@
|
|
|
|
|
1 |
+
{"do_lower_case": true, "do_basic_tokenize": true, "never_split": null, "unk_token": "[UNK]", "sep_token": "[SEP]", "pad_token": "[PAD]", "cls_token": "[CLS]", "mask_token": "[MASK]", "tokenize_chinese_chars": true, "strip_accents": null, "model_max_length": 512, "special_tokens_map_file": "/home/ukp-reimers/.cache/torch/transformers/448f85f42d7f87f0254da1997bc5cd60cb4607800084132993017232e82432a3.dd8bd9bfd3664b530ea4e645105f557769387b3da9f79bdb55ed556bdd80611d", "tokenizer_file": null, "name_or_path": "nreimers/BERT-Tiny_L-2_H-128_A-2"}
|
vocab.txt
ADDED
The diff for this file is too large to render.
See raw diff
|
|