---
language:
- en
license: apache-2.0
library_name: sentence-transformers
tags:
- sentence-transformers
- sentence-similarity
- feature-extraction
- generated_from_trainer
- dataset_size:6300
- loss:MatryoshkaLoss
- loss:MultipleNegativesRankingLoss
base_model: BAAI/bge-base-en-v1.5
datasets: []
metrics:
- cosine_accuracy@1
- cosine_accuracy@3
- cosine_accuracy@5
- cosine_accuracy@10
- cosine_precision@1
- cosine_precision@3
- cosine_precision@5
- cosine_precision@10
- cosine_recall@1
- cosine_recall@3
- cosine_recall@5
- cosine_recall@10
- cosine_ndcg@10
- cosine_mrr@10
- cosine_map@100
widget:
- source_sentence: Item 3—Legal Proceedings See discussion of Legal Proceedings in
Note 10 to the consolidated financial statements included in Item 8 of this Report.
sentences:
- How much did the company's finance lease obligations total as of December 31,
2023?
- What do Note 10 and Item 8 of the report encompass?
- What was the basic earnings per common share attributable to Comcast Corporation
shareholders in 2023?
- source_sentence: Our quarterly Insurance segment earnings and operating cash flows
are impacted by the Medicare Part D benefit Grant program, the changing membership
composition, and the multistage plan period starting annually on January 1. These
plan designs generally result in us sharing a greater portion of the responsibility
for total prescription drug costs in the early stages and less in the latter stages.
sentences:
- What are the two main categories into which Ford Motor Company classifies its
costs and expenses, excluding those related to Ford Credit?
- How does the benefit design of Medicare Part D impact the quarterly insurance
segment earnings and operating cash flows?
- What basis is used to record HTM investment securities in Schwab's financial statements?
- source_sentence: Operating Profit in the Wizards of the Coast and Digital Gaming
segment decreased 2% to $538.3 million.
sentences:
- How much did the Wizards of the Coast and Digital Gaming segment's operating profit
change in 2022?
- What factors are considered in evaluating the lifetime losses for most loans and
receivables?
- How did the loss on certain U.S. affiliates impact the Company's effective tax
rate in the fiscal fourth quarter of 2021?
- source_sentence: In 2023, the net earnings of Johnson & Johnson were $35,153 million.
The company also registered cash dividends paid amounting to $11,770 million for
the year, priced at $4.70 per share.
sentences:
- What was the postpaid churn rate for AT&T Inc. in 2023?
- What was the GAAP net revenue for the fiscal year ended October 31, 2023?
- What were the total net earnings of Johnson & Johnson in the year 2023?
- source_sentence: During fiscal 2022, GameStop Corp increased its valuation allowances
by approximately $70.2 million in various jurisdictions.
sentences:
- How much did GameStop Corp's valuation allowances increase during fiscal 2022?
- How does Gilead ensure an inclusive and diverse workforce?
- What factors are considered in determining the estimated future warranty costs
for connected fitness and Precor branded fitness products?
pipeline_tag: sentence-similarity
model-index:
- name: BGE base Financial Matryoshka
results:
- task:
type: information-retrieval
name: Information Retrieval
dataset:
name: dim 768
type: dim_768
metrics:
- type: cosine_accuracy@1
value: 0.7185714285714285
name: Cosine Accuracy@1
- type: cosine_accuracy@3
value: 0.83
name: Cosine Accuracy@3
- type: cosine_accuracy@5
value: 0.8714285714285714
name: Cosine Accuracy@5
- type: cosine_accuracy@10
value: 0.91
name: Cosine Accuracy@10
- type: cosine_precision@1
value: 0.7185714285714285
name: Cosine Precision@1
- type: cosine_precision@3
value: 0.27666666666666667
name: Cosine Precision@3
- type: cosine_precision@5
value: 0.17428571428571427
name: Cosine Precision@5
- type: cosine_precision@10
value: 0.091
name: Cosine Precision@10
- type: cosine_recall@1
value: 0.7185714285714285
name: Cosine Recall@1
- type: cosine_recall@3
value: 0.83
name: Cosine Recall@3
- type: cosine_recall@5
value: 0.8714285714285714
name: Cosine Recall@5
- type: cosine_recall@10
value: 0.91
name: Cosine Recall@10
- type: cosine_ndcg@10
value: 0.8137967516958747
name: Cosine Ndcg@10
- type: cosine_mrr@10
value: 0.7830442176870747
name: Cosine Mrr@10
- type: cosine_map@100
value: 0.7866777593387027
name: Cosine Map@100
- task:
type: information-retrieval
name: Information Retrieval
dataset:
name: dim 512
type: dim_512
metrics:
- type: cosine_accuracy@1
value: 0.7114285714285714
name: Cosine Accuracy@1
- type: cosine_accuracy@3
value: 0.8314285714285714
name: Cosine Accuracy@3
- type: cosine_accuracy@5
value: 0.8728571428571429
name: Cosine Accuracy@5
- type: cosine_accuracy@10
value: 0.9142857142857143
name: Cosine Accuracy@10
- type: cosine_precision@1
value: 0.7114285714285714
name: Cosine Precision@1
- type: cosine_precision@3
value: 0.27714285714285714
name: Cosine Precision@3
- type: cosine_precision@5
value: 0.17457142857142854
name: Cosine Precision@5
- type: cosine_precision@10
value: 0.09142857142857141
name: Cosine Precision@10
- type: cosine_recall@1
value: 0.7114285714285714
name: Cosine Recall@1
- type: cosine_recall@3
value: 0.8314285714285714
name: Cosine Recall@3
- type: cosine_recall@5
value: 0.8728571428571429
name: Cosine Recall@5
- type: cosine_recall@10
value: 0.9142857142857143
name: Cosine Recall@10
- type: cosine_ndcg@10
value: 0.8123538841130576
name: Cosine Ndcg@10
- type: cosine_mrr@10
value: 0.7798667800453513
name: Cosine Mrr@10
- type: cosine_map@100
value: 0.7831580648041446
name: Cosine Map@100
- task:
type: information-retrieval
name: Information Retrieval
dataset:
name: dim 256
type: dim_256
metrics:
- type: cosine_accuracy@1
value: 0.7
name: Cosine Accuracy@1
- type: cosine_accuracy@3
value: 0.8285714285714286
name: Cosine Accuracy@3
- type: cosine_accuracy@5
value: 0.8614285714285714
name: Cosine Accuracy@5
- type: cosine_accuracy@10
value: 0.9042857142857142
name: Cosine Accuracy@10
- type: cosine_precision@1
value: 0.7
name: Cosine Precision@1
- type: cosine_precision@3
value: 0.2761904761904762
name: Cosine Precision@3
- type: cosine_precision@5
value: 0.17228571428571426
name: Cosine Precision@5
- type: cosine_precision@10
value: 0.09042857142857143
name: Cosine Precision@10
- type: cosine_recall@1
value: 0.7
name: Cosine Recall@1
- type: cosine_recall@3
value: 0.8285714285714286
name: Cosine Recall@3
- type: cosine_recall@5
value: 0.8614285714285714
name: Cosine Recall@5
- type: cosine_recall@10
value: 0.9042857142857142
name: Cosine Recall@10
- type: cosine_ndcg@10
value: 0.8043112987059042
name: Cosine Ndcg@10
- type: cosine_mrr@10
value: 0.7721706349206346
name: Cosine Mrr@10
- type: cosine_map@100
value: 0.7759026470022171
name: Cosine Map@100
- task:
type: information-retrieval
name: Information Retrieval
dataset:
name: dim 128
type: dim_128
metrics:
- type: cosine_accuracy@1
value: 0.6857142857142857
name: Cosine Accuracy@1
- type: cosine_accuracy@3
value: 0.8071428571428572
name: Cosine Accuracy@3
- type: cosine_accuracy@5
value: 0.8571428571428571
name: Cosine Accuracy@5
- type: cosine_accuracy@10
value: 0.8971428571428571
name: Cosine Accuracy@10
- type: cosine_precision@1
value: 0.6857142857142857
name: Cosine Precision@1
- type: cosine_precision@3
value: 0.26904761904761904
name: Cosine Precision@3
- type: cosine_precision@5
value: 0.1714285714285714
name: Cosine Precision@5
- type: cosine_precision@10
value: 0.0897142857142857
name: Cosine Precision@10
- type: cosine_recall@1
value: 0.6857142857142857
name: Cosine Recall@1
- type: cosine_recall@3
value: 0.8071428571428572
name: Cosine Recall@3
- type: cosine_recall@5
value: 0.8571428571428571
name: Cosine Recall@5
- type: cosine_recall@10
value: 0.8971428571428571
name: Cosine Recall@10
- type: cosine_ndcg@10
value: 0.79087795854059
name: Cosine Ndcg@10
- type: cosine_mrr@10
value: 0.7568854875283447
name: Cosine Mrr@10
- type: cosine_map@100
value: 0.7608935817550728
name: Cosine Map@100
- task:
type: information-retrieval
name: Information Retrieval
dataset:
name: dim 64
type: dim_64
metrics:
- type: cosine_accuracy@1
value: 0.66
name: Cosine Accuracy@1
- type: cosine_accuracy@3
value: 0.7757142857142857
name: Cosine Accuracy@3
- type: cosine_accuracy@5
value: 0.8128571428571428
name: Cosine Accuracy@5
- type: cosine_accuracy@10
value: 0.8671428571428571
name: Cosine Accuracy@10
- type: cosine_precision@1
value: 0.66
name: Cosine Precision@1
- type: cosine_precision@3
value: 0.25857142857142856
name: Cosine Precision@3
- type: cosine_precision@5
value: 0.16257142857142853
name: Cosine Precision@5
- type: cosine_precision@10
value: 0.0867142857142857
name: Cosine Precision@10
- type: cosine_recall@1
value: 0.66
name: Cosine Recall@1
- type: cosine_recall@3
value: 0.7757142857142857
name: Cosine Recall@3
- type: cosine_recall@5
value: 0.8128571428571428
name: Cosine Recall@5
- type: cosine_recall@10
value: 0.8671428571428571
name: Cosine Recall@10
- type: cosine_ndcg@10
value: 0.7616045249840884
name: Cosine Ndcg@10
- type: cosine_mrr@10
value: 0.7281247165532877
name: Cosine Mrr@10
- type: cosine_map@100
value: 0.7330922421864847
name: Cosine Map@100
---
# BGE base Financial Matryoshka
This is a [sentence-transformers](https://www.SBERT.net) model finetuned from [BAAI/bge-base-en-v1.5](https://huggingface.co/BAAI/bge-base-en-v1.5). It maps sentences & paragraphs to a 768-dimensional dense vector space and can be used for semantic textual similarity, semantic search, paraphrase mining, text classification, clustering, and more.
## Model Details
### Model Description
- **Model Type:** Sentence Transformer
- **Base model:** [BAAI/bge-base-en-v1.5](https://huggingface.co/BAAI/bge-base-en-v1.5)
- **Maximum Sequence Length:** 512 tokens
- **Output Dimensionality:** 768 tokens
- **Similarity Function:** Cosine Similarity
- **Language:** en
- **License:** apache-2.0
### Model Sources
- **Documentation:** [Sentence Transformers Documentation](https://sbert.net)
- **Repository:** [Sentence Transformers on GitHub](https://github.com/UKPLab/sentence-transformers)
- **Hugging Face:** [Sentence Transformers on Hugging Face](https://huggingface.co/models?library=sentence-transformers)
### Full Model Architecture
```
SentenceTransformer(
(0): Transformer({'max_seq_length': 512, 'do_lower_case': True}) with Transformer model: BertModel
(1): Pooling({'word_embedding_dimension': 768, 'pooling_mode_cls_token': True, 'pooling_mode_mean_tokens': False, 'pooling_mode_max_tokens': False, 'pooling_mode_mean_sqrt_len_tokens': False, 'pooling_mode_weightedmean_tokens': False, 'pooling_mode_lasttoken': False, 'include_prompt': True})
(2): Normalize()
)
```
## Usage
### Direct Usage (Sentence Transformers)
First install the Sentence Transformers library:
```bash
pip install -U sentence-transformers
```
Then you can load this model and run inference.
```python
from sentence_transformers import SentenceTransformer
# Download from the 🤗 Hub
model = SentenceTransformer("cristuf/bge-base-financial-matryoshka")
# Run inference
sentences = [
'During fiscal 2022, GameStop Corp increased its valuation allowances by approximately $70.2 million in various jurisdictions.',
"How much did GameStop Corp's valuation allowances increase during fiscal 2022?",
'How does Gilead ensure an inclusive and diverse workforce?',
]
embeddings = model.encode(sentences)
print(embeddings.shape)
# [3, 768]
# Get the similarity scores for the embeddings
similarities = model.similarity(embeddings, embeddings)
print(similarities.shape)
# [3, 3]
```
## Evaluation
### Metrics
#### Information Retrieval
* Dataset: `dim_768`
* Evaluated with [InformationRetrievalEvaluator
](https://sbert.net/docs/package_reference/sentence_transformer/evaluation.html#sentence_transformers.evaluation.InformationRetrievalEvaluator)
| Metric | Value |
|:--------------------|:-----------|
| cosine_accuracy@1 | 0.7186 |
| cosine_accuracy@3 | 0.83 |
| cosine_accuracy@5 | 0.8714 |
| cosine_accuracy@10 | 0.91 |
| cosine_precision@1 | 0.7186 |
| cosine_precision@3 | 0.2767 |
| cosine_precision@5 | 0.1743 |
| cosine_precision@10 | 0.091 |
| cosine_recall@1 | 0.7186 |
| cosine_recall@3 | 0.83 |
| cosine_recall@5 | 0.8714 |
| cosine_recall@10 | 0.91 |
| cosine_ndcg@10 | 0.8138 |
| cosine_mrr@10 | 0.783 |
| **cosine_map@100** | **0.7867** |
#### Information Retrieval
* Dataset: `dim_512`
* Evaluated with [InformationRetrievalEvaluator
](https://sbert.net/docs/package_reference/sentence_transformer/evaluation.html#sentence_transformers.evaluation.InformationRetrievalEvaluator)
| Metric | Value |
|:--------------------|:-----------|
| cosine_accuracy@1 | 0.7114 |
| cosine_accuracy@3 | 0.8314 |
| cosine_accuracy@5 | 0.8729 |
| cosine_accuracy@10 | 0.9143 |
| cosine_precision@1 | 0.7114 |
| cosine_precision@3 | 0.2771 |
| cosine_precision@5 | 0.1746 |
| cosine_precision@10 | 0.0914 |
| cosine_recall@1 | 0.7114 |
| cosine_recall@3 | 0.8314 |
| cosine_recall@5 | 0.8729 |
| cosine_recall@10 | 0.9143 |
| cosine_ndcg@10 | 0.8124 |
| cosine_mrr@10 | 0.7799 |
| **cosine_map@100** | **0.7832** |
#### Information Retrieval
* Dataset: `dim_256`
* Evaluated with [InformationRetrievalEvaluator
](https://sbert.net/docs/package_reference/sentence_transformer/evaluation.html#sentence_transformers.evaluation.InformationRetrievalEvaluator)
| Metric | Value |
|:--------------------|:-----------|
| cosine_accuracy@1 | 0.7 |
| cosine_accuracy@3 | 0.8286 |
| cosine_accuracy@5 | 0.8614 |
| cosine_accuracy@10 | 0.9043 |
| cosine_precision@1 | 0.7 |
| cosine_precision@3 | 0.2762 |
| cosine_precision@5 | 0.1723 |
| cosine_precision@10 | 0.0904 |
| cosine_recall@1 | 0.7 |
| cosine_recall@3 | 0.8286 |
| cosine_recall@5 | 0.8614 |
| cosine_recall@10 | 0.9043 |
| cosine_ndcg@10 | 0.8043 |
| cosine_mrr@10 | 0.7722 |
| **cosine_map@100** | **0.7759** |
#### Information Retrieval
* Dataset: `dim_128`
* Evaluated with [InformationRetrievalEvaluator
](https://sbert.net/docs/package_reference/sentence_transformer/evaluation.html#sentence_transformers.evaluation.InformationRetrievalEvaluator)
| Metric | Value |
|:--------------------|:-----------|
| cosine_accuracy@1 | 0.6857 |
| cosine_accuracy@3 | 0.8071 |
| cosine_accuracy@5 | 0.8571 |
| cosine_accuracy@10 | 0.8971 |
| cosine_precision@1 | 0.6857 |
| cosine_precision@3 | 0.269 |
| cosine_precision@5 | 0.1714 |
| cosine_precision@10 | 0.0897 |
| cosine_recall@1 | 0.6857 |
| cosine_recall@3 | 0.8071 |
| cosine_recall@5 | 0.8571 |
| cosine_recall@10 | 0.8971 |
| cosine_ndcg@10 | 0.7909 |
| cosine_mrr@10 | 0.7569 |
| **cosine_map@100** | **0.7609** |
#### Information Retrieval
* Dataset: `dim_64`
* Evaluated with [InformationRetrievalEvaluator
](https://sbert.net/docs/package_reference/sentence_transformer/evaluation.html#sentence_transformers.evaluation.InformationRetrievalEvaluator)
| Metric | Value |
|:--------------------|:-----------|
| cosine_accuracy@1 | 0.66 |
| cosine_accuracy@3 | 0.7757 |
| cosine_accuracy@5 | 0.8129 |
| cosine_accuracy@10 | 0.8671 |
| cosine_precision@1 | 0.66 |
| cosine_precision@3 | 0.2586 |
| cosine_precision@5 | 0.1626 |
| cosine_precision@10 | 0.0867 |
| cosine_recall@1 | 0.66 |
| cosine_recall@3 | 0.7757 |
| cosine_recall@5 | 0.8129 |
| cosine_recall@10 | 0.8671 |
| cosine_ndcg@10 | 0.7616 |
| cosine_mrr@10 | 0.7281 |
| **cosine_map@100** | **0.7331** |
## Training Details
### Training Dataset
#### Unnamed Dataset
* Size: 6,300 training samples
* Columns: positive
and anchor
* Approximate statistics based on the first 1000 samples:
| | positive | anchor |
|:--------|:-----------------------------------------------------------------------------------|:----------------------------------------------------------------------------------|
| type | string | string |
| details |
Japan's revenue for the year 2023 reached 2,367.0 million.
| What was the revenue attributed to Japan in the year 2023?
|
| Our four reportable segments are: •the Data Center segment, which primarily includes server CPUs, GPUs, APUs, DPUs, FPGAs, SmartNICs, AI accelerators and Adaptive SoC products for data centers; •the Client segment, which primarily includes CPUs, APUs, and chipsets for desktop, notebook and handheld personal computers; •the Gaming segment, which primarily includes discrete GPUs, semi-custom SoC products and development services; and •the Embedded segment, which primarily includes embedded CPUs, GPUs, APUs, FPGAs, SOMs, and Adaptive SoC products.
| What are the different segments that AMD reports financially?
|
| For detailed information about the company's legal proceedings, see Note 4 to the consolidated financial statements, included under the caption 'Contingencies' in the Annual Report on Form 10-K.
| Where can detailed information about the company's legal proceedings be found in its financial statements?
|
* Loss: [MatryoshkaLoss
](https://sbert.net/docs/package_reference/sentence_transformer/losses.html#matryoshkaloss) with these parameters:
```json
{
"loss": "MultipleNegativesRankingLoss",
"matryoshka_dims": [
768,
512,
256,
128,
64
],
"matryoshka_weights": [
1,
1,
1,
1,
1
],
"n_dims_per_step": -1
}
```
### Training Hyperparameters
#### Non-Default Hyperparameters
- `eval_strategy`: epoch
- `per_device_train_batch_size`: 32
- `per_device_eval_batch_size`: 16
- `gradient_accumulation_steps`: 16
- `learning_rate`: 2e-05
- `num_train_epochs`: 4
- `lr_scheduler_type`: cosine
- `warmup_ratio`: 0.1
- `bf16`: True
- `tf32`: True
- `load_best_model_at_end`: True
- `optim`: adamw_torch_fused
- `batch_sampler`: no_duplicates
#### All Hyperparameters