---
tags:
- stable-diffusion-xl
- stable-diffusion-xl-diffusers
- diffusers-training
- text-to-image
- diffusers
- lora
- template:sd-lora
widget:
- text: 'In the style of Terada,colorful, anime-style, illustration, girl, yellow jacket, blonde hair, two buns, peace sign, hands, rainbow gradient, brightness, cheerfulness, small confetti, festive atmosphere, central position, joy, positivity.'
output:
url:
"image_0.png"
- text: 'In the style of Terada,colorful, anime-style, illustration, girl, yellow jacket, blonde hair, two buns, peace sign, hands, rainbow gradient, brightness, cheerfulness, small confetti, festive atmosphere, central position, joy, positivity.'
output:
url:
"image_1.png"
- text: 'In the style of Terada,colorful, anime-style, illustration, girl, yellow jacket, blonde hair, two buns, peace sign, hands, rainbow gradient, brightness, cheerfulness, small confetti, festive atmosphere, central position, joy, positivity.'
output:
url:
"image_2.png"
- text: 'In the style of Terada,colorful, anime-style, illustration, girl, yellow jacket, blonde hair, two buns, peace sign, hands, rainbow gradient, brightness, cheerfulness, small confetti, festive atmosphere, central position, joy, positivity.'
output:
url:
"image_3.png"
base_model: cookey39/aam_xl
instance_prompt: In the style of Terada,
license: openrail++
---
# SDXL LoRA DreamBooth - cookey39/teratera
## Model description
### These are cookey39/teratera LoRA adaption weights for cookey39/aam_xl.
## Download model
### Use it with UIs such as AUTOMATIC1111, Comfy UI, SD.Next, Invoke
- **LoRA**: download **[`teratera.safetensors` here 💾](/cookey39/teratera/blob/main/teratera.safetensors)**.
- Place it on your `models/Lora` folder.
- On AUTOMATIC1111, load the LoRA by adding `` to your prompt. On ComfyUI just [load it as a regular LoRA](https://comfyanonymous.github.io/ComfyUI_examples/lora/).
- *Embeddings*: download **[`teratera_emb.safetensors` here 💾](/cookey39/teratera/blob/main/teratera_emb.safetensors)**.
- Place it on it on your `embeddings` folder
- Use it by adding `teratera_emb` to your prompt. For example, `In the style of Terada,`
(you need both the LoRA and the embeddings as they were trained together for this LoRA)
## Use it with the [🧨 diffusers library](https://github.com/huggingface/diffusers)
```py
from diffusers import AutoPipelineForText2Image
import torch
from huggingface_hub import hf_hub_download
from safetensors.torch import load_file
pipeline = AutoPipelineForText2Image.from_pretrained('stabilityai/stable-diffusion-xl-base-1.0', torch_dtype=torch.float16).to('cuda')
pipeline.load_lora_weights('cookey39/teratera', weight_name='pytorch_lora_weights.safetensors')
embedding_path = hf_hub_download(repo_id='cookey39/teratera', filename='teratera_emb.safetensors', repo_type="model")
state_dict = load_file(embedding_path)
pipeline.load_textual_inversion(state_dict["clip_l"], token=[], text_encoder=pipeline.text_encoder, tokenizer=pipeline.tokenizer)
pipeline.load_textual_inversion(state_dict["clip_g"], token=[], text_encoder=pipeline.text_encoder_2, tokenizer=pipeline.tokenizer_2)
instance_token = ""
prompt = f"a {instance_token}full-length phoor portrait,Vibrant, solo, 1girl, smile, long hair, hair between eyes, multicolored eyes, hooded jacket, open jacket, shirt, long sleeves, ribbon, best quality, perfect anatomy, highres, absurdres{instance_token} "
negative_prompt = "bad_prompt_version2, (worst quality, low quality:1.4), realistic, lip, nose, tooth, rouge, lipstick, eyeshadow, abs, muscular, rib, (depth of field, bokeh, blurry:1.4), greyscale"
image = pipe(prompt=prompt, negative_prompt = negative_prompt, num_inference_steps=100, cross_attention_kwargs={"scale": 1.0},width = 960, height=1280).images[0]
image.save("./save.png")
```
For more details, including weighting, merging and fusing LoRAs, check the [documentation on loading LoRAs in diffusers](https://huggingface.co/docs/diffusers/main/en/using-diffusers/loading_adapters)
## Trigger words
To trigger image generation of trained concept(or concepts) replace each concept identifier in you prompt with the new inserted tokens:
to trigger concept `TOK` → use `` in your prompt
## Details
All [Files & versions](/cookey39/teratera/tree/main).
The weights were trained using [🧨 diffusers Advanced Dreambooth Training Script](https://github.com/huggingface/diffusers/blob/main/examples/advanced_diffusion_training/train_dreambooth_lora_sdxl_advanced.py).
LoRA for the text encoder was enabled. False.
Pivotal tuning was enabled: True.
Special VAE used for training: None.