File size: 3,056 Bytes
edff466
 
 
 
 
 
ac91a65
f4e16a1
ac91a65
f4e16a1
ac91a65
f4e16a1
ac91a65
f4e16a1
ac91a65
f4e16a1
ac91a65
f4e16a1
ac91a65
f4e16a1
ac91a65
f4e16a1
ac91a65
f4e16a1
ac91a65
f4e16a1
 
 
 
 
 
 
 
ac91a65
f4e16a1
ac91a65
f4e16a1
 
 
 
 
 
 
 
ac91a65
f4e16a1
 
 
 
 
 
 
ac91a65
f4e16a1
ac91a65
f4e16a1
ac91a65
f4e16a1
ac91a65
f4e16a1
ac91a65
 
 
f4e16a1
 
ac91a65
f4e16a1
ac91a65
f4e16a1
ac91a65
f4e16a1
ac91a65
edff466
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
---
datasets:
- cookey39/blue_reflection
language:
- en
---

# SDXL LoRA DreamBooth - cookey39/reflector

### Examples:

https://www.pixiv.net/artworks/119270564

https://www.pixiv.net/artworks/119269797

<Gallery />

## Model description

### These are cookey39/reflector LoRA adaption weights for cookey39/hyper-sd-8step.

## Download model

### Use it with UIs such as AUTOMATIC1111, Comfy UI, SD.Next, Invoke

- **LoRA**: download **[`reflector.safetensors` here 💾](/cookey39/reflector/blob/main/reflector.safetensors)**.
    - Place it on your `models/Lora` folder.
    - On AUTOMATIC1111, load the LoRA by adding `<lora:reflector:1>` to your prompt. On ComfyUI just [load it as a regular LoRA](https://comfyanonymous.github.io/ComfyUI_examples/lora/).
- *Embeddings*: download **[`reflector_emb.safetensors` here 💾](/cookey39/reflector/blob/main/reflector_emb.safetensors)**.
    - Place it on it on your `embeddings` folder
    - Use it by adding `reflector_emb` to your prompt. For example, `blue_reflection:`
    (you need both the LoRA and the embeddings as they were trained together for this LoRA)
    

## Use it with the [🧨 diffusers library](https://github.com/huggingface/diffusers)

```py
from diffusers import AutoPipelineForText2Image
from diffusers import DiffusionPipeline, DDIMScheduler
import torch
from huggingface_hub import hf_hub_download
from safetensors.torch import load_file
        
pipeline = AutoPipelineForText2Image.from_pretrained('cookey39/reflector', torch_dtype=torch.float16).to('cuda')

# lower eta results in more detail
instance_token = "<s0><s1>"
prompt = f"a {instance_token}masterpiece, best quality,long hair, cute face, white kneehighs, black hair, hair strand, twin braids, cat hair ornament, adorable girl, absurdres, huge_filesize, Japanese, game_cg, {instance_token}  "
negative_prompt = "lowres, bad anatomy, bad hands, text, error, missing fingers, extra digit, fewer digits, cropped, worst quality, low quality, normal quality, jpeg artifacts, signature, watermark, username, blurry, bad feet, "
image = pipeline(prompt=prompt, negative_prompt = negative_prompt, num_inference_steps=50, cross_attention_kwargs={"scale": 1.0},width = 720, height=1080).images[0]
image
```

For more details, including weighting, merging and fusing LoRAs, check the [documentation on loading LoRAs in diffusers](https://huggingface.co/docs/diffusers/main/en/using-diffusers/loading_adapters)

## Trigger words

To trigger image generation of trained concept(or concepts) replace each concept identifier in you prompt with the new inserted tokens:

to trigger concept `TOK` → use `<s0><s1>` in your prompt 



## Details
All [Files & versions](/cookey39/reflector/tree/main).

The weights were trained using [🧨 diffusers Advanced Dreambooth Training Script](https://github.com/huggingface/diffusers/blob/main/examples/advanced_diffusion_training/train_dreambooth_lora_sdxl_advanced.py).

LoRA for the text encoder was enabled. False.

Pivotal tuning was enabled: True.

Special VAE used for training: None.