File size: 10,798 Bytes
ced69b5 15b48fd ced69b5 15b48fd 74b089f 15b48fd a7aace4 15b48fd 3b4b391 15b48fd 28996d7 15b48fd 28996d7 85e6030 83d3e08 85e6030 13a1c1e 15b48fd 3b4b391 15b48fd 3b4b391 15b48fd 3b4b391 15b48fd 3b4b391 15b48fd 3b4b391 15b48fd cbc0e12 15b48fd 3b4b391 15b48fd 3b4b391 15b48fd 28996d7 15b48fd 13a1c1e 28996d7 85e6030 83d3e08 85e6030 15b48fd 3b4b391 15b48fd 3b4b391 15b48fd 3b4b391 15b48fd |
1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27 28 29 30 31 32 33 34 35 36 37 38 39 40 41 42 43 44 45 46 47 48 49 50 51 52 53 54 55 56 57 58 59 60 61 62 63 64 65 66 67 68 69 70 71 72 73 74 75 76 77 78 79 80 81 82 83 84 85 86 87 88 89 90 91 92 93 94 95 96 97 98 99 100 101 102 103 104 105 106 107 108 109 110 111 112 113 114 115 116 117 118 119 120 121 122 123 124 125 126 127 128 129 130 131 132 133 134 135 136 137 138 139 140 141 142 143 144 145 146 147 148 149 150 151 152 153 154 155 156 157 158 159 160 161 162 163 164 165 166 167 168 169 170 171 172 173 174 175 176 177 178 179 180 181 182 183 184 185 186 187 188 189 190 191 192 193 194 195 196 197 198 199 200 201 202 203 204 205 206 207 208 209 210 211 212 213 214 215 216 217 218 219 220 221 222 223 224 225 226 227 228 229 230 231 232 233 234 235 236 237 238 239 240 241 242 243 244 245 246 247 248 249 250 251 252 253 254 255 256 257 258 259 260 261 262 263 264 265 266 267 268 269 270 271 272 273 274 275 276 277 278 279 280 281 282 283 284 285 286 287 288 289 290 291 292 293 294 295 296 297 298 299 300 301 302 303 304 305 306 307 308 309 310 311 312 313 314 315 316 |
---
frameworks:
- Pytorch
license: other
tasks:
- text-generation
---
# Model Card for CodeFuse-QWen-14B
![logo](LOGO.png)
[[中文]](#chinese) [[English]](#english)
<a id="english"></a>
## Model Description
CodeFuse-QWen-14B is a 14B Code-LLM finetuned by QLoRA of multiple code tasks on the base model StarCoder.
<br>
## News and Updates
🔥🔥 2023-10-16 CodeFuse-QWen-14B has been released, achieving a pass@1 (greedy decoding) score of 48.78% on HumanEval, which is a 16% increase compared to Qwen-14b's 32.3%.
🔥🔥 2023-09-27 CodeFuse-StarCoder-15B has been released, achieving a pass@1 (greedy decoding) score of 54.9% on HumanEval, which is a 21% increase compared to StarCoder's 33.6%.
🔥🔥🔥 2023-09-26 We are pleased to announce the release of the [4-bit quantized version](https://huggingface.co/codefuse-ai/CodeFuse-CodeLlama-34B-4bits) of [CodeFuse-CodeLlama-34B](https://huggingface.co/codefuse-ai/CodeFuse-CodeLlama-34B). Despite the quantization process, the model still achieves a remarkable 73.8% accuracy (greedy decoding) on the HumanEval pass@1 metric.
🔥🔥🔥 2023-09-11 [CodeFuse-CodeLlama34B](https://huggingface.co/codefuse-ai/CodeFuse-CodeLlama-34B) has achived 74.4% of pass@1 (greedy decoding) on HumanEval, which is SOTA results for openspurced LLMs at present.
<br>
## Code Community
**Homepage**: 🏡 https://github.com/codefuse-ai (**Please give us your support with a Star🌟 + Fork🚀 + Watch👀**)
+ If you wish to fine-tune the model yourself, you can visit ✨[MFTCoder](https://github.com/codefuse-ai/MFTCoder)✨✨
+ If you wish to deploy the model yourself, you can visit ✨[FasterTransformer4CodeFuse](https://github.com/codefuse-ai/FasterTransformer4CodeFuse)✨✨
+ If you wish to see a demo of the model, you can visit ✨[CodeFuse Demo](https://github.com/codefuse-ai/codefuse)✨✨
<br>
## Performance
### Code
| Model | HumanEval(pass@1) | Date |
|:----------------------------|:-----------------:|:-------:|
| **CodeFuse-CodeLlama-34B** | **74.4%** | 2023.9 |
|**CodeFuse-CodeLlama-34B-4bits** | **73.8%** | 2023.9 |
| WizardCoder-Python-34B-V1.0 | 73.2% | 2023.8 |
| GPT-4(zero-shot) | 67.0% | 2023.3 |
| PanGu-Coder2 15B | 61.6% | 2023.8 |
| CodeLlama-34b-Python | 53.7% | 2023.8 |
| CodeLlama-34b | 48.8% | 2023.8 |
| GPT-3.5(zero-shot) | 48.1% | 2022.11 |
| OctoCoder | 46.2% | 2023.8 |
| StarCoder-15B | 33.6% | 2023.5 |
| Qwen-14b | 32.3% | 2023.10 |
| **CodeFuse-StarCoder-15B** | **54.9%** | 2023.9 |
| **CodeFuse-QWen-14B** | **48.78%** | 2023.10 |
### NLP
<p align="center">
<img src="https://cdn-uploads.huggingface.co/production/uploads/650a8f083f8a38f064aa1f43/2ZUZ6mIg7fMVsLqPjpY_i.png" width="90%" />
</p>
<br>
## Requirements
* python>=3.8
* pytorch>=2.0.0
* transformers==4.32.0
* Sentencepiece
* CUDA 11.4
<br>
## Inference String Format
The inference string is a concatenated string formed by combining conversation data(system, human and bot contents) in the training data format. It is used as input during the inference process.
Here is an example format of the concatenated string:
```python
"""
<s>system
System instruction
<s>human
Human 1st round input
<s>bot
Bot 1st round output<|endoftext|>
<s>human
Human 2nd round input
<s>bot
Bot 2nd round output<|endoftext|>
...
...
...
<s>human
Human n-th round input
<s>bot
{Bot output to be genreated}<|endoftext|>
"""
```
When applying inference, you always make your input string end with "\<s\>bot" to ask the model to generate answers.
## Quickstart
```bash
pip install -r requirements.txt
```
```python
import torch
from transformers import (
AutoTokenizer,
AutoModelForCausalLM
)
tokenizer = AutoTokenizer.from_pretrained('codefuse-ai/CodeFuse-QWen-14B', trust_remote_code=True)
tokenizer.padding_side = "left"
tokenizer.pad_token_id = tokenizer.convert_tokens_to_ids("<|endoftext|>")
tokenizer.eos_token_id = tokenizer.convert_tokens_to_ids("<|endoftext|>")
tokenizer.pad_token = "<|endoftext|>"
tokenizer.eos_token = "<|endoftext|>"
# try 4bit loading if cuda memory not enough
model = AutoModelForCausalLM.from_pretrained(model_dir,
trust_remote_code=True,
load_in_4bit=False,
device_map="auto",
torch_dtype=torch.bfloat16)
model.eval()
HUMAN_ROLE_START_TAG = "<s>human\n"
BOT_ROLE_START_TAG = "<s>bot\n"
text = f"{HUMAN_ROLE_START_TAG}write a python function of quick sort.\n{BOT_ROLE_START_TAG}"
inputs = tokenizer(text, return_tensors='pt', padding=True, add_special_tokens=False).to("cuda")
outputs = model.generate(
inputs=inputs["input_ids"],
attention_mask=inputs["attention_mask"],
max_new_tokens=512,
top_p=0.95,
temperature=0.1,
do_sample=True,
eos_token_id=tokenizer.eos_token_id,
pad_token_id=tokenizer.pad_token_id
)
gen_text = tokenizer.batch_decode(outputs[:, inputs["input_ids"].shape[1]:], skip_special_tokens=True)
print(gen_text)
```
## Citation
If you find our work useful or helpful for your R&D works, please feel free to cite our paper as below.
```
@article{mftcoder2023,
title={MFTCoder: Boosting Code LLMs with Multitask Fine-Tuning},
author={Bingchang Liu and Chaoyu Chen and Cong Liao and Zi Gong and Huan Wang and Zhichao Lei and Ming Liang and Dajun Chen and Min Shen and Hailian Zhou and Hang Yu and Jianguo Li},
year={2023},
journal={arXiv preprint arXiv},
archivePrefix={arXiv},
eprint={2311.02303}
}
```
<a id="chinese"></a>
## 模型简介
CodeFuse-QWen-14B 是一个通过QLoRA对基座模型QWen-14B进行多代码任务微调的代码大模型。
<br>
## 新闻
🔥🔥 2023-10-16开源了CodeFuse-QWen-14B模型,在HumanEval pass@1(greedy decoding)上可以达到48.78%, 比Qwen-14b提高了16%的代码能力(HumanEval)
🔥🔥 2023-09-27开源了CodeFuse-StarCoder-15B模型,在HumanEval pass@1(greedy decoding)上可以达到54.9%, 比StarCoder提高了21%的代码能力(HumanEval)
🔥🔥🔥 2023-09-26 [CodeFuse-CodeLlama-34B 4bits](https://huggingface.co/codefuse-ai/CodeFuse-CodeLlama-34B-4bits)量化版本发布,量化后模型在HumanEval pass@1指标为73.8% (贪婪解码)。
🔥🔥🔥 2023-09-11 [CodeFuse-CodeLlama-34B](https://huggingface.co/codefuse-ai/CodeFuse-CodeLlama-34B)发布,HumanEval pass@1指标达到74.4% (贪婪解码), 为当前开源SOTA。
<br>
## 代码社区
**大本营**: 🏡 https://github.com/codefuse-ai (**请支持我们的项目Star🌟 + Fork🚀 + Watch👀**)
+ 如果您想自己微调该模型,可以访问 ✨[MFTCoder](https://github.com/codefuse-ai/MFTCoder)✨✨
+ 如果您想自己部署该模型,可以访问 ✨[FasterTransformer4CodeFuse](https://github.com/codefuse-ai/FasterTransformer4CodeFuse)✨✨
+ 如果您想观看该模型示例,可以访问 ✨[CodeFuse Demo](https://github.com/codefuse-ai/codefuse)✨✨
<br>
## 评测表现
### 代码
| 模型 | HumanEval(pass@1) | 日期 |
|:----------------------------|:-----------------:|:-------:|
| **CodeFuse-CodeLlama-34B** | **74.4%** | 2023.9 |
|**CodeFuse-CodeLlama-34B-4bits** | **73.8%** | 2023.9 |
| WizardCoder-Python-34B-V1.0 | 73.2% | 2023.8 |
| GPT-4(zero-shot) | 67.0% | 2023.3 |
| PanGu-Coder2 15B | 61.6% | 2023.8 |
| CodeLlama-34b-Python | 53.7% | 2023.8 |
| CodeLlama-34b | 48.8% | 2023.8 |
| GPT-3.5(zero-shot) | 48.1% | 2022.11 |
| OctoCoder | 46.2% | 2023.8 |
| StarCoder-15B | 33.6% | 2023.5 |
| Qwen-14b | 32.3% | 2023.10 |
| **CodeFuse-StarCoder-15B** | **54.9%** | 2023.9 |
| **CodeFuse-QWen-14B** | **48.78%** | 2023.8 |
### NLP
<p align="center">
<img src="https://cdn-uploads.huggingface.co/production/uploads/650a8f083f8a38f064aa1f43/2ZUZ6mIg7fMVsLqPjpY_i.png" width="90%" />
</p>
<br>
## Requirements
* python>=3.8
* pytorch>=2.0.0
* transformers==4.32.0
* Sentencepiece
* CUDA 11.4
<br>
## 推理数据格式
推理数据为模型在训练数据格式下拼接的字符串形式,它也是推理时输入prompt拼接的方式:
```python
"""
<s>system
这是System指令
<s>human
这是第1轮用户输入的问题
<s>bot
这是第1轮模型生成的内容<|endoftext|>
<s>human
这是第2轮用户输入的问题
<s>bot
这是第2轮模型生成的内容<|endoftext|>
...
...
...
<s>human
这是第n轮用户输入的问题
<s>bot
{模型现在要生成的内容}<|endoftext|>
"""
```
推理时,请确保拼接的prompt字符串以"\<s\>bot\n"结尾,引导模型生成回答。
## 快速使用
```bash
pip install -r requirements.txt
```
```python
import torch
from transformers import (
AutoTokenizer,
AutoModelForCausalLM
)
tokenizer = AutoTokenizer.from_pretrained('codefuse-ai/CodeFuse-QWen-14B', trust_remote_code=True)
tokenizer.padding_side = "left"
tokenizer.pad_token_id = tokenizer.convert_tokens_to_ids("<|endoftext|>")
tokenizer.eos_token_id = tokenizer.convert_tokens_to_ids("<|endoftext|>")
tokenizer.pad_token = "<|endoftext|>"
tokenizer.eos_token = "<|endoftext|>"
# try 4bit loading if cuda memory not enough
model = AutoModelForCausalLM.from_pretrained(model_dir,
trust_remote_code=True,
load_in_4bit=False,
device_map="auto",
torch_dtype=torch.bfloat16)
model.eval()
HUMAN_ROLE_START_TAG = "<s>human\n"
BOT_ROLE_START_TAG = "<s>bot\n"
text = f"{HUMAN_ROLE_START_TAG}write a python function of quick sort.\n{BOT_ROLE_START_TAG}"
inputs = tokenizer(text, return_tensors='pt', padding=True, add_special_tokens=False).to("cuda")
outputs = model.generate(
inputs=inputs["input_ids"],
attention_mask=inputs["attention_mask"],
max_new_tokens=512,
top_p=0.95,
temperature=0.1,
do_sample=True,
eos_token_id=tokenizer.eos_token_id,
pad_token_id=tokenizer.pad_token_id
)
gen_text = tokenizer.batch_decode(outputs[:, inputs["input_ids"].shape[1]:], skip_special_tokens=True)
print(gen_text)
```
|