codefuse-admin commited on
Commit
33d7b53
1 Parent(s): 8a5ff24

init model

Browse files
LOGO.jpg ADDED
MODEL_LICENSE.md ADDED
@@ -0,0 +1,47 @@
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
1
+ # CodeFuse COMMUNITY LICENSE AGREEMENT
2
+ CodeFuse Release Date: September 8, 2023
3
+
4
+ By clicking to agree or by using or distributing any portion or element of the Materials, you will be deemed to have recognized and accepted the content of this Agreement, which is effective immediately.
5
+
6
+ 1. Definitions.
7
+ a. This CodeFuse COMMUNITY LICENSE AGREEMENT (this "Agreement") shall mean the terms and conditions for use, reproduction, distribution and modification of the Materials as defined by this Agreement.
8
+ b. "Ant" or "We" (or "Us") shall mean Ant Group.
9
+ c. "CodeFuse" shall mean the large language models (including CodeFuse-13B and CodeFuse-CodeLlaMa-34B), and software and algorithms, consisting of trained model weights, parameters (including optimizer states), machine-learning model code, and other elements of the foregoing distributed by Us.
10
+ d. "Documentation" shall mean the specifications, manuals and documentation accompanying CodeFuse distributed by Us.
11
+ e. "Materials" shall mean, collectively, Ant's proprietary CodeFuse and Documentation (and any portion thereof) made available under this Agreement.
12
+ f. "Object" form shall mean any form resulting from mechanical transformation or translation of a Source form, including but not limited to compiled object code, generated documentation, and conversions to other media types.
13
+ g. "Source" form shall mean the preferred form for making modifications, including but not limited to model source code, documentation source, and configuration files.
14
+ h. "Third Parties" (or "Third Party") shall mean individuals or legal entities that are not controlling, controlled by Us or You, or under common control with Us or You.
15
+ i. "You" (or "Your") shall mean a natural person or legal entity exercising the rights granted by this Agreement and/or using the Materials for any purpose and in any field of use.
16
+
17
+ 2. Grant of Rights.
18
+ You are granted a non-exclusive, worldwide, non-transferable and royalty-free limited license under Ant's intellectual property or other rights owned by Ant embodied in the Materials to use, reproduce, distribute, copy, create derivative works of, and make modifications to the Materials.
19
+
20
+ 3. Redistribution.
21
+ You may distribute or make the Materials or derivative works thereof available to a Third Party in any medium, with or without modifications, and in Source or Object form, provided that You meet the following conditions:
22
+ a. You shall provide a copy of this Agreement to such Third Party;
23
+ b. if You modify the CodeFuse model, You shall provide a prominent notice, stating how You have modified the CodeFuse model, to such Third Party; and
24
+ c. You shall retain in all copies of the Materials that You distribute the following attribution notices within a "Notice" text file distributed as a part of such copies: "CodeFuse is licensed under the CodeFuse COMMUNITY LICENSE AGREEMENT, Copyright (c) Ant Group. All Rights Reserved."
25
+ You may add Your own copyright statement to Your modifications and may provide additional or different license terms and conditions for use, reproduction, or distribution of Your modifications, or for any such derivative works as a whole, provided Your use, reproduction, and distribution of the work otherwise complies with the terms and conditions of this Agreement.
26
+
27
+ 4. Rules of Use.
28
+ You shall comply with applicable laws and regulations (including without limitation export controls or restrictions) in Your use of the Materials.
29
+
30
+ 5. Intellectual Property.
31
+ a. Ant retains ownership of all intellectual property rights in and to the Materials and derivatives made by or for Ant. Conditioned upon compliance with the terms and conditions of this Agreement, with respect to any derivative works and modifications of the Materials that are made by You, You are and will be the owner of such derivative works and modifications.
32
+ b. No trademark license is granted to use the trade names, trademarks, service marks, or product names of Ant, except as required to fulfill notice requirements under this Agreement or as required for reasonable and customary use in describing and redistributing the Materials.
33
+ c. If You commence a lawsuit or other proceedings (including a cross-claim or counterclaim in a lawsuit) against Ant or any entity alleging that the Materials or any output therefrom, or any part of the foregoing, infringe any intellectual property or other right owned or licensable by You, then all licences granted to You under this Agreement shall terminate as of the date such lawsuit or other proceeding is commenced or brought.
34
+
35
+ 6. Disclaimer of Warranty and Limitation of Liability.
36
+ a. Ant is not obligated to support, update, provide training for, or develop any further version of the Materials or to grant any license thereto.
37
+ b. THE MATERIALS ARE PROVIDED "AS IS" WITHOUT ANY EXPRESS OR IMPLIED WARRANTY OF ANY KIND INCLUDING WARRANTIES OF TITLE, MERCHANTABILITY, NONINFRINGEMENT, OR FITNESS FOR A PARTICULAR PURPOSE. WE MAKE NO WARRANTY AND ASSUME NO RESPONSIBILITY FOR THE SAFETY OR STABILITY OF THE MATERIALS AND ANY OUTPUT THEREFROM.
38
+ c. YOU ARE SOLELY RESPONSIBLE FOR DETERMINING THE APPROPRIATENESS OF USING OR REDISTRIBUTING THE MATERIALS AND ASSUME ANY RISKS ASSOCIATED WITH YOUR USE OF THE MATERIALS AND ANY OUTPUT AND RESULTS. IN NO EVENT SHALL WE BE LIABLE TO YOU FOR ANY THEORY OF LIABILITY, WHETHER IN CONTRACT, TORT, NEGLIGENCE, PRODUCTS LIABILITY, OR OTHERWISE, ARISING OUT OF THIS AGREEMENT OR ARISING FROM YOUR USE OR INABILITY TO USE THE MATERIALS OR ANY OUTPUT OF IT, FOR ANY DIRECT, OR INDIRECT, SPECIAL, CONSEQUENTIAL, INCIDENTAL, EXEMPLARY OR PUNITIVE DAMAGES, NO MATTER HOW IT'S CAUSED OR EVEN IF ANT OR ITS AFFILIATES HAVE BEEN ADVISED OF THE POSSIBILITY OF ANY OF THE FOREGOING.
39
+ d. You will defend, indemnify and hold harmless Ant from and against any claim by any Third Party arising out of or related to Your use or distribution of the Materials.
40
+
41
+ 7. Survival and Termination.
42
+ a. The term of this Agreement shall commence upon Your acceptance of this Agreement or access to the Materials and will continue in full force and effect until terminated in accordance with the terms and conditions herein.
43
+ b. We may terminate this Agreement if You breach any of the terms or conditions of this Agreement. Upon termination of this Agreement, You must delete and cease use of the Materials. Sections 6 and 8 shall survive the termination of this Agreement.
44
+
45
+ 8. Governing Law and Jurisdiction.
46
+ a. This Agreement and any dispute arising out of or relating to it, whether in contract, tort, negligence, products liability, or otherwise, will be governed by the laws of China, without regard to conflict of law principles, and the UN Convention on Contracts for the International Sale of Goods does not apply to this Agreement.
47
+ b. The People's Courts in Hangzhou City shall have exclusive jurisdiction over any dispute arising out of this Agreement.
README.md CHANGED
@@ -1,3 +1,255 @@
1
  ---
2
  license: apache-2.0
 
 
3
  ---
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
1
  ---
2
  license: apache-2.0
3
+ tasks:
4
+ - code-generation
5
  ---
6
+ # Model Card for CodeFuse-CodeLlama-34B
7
+ <p align="center">
8
+ <img src="https://modelscope.cn/api/v1/models/codefuse-ai/CodeFuse-QWen-14B/repo?Revision=master&FilePath=LOGO.jpg&View=true" width="800"/>
9
+ <p>
10
+
11
+ [[中文]](#chinese) [[English]](#english)
12
+
13
+
14
+
15
+ <a id="english"></a>
16
+
17
+ ## Model Description
18
+
19
+ CodeFuse-CodeLlama-34B is a 34B Code-LLM finetuned by QLoRA of multiple code tasks(600k instrunctions/answers) on the base model CodeLlama-34b-Python.
20
+ The context length of finetuning is 4K while it is able to be finetuned by 16k context if necessary.
21
+ <br>
22
+
23
+ ## News and Updates
24
+
25
+ 🔥🔥🔥 CodeFuse-CodeLlama34B-MFT has achived 74.4% of pass@1 on HumanEval, which is SOTA at present.
26
+
27
+ <br>
28
+
29
+ ## Code Community
30
+
31
+ **Homepage**: 🏡 https://github.com/codefuse-ai (**Please give us your support with a Star🌟 + Fork🚀 + Watch👀**)
32
+
33
+ + If you wish to fine-tune the model yourself, you can visit ✨[MFTCoder](https://github.com/codefuse-ai/MFTCoder)✨✨
34
+
35
+ + If you wish to deploy the model yourself, you can visit ✨[FasterTransformer4CodeFuse](https://github.com/codefuse-ai/FasterTransformer4CodeFuse)✨✨
36
+
37
+ + If you wish to see a demo of the model, you can visit ✨[CodeFuse Demo](https://github.com/codefuse-ai/codefuse)✨✨
38
+
39
+
40
+ ## Performance
41
+
42
+ | Model | HumanEval(pass@1) | Date |
43
+ |:----------------------------|:-----------------:|:-------:|
44
+ | **CodeFuse-CodeLlama-34B** | **74.4%** | 2023.9 |
45
+ | WizardCoder-Python-34B-V1.0 | 73.2% | 2023.8 |
46
+ | GPT-4(zero-shot) | 67.0% | 2023.3 |
47
+ | PanGu-Coder2 15B | 61.6% | 2023.8 |
48
+ | CodeLlama-34b-Python | 53.7% | 2023.8 |
49
+ | CodeLlama-34b | 48.8% | 2023.8 |
50
+ | GPT-3.5(zero-shot) | 48.1% | 2022.11 |
51
+ | OctoCoder | 46.2% | 2023.8 |
52
+ | StarCoder-15B | 33.6% | 2023.5 |
53
+ | LLaMA 2 70B(zero-shot) | 29.9% | 2023.7 |
54
+
55
+ <br>
56
+
57
+ ## Requirements
58
+
59
+ * python>=3.8
60
+ * pytorch>=2.0.0
61
+ * transformers==4.32.0
62
+ * Sentencepiece
63
+ * CUDA 11.4
64
+ <br>
65
+
66
+ ## Inference String Format
67
+
68
+ The inference string is a concatenated string formed by combining conversation data(system, human and bot contents) in the training data format. It is used as input during the inference process.
69
+ Here is an example format of the concatenated string:
70
+
71
+ ```python
72
+ """
73
+ <|role_start|>system<|role_end|>System instruction
74
+ <|role_start|>human<|role_end|>Human 1st round input
75
+ <|role_start|>bot<|role_end|>Bot 1st round output</s>
76
+ <|role_start|>human<|role_end|>Human 2nd round input
77
+ <|role_start|>bot<|role_end|>Bot 2nd round output</s>
78
+ ...
79
+ ...
80
+ ...
81
+ <|role_start|>human<|role_end|>Human nth round input
82
+ <|role_start|>bot<|role_end|>{Bot output to be genreated}</s>
83
+ """
84
+ ```
85
+
86
+ When applying inference, you always make your input string end with "<|role_start|>bot<|role_end|>" to ask the model generating answers.
87
+
88
+ ## Quickstart
89
+
90
+ ```bash
91
+ pip install -r requirements.txt
92
+ ```
93
+
94
+ ```python
95
+ import torch
96
+ from modelscope import AutoTokenizer, AutoModelForCausalLM, snapshot_download
97
+
98
+
99
+ model_dir = snapshot_download('codefuse-ai/CodeFuse-CodeLlama-34B', revision='v1.0.0')
100
+ tokenizer = AutoTokenizer.from_pretrained(model_dir, trust_remote_code=True, use_fast=False, legacy=False)
101
+ tokenizer.padding_side = "left"
102
+ tokenizer.pad_token_id = tokenizer.convert_tokens_to_ids("<unk>")
103
+ tokenizer.eos_token_id = tokenizer.convert_tokens_to_ids("</s>")
104
+ model = AutoModelForCausalLM.from_pretrained(model_dir, trust_remote_code=True,
105
+ device_map='auto',
106
+ torch_dtype=torch.bfloat16)
107
+
108
+ HUMAN_ROLE_START_TAG = "<|role_start|>human<|role_end|>"
109
+ BOT_ROLE_START_TAG = "<|role_start|>bot<|role_end|>"
110
+
111
+ text = f"{HUMAN_ROLE_START_TAG}write a python function of quick sort.{BOT_ROLE_START_TAG}"
112
+ inputs = tokenizer(text, return_tensors='pt', padding=True, add_special_tokens=False).to("cuda")
113
+ outputs = model.generate(
114
+ inputs=inputs["input_ids"],
115
+ attention_mask=inputs["attention_mask"],
116
+ max_new_tokens=512,
117
+ top_p=0.95,
118
+ temperature=0.1,
119
+ do_sample=True,
120
+ eos_token_id=tokenizer.eos_token_id,
121
+ pad_token_id=tokenizer.pad_token_id
122
+ )
123
+ gen_text = tokenizer.batch_decode(outputs[:, inputs["input_ids"].shape[1]:], skip_special_tokens=True)
124
+ print(gen_text)
125
+ ```
126
+
127
+ ## MD5
128
+ We notice that the file may be corrupted during transfer process. Please check MD5 value before use.
129
+
130
+ | Model File | MD5 Value |
131
+ |:---------------------------------|:--------------------------------:|
132
+ | pytorch_model-00001-of-00007.bin | 8d544b1bcb3449934184d4141137329c |
133
+ | pytorch_model-00002-of-00007.bin | 9d5dbb30911e48a42fb6d0fcabb322a4 |
134
+ | pytorch_model-00003-of-00007.bin | b0d4aecee0457d9332005a187e1fffed |
135
+ | pytorch_model-00004-of-00007.bin | 5c7e002de5eab77d0194a2b0f6de0c24 |
136
+ | pytorch_model-00005-of-00007.bin | d22a511aa26b5b17117b665a877490ab |
137
+ | pytorch_model-00006-of-00007.bin | a5c28ac277fac07d16dd66537e54d109 |
138
+ | pytorch_model-00007-of-00007.bin | a967e2c6195477b7407089c0bffa2d53 |
139
+
140
+
141
+ <a id="chinese"></a>
142
+
143
+ ## 模型简介
144
+
145
+ CodeFuse-CodeLlama34B-MFT 是一个通过QLoRA对基座模型CodeLlama-34b-Python进行多代码任务微调的代码大模型。模型微调采用了4k上下文。如果有必要,可以扩展到16k。
146
+ <br>
147
+
148
+ ## 新闻
149
+
150
+ 🔥🔥🔥 CodeFuse-CodeLlama34B-MFT模型在HumanEval pass@1上可以达到74.4%, 为当前开源SOTA。
151
+
152
+ <br>
153
+
154
+ ## 代码社区
155
+ **大本营**: 🏡 https://github.com/codefuse-ai (**欢迎为我们的项目一键三连 Star🌟 + Fork🚀 + Watch👀**)
156
+
157
+ + 如果您想自己微调该模型,可以访问 ✨[MFTCoder](https://github.com/codefuse-ai/MFTCoder)✨✨
158
+
159
+ + 如果您想自己部署该模型,可以访问 ✨[FasterTransformer4CodeFuse](https://github.com/codefuse-ai/FasterTransformer4CodeFuse)✨✨
160
+
161
+ + 如果您想观看该模型示例,可以访问 ✨[CodeFuse Demo](https://github.com/codefuse-ai/codefuse)✨✨
162
+
163
+ ## 评测表现(代码)
164
+
165
+ | 模型 | HumanEval(pass@1) | 日期 |
166
+ |:----------------------------|:-----------------:|:-------:|
167
+ | **CodeFuse-CodeLlama-34B** | **74.4%** | 2023.9 |
168
+ | WizardCoder-Python-34B-V1.0 | 73.2% | 2023.8 |
169
+ | GPT-4(zero-shot) | 67.0% | 2023.3 |
170
+ | PanGu-Coder2 15B | 61.6% | 2023.8 |
171
+ | CodeLlama-34b-Python | 53.7% | 2023.8 |
172
+ | CodeLlama-34b | 48.8% | 2023.8 |
173
+ | GPT-3.5(zero-shot) | 48.1% | 2022.11 |
174
+ | OctoCoder | 46.2% | 2023.8 |
175
+ | StarCoder-15B | 33.6% | 2023.5 |
176
+ | LLaMA 2 70B(zero-shot) | 29.9% | 2023.7 |
177
+ <br>
178
+
179
+ ## Requirements
180
+
181
+ * python>=3.8
182
+ * pytorch>=2.0.0
183
+ * transformers==4.32.0
184
+ * CUDA 11.4
185
+ <br>
186
+
187
+ ## 推理数据格式
188
+
189
+ 推理数据为模型在训练数据格式下拼接的字符串形式,它也是推理时输入prompt拼接的方式:
190
+
191
+ ```python
192
+ """
193
+ <|role_start|>system<|role_end|>这是System指令
194
+ <|role_start|>human<|role_end|>这是第1轮用户输入的问题
195
+ <|role_start|>bot<|role_end|>这是第1轮模型生成的内容</s>
196
+ <|role_start|>human<|role_end|>这是第2轮用户输入的问题
197
+ <|role_start|>bot<|role_end|>这是第2轮模型生成的内容</s>
198
+ ...
199
+ ...
200
+ ...
201
+ <|role_start|>human<|role_end|>这是第n轮用户输入的问题
202
+ <|role_start|>bot<|role_end|>{模型现在要生成的内容}</s>
203
+ """
204
+ ```
205
+
206
+ 推理时,请确保拼接的prompt字符串以"<|role_start|>bot<|role_end|>"结尾,引导模型生成回答。
207
+
208
+ ## 快速使用
209
+
210
+ ```python
211
+ import torch
212
+ from modelscope import AutoTokenizer, AutoModelForCausalLM, snapshot_download
213
+
214
+
215
+ model_dir = snapshot_download('codefuse-ai/CodeFuse-CodeLlama-34B', revision='v1.0.0')
216
+ tokenizer = AutoTokenizer.from_pretrained(model_dir, trust_remote_code=True, use_fast=False, legacy=False)
217
+ tokenizer.padding_side = "left"
218
+ tokenizer.pad_token_id = tokenizer.convert_tokens_to_ids("<unk>")
219
+ tokenizer.eos_token_id = tokenizer.convert_tokens_to_ids("</s>")
220
+ model = AutoModelForCausalLM.from_pretrained(model_dir, trust_remote_code=True,
221
+ device_map='auto',
222
+ torch_dtype=torch.bfloat16)
223
+
224
+ HUMAN_ROLE_START_TAG = "<|role_start|>human<|role_end|>"
225
+ BOT_ROLE_START_TAG = "<|role_start|>bot<|role_end|>"
226
+
227
+ text = f"{HUMAN_ROLE_START_TAG}write a python function of quick sort.{BOT_ROLE_START_TAG}"
228
+ inputs = tokenizer(text, return_tensors='pt', padding=True, add_special_tokens=False).to("cuda")
229
+ outputs = model.generate(
230
+ inputs=inputs["input_ids"],
231
+ attention_mask=inputs["attention_mask"],
232
+ max_new_tokens=512,
233
+ top_p=0.95,
234
+ temperature=0.1,
235
+ do_sample=True,
236
+ eos_token_id=tokenizer.eos_token_id,
237
+ pad_token_id=tokenizer.pad_token_id
238
+ )
239
+ gen_text = tokenizer.batch_decode(outputs[:, inputs["input_ids"].shape[1]:], skip_special_tokens=True)
240
+ print(gen_text)
241
+ ```
242
+
243
+
244
+ ## MD5
245
+ 我们发现模型文件可能会在传输过程中损坏,使用前请检查文件MD5值。
246
+
247
+ | 模型文件 | MD5值 |
248
+ |:---------------------------------|:--------------------------------:|
249
+ | pytorch_model-00001-of-00007.bin | 8d544b1bcb3449934184d4141137329c |
250
+ | pytorch_model-00002-of-00007.bin | 9d5dbb30911e48a42fb6d0fcabb322a4 |
251
+ | pytorch_model-00003-of-00007.bin | b0d4aecee0457d9332005a187e1fffed |
252
+ | pytorch_model-00004-of-00007.bin | 5c7e002de5eab77d0194a2b0f6de0c24 |
253
+ | pytorch_model-00005-of-00007.bin | d22a511aa26b5b17117b665a877490ab |
254
+ | pytorch_model-00006-of-00007.bin | a5c28ac277fac07d16dd66537e54d109 |
255
+ | pytorch_model-00007-of-00007.bin | a967e2c6195477b7407089c0bffa2d53 |
config.json ADDED
@@ -0,0 +1,33 @@
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
1
+ {
2
+ "_name_or_path": "/mnt/user/qumu/download_models/Mixtral-8x7B-v0.1",
3
+ "architectures": [
4
+ "MixtralForCausalLM"
5
+ ],
6
+ "attention_dropout": 0.0,
7
+ "bos_token_id": 1,
8
+ "eos_token": "</s>",
9
+ "eos_token_id": 2,
10
+ "hidden_act": "silu",
11
+ "hidden_size": 4096,
12
+ "initializer_range": 0.02,
13
+ "intermediate_size": 14336,
14
+ "max_position_embeddings": 32768,
15
+ "model_type": "mixtral",
16
+ "num_attention_heads": 32,
17
+ "num_experts_per_tok": 2,
18
+ "num_hidden_layers": 32,
19
+ "num_key_value_heads": 8,
20
+ "num_local_experts": 8,
21
+ "output_router_logits": false,
22
+ "pad_token": "<unk>",
23
+ "pad_token_id": 0,
24
+ "rms_norm_eps": 1e-05,
25
+ "rope_theta": 1000000.0,
26
+ "router_aux_loss_coef": 0.02,
27
+ "sliding_window": 4096,
28
+ "tie_word_embeddings": false,
29
+ "torch_dtype": "bfloat16",
30
+ "transformers_version": "4.36.0",
31
+ "use_cache": true,
32
+ "vocab_size": 32000
33
+ }
configuration.json ADDED
@@ -0,0 +1 @@
 
 
1
+ {"framework":"Pytorch","task":"text-generation"}
generation_config.json ADDED
@@ -0,0 +1,6 @@
 
 
 
 
 
 
 
1
+ {
2
+ "_from_model_config": true,
3
+ "bos_token_id": 1,
4
+ "eos_token_id": 2,
5
+ "transformers_version": "4.36.0"
6
+ }
model-00001-of-00019.safetensors ADDED
@@ -0,0 +1,3 @@
 
 
 
 
1
+ version https://git-lfs.github.com/spec/v1
2
+ oid sha256:191b17811aabffe6c8d03838891da1b25bc8d84ddf234b9c9f3ce83b19b7dd1a
3
+ size 4892809584
model-00002-of-00019.safetensors ADDED
@@ -0,0 +1,3 @@
 
 
 
 
1
+ version https://git-lfs.github.com/spec/v1
2
+ oid sha256:4a4969aac37d4dbeff4b64aac1df6b5e9ee31d06cedfe4d247d378610e82d734
3
+ size 4983004016
model-00003-of-00019.safetensors ADDED
@@ -0,0 +1,3 @@
 
 
 
 
1
+ version https://git-lfs.github.com/spec/v1
2
+ oid sha256:965fa4a588f0fed051c8ac2a9382cb9b7de6efa74c186a89c4205333061f996f
3
+ size 4983004016
model-00004-of-00019.safetensors ADDED
@@ -0,0 +1,3 @@
 
 
 
 
1
+ version https://git-lfs.github.com/spec/v1
2
+ oid sha256:a88532ac4017d6b3d5387110e4bb7f336a91d5d3d111ec8d36e3e8e294b8f943
3
+ size 4899035200
model-00005-of-00019.safetensors ADDED
@@ -0,0 +1,3 @@
 
 
 
 
1
+ version https://git-lfs.github.com/spec/v1
2
+ oid sha256:6c003042591f2066b2dc1a93cd13c82f90d27e2c08d8e295c51506c69e7d8e76
3
+ size 4983004016
model-00006-of-00019.safetensors ADDED
@@ -0,0 +1,3 @@
 
 
 
 
1
+ version https://git-lfs.github.com/spec/v1
2
+ oid sha256:555e0e87593183b4d48e19404e09072463c38b900fcfdfe79f443bd48ad5a6ca
3
+ size 4983004016
model-00007-of-00019.safetensors ADDED
@@ -0,0 +1,3 @@
 
 
 
 
1
+ version https://git-lfs.github.com/spec/v1
2
+ oid sha256:6ab9412bd17ca9d916ab7e8de924dbe5fc4c8b385479af305388f3bcf70ccc1e
3
+ size 4899035248
model-00008-of-00019.safetensors ADDED
@@ -0,0 +1,3 @@
 
 
 
 
1
+ version https://git-lfs.github.com/spec/v1
2
+ oid sha256:9aaa6f5f069e685608d16153633127e9ca7c9f48588c8cbd20c7338bf3e2428f
3
+ size 4983004072
model-00009-of-00019.safetensors ADDED
@@ -0,0 +1,3 @@
 
 
 
 
1
+ version https://git-lfs.github.com/spec/v1
2
+ oid sha256:4f69ad0e81cdeb18c3ed9335e3ae6c6265097aee1b2baec02e9bcaeef7e23bf5
3
+ size 4983004072
model-00010-of-00019.safetensors ADDED
@@ -0,0 +1,3 @@
 
 
 
 
1
+ version https://git-lfs.github.com/spec/v1
2
+ oid sha256:2c6121d8590522114c96c74db86c81338849454d6d46fd9f2f54607ba7e1ffab
3
+ size 4899035248
model-00011-of-00019.safetensors ADDED
@@ -0,0 +1,3 @@
 
 
 
 
1
+ version https://git-lfs.github.com/spec/v1
2
+ oid sha256:76607abffc26b8b13dfc490b223ca468cd254fc33c37f67df8e7fd5773d008f5
3
+ size 4983004072
model-00012-of-00019.safetensors ADDED
@@ -0,0 +1,3 @@
 
 
 
 
1
+ version https://git-lfs.github.com/spec/v1
2
+ oid sha256:7fda2ac25fb878944d2fdb3fdd2ca2f9efe62dab2712d00a22b0ebcc0e07c1c0
3
+ size 4983004072
model-00013-of-00019.safetensors ADDED
@@ -0,0 +1,3 @@
 
 
 
 
1
+ version https://git-lfs.github.com/spec/v1
2
+ oid sha256:ae2f3b21722565542e87634f0c30e76bee7444d666135c56f55943221fe911ca
3
+ size 4983004072
model-00014-of-00019.safetensors ADDED
@@ -0,0 +1,3 @@
 
 
 
 
1
+ version https://git-lfs.github.com/spec/v1
2
+ oid sha256:1809ed02ffdaffa332aaae3f594bb7833dea1afbf63075fded5dd51fb7b00445
3
+ size 4899035248
model-00015-of-00019.safetensors ADDED
@@ -0,0 +1,3 @@
 
 
 
 
1
+ version https://git-lfs.github.com/spec/v1
2
+ oid sha256:423811d39b090daa6c3ea1a67c372a48aa5d0595db7838adb2f3aefda3b4a6c6
3
+ size 4983004072
model-00016-of-00019.safetensors ADDED
@@ -0,0 +1,3 @@
 
 
 
 
1
+ version https://git-lfs.github.com/spec/v1
2
+ oid sha256:d010892647092933a13306ce1c46c47065621eae6e30f96ee9ba6fec85947d7b
3
+ size 4983004072
model-00017-of-00019.safetensors ADDED
@@ -0,0 +1,3 @@
 
 
 
 
1
+ version https://git-lfs.github.com/spec/v1
2
+ oid sha256:2825d1560d444e3970ddd69e743a9ae01b2c07192932e039802c7b761f9f9ebf
3
+ size 4899035248
model-00018-of-00019.safetensors ADDED
@@ -0,0 +1,3 @@
 
 
 
 
1
+ version https://git-lfs.github.com/spec/v1
2
+ oid sha256:1fe295fe2dd32f9f4498427df10760073b579d192ee03f1456cc2363323132c1
3
+ size 4983004072
model-00019-of-00019.safetensors ADDED
@@ -0,0 +1,3 @@
 
 
 
 
1
+ version https://git-lfs.github.com/spec/v1
2
+ oid sha256:a48ac5961e0fe2a3d30d7b570fb267b329095cffe0499b7b3893cf7f480642b6
3
+ size 4221679088
model.safetensors.index.json ADDED
@@ -0,0 +1,1002 @@
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
1
+ {
2
+ "metadata": {
3
+ "total_size": 93405585408
4
+ },
5
+ "weight_map": {
6
+ "lm_head.weight": "model-00019-of-00019.safetensors",
7
+ "model.embed_tokens.weight": "model-00001-of-00019.safetensors",
8
+ "model.layers.0.block_sparse_moe.experts.0.w1.weight": "model-00001-of-00019.safetensors",
9
+ "model.layers.0.block_sparse_moe.experts.0.w2.weight": "model-00001-of-00019.safetensors",
10
+ "model.layers.0.block_sparse_moe.experts.0.w3.weight": "model-00001-of-00019.safetensors",
11
+ "model.layers.0.block_sparse_moe.experts.1.w1.weight": "model-00001-of-00019.safetensors",
12
+ "model.layers.0.block_sparse_moe.experts.1.w2.weight": "model-00001-of-00019.safetensors",
13
+ "model.layers.0.block_sparse_moe.experts.1.w3.weight": "model-00001-of-00019.safetensors",
14
+ "model.layers.0.block_sparse_moe.experts.2.w1.weight": "model-00001-of-00019.safetensors",
15
+ "model.layers.0.block_sparse_moe.experts.2.w2.weight": "model-00001-of-00019.safetensors",
16
+ "model.layers.0.block_sparse_moe.experts.2.w3.weight": "model-00001-of-00019.safetensors",
17
+ "model.layers.0.block_sparse_moe.experts.3.w1.weight": "model-00001-of-00019.safetensors",
18
+ "model.layers.0.block_sparse_moe.experts.3.w2.weight": "model-00001-of-00019.safetensors",
19
+ "model.layers.0.block_sparse_moe.experts.3.w3.weight": "model-00001-of-00019.safetensors",
20
+ "model.layers.0.block_sparse_moe.experts.4.w1.weight": "model-00001-of-00019.safetensors",
21
+ "model.layers.0.block_sparse_moe.experts.4.w2.weight": "model-00001-of-00019.safetensors",
22
+ "model.layers.0.block_sparse_moe.experts.4.w3.weight": "model-00001-of-00019.safetensors",
23
+ "model.layers.0.block_sparse_moe.experts.5.w1.weight": "model-00001-of-00019.safetensors",
24
+ "model.layers.0.block_sparse_moe.experts.5.w2.weight": "model-00001-of-00019.safetensors",
25
+ "model.layers.0.block_sparse_moe.experts.5.w3.weight": "model-00001-of-00019.safetensors",
26
+ "model.layers.0.block_sparse_moe.experts.6.w1.weight": "model-00001-of-00019.safetensors",
27
+ "model.layers.0.block_sparse_moe.experts.6.w2.weight": "model-00001-of-00019.safetensors",
28
+ "model.layers.0.block_sparse_moe.experts.6.w3.weight": "model-00001-of-00019.safetensors",
29
+ "model.layers.0.block_sparse_moe.experts.7.w1.weight": "model-00001-of-00019.safetensors",
30
+ "model.layers.0.block_sparse_moe.experts.7.w2.weight": "model-00001-of-00019.safetensors",
31
+ "model.layers.0.block_sparse_moe.experts.7.w3.weight": "model-00001-of-00019.safetensors",
32
+ "model.layers.0.block_sparse_moe.gate.weight": "model-00001-of-00019.safetensors",
33
+ "model.layers.0.input_layernorm.weight": "model-00001-of-00019.safetensors",
34
+ "model.layers.0.post_attention_layernorm.weight": "model-00001-of-00019.safetensors",
35
+ "model.layers.0.self_attn.k_proj.weight": "model-00001-of-00019.safetensors",
36
+ "model.layers.0.self_attn.o_proj.weight": "model-00001-of-00019.safetensors",
37
+ "model.layers.0.self_attn.q_proj.weight": "model-00001-of-00019.safetensors",
38
+ "model.layers.0.self_attn.v_proj.weight": "model-00001-of-00019.safetensors",
39
+ "model.layers.1.block_sparse_moe.experts.0.w1.weight": "model-00001-of-00019.safetensors",
40
+ "model.layers.1.block_sparse_moe.experts.0.w2.weight": "model-00001-of-00019.safetensors",
41
+ "model.layers.1.block_sparse_moe.experts.0.w3.weight": "model-00001-of-00019.safetensors",
42
+ "model.layers.1.block_sparse_moe.experts.1.w1.weight": "model-00001-of-00019.safetensors",
43
+ "model.layers.1.block_sparse_moe.experts.1.w2.weight": "model-00001-of-00019.safetensors",
44
+ "model.layers.1.block_sparse_moe.experts.1.w3.weight": "model-00001-of-00019.safetensors",
45
+ "model.layers.1.block_sparse_moe.experts.2.w1.weight": "model-00001-of-00019.safetensors",
46
+ "model.layers.1.block_sparse_moe.experts.2.w2.weight": "model-00001-of-00019.safetensors",
47
+ "model.layers.1.block_sparse_moe.experts.2.w3.weight": "model-00001-of-00019.safetensors",
48
+ "model.layers.1.block_sparse_moe.experts.3.w1.weight": "model-00001-of-00019.safetensors",
49
+ "model.layers.1.block_sparse_moe.experts.3.w2.weight": "model-00001-of-00019.safetensors",
50
+ "model.layers.1.block_sparse_moe.experts.3.w3.weight": "model-00001-of-00019.safetensors",
51
+ "model.layers.1.block_sparse_moe.experts.4.w1.weight": "model-00001-of-00019.safetensors",
52
+ "model.layers.1.block_sparse_moe.experts.4.w2.weight": "model-00001-of-00019.safetensors",
53
+ "model.layers.1.block_sparse_moe.experts.4.w3.weight": "model-00002-of-00019.safetensors",
54
+ "model.layers.1.block_sparse_moe.experts.5.w1.weight": "model-00002-of-00019.safetensors",
55
+ "model.layers.1.block_sparse_moe.experts.5.w2.weight": "model-00002-of-00019.safetensors",
56
+ "model.layers.1.block_sparse_moe.experts.5.w3.weight": "model-00002-of-00019.safetensors",
57
+ "model.layers.1.block_sparse_moe.experts.6.w1.weight": "model-00002-of-00019.safetensors",
58
+ "model.layers.1.block_sparse_moe.experts.6.w2.weight": "model-00002-of-00019.safetensors",
59
+ "model.layers.1.block_sparse_moe.experts.6.w3.weight": "model-00002-of-00019.safetensors",
60
+ "model.layers.1.block_sparse_moe.experts.7.w1.weight": "model-00002-of-00019.safetensors",
61
+ "model.layers.1.block_sparse_moe.experts.7.w2.weight": "model-00002-of-00019.safetensors",
62
+ "model.layers.1.block_sparse_moe.experts.7.w3.weight": "model-00002-of-00019.safetensors",
63
+ "model.layers.1.block_sparse_moe.gate.weight": "model-00001-of-00019.safetensors",
64
+ "model.layers.1.input_layernorm.weight": "model-00002-of-00019.safetensors",
65
+ "model.layers.1.post_attention_layernorm.weight": "model-00002-of-00019.safetensors",
66
+ "model.layers.1.self_attn.k_proj.weight": "model-00001-of-00019.safetensors",
67
+ "model.layers.1.self_attn.o_proj.weight": "model-00001-of-00019.safetensors",
68
+ "model.layers.1.self_attn.q_proj.weight": "model-00001-of-00019.safetensors",
69
+ "model.layers.1.self_attn.v_proj.weight": "model-00001-of-00019.safetensors",
70
+ "model.layers.10.block_sparse_moe.experts.0.w1.weight": "model-00006-of-00019.safetensors",
71
+ "model.layers.10.block_sparse_moe.experts.0.w2.weight": "model-00006-of-00019.safetensors",
72
+ "model.layers.10.block_sparse_moe.experts.0.w3.weight": "model-00006-of-00019.safetensors",
73
+ "model.layers.10.block_sparse_moe.experts.1.w1.weight": "model-00007-of-00019.safetensors",
74
+ "model.layers.10.block_sparse_moe.experts.1.w2.weight": "model-00007-of-00019.safetensors",
75
+ "model.layers.10.block_sparse_moe.experts.1.w3.weight": "model-00007-of-00019.safetensors",
76
+ "model.layers.10.block_sparse_moe.experts.2.w1.weight": "model-00007-of-00019.safetensors",
77
+ "model.layers.10.block_sparse_moe.experts.2.w2.weight": "model-00007-of-00019.safetensors",
78
+ "model.layers.10.block_sparse_moe.experts.2.w3.weight": "model-00007-of-00019.safetensors",
79
+ "model.layers.10.block_sparse_moe.experts.3.w1.weight": "model-00007-of-00019.safetensors",
80
+ "model.layers.10.block_sparse_moe.experts.3.w2.weight": "model-00007-of-00019.safetensors",
81
+ "model.layers.10.block_sparse_moe.experts.3.w3.weight": "model-00007-of-00019.safetensors",
82
+ "model.layers.10.block_sparse_moe.experts.4.w1.weight": "model-00007-of-00019.safetensors",
83
+ "model.layers.10.block_sparse_moe.experts.4.w2.weight": "model-00007-of-00019.safetensors",
84
+ "model.layers.10.block_sparse_moe.experts.4.w3.weight": "model-00007-of-00019.safetensors",
85
+ "model.layers.10.block_sparse_moe.experts.5.w1.weight": "model-00007-of-00019.safetensors",
86
+ "model.layers.10.block_sparse_moe.experts.5.w2.weight": "model-00007-of-00019.safetensors",
87
+ "model.layers.10.block_sparse_moe.experts.5.w3.weight": "model-00007-of-00019.safetensors",
88
+ "model.layers.10.block_sparse_moe.experts.6.w1.weight": "model-00007-of-00019.safetensors",
89
+ "model.layers.10.block_sparse_moe.experts.6.w2.weight": "model-00007-of-00019.safetensors",
90
+ "model.layers.10.block_sparse_moe.experts.6.w3.weight": "model-00007-of-00019.safetensors",
91
+ "model.layers.10.block_sparse_moe.experts.7.w1.weight": "model-00007-of-00019.safetensors",
92
+ "model.layers.10.block_sparse_moe.experts.7.w2.weight": "model-00007-of-00019.safetensors",
93
+ "model.layers.10.block_sparse_moe.experts.7.w3.weight": "model-00007-of-00019.safetensors",
94
+ "model.layers.10.block_sparse_moe.gate.weight": "model-00006-of-00019.safetensors",
95
+ "model.layers.10.input_layernorm.weight": "model-00007-of-00019.safetensors",
96
+ "model.layers.10.post_attention_layernorm.weight": "model-00007-of-00019.safetensors",
97
+ "model.layers.10.self_attn.k_proj.weight": "model-00006-of-00019.safetensors",
98
+ "model.layers.10.self_attn.o_proj.weight": "model-00006-of-00019.safetensors",
99
+ "model.layers.10.self_attn.q_proj.weight": "model-00006-of-00019.safetensors",
100
+ "model.layers.10.self_attn.v_proj.weight": "model-00006-of-00019.safetensors",
101
+ "model.layers.11.block_sparse_moe.experts.0.w1.weight": "model-00007-of-00019.safetensors",
102
+ "model.layers.11.block_sparse_moe.experts.0.w2.weight": "model-00007-of-00019.safetensors",
103
+ "model.layers.11.block_sparse_moe.experts.0.w3.weight": "model-00007-of-00019.safetensors",
104
+ "model.layers.11.block_sparse_moe.experts.1.w1.weight": "model-00007-of-00019.safetensors",
105
+ "model.layers.11.block_sparse_moe.experts.1.w2.weight": "model-00007-of-00019.safetensors",
106
+ "model.layers.11.block_sparse_moe.experts.1.w3.weight": "model-00007-of-00019.safetensors",
107
+ "model.layers.11.block_sparse_moe.experts.2.w1.weight": "model-00007-of-00019.safetensors",
108
+ "model.layers.11.block_sparse_moe.experts.2.w2.weight": "model-00007-of-00019.safetensors",
109
+ "model.layers.11.block_sparse_moe.experts.2.w3.weight": "model-00007-of-00019.safetensors",
110
+ "model.layers.11.block_sparse_moe.experts.3.w1.weight": "model-00007-of-00019.safetensors",
111
+ "model.layers.11.block_sparse_moe.experts.3.w2.weight": "model-00007-of-00019.safetensors",
112
+ "model.layers.11.block_sparse_moe.experts.3.w3.weight": "model-00007-of-00019.safetensors",
113
+ "model.layers.11.block_sparse_moe.experts.4.w1.weight": "model-00007-of-00019.safetensors",
114
+ "model.layers.11.block_sparse_moe.experts.4.w2.weight": "model-00007-of-00019.safetensors",
115
+ "model.layers.11.block_sparse_moe.experts.4.w3.weight": "model-00007-of-00019.safetensors",
116
+ "model.layers.11.block_sparse_moe.experts.5.w1.weight": "model-00007-of-00019.safetensors",
117
+ "model.layers.11.block_sparse_moe.experts.5.w2.weight": "model-00007-of-00019.safetensors",
118
+ "model.layers.11.block_sparse_moe.experts.5.w3.weight": "model-00007-of-00019.safetensors",
119
+ "model.layers.11.block_sparse_moe.experts.6.w1.weight": "model-00007-of-00019.safetensors",
120
+ "model.layers.11.block_sparse_moe.experts.6.w2.weight": "model-00007-of-00019.safetensors",
121
+ "model.layers.11.block_sparse_moe.experts.6.w3.weight": "model-00008-of-00019.safetensors",
122
+ "model.layers.11.block_sparse_moe.experts.7.w1.weight": "model-00008-of-00019.safetensors",
123
+ "model.layers.11.block_sparse_moe.experts.7.w2.weight": "model-00008-of-00019.safetensors",
124
+ "model.layers.11.block_sparse_moe.experts.7.w3.weight": "model-00008-of-00019.safetensors",
125
+ "model.layers.11.block_sparse_moe.gate.weight": "model-00007-of-00019.safetensors",
126
+ "model.layers.11.input_layernorm.weight": "model-00008-of-00019.safetensors",
127
+ "model.layers.11.post_attention_layernorm.weight": "model-00008-of-00019.safetensors",
128
+ "model.layers.11.self_attn.k_proj.weight": "model-00007-of-00019.safetensors",
129
+ "model.layers.11.self_attn.o_proj.weight": "model-00007-of-00019.safetensors",
130
+ "model.layers.11.self_attn.q_proj.weight": "model-00007-of-00019.safetensors",
131
+ "model.layers.11.self_attn.v_proj.weight": "model-00007-of-00019.safetensors",
132
+ "model.layers.12.block_sparse_moe.experts.0.w1.weight": "model-00008-of-00019.safetensors",
133
+ "model.layers.12.block_sparse_moe.experts.0.w2.weight": "model-00008-of-00019.safetensors",
134
+ "model.layers.12.block_sparse_moe.experts.0.w3.weight": "model-00008-of-00019.safetensors",
135
+ "model.layers.12.block_sparse_moe.experts.1.w1.weight": "model-00008-of-00019.safetensors",
136
+ "model.layers.12.block_sparse_moe.experts.1.w2.weight": "model-00008-of-00019.safetensors",
137
+ "model.layers.12.block_sparse_moe.experts.1.w3.weight": "model-00008-of-00019.safetensors",
138
+ "model.layers.12.block_sparse_moe.experts.2.w1.weight": "model-00008-of-00019.safetensors",
139
+ "model.layers.12.block_sparse_moe.experts.2.w2.weight": "model-00008-of-00019.safetensors",
140
+ "model.layers.12.block_sparse_moe.experts.2.w3.weight": "model-00008-of-00019.safetensors",
141
+ "model.layers.12.block_sparse_moe.experts.3.w1.weight": "model-00008-of-00019.safetensors",
142
+ "model.layers.12.block_sparse_moe.experts.3.w2.weight": "model-00008-of-00019.safetensors",
143
+ "model.layers.12.block_sparse_moe.experts.3.w3.weight": "model-00008-of-00019.safetensors",
144
+ "model.layers.12.block_sparse_moe.experts.4.w1.weight": "model-00008-of-00019.safetensors",
145
+ "model.layers.12.block_sparse_moe.experts.4.w2.weight": "model-00008-of-00019.safetensors",
146
+ "model.layers.12.block_sparse_moe.experts.4.w3.weight": "model-00008-of-00019.safetensors",
147
+ "model.layers.12.block_sparse_moe.experts.5.w1.weight": "model-00008-of-00019.safetensors",
148
+ "model.layers.12.block_sparse_moe.experts.5.w2.weight": "model-00008-of-00019.safetensors",
149
+ "model.layers.12.block_sparse_moe.experts.5.w3.weight": "model-00008-of-00019.safetensors",
150
+ "model.layers.12.block_sparse_moe.experts.6.w1.weight": "model-00008-of-00019.safetensors",
151
+ "model.layers.12.block_sparse_moe.experts.6.w2.weight": "model-00008-of-00019.safetensors",
152
+ "model.layers.12.block_sparse_moe.experts.6.w3.weight": "model-00008-of-00019.safetensors",
153
+ "model.layers.12.block_sparse_moe.experts.7.w1.weight": "model-00008-of-00019.safetensors",
154
+ "model.layers.12.block_sparse_moe.experts.7.w2.weight": "model-00008-of-00019.safetensors",
155
+ "model.layers.12.block_sparse_moe.experts.7.w3.weight": "model-00008-of-00019.safetensors",
156
+ "model.layers.12.block_sparse_moe.gate.weight": "model-00008-of-00019.safetensors",
157
+ "model.layers.12.input_layernorm.weight": "model-00008-of-00019.safetensors",
158
+ "model.layers.12.post_attention_layernorm.weight": "model-00008-of-00019.safetensors",
159
+ "model.layers.12.self_attn.k_proj.weight": "model-00008-of-00019.safetensors",
160
+ "model.layers.12.self_attn.o_proj.weight": "model-00008-of-00019.safetensors",
161
+ "model.layers.12.self_attn.q_proj.weight": "model-00008-of-00019.safetensors",
162
+ "model.layers.12.self_attn.v_proj.weight": "model-00008-of-00019.safetensors",
163
+ "model.layers.13.block_sparse_moe.experts.0.w1.weight": "model-00008-of-00019.safetensors",
164
+ "model.layers.13.block_sparse_moe.experts.0.w2.weight": "model-00008-of-00019.safetensors",
165
+ "model.layers.13.block_sparse_moe.experts.0.w3.weight": "model-00008-of-00019.safetensors",
166
+ "model.layers.13.block_sparse_moe.experts.1.w1.weight": "model-00008-of-00019.safetensors",
167
+ "model.layers.13.block_sparse_moe.experts.1.w2.weight": "model-00008-of-00019.safetensors",
168
+ "model.layers.13.block_sparse_moe.experts.1.w3.weight": "model-00008-of-00019.safetensors",
169
+ "model.layers.13.block_sparse_moe.experts.2.w1.weight": "model-00008-of-00019.safetensors",
170
+ "model.layers.13.block_sparse_moe.experts.2.w2.weight": "model-00008-of-00019.safetensors",
171
+ "model.layers.13.block_sparse_moe.experts.2.w3.weight": "model-00008-of-00019.safetensors",
172
+ "model.layers.13.block_sparse_moe.experts.3.w1.weight": "model-00008-of-00019.safetensors",
173
+ "model.layers.13.block_sparse_moe.experts.3.w2.weight": "model-00008-of-00019.safetensors",
174
+ "model.layers.13.block_sparse_moe.experts.3.w3.weight": "model-00008-of-00019.safetensors",
175
+ "model.layers.13.block_sparse_moe.experts.4.w1.weight": "model-00008-of-00019.safetensors",
176
+ "model.layers.13.block_sparse_moe.experts.4.w2.weight": "model-00009-of-00019.safetensors",
177
+ "model.layers.13.block_sparse_moe.experts.4.w3.weight": "model-00009-of-00019.safetensors",
178
+ "model.layers.13.block_sparse_moe.experts.5.w1.weight": "model-00009-of-00019.safetensors",
179
+ "model.layers.13.block_sparse_moe.experts.5.w2.weight": "model-00009-of-00019.safetensors",
180
+ "model.layers.13.block_sparse_moe.experts.5.w3.weight": "model-00009-of-00019.safetensors",
181
+ "model.layers.13.block_sparse_moe.experts.6.w1.weight": "model-00009-of-00019.safetensors",
182
+ "model.layers.13.block_sparse_moe.experts.6.w2.weight": "model-00009-of-00019.safetensors",
183
+ "model.layers.13.block_sparse_moe.experts.6.w3.weight": "model-00009-of-00019.safetensors",
184
+ "model.layers.13.block_sparse_moe.experts.7.w1.weight": "model-00009-of-00019.safetensors",
185
+ "model.layers.13.block_sparse_moe.experts.7.w2.weight": "model-00009-of-00019.safetensors",
186
+ "model.layers.13.block_sparse_moe.experts.7.w3.weight": "model-00009-of-00019.safetensors",
187
+ "model.layers.13.block_sparse_moe.gate.weight": "model-00008-of-00019.safetensors",
188
+ "model.layers.13.input_layernorm.weight": "model-00009-of-00019.safetensors",
189
+ "model.layers.13.post_attention_layernorm.weight": "model-00009-of-00019.safetensors",
190
+ "model.layers.13.self_attn.k_proj.weight": "model-00008-of-00019.safetensors",
191
+ "model.layers.13.self_attn.o_proj.weight": "model-00008-of-00019.safetensors",
192
+ "model.layers.13.self_attn.q_proj.weight": "model-00008-of-00019.safetensors",
193
+ "model.layers.13.self_attn.v_proj.weight": "model-00008-of-00019.safetensors",
194
+ "model.layers.14.block_sparse_moe.experts.0.w1.weight": "model-00009-of-00019.safetensors",
195
+ "model.layers.14.block_sparse_moe.experts.0.w2.weight": "model-00009-of-00019.safetensors",
196
+ "model.layers.14.block_sparse_moe.experts.0.w3.weight": "model-00009-of-00019.safetensors",
197
+ "model.layers.14.block_sparse_moe.experts.1.w1.weight": "model-00009-of-00019.safetensors",
198
+ "model.layers.14.block_sparse_moe.experts.1.w2.weight": "model-00009-of-00019.safetensors",
199
+ "model.layers.14.block_sparse_moe.experts.1.w3.weight": "model-00009-of-00019.safetensors",
200
+ "model.layers.14.block_sparse_moe.experts.2.w1.weight": "model-00009-of-00019.safetensors",
201
+ "model.layers.14.block_sparse_moe.experts.2.w2.weight": "model-00009-of-00019.safetensors",
202
+ "model.layers.14.block_sparse_moe.experts.2.w3.weight": "model-00009-of-00019.safetensors",
203
+ "model.layers.14.block_sparse_moe.experts.3.w1.weight": "model-00009-of-00019.safetensors",
204
+ "model.layers.14.block_sparse_moe.experts.3.w2.weight": "model-00009-of-00019.safetensors",
205
+ "model.layers.14.block_sparse_moe.experts.3.w3.weight": "model-00009-of-00019.safetensors",
206
+ "model.layers.14.block_sparse_moe.experts.4.w1.weight": "model-00009-of-00019.safetensors",
207
+ "model.layers.14.block_sparse_moe.experts.4.w2.weight": "model-00009-of-00019.safetensors",
208
+ "model.layers.14.block_sparse_moe.experts.4.w3.weight": "model-00009-of-00019.safetensors",
209
+ "model.layers.14.block_sparse_moe.experts.5.w1.weight": "model-00009-of-00019.safetensors",
210
+ "model.layers.14.block_sparse_moe.experts.5.w2.weight": "model-00009-of-00019.safetensors",
211
+ "model.layers.14.block_sparse_moe.experts.5.w3.weight": "model-00009-of-00019.safetensors",
212
+ "model.layers.14.block_sparse_moe.experts.6.w1.weight": "model-00009-of-00019.safetensors",
213
+ "model.layers.14.block_sparse_moe.experts.6.w2.weight": "model-00009-of-00019.safetensors",
214
+ "model.layers.14.block_sparse_moe.experts.6.w3.weight": "model-00009-of-00019.safetensors",
215
+ "model.layers.14.block_sparse_moe.experts.7.w1.weight": "model-00009-of-00019.safetensors",
216
+ "model.layers.14.block_sparse_moe.experts.7.w2.weight": "model-00009-of-00019.safetensors",
217
+ "model.layers.14.block_sparse_moe.experts.7.w3.weight": "model-00009-of-00019.safetensors",
218
+ "model.layers.14.block_sparse_moe.gate.weight": "model-00009-of-00019.safetensors",
219
+ "model.layers.14.input_layernorm.weight": "model-00009-of-00019.safetensors",
220
+ "model.layers.14.post_attention_layernorm.weight": "model-00009-of-00019.safetensors",
221
+ "model.layers.14.self_attn.k_proj.weight": "model-00009-of-00019.safetensors",
222
+ "model.layers.14.self_attn.o_proj.weight": "model-00009-of-00019.safetensors",
223
+ "model.layers.14.self_attn.q_proj.weight": "model-00009-of-00019.safetensors",
224
+ "model.layers.14.self_attn.v_proj.weight": "model-00009-of-00019.safetensors",
225
+ "model.layers.15.block_sparse_moe.experts.0.w1.weight": "model-00009-of-00019.safetensors",
226
+ "model.layers.15.block_sparse_moe.experts.0.w2.weight": "model-00009-of-00019.safetensors",
227
+ "model.layers.15.block_sparse_moe.experts.0.w3.weight": "model-00009-of-00019.safetensors",
228
+ "model.layers.15.block_sparse_moe.experts.1.w1.weight": "model-00009-of-00019.safetensors",
229
+ "model.layers.15.block_sparse_moe.experts.1.w2.weight": "model-00009-of-00019.safetensors",
230
+ "model.layers.15.block_sparse_moe.experts.1.w3.weight": "model-00009-of-00019.safetensors",
231
+ "model.layers.15.block_sparse_moe.experts.2.w1.weight": "model-00010-of-00019.safetensors",
232
+ "model.layers.15.block_sparse_moe.experts.2.w2.weight": "model-00010-of-00019.safetensors",
233
+ "model.layers.15.block_sparse_moe.experts.2.w3.weight": "model-00010-of-00019.safetensors",
234
+ "model.layers.15.block_sparse_moe.experts.3.w1.weight": "model-00010-of-00019.safetensors",
235
+ "model.layers.15.block_sparse_moe.experts.3.w2.weight": "model-00010-of-00019.safetensors",
236
+ "model.layers.15.block_sparse_moe.experts.3.w3.weight": "model-00010-of-00019.safetensors",
237
+ "model.layers.15.block_sparse_moe.experts.4.w1.weight": "model-00010-of-00019.safetensors",
238
+ "model.layers.15.block_sparse_moe.experts.4.w2.weight": "model-00010-of-00019.safetensors",
239
+ "model.layers.15.block_sparse_moe.experts.4.w3.weight": "model-00010-of-00019.safetensors",
240
+ "model.layers.15.block_sparse_moe.experts.5.w1.weight": "model-00010-of-00019.safetensors",
241
+ "model.layers.15.block_sparse_moe.experts.5.w2.weight": "model-00010-of-00019.safetensors",
242
+ "model.layers.15.block_sparse_moe.experts.5.w3.weight": "model-00010-of-00019.safetensors",
243
+ "model.layers.15.block_sparse_moe.experts.6.w1.weight": "model-00010-of-00019.safetensors",
244
+ "model.layers.15.block_sparse_moe.experts.6.w2.weight": "model-00010-of-00019.safetensors",
245
+ "model.layers.15.block_sparse_moe.experts.6.w3.weight": "model-00010-of-00019.safetensors",
246
+ "model.layers.15.block_sparse_moe.experts.7.w1.weight": "model-00010-of-00019.safetensors",
247
+ "model.layers.15.block_sparse_moe.experts.7.w2.weight": "model-00010-of-00019.safetensors",
248
+ "model.layers.15.block_sparse_moe.experts.7.w3.weight": "model-00010-of-00019.safetensors",
249
+ "model.layers.15.block_sparse_moe.gate.weight": "model-00009-of-00019.safetensors",
250
+ "model.layers.15.input_layernorm.weight": "model-00010-of-00019.safetensors",
251
+ "model.layers.15.post_attention_layernorm.weight": "model-00010-of-00019.safetensors",
252
+ "model.layers.15.self_attn.k_proj.weight": "model-00009-of-00019.safetensors",
253
+ "model.layers.15.self_attn.o_proj.weight": "model-00009-of-00019.safetensors",
254
+ "model.layers.15.self_attn.q_proj.weight": "model-00009-of-00019.safetensors",
255
+ "model.layers.15.self_attn.v_proj.weight": "model-00009-of-00019.safetensors",
256
+ "model.layers.16.block_sparse_moe.experts.0.w1.weight": "model-00010-of-00019.safetensors",
257
+ "model.layers.16.block_sparse_moe.experts.0.w2.weight": "model-00010-of-00019.safetensors",
258
+ "model.layers.16.block_sparse_moe.experts.0.w3.weight": "model-00010-of-00019.safetensors",
259
+ "model.layers.16.block_sparse_moe.experts.1.w1.weight": "model-00010-of-00019.safetensors",
260
+ "model.layers.16.block_sparse_moe.experts.1.w2.weight": "model-00010-of-00019.safetensors",
261
+ "model.layers.16.block_sparse_moe.experts.1.w3.weight": "model-00010-of-00019.safetensors",
262
+ "model.layers.16.block_sparse_moe.experts.2.w1.weight": "model-00010-of-00019.safetensors",
263
+ "model.layers.16.block_sparse_moe.experts.2.w2.weight": "model-00010-of-00019.safetensors",
264
+ "model.layers.16.block_sparse_moe.experts.2.w3.weight": "model-00010-of-00019.safetensors",
265
+ "model.layers.16.block_sparse_moe.experts.3.w1.weight": "model-00010-of-00019.safetensors",
266
+ "model.layers.16.block_sparse_moe.experts.3.w2.weight": "model-00010-of-00019.safetensors",
267
+ "model.layers.16.block_sparse_moe.experts.3.w3.weight": "model-00010-of-00019.safetensors",
268
+ "model.layers.16.block_sparse_moe.experts.4.w1.weight": "model-00010-of-00019.safetensors",
269
+ "model.layers.16.block_sparse_moe.experts.4.w2.weight": "model-00010-of-00019.safetensors",
270
+ "model.layers.16.block_sparse_moe.experts.4.w3.weight": "model-00010-of-00019.safetensors",
271
+ "model.layers.16.block_sparse_moe.experts.5.w1.weight": "model-00010-of-00019.safetensors",
272
+ "model.layers.16.block_sparse_moe.experts.5.w2.weight": "model-00010-of-00019.safetensors",
273
+ "model.layers.16.block_sparse_moe.experts.5.w3.weight": "model-00010-of-00019.safetensors",
274
+ "model.layers.16.block_sparse_moe.experts.6.w1.weight": "model-00010-of-00019.safetensors",
275
+ "model.layers.16.block_sparse_moe.experts.6.w2.weight": "model-00010-of-00019.safetensors",
276
+ "model.layers.16.block_sparse_moe.experts.6.w3.weight": "model-00010-of-00019.safetensors",
277
+ "model.layers.16.block_sparse_moe.experts.7.w1.weight": "model-00010-of-00019.safetensors",
278
+ "model.layers.16.block_sparse_moe.experts.7.w2.weight": "model-00010-of-00019.safetensors",
279
+ "model.layers.16.block_sparse_moe.experts.7.w3.weight": "model-00011-of-00019.safetensors",
280
+ "model.layers.16.block_sparse_moe.gate.weight": "model-00010-of-00019.safetensors",
281
+ "model.layers.16.input_layernorm.weight": "model-00011-of-00019.safetensors",
282
+ "model.layers.16.post_attention_layernorm.weight": "model-00011-of-00019.safetensors",
283
+ "model.layers.16.self_attn.k_proj.weight": "model-00010-of-00019.safetensors",
284
+ "model.layers.16.self_attn.o_proj.weight": "model-00010-of-00019.safetensors",
285
+ "model.layers.16.self_attn.q_proj.weight": "model-00010-of-00019.safetensors",
286
+ "model.layers.16.self_attn.v_proj.weight": "model-00010-of-00019.safetensors",
287
+ "model.layers.17.block_sparse_moe.experts.0.w1.weight": "model-00011-of-00019.safetensors",
288
+ "model.layers.17.block_sparse_moe.experts.0.w2.weight": "model-00011-of-00019.safetensors",
289
+ "model.layers.17.block_sparse_moe.experts.0.w3.weight": "model-00011-of-00019.safetensors",
290
+ "model.layers.17.block_sparse_moe.experts.1.w1.weight": "model-00011-of-00019.safetensors",
291
+ "model.layers.17.block_sparse_moe.experts.1.w2.weight": "model-00011-of-00019.safetensors",
292
+ "model.layers.17.block_sparse_moe.experts.1.w3.weight": "model-00011-of-00019.safetensors",
293
+ "model.layers.17.block_sparse_moe.experts.2.w1.weight": "model-00011-of-00019.safetensors",
294
+ "model.layers.17.block_sparse_moe.experts.2.w2.weight": "model-00011-of-00019.safetensors",
295
+ "model.layers.17.block_sparse_moe.experts.2.w3.weight": "model-00011-of-00019.safetensors",
296
+ "model.layers.17.block_sparse_moe.experts.3.w1.weight": "model-00011-of-00019.safetensors",
297
+ "model.layers.17.block_sparse_moe.experts.3.w2.weight": "model-00011-of-00019.safetensors",
298
+ "model.layers.17.block_sparse_moe.experts.3.w3.weight": "model-00011-of-00019.safetensors",
299
+ "model.layers.17.block_sparse_moe.experts.4.w1.weight": "model-00011-of-00019.safetensors",
300
+ "model.layers.17.block_sparse_moe.experts.4.w2.weight": "model-00011-of-00019.safetensors",
301
+ "model.layers.17.block_sparse_moe.experts.4.w3.weight": "model-00011-of-00019.safetensors",
302
+ "model.layers.17.block_sparse_moe.experts.5.w1.weight": "model-00011-of-00019.safetensors",
303
+ "model.layers.17.block_sparse_moe.experts.5.w2.weight": "model-00011-of-00019.safetensors",
304
+ "model.layers.17.block_sparse_moe.experts.5.w3.weight": "model-00011-of-00019.safetensors",
305
+ "model.layers.17.block_sparse_moe.experts.6.w1.weight": "model-00011-of-00019.safetensors",
306
+ "model.layers.17.block_sparse_moe.experts.6.w2.weight": "model-00011-of-00019.safetensors",
307
+ "model.layers.17.block_sparse_moe.experts.6.w3.weight": "model-00011-of-00019.safetensors",
308
+ "model.layers.17.block_sparse_moe.experts.7.w1.weight": "model-00011-of-00019.safetensors",
309
+ "model.layers.17.block_sparse_moe.experts.7.w2.weight": "model-00011-of-00019.safetensors",
310
+ "model.layers.17.block_sparse_moe.experts.7.w3.weight": "model-00011-of-00019.safetensors",
311
+ "model.layers.17.block_sparse_moe.gate.weight": "model-00011-of-00019.safetensors",
312
+ "model.layers.17.input_layernorm.weight": "model-00011-of-00019.safetensors",
313
+ "model.layers.17.post_attention_layernorm.weight": "model-00011-of-00019.safetensors",
314
+ "model.layers.17.self_attn.k_proj.weight": "model-00011-of-00019.safetensors",
315
+ "model.layers.17.self_attn.o_proj.weight": "model-00011-of-00019.safetensors",
316
+ "model.layers.17.self_attn.q_proj.weight": "model-00011-of-00019.safetensors",
317
+ "model.layers.17.self_attn.v_proj.weight": "model-00011-of-00019.safetensors",
318
+ "model.layers.18.block_sparse_moe.experts.0.w1.weight": "model-00011-of-00019.safetensors",
319
+ "model.layers.18.block_sparse_moe.experts.0.w2.weight": "model-00011-of-00019.safetensors",
320
+ "model.layers.18.block_sparse_moe.experts.0.w3.weight": "model-00011-of-00019.safetensors",
321
+ "model.layers.18.block_sparse_moe.experts.1.w1.weight": "model-00011-of-00019.safetensors",
322
+ "model.layers.18.block_sparse_moe.experts.1.w2.weight": "model-00011-of-00019.safetensors",
323
+ "model.layers.18.block_sparse_moe.experts.1.w3.weight": "model-00011-of-00019.safetensors",
324
+ "model.layers.18.block_sparse_moe.experts.2.w1.weight": "model-00011-of-00019.safetensors",
325
+ "model.layers.18.block_sparse_moe.experts.2.w2.weight": "model-00011-of-00019.safetensors",
326
+ "model.layers.18.block_sparse_moe.experts.2.w3.weight": "model-00011-of-00019.safetensors",
327
+ "model.layers.18.block_sparse_moe.experts.3.w1.weight": "model-00011-of-00019.safetensors",
328
+ "model.layers.18.block_sparse_moe.experts.3.w2.weight": "model-00011-of-00019.safetensors",
329
+ "model.layers.18.block_sparse_moe.experts.3.w3.weight": "model-00011-of-00019.safetensors",
330
+ "model.layers.18.block_sparse_moe.experts.4.w1.weight": "model-00011-of-00019.safetensors",
331
+ "model.layers.18.block_sparse_moe.experts.4.w2.weight": "model-00011-of-00019.safetensors",
332
+ "model.layers.18.block_sparse_moe.experts.4.w3.weight": "model-00011-of-00019.safetensors",
333
+ "model.layers.18.block_sparse_moe.experts.5.w1.weight": "model-00011-of-00019.safetensors",
334
+ "model.layers.18.block_sparse_moe.experts.5.w2.weight": "model-00012-of-00019.safetensors",
335
+ "model.layers.18.block_sparse_moe.experts.5.w3.weight": "model-00012-of-00019.safetensors",
336
+ "model.layers.18.block_sparse_moe.experts.6.w1.weight": "model-00012-of-00019.safetensors",
337
+ "model.layers.18.block_sparse_moe.experts.6.w2.weight": "model-00012-of-00019.safetensors",
338
+ "model.layers.18.block_sparse_moe.experts.6.w3.weight": "model-00012-of-00019.safetensors",
339
+ "model.layers.18.block_sparse_moe.experts.7.w1.weight": "model-00012-of-00019.safetensors",
340
+ "model.layers.18.block_sparse_moe.experts.7.w2.weight": "model-00012-of-00019.safetensors",
341
+ "model.layers.18.block_sparse_moe.experts.7.w3.weight": "model-00012-of-00019.safetensors",
342
+ "model.layers.18.block_sparse_moe.gate.weight": "model-00011-of-00019.safetensors",
343
+ "model.layers.18.input_layernorm.weight": "model-00012-of-00019.safetensors",
344
+ "model.layers.18.post_attention_layernorm.weight": "model-00012-of-00019.safetensors",
345
+ "model.layers.18.self_attn.k_proj.weight": "model-00011-of-00019.safetensors",
346
+ "model.layers.18.self_attn.o_proj.weight": "model-00011-of-00019.safetensors",
347
+ "model.layers.18.self_attn.q_proj.weight": "model-00011-of-00019.safetensors",
348
+ "model.layers.18.self_attn.v_proj.weight": "model-00011-of-00019.safetensors",
349
+ "model.layers.19.block_sparse_moe.experts.0.w1.weight": "model-00012-of-00019.safetensors",
350
+ "model.layers.19.block_sparse_moe.experts.0.w2.weight": "model-00012-of-00019.safetensors",
351
+ "model.layers.19.block_sparse_moe.experts.0.w3.weight": "model-00012-of-00019.safetensors",
352
+ "model.layers.19.block_sparse_moe.experts.1.w1.weight": "model-00012-of-00019.safetensors",
353
+ "model.layers.19.block_sparse_moe.experts.1.w2.weight": "model-00012-of-00019.safetensors",
354
+ "model.layers.19.block_sparse_moe.experts.1.w3.weight": "model-00012-of-00019.safetensors",
355
+ "model.layers.19.block_sparse_moe.experts.2.w1.weight": "model-00012-of-00019.safetensors",
356
+ "model.layers.19.block_sparse_moe.experts.2.w2.weight": "model-00012-of-00019.safetensors",
357
+ "model.layers.19.block_sparse_moe.experts.2.w3.weight": "model-00012-of-00019.safetensors",
358
+ "model.layers.19.block_sparse_moe.experts.3.w1.weight": "model-00012-of-00019.safetensors",
359
+ "model.layers.19.block_sparse_moe.experts.3.w2.weight": "model-00012-of-00019.safetensors",
360
+ "model.layers.19.block_sparse_moe.experts.3.w3.weight": "model-00012-of-00019.safetensors",
361
+ "model.layers.19.block_sparse_moe.experts.4.w1.weight": "model-00012-of-00019.safetensors",
362
+ "model.layers.19.block_sparse_moe.experts.4.w2.weight": "model-00012-of-00019.safetensors",
363
+ "model.layers.19.block_sparse_moe.experts.4.w3.weight": "model-00012-of-00019.safetensors",
364
+ "model.layers.19.block_sparse_moe.experts.5.w1.weight": "model-00012-of-00019.safetensors",
365
+ "model.layers.19.block_sparse_moe.experts.5.w2.weight": "model-00012-of-00019.safetensors",
366
+ "model.layers.19.block_sparse_moe.experts.5.w3.weight": "model-00012-of-00019.safetensors",
367
+ "model.layers.19.block_sparse_moe.experts.6.w1.weight": "model-00012-of-00019.safetensors",
368
+ "model.layers.19.block_sparse_moe.experts.6.w2.weight": "model-00012-of-00019.safetensors",
369
+ "model.layers.19.block_sparse_moe.experts.6.w3.weight": "model-00012-of-00019.safetensors",
370
+ "model.layers.19.block_sparse_moe.experts.7.w1.weight": "model-00012-of-00019.safetensors",
371
+ "model.layers.19.block_sparse_moe.experts.7.w2.weight": "model-00012-of-00019.safetensors",
372
+ "model.layers.19.block_sparse_moe.experts.7.w3.weight": "model-00012-of-00019.safetensors",
373
+ "model.layers.19.block_sparse_moe.gate.weight": "model-00012-of-00019.safetensors",
374
+ "model.layers.19.input_layernorm.weight": "model-00012-of-00019.safetensors",
375
+ "model.layers.19.post_attention_layernorm.weight": "model-00012-of-00019.safetensors",
376
+ "model.layers.19.self_attn.k_proj.weight": "model-00012-of-00019.safetensors",
377
+ "model.layers.19.self_attn.o_proj.weight": "model-00012-of-00019.safetensors",
378
+ "model.layers.19.self_attn.q_proj.weight": "model-00012-of-00019.safetensors",
379
+ "model.layers.19.self_attn.v_proj.weight": "model-00012-of-00019.safetensors",
380
+ "model.layers.2.block_sparse_moe.experts.0.w1.weight": "model-00002-of-00019.safetensors",
381
+ "model.layers.2.block_sparse_moe.experts.0.w2.weight": "model-00002-of-00019.safetensors",
382
+ "model.layers.2.block_sparse_moe.experts.0.w3.weight": "model-00002-of-00019.safetensors",
383
+ "model.layers.2.block_sparse_moe.experts.1.w1.weight": "model-00002-of-00019.safetensors",
384
+ "model.layers.2.block_sparse_moe.experts.1.w2.weight": "model-00002-of-00019.safetensors",
385
+ "model.layers.2.block_sparse_moe.experts.1.w3.weight": "model-00002-of-00019.safetensors",
386
+ "model.layers.2.block_sparse_moe.experts.2.w1.weight": "model-00002-of-00019.safetensors",
387
+ "model.layers.2.block_sparse_moe.experts.2.w2.weight": "model-00002-of-00019.safetensors",
388
+ "model.layers.2.block_sparse_moe.experts.2.w3.weight": "model-00002-of-00019.safetensors",
389
+ "model.layers.2.block_sparse_moe.experts.3.w1.weight": "model-00002-of-00019.safetensors",
390
+ "model.layers.2.block_sparse_moe.experts.3.w2.weight": "model-00002-of-00019.safetensors",
391
+ "model.layers.2.block_sparse_moe.experts.3.w3.weight": "model-00002-of-00019.safetensors",
392
+ "model.layers.2.block_sparse_moe.experts.4.w1.weight": "model-00002-of-00019.safetensors",
393
+ "model.layers.2.block_sparse_moe.experts.4.w2.weight": "model-00002-of-00019.safetensors",
394
+ "model.layers.2.block_sparse_moe.experts.4.w3.weight": "model-00002-of-00019.safetensors",
395
+ "model.layers.2.block_sparse_moe.experts.5.w1.weight": "model-00002-of-00019.safetensors",
396
+ "model.layers.2.block_sparse_moe.experts.5.w2.weight": "model-00002-of-00019.safetensors",
397
+ "model.layers.2.block_sparse_moe.experts.5.w3.weight": "model-00002-of-00019.safetensors",
398
+ "model.layers.2.block_sparse_moe.experts.6.w1.weight": "model-00002-of-00019.safetensors",
399
+ "model.layers.2.block_sparse_moe.experts.6.w2.weight": "model-00002-of-00019.safetensors",
400
+ "model.layers.2.block_sparse_moe.experts.6.w3.weight": "model-00002-of-00019.safetensors",
401
+ "model.layers.2.block_sparse_moe.experts.7.w1.weight": "model-00002-of-00019.safetensors",
402
+ "model.layers.2.block_sparse_moe.experts.7.w2.weight": "model-00002-of-00019.safetensors",
403
+ "model.layers.2.block_sparse_moe.experts.7.w3.weight": "model-00002-of-00019.safetensors",
404
+ "model.layers.2.block_sparse_moe.gate.weight": "model-00002-of-00019.safetensors",
405
+ "model.layers.2.input_layernorm.weight": "model-00002-of-00019.safetensors",
406
+ "model.layers.2.post_attention_layernorm.weight": "model-00002-of-00019.safetensors",
407
+ "model.layers.2.self_attn.k_proj.weight": "model-00002-of-00019.safetensors",
408
+ "model.layers.2.self_attn.o_proj.weight": "model-00002-of-00019.safetensors",
409
+ "model.layers.2.self_attn.q_proj.weight": "model-00002-of-00019.safetensors",
410
+ "model.layers.2.self_attn.v_proj.weight": "model-00002-of-00019.safetensors",
411
+ "model.layers.20.block_sparse_moe.experts.0.w1.weight": "model-00012-of-00019.safetensors",
412
+ "model.layers.20.block_sparse_moe.experts.0.w2.weight": "model-00012-of-00019.safetensors",
413
+ "model.layers.20.block_sparse_moe.experts.0.w3.weight": "model-00012-of-00019.safetensors",
414
+ "model.layers.20.block_sparse_moe.experts.1.w1.weight": "model-00012-of-00019.safetensors",
415
+ "model.layers.20.block_sparse_moe.experts.1.w2.weight": "model-00012-of-00019.safetensors",
416
+ "model.layers.20.block_sparse_moe.experts.1.w3.weight": "model-00012-of-00019.safetensors",
417
+ "model.layers.20.block_sparse_moe.experts.2.w1.weight": "model-00012-of-00019.safetensors",
418
+ "model.layers.20.block_sparse_moe.experts.2.w2.weight": "model-00012-of-00019.safetensors",
419
+ "model.layers.20.block_sparse_moe.experts.2.w3.weight": "model-00012-of-00019.safetensors",
420
+ "model.layers.20.block_sparse_moe.experts.3.w1.weight": "model-00013-of-00019.safetensors",
421
+ "model.layers.20.block_sparse_moe.experts.3.w2.weight": "model-00013-of-00019.safetensors",
422
+ "model.layers.20.block_sparse_moe.experts.3.w3.weight": "model-00013-of-00019.safetensors",
423
+ "model.layers.20.block_sparse_moe.experts.4.w1.weight": "model-00013-of-00019.safetensors",
424
+ "model.layers.20.block_sparse_moe.experts.4.w2.weight": "model-00013-of-00019.safetensors",
425
+ "model.layers.20.block_sparse_moe.experts.4.w3.weight": "model-00013-of-00019.safetensors",
426
+ "model.layers.20.block_sparse_moe.experts.5.w1.weight": "model-00013-of-00019.safetensors",
427
+ "model.layers.20.block_sparse_moe.experts.5.w2.weight": "model-00013-of-00019.safetensors",
428
+ "model.layers.20.block_sparse_moe.experts.5.w3.weight": "model-00013-of-00019.safetensors",
429
+ "model.layers.20.block_sparse_moe.experts.6.w1.weight": "model-00013-of-00019.safetensors",
430
+ "model.layers.20.block_sparse_moe.experts.6.w2.weight": "model-00013-of-00019.safetensors",
431
+ "model.layers.20.block_sparse_moe.experts.6.w3.weight": "model-00013-of-00019.safetensors",
432
+ "model.layers.20.block_sparse_moe.experts.7.w1.weight": "model-00013-of-00019.safetensors",
433
+ "model.layers.20.block_sparse_moe.experts.7.w2.weight": "model-00013-of-00019.safetensors",
434
+ "model.layers.20.block_sparse_moe.experts.7.w3.weight": "model-00013-of-00019.safetensors",
435
+ "model.layers.20.block_sparse_moe.gate.weight": "model-00012-of-00019.safetensors",
436
+ "model.layers.20.input_layernorm.weight": "model-00013-of-00019.safetensors",
437
+ "model.layers.20.post_attention_layernorm.weight": "model-00013-of-00019.safetensors",
438
+ "model.layers.20.self_attn.k_proj.weight": "model-00012-of-00019.safetensors",
439
+ "model.layers.20.self_attn.o_proj.weight": "model-00012-of-00019.safetensors",
440
+ "model.layers.20.self_attn.q_proj.weight": "model-00012-of-00019.safetensors",
441
+ "model.layers.20.self_attn.v_proj.weight": "model-00012-of-00019.safetensors",
442
+ "model.layers.21.block_sparse_moe.experts.0.w1.weight": "model-00013-of-00019.safetensors",
443
+ "model.layers.21.block_sparse_moe.experts.0.w2.weight": "model-00013-of-00019.safetensors",
444
+ "model.layers.21.block_sparse_moe.experts.0.w3.weight": "model-00013-of-00019.safetensors",
445
+ "model.layers.21.block_sparse_moe.experts.1.w1.weight": "model-00013-of-00019.safetensors",
446
+ "model.layers.21.block_sparse_moe.experts.1.w2.weight": "model-00013-of-00019.safetensors",
447
+ "model.layers.21.block_sparse_moe.experts.1.w3.weight": "model-00013-of-00019.safetensors",
448
+ "model.layers.21.block_sparse_moe.experts.2.w1.weight": "model-00013-of-00019.safetensors",
449
+ "model.layers.21.block_sparse_moe.experts.2.w2.weight": "model-00013-of-00019.safetensors",
450
+ "model.layers.21.block_sparse_moe.experts.2.w3.weight": "model-00013-of-00019.safetensors",
451
+ "model.layers.21.block_sparse_moe.experts.3.w1.weight": "model-00013-of-00019.safetensors",
452
+ "model.layers.21.block_sparse_moe.experts.3.w2.weight": "model-00013-of-00019.safetensors",
453
+ "model.layers.21.block_sparse_moe.experts.3.w3.weight": "model-00013-of-00019.safetensors",
454
+ "model.layers.21.block_sparse_moe.experts.4.w1.weight": "model-00013-of-00019.safetensors",
455
+ "model.layers.21.block_sparse_moe.experts.4.w2.weight": "model-00013-of-00019.safetensors",
456
+ "model.layers.21.block_sparse_moe.experts.4.w3.weight": "model-00013-of-00019.safetensors",
457
+ "model.layers.21.block_sparse_moe.experts.5.w1.weight": "model-00013-of-00019.safetensors",
458
+ "model.layers.21.block_sparse_moe.experts.5.w2.weight": "model-00013-of-00019.safetensors",
459
+ "model.layers.21.block_sparse_moe.experts.5.w3.weight": "model-00013-of-00019.safetensors",
460
+ "model.layers.21.block_sparse_moe.experts.6.w1.weight": "model-00013-of-00019.safetensors",
461
+ "model.layers.21.block_sparse_moe.experts.6.w2.weight": "model-00013-of-00019.safetensors",
462
+ "model.layers.21.block_sparse_moe.experts.6.w3.weight": "model-00013-of-00019.safetensors",
463
+ "model.layers.21.block_sparse_moe.experts.7.w1.weight": "model-00013-of-00019.safetensors",
464
+ "model.layers.21.block_sparse_moe.experts.7.w2.weight": "model-00013-of-00019.safetensors",
465
+ "model.layers.21.block_sparse_moe.experts.7.w3.weight": "model-00013-of-00019.safetensors",
466
+ "model.layers.21.block_sparse_moe.gate.weight": "model-00013-of-00019.safetensors",
467
+ "model.layers.21.input_layernorm.weight": "model-00013-of-00019.safetensors",
468
+ "model.layers.21.post_attention_layernorm.weight": "model-00013-of-00019.safetensors",
469
+ "model.layers.21.self_attn.k_proj.weight": "model-00013-of-00019.safetensors",
470
+ "model.layers.21.self_attn.o_proj.weight": "model-00013-of-00019.safetensors",
471
+ "model.layers.21.self_attn.q_proj.weight": "model-00013-of-00019.safetensors",
472
+ "model.layers.21.self_attn.v_proj.weight": "model-00013-of-00019.safetensors",
473
+ "model.layers.22.block_sparse_moe.experts.0.w1.weight": "model-00013-of-00019.safetensors",
474
+ "model.layers.22.block_sparse_moe.experts.0.w2.weight": "model-00013-of-00019.safetensors",
475
+ "model.layers.22.block_sparse_moe.experts.0.w3.weight": "model-00014-of-00019.safetensors",
476
+ "model.layers.22.block_sparse_moe.experts.1.w1.weight": "model-00014-of-00019.safetensors",
477
+ "model.layers.22.block_sparse_moe.experts.1.w2.weight": "model-00014-of-00019.safetensors",
478
+ "model.layers.22.block_sparse_moe.experts.1.w3.weight": "model-00014-of-00019.safetensors",
479
+ "model.layers.22.block_sparse_moe.experts.2.w1.weight": "model-00014-of-00019.safetensors",
480
+ "model.layers.22.block_sparse_moe.experts.2.w2.weight": "model-00014-of-00019.safetensors",
481
+ "model.layers.22.block_sparse_moe.experts.2.w3.weight": "model-00014-of-00019.safetensors",
482
+ "model.layers.22.block_sparse_moe.experts.3.w1.weight": "model-00014-of-00019.safetensors",
483
+ "model.layers.22.block_sparse_moe.experts.3.w2.weight": "model-00014-of-00019.safetensors",
484
+ "model.layers.22.block_sparse_moe.experts.3.w3.weight": "model-00014-of-00019.safetensors",
485
+ "model.layers.22.block_sparse_moe.experts.4.w1.weight": "model-00014-of-00019.safetensors",
486
+ "model.layers.22.block_sparse_moe.experts.4.w2.weight": "model-00014-of-00019.safetensors",
487
+ "model.layers.22.block_sparse_moe.experts.4.w3.weight": "model-00014-of-00019.safetensors",
488
+ "model.layers.22.block_sparse_moe.experts.5.w1.weight": "model-00014-of-00019.safetensors",
489
+ "model.layers.22.block_sparse_moe.experts.5.w2.weight": "model-00014-of-00019.safetensors",
490
+ "model.layers.22.block_sparse_moe.experts.5.w3.weight": "model-00014-of-00019.safetensors",
491
+ "model.layers.22.block_sparse_moe.experts.6.w1.weight": "model-00014-of-00019.safetensors",
492
+ "model.layers.22.block_sparse_moe.experts.6.w2.weight": "model-00014-of-00019.safetensors",
493
+ "model.layers.22.block_sparse_moe.experts.6.w3.weight": "model-00014-of-00019.safetensors",
494
+ "model.layers.22.block_sparse_moe.experts.7.w1.weight": "model-00014-of-00019.safetensors",
495
+ "model.layers.22.block_sparse_moe.experts.7.w2.weight": "model-00014-of-00019.safetensors",
496
+ "model.layers.22.block_sparse_moe.experts.7.w3.weight": "model-00014-of-00019.safetensors",
497
+ "model.layers.22.block_sparse_moe.gate.weight": "model-00013-of-00019.safetensors",
498
+ "model.layers.22.input_layernorm.weight": "model-00014-of-00019.safetensors",
499
+ "model.layers.22.post_attention_layernorm.weight": "model-00014-of-00019.safetensors",
500
+ "model.layers.22.self_attn.k_proj.weight": "model-00013-of-00019.safetensors",
501
+ "model.layers.22.self_attn.o_proj.weight": "model-00013-of-00019.safetensors",
502
+ "model.layers.22.self_attn.q_proj.weight": "model-00013-of-00019.safetensors",
503
+ "model.layers.22.self_attn.v_proj.weight": "model-00013-of-00019.safetensors",
504
+ "model.layers.23.block_sparse_moe.experts.0.w1.weight": "model-00014-of-00019.safetensors",
505
+ "model.layers.23.block_sparse_moe.experts.0.w2.weight": "model-00014-of-00019.safetensors",
506
+ "model.layers.23.block_sparse_moe.experts.0.w3.weight": "model-00014-of-00019.safetensors",
507
+ "model.layers.23.block_sparse_moe.experts.1.w1.weight": "model-00014-of-00019.safetensors",
508
+ "model.layers.23.block_sparse_moe.experts.1.w2.weight": "model-00014-of-00019.safetensors",
509
+ "model.layers.23.block_sparse_moe.experts.1.w3.weight": "model-00014-of-00019.safetensors",
510
+ "model.layers.23.block_sparse_moe.experts.2.w1.weight": "model-00014-of-00019.safetensors",
511
+ "model.layers.23.block_sparse_moe.experts.2.w2.weight": "model-00014-of-00019.safetensors",
512
+ "model.layers.23.block_sparse_moe.experts.2.w3.weight": "model-00014-of-00019.safetensors",
513
+ "model.layers.23.block_sparse_moe.experts.3.w1.weight": "model-00014-of-00019.safetensors",
514
+ "model.layers.23.block_sparse_moe.experts.3.w2.weight": "model-00014-of-00019.safetensors",
515
+ "model.layers.23.block_sparse_moe.experts.3.w3.weight": "model-00014-of-00019.safetensors",
516
+ "model.layers.23.block_sparse_moe.experts.4.w1.weight": "model-00014-of-00019.safetensors",
517
+ "model.layers.23.block_sparse_moe.experts.4.w2.weight": "model-00014-of-00019.safetensors",
518
+ "model.layers.23.block_sparse_moe.experts.4.w3.weight": "model-00014-of-00019.safetensors",
519
+ "model.layers.23.block_sparse_moe.experts.5.w1.weight": "model-00014-of-00019.safetensors",
520
+ "model.layers.23.block_sparse_moe.experts.5.w2.weight": "model-00014-of-00019.safetensors",
521
+ "model.layers.23.block_sparse_moe.experts.5.w3.weight": "model-00014-of-00019.safetensors",
522
+ "model.layers.23.block_sparse_moe.experts.6.w1.weight": "model-00014-of-00019.safetensors",
523
+ "model.layers.23.block_sparse_moe.experts.6.w2.weight": "model-00015-of-00019.safetensors",
524
+ "model.layers.23.block_sparse_moe.experts.6.w3.weight": "model-00015-of-00019.safetensors",
525
+ "model.layers.23.block_sparse_moe.experts.7.w1.weight": "model-00015-of-00019.safetensors",
526
+ "model.layers.23.block_sparse_moe.experts.7.w2.weight": "model-00015-of-00019.safetensors",
527
+ "model.layers.23.block_sparse_moe.experts.7.w3.weight": "model-00015-of-00019.safetensors",
528
+ "model.layers.23.block_sparse_moe.gate.weight": "model-00014-of-00019.safetensors",
529
+ "model.layers.23.input_layernorm.weight": "model-00015-of-00019.safetensors",
530
+ "model.layers.23.post_attention_layernorm.weight": "model-00015-of-00019.safetensors",
531
+ "model.layers.23.self_attn.k_proj.weight": "model-00014-of-00019.safetensors",
532
+ "model.layers.23.self_attn.o_proj.weight": "model-00014-of-00019.safetensors",
533
+ "model.layers.23.self_attn.q_proj.weight": "model-00014-of-00019.safetensors",
534
+ "model.layers.23.self_attn.v_proj.weight": "model-00014-of-00019.safetensors",
535
+ "model.layers.24.block_sparse_moe.experts.0.w1.weight": "model-00015-of-00019.safetensors",
536
+ "model.layers.24.block_sparse_moe.experts.0.w2.weight": "model-00015-of-00019.safetensors",
537
+ "model.layers.24.block_sparse_moe.experts.0.w3.weight": "model-00015-of-00019.safetensors",
538
+ "model.layers.24.block_sparse_moe.experts.1.w1.weight": "model-00015-of-00019.safetensors",
539
+ "model.layers.24.block_sparse_moe.experts.1.w2.weight": "model-00015-of-00019.safetensors",
540
+ "model.layers.24.block_sparse_moe.experts.1.w3.weight": "model-00015-of-00019.safetensors",
541
+ "model.layers.24.block_sparse_moe.experts.2.w1.weight": "model-00015-of-00019.safetensors",
542
+ "model.layers.24.block_sparse_moe.experts.2.w2.weight": "model-00015-of-00019.safetensors",
543
+ "model.layers.24.block_sparse_moe.experts.2.w3.weight": "model-00015-of-00019.safetensors",
544
+ "model.layers.24.block_sparse_moe.experts.3.w1.weight": "model-00015-of-00019.safetensors",
545
+ "model.layers.24.block_sparse_moe.experts.3.w2.weight": "model-00015-of-00019.safetensors",
546
+ "model.layers.24.block_sparse_moe.experts.3.w3.weight": "model-00015-of-00019.safetensors",
547
+ "model.layers.24.block_sparse_moe.experts.4.w1.weight": "model-00015-of-00019.safetensors",
548
+ "model.layers.24.block_sparse_moe.experts.4.w2.weight": "model-00015-of-00019.safetensors",
549
+ "model.layers.24.block_sparse_moe.experts.4.w3.weight": "model-00015-of-00019.safetensors",
550
+ "model.layers.24.block_sparse_moe.experts.5.w1.weight": "model-00015-of-00019.safetensors",
551
+ "model.layers.24.block_sparse_moe.experts.5.w2.weight": "model-00015-of-00019.safetensors",
552
+ "model.layers.24.block_sparse_moe.experts.5.w3.weight": "model-00015-of-00019.safetensors",
553
+ "model.layers.24.block_sparse_moe.experts.6.w1.weight": "model-00015-of-00019.safetensors",
554
+ "model.layers.24.block_sparse_moe.experts.6.w2.weight": "model-00015-of-00019.safetensors",
555
+ "model.layers.24.block_sparse_moe.experts.6.w3.weight": "model-00015-of-00019.safetensors",
556
+ "model.layers.24.block_sparse_moe.experts.7.w1.weight": "model-00015-of-00019.safetensors",
557
+ "model.layers.24.block_sparse_moe.experts.7.w2.weight": "model-00015-of-00019.safetensors",
558
+ "model.layers.24.block_sparse_moe.experts.7.w3.weight": "model-00015-of-00019.safetensors",
559
+ "model.layers.24.block_sparse_moe.gate.weight": "model-00015-of-00019.safetensors",
560
+ "model.layers.24.input_layernorm.weight": "model-00015-of-00019.safetensors",
561
+ "model.layers.24.post_attention_layernorm.weight": "model-00015-of-00019.safetensors",
562
+ "model.layers.24.self_attn.k_proj.weight": "model-00015-of-00019.safetensors",
563
+ "model.layers.24.self_attn.o_proj.weight": "model-00015-of-00019.safetensors",
564
+ "model.layers.24.self_attn.q_proj.weight": "model-00015-of-00019.safetensors",
565
+ "model.layers.24.self_attn.v_proj.weight": "model-00015-of-00019.safetensors",
566
+ "model.layers.25.block_sparse_moe.experts.0.w1.weight": "model-00015-of-00019.safetensors",
567
+ "model.layers.25.block_sparse_moe.experts.0.w2.weight": "model-00015-of-00019.safetensors",
568
+ "model.layers.25.block_sparse_moe.experts.0.w3.weight": "model-00015-of-00019.safetensors",
569
+ "model.layers.25.block_sparse_moe.experts.1.w1.weight": "model-00015-of-00019.safetensors",
570
+ "model.layers.25.block_sparse_moe.experts.1.w2.weight": "model-00015-of-00019.safetensors",
571
+ "model.layers.25.block_sparse_moe.experts.1.w3.weight": "model-00015-of-00019.safetensors",
572
+ "model.layers.25.block_sparse_moe.experts.2.w1.weight": "model-00015-of-00019.safetensors",
573
+ "model.layers.25.block_sparse_moe.experts.2.w2.weight": "model-00015-of-00019.safetensors",
574
+ "model.layers.25.block_sparse_moe.experts.2.w3.weight": "model-00015-of-00019.safetensors",
575
+ "model.layers.25.block_sparse_moe.experts.3.w1.weight": "model-00015-of-00019.safetensors",
576
+ "model.layers.25.block_sparse_moe.experts.3.w2.weight": "model-00015-of-00019.safetensors",
577
+ "model.layers.25.block_sparse_moe.experts.3.w3.weight": "model-00015-of-00019.safetensors",
578
+ "model.layers.25.block_sparse_moe.experts.4.w1.weight": "model-00016-of-00019.safetensors",
579
+ "model.layers.25.block_sparse_moe.experts.4.w2.weight": "model-00016-of-00019.safetensors",
580
+ "model.layers.25.block_sparse_moe.experts.4.w3.weight": "model-00016-of-00019.safetensors",
581
+ "model.layers.25.block_sparse_moe.experts.5.w1.weight": "model-00016-of-00019.safetensors",
582
+ "model.layers.25.block_sparse_moe.experts.5.w2.weight": "model-00016-of-00019.safetensors",
583
+ "model.layers.25.block_sparse_moe.experts.5.w3.weight": "model-00016-of-00019.safetensors",
584
+ "model.layers.25.block_sparse_moe.experts.6.w1.weight": "model-00016-of-00019.safetensors",
585
+ "model.layers.25.block_sparse_moe.experts.6.w2.weight": "model-00016-of-00019.safetensors",
586
+ "model.layers.25.block_sparse_moe.experts.6.w3.weight": "model-00016-of-00019.safetensors",
587
+ "model.layers.25.block_sparse_moe.experts.7.w1.weight": "model-00016-of-00019.safetensors",
588
+ "model.layers.25.block_sparse_moe.experts.7.w2.weight": "model-00016-of-00019.safetensors",
589
+ "model.layers.25.block_sparse_moe.experts.7.w3.weight": "model-00016-of-00019.safetensors",
590
+ "model.layers.25.block_sparse_moe.gate.weight": "model-00015-of-00019.safetensors",
591
+ "model.layers.25.input_layernorm.weight": "model-00016-of-00019.safetensors",
592
+ "model.layers.25.post_attention_layernorm.weight": "model-00016-of-00019.safetensors",
593
+ "model.layers.25.self_attn.k_proj.weight": "model-00015-of-00019.safetensors",
594
+ "model.layers.25.self_attn.o_proj.weight": "model-00015-of-00019.safetensors",
595
+ "model.layers.25.self_attn.q_proj.weight": "model-00015-of-00019.safetensors",
596
+ "model.layers.25.self_attn.v_proj.weight": "model-00015-of-00019.safetensors",
597
+ "model.layers.26.block_sparse_moe.experts.0.w1.weight": "model-00016-of-00019.safetensors",
598
+ "model.layers.26.block_sparse_moe.experts.0.w2.weight": "model-00016-of-00019.safetensors",
599
+ "model.layers.26.block_sparse_moe.experts.0.w3.weight": "model-00016-of-00019.safetensors",
600
+ "model.layers.26.block_sparse_moe.experts.1.w1.weight": "model-00016-of-00019.safetensors",
601
+ "model.layers.26.block_sparse_moe.experts.1.w2.weight": "model-00016-of-00019.safetensors",
602
+ "model.layers.26.block_sparse_moe.experts.1.w3.weight": "model-00016-of-00019.safetensors",
603
+ "model.layers.26.block_sparse_moe.experts.2.w1.weight": "model-00016-of-00019.safetensors",
604
+ "model.layers.26.block_sparse_moe.experts.2.w2.weight": "model-00016-of-00019.safetensors",
605
+ "model.layers.26.block_sparse_moe.experts.2.w3.weight": "model-00016-of-00019.safetensors",
606
+ "model.layers.26.block_sparse_moe.experts.3.w1.weight": "model-00016-of-00019.safetensors",
607
+ "model.layers.26.block_sparse_moe.experts.3.w2.weight": "model-00016-of-00019.safetensors",
608
+ "model.layers.26.block_sparse_moe.experts.3.w3.weight": "model-00016-of-00019.safetensors",
609
+ "model.layers.26.block_sparse_moe.experts.4.w1.weight": "model-00016-of-00019.safetensors",
610
+ "model.layers.26.block_sparse_moe.experts.4.w2.weight": "model-00016-of-00019.safetensors",
611
+ "model.layers.26.block_sparse_moe.experts.4.w3.weight": "model-00016-of-00019.safetensors",
612
+ "model.layers.26.block_sparse_moe.experts.5.w1.weight": "model-00016-of-00019.safetensors",
613
+ "model.layers.26.block_sparse_moe.experts.5.w2.weight": "model-00016-of-00019.safetensors",
614
+ "model.layers.26.block_sparse_moe.experts.5.w3.weight": "model-00016-of-00019.safetensors",
615
+ "model.layers.26.block_sparse_moe.experts.6.w1.weight": "model-00016-of-00019.safetensors",
616
+ "model.layers.26.block_sparse_moe.experts.6.w2.weight": "model-00016-of-00019.safetensors",
617
+ "model.layers.26.block_sparse_moe.experts.6.w3.weight": "model-00016-of-00019.safetensors",
618
+ "model.layers.26.block_sparse_moe.experts.7.w1.weight": "model-00016-of-00019.safetensors",
619
+ "model.layers.26.block_sparse_moe.experts.7.w2.weight": "model-00016-of-00019.safetensors",
620
+ "model.layers.26.block_sparse_moe.experts.7.w3.weight": "model-00016-of-00019.safetensors",
621
+ "model.layers.26.block_sparse_moe.gate.weight": "model-00016-of-00019.safetensors",
622
+ "model.layers.26.input_layernorm.weight": "model-00016-of-00019.safetensors",
623
+ "model.layers.26.post_attention_layernorm.weight": "model-00016-of-00019.safetensors",
624
+ "model.layers.26.self_attn.k_proj.weight": "model-00016-of-00019.safetensors",
625
+ "model.layers.26.self_attn.o_proj.weight": "model-00016-of-00019.safetensors",
626
+ "model.layers.26.self_attn.q_proj.weight": "model-00016-of-00019.safetensors",
627
+ "model.layers.26.self_attn.v_proj.weight": "model-00016-of-00019.safetensors",
628
+ "model.layers.27.block_sparse_moe.experts.0.w1.weight": "model-00016-of-00019.safetensors",
629
+ "model.layers.27.block_sparse_moe.experts.0.w2.weight": "model-00016-of-00019.safetensors",
630
+ "model.layers.27.block_sparse_moe.experts.0.w3.weight": "model-00016-of-00019.safetensors",
631
+ "model.layers.27.block_sparse_moe.experts.1.w1.weight": "model-00016-of-00019.safetensors",
632
+ "model.layers.27.block_sparse_moe.experts.1.w2.weight": "model-00016-of-00019.safetensors",
633
+ "model.layers.27.block_sparse_moe.experts.1.w3.weight": "model-00017-of-00019.safetensors",
634
+ "model.layers.27.block_sparse_moe.experts.2.w1.weight": "model-00017-of-00019.safetensors",
635
+ "model.layers.27.block_sparse_moe.experts.2.w2.weight": "model-00017-of-00019.safetensors",
636
+ "model.layers.27.block_sparse_moe.experts.2.w3.weight": "model-00017-of-00019.safetensors",
637
+ "model.layers.27.block_sparse_moe.experts.3.w1.weight": "model-00017-of-00019.safetensors",
638
+ "model.layers.27.block_sparse_moe.experts.3.w2.weight": "model-00017-of-00019.safetensors",
639
+ "model.layers.27.block_sparse_moe.experts.3.w3.weight": "model-00017-of-00019.safetensors",
640
+ "model.layers.27.block_sparse_moe.experts.4.w1.weight": "model-00017-of-00019.safetensors",
641
+ "model.layers.27.block_sparse_moe.experts.4.w2.weight": "model-00017-of-00019.safetensors",
642
+ "model.layers.27.block_sparse_moe.experts.4.w3.weight": "model-00017-of-00019.safetensors",
643
+ "model.layers.27.block_sparse_moe.experts.5.w1.weight": "model-00017-of-00019.safetensors",
644
+ "model.layers.27.block_sparse_moe.experts.5.w2.weight": "model-00017-of-00019.safetensors",
645
+ "model.layers.27.block_sparse_moe.experts.5.w3.weight": "model-00017-of-00019.safetensors",
646
+ "model.layers.27.block_sparse_moe.experts.6.w1.weight": "model-00017-of-00019.safetensors",
647
+ "model.layers.27.block_sparse_moe.experts.6.w2.weight": "model-00017-of-00019.safetensors",
648
+ "model.layers.27.block_sparse_moe.experts.6.w3.weight": "model-00017-of-00019.safetensors",
649
+ "model.layers.27.block_sparse_moe.experts.7.w1.weight": "model-00017-of-00019.safetensors",
650
+ "model.layers.27.block_sparse_moe.experts.7.w2.weight": "model-00017-of-00019.safetensors",
651
+ "model.layers.27.block_sparse_moe.experts.7.w3.weight": "model-00017-of-00019.safetensors",
652
+ "model.layers.27.block_sparse_moe.gate.weight": "model-00016-of-00019.safetensors",
653
+ "model.layers.27.input_layernorm.weight": "model-00017-of-00019.safetensors",
654
+ "model.layers.27.post_attention_layernorm.weight": "model-00017-of-00019.safetensors",
655
+ "model.layers.27.self_attn.k_proj.weight": "model-00016-of-00019.safetensors",
656
+ "model.layers.27.self_attn.o_proj.weight": "model-00016-of-00019.safetensors",
657
+ "model.layers.27.self_attn.q_proj.weight": "model-00016-of-00019.safetensors",
658
+ "model.layers.27.self_attn.v_proj.weight": "model-00016-of-00019.safetensors",
659
+ "model.layers.28.block_sparse_moe.experts.0.w1.weight": "model-00017-of-00019.safetensors",
660
+ "model.layers.28.block_sparse_moe.experts.0.w2.weight": "model-00017-of-00019.safetensors",
661
+ "model.layers.28.block_sparse_moe.experts.0.w3.weight": "model-00017-of-00019.safetensors",
662
+ "model.layers.28.block_sparse_moe.experts.1.w1.weight": "model-00017-of-00019.safetensors",
663
+ "model.layers.28.block_sparse_moe.experts.1.w2.weight": "model-00017-of-00019.safetensors",
664
+ "model.layers.28.block_sparse_moe.experts.1.w3.weight": "model-00017-of-00019.safetensors",
665
+ "model.layers.28.block_sparse_moe.experts.2.w1.weight": "model-00017-of-00019.safetensors",
666
+ "model.layers.28.block_sparse_moe.experts.2.w2.weight": "model-00017-of-00019.safetensors",
667
+ "model.layers.28.block_sparse_moe.experts.2.w3.weight": "model-00017-of-00019.safetensors",
668
+ "model.layers.28.block_sparse_moe.experts.3.w1.weight": "model-00017-of-00019.safetensors",
669
+ "model.layers.28.block_sparse_moe.experts.3.w2.weight": "model-00017-of-00019.safetensors",
670
+ "model.layers.28.block_sparse_moe.experts.3.w3.weight": "model-00017-of-00019.safetensors",
671
+ "model.layers.28.block_sparse_moe.experts.4.w1.weight": "model-00017-of-00019.safetensors",
672
+ "model.layers.28.block_sparse_moe.experts.4.w2.weight": "model-00017-of-00019.safetensors",
673
+ "model.layers.28.block_sparse_moe.experts.4.w3.weight": "model-00017-of-00019.safetensors",
674
+ "model.layers.28.block_sparse_moe.experts.5.w1.weight": "model-00017-of-00019.safetensors",
675
+ "model.layers.28.block_sparse_moe.experts.5.w2.weight": "model-00017-of-00019.safetensors",
676
+ "model.layers.28.block_sparse_moe.experts.5.w3.weight": "model-00017-of-00019.safetensors",
677
+ "model.layers.28.block_sparse_moe.experts.6.w1.weight": "model-00017-of-00019.safetensors",
678
+ "model.layers.28.block_sparse_moe.experts.6.w2.weight": "model-00017-of-00019.safetensors",
679
+ "model.layers.28.block_sparse_moe.experts.6.w3.weight": "model-00017-of-00019.safetensors",
680
+ "model.layers.28.block_sparse_moe.experts.7.w1.weight": "model-00017-of-00019.safetensors",
681
+ "model.layers.28.block_sparse_moe.experts.7.w2.weight": "model-00018-of-00019.safetensors",
682
+ "model.layers.28.block_sparse_moe.experts.7.w3.weight": "model-00018-of-00019.safetensors",
683
+ "model.layers.28.block_sparse_moe.gate.weight": "model-00017-of-00019.safetensors",
684
+ "model.layers.28.input_layernorm.weight": "model-00018-of-00019.safetensors",
685
+ "model.layers.28.post_attention_layernorm.weight": "model-00018-of-00019.safetensors",
686
+ "model.layers.28.self_attn.k_proj.weight": "model-00017-of-00019.safetensors",
687
+ "model.layers.28.self_attn.o_proj.weight": "model-00017-of-00019.safetensors",
688
+ "model.layers.28.self_attn.q_proj.weight": "model-00017-of-00019.safetensors",
689
+ "model.layers.28.self_attn.v_proj.weight": "model-00017-of-00019.safetensors",
690
+ "model.layers.29.block_sparse_moe.experts.0.w1.weight": "model-00018-of-00019.safetensors",
691
+ "model.layers.29.block_sparse_moe.experts.0.w2.weight": "model-00018-of-00019.safetensors",
692
+ "model.layers.29.block_sparse_moe.experts.0.w3.weight": "model-00018-of-00019.safetensors",
693
+ "model.layers.29.block_sparse_moe.experts.1.w1.weight": "model-00018-of-00019.safetensors",
694
+ "model.layers.29.block_sparse_moe.experts.1.w2.weight": "model-00018-of-00019.safetensors",
695
+ "model.layers.29.block_sparse_moe.experts.1.w3.weight": "model-00018-of-00019.safetensors",
696
+ "model.layers.29.block_sparse_moe.experts.2.w1.weight": "model-00018-of-00019.safetensors",
697
+ "model.layers.29.block_sparse_moe.experts.2.w2.weight": "model-00018-of-00019.safetensors",
698
+ "model.layers.29.block_sparse_moe.experts.2.w3.weight": "model-00018-of-00019.safetensors",
699
+ "model.layers.29.block_sparse_moe.experts.3.w1.weight": "model-00018-of-00019.safetensors",
700
+ "model.layers.29.block_sparse_moe.experts.3.w2.weight": "model-00018-of-00019.safetensors",
701
+ "model.layers.29.block_sparse_moe.experts.3.w3.weight": "model-00018-of-00019.safetensors",
702
+ "model.layers.29.block_sparse_moe.experts.4.w1.weight": "model-00018-of-00019.safetensors",
703
+ "model.layers.29.block_sparse_moe.experts.4.w2.weight": "model-00018-of-00019.safetensors",
704
+ "model.layers.29.block_sparse_moe.experts.4.w3.weight": "model-00018-of-00019.safetensors",
705
+ "model.layers.29.block_sparse_moe.experts.5.w1.weight": "model-00018-of-00019.safetensors",
706
+ "model.layers.29.block_sparse_moe.experts.5.w2.weight": "model-00018-of-00019.safetensors",
707
+ "model.layers.29.block_sparse_moe.experts.5.w3.weight": "model-00018-of-00019.safetensors",
708
+ "model.layers.29.block_sparse_moe.experts.6.w1.weight": "model-00018-of-00019.safetensors",
709
+ "model.layers.29.block_sparse_moe.experts.6.w2.weight": "model-00018-of-00019.safetensors",
710
+ "model.layers.29.block_sparse_moe.experts.6.w3.weight": "model-00018-of-00019.safetensors",
711
+ "model.layers.29.block_sparse_moe.experts.7.w1.weight": "model-00018-of-00019.safetensors",
712
+ "model.layers.29.block_sparse_moe.experts.7.w2.weight": "model-00018-of-00019.safetensors",
713
+ "model.layers.29.block_sparse_moe.experts.7.w3.weight": "model-00018-of-00019.safetensors",
714
+ "model.layers.29.block_sparse_moe.gate.weight": "model-00018-of-00019.safetensors",
715
+ "model.layers.29.input_layernorm.weight": "model-00018-of-00019.safetensors",
716
+ "model.layers.29.post_attention_layernorm.weight": "model-00018-of-00019.safetensors",
717
+ "model.layers.29.self_attn.k_proj.weight": "model-00018-of-00019.safetensors",
718
+ "model.layers.29.self_attn.o_proj.weight": "model-00018-of-00019.safetensors",
719
+ "model.layers.29.self_attn.q_proj.weight": "model-00018-of-00019.safetensors",
720
+ "model.layers.29.self_attn.v_proj.weight": "model-00018-of-00019.safetensors",
721
+ "model.layers.3.block_sparse_moe.experts.0.w1.weight": "model-00002-of-00019.safetensors",
722
+ "model.layers.3.block_sparse_moe.experts.0.w2.weight": "model-00002-of-00019.safetensors",
723
+ "model.layers.3.block_sparse_moe.experts.0.w3.weight": "model-00002-of-00019.safetensors",
724
+ "model.layers.3.block_sparse_moe.experts.1.w1.weight": "model-00002-of-00019.safetensors",
725
+ "model.layers.3.block_sparse_moe.experts.1.w2.weight": "model-00002-of-00019.safetensors",
726
+ "model.layers.3.block_sparse_moe.experts.1.w3.weight": "model-00002-of-00019.safetensors",
727
+ "model.layers.3.block_sparse_moe.experts.2.w1.weight": "model-00002-of-00019.safetensors",
728
+ "model.layers.3.block_sparse_moe.experts.2.w2.weight": "model-00003-of-00019.safetensors",
729
+ "model.layers.3.block_sparse_moe.experts.2.w3.weight": "model-00003-of-00019.safetensors",
730
+ "model.layers.3.block_sparse_moe.experts.3.w1.weight": "model-00003-of-00019.safetensors",
731
+ "model.layers.3.block_sparse_moe.experts.3.w2.weight": "model-00003-of-00019.safetensors",
732
+ "model.layers.3.block_sparse_moe.experts.3.w3.weight": "model-00003-of-00019.safetensors",
733
+ "model.layers.3.block_sparse_moe.experts.4.w1.weight": "model-00003-of-00019.safetensors",
734
+ "model.layers.3.block_sparse_moe.experts.4.w2.weight": "model-00003-of-00019.safetensors",
735
+ "model.layers.3.block_sparse_moe.experts.4.w3.weight": "model-00003-of-00019.safetensors",
736
+ "model.layers.3.block_sparse_moe.experts.5.w1.weight": "model-00003-of-00019.safetensors",
737
+ "model.layers.3.block_sparse_moe.experts.5.w2.weight": "model-00003-of-00019.safetensors",
738
+ "model.layers.3.block_sparse_moe.experts.5.w3.weight": "model-00003-of-00019.safetensors",
739
+ "model.layers.3.block_sparse_moe.experts.6.w1.weight": "model-00003-of-00019.safetensors",
740
+ "model.layers.3.block_sparse_moe.experts.6.w2.weight": "model-00003-of-00019.safetensors",
741
+ "model.layers.3.block_sparse_moe.experts.6.w3.weight": "model-00003-of-00019.safetensors",
742
+ "model.layers.3.block_sparse_moe.experts.7.w1.weight": "model-00003-of-00019.safetensors",
743
+ "model.layers.3.block_sparse_moe.experts.7.w2.weight": "model-00003-of-00019.safetensors",
744
+ "model.layers.3.block_sparse_moe.experts.7.w3.weight": "model-00003-of-00019.safetensors",
745
+ "model.layers.3.block_sparse_moe.gate.weight": "model-00002-of-00019.safetensors",
746
+ "model.layers.3.input_layernorm.weight": "model-00003-of-00019.safetensors",
747
+ "model.layers.3.post_attention_layernorm.weight": "model-00003-of-00019.safetensors",
748
+ "model.layers.3.self_attn.k_proj.weight": "model-00002-of-00019.safetensors",
749
+ "model.layers.3.self_attn.o_proj.weight": "model-00002-of-00019.safetensors",
750
+ "model.layers.3.self_attn.q_proj.weight": "model-00002-of-00019.safetensors",
751
+ "model.layers.3.self_attn.v_proj.weight": "model-00002-of-00019.safetensors",
752
+ "model.layers.30.block_sparse_moe.experts.0.w1.weight": "model-00018-of-00019.safetensors",
753
+ "model.layers.30.block_sparse_moe.experts.0.w2.weight": "model-00018-of-00019.safetensors",
754
+ "model.layers.30.block_sparse_moe.experts.0.w3.weight": "model-00018-of-00019.safetensors",
755
+ "model.layers.30.block_sparse_moe.experts.1.w1.weight": "model-00018-of-00019.safetensors",
756
+ "model.layers.30.block_sparse_moe.experts.1.w2.weight": "model-00018-of-00019.safetensors",
757
+ "model.layers.30.block_sparse_moe.experts.1.w3.weight": "model-00018-of-00019.safetensors",
758
+ "model.layers.30.block_sparse_moe.experts.2.w1.weight": "model-00018-of-00019.safetensors",
759
+ "model.layers.30.block_sparse_moe.experts.2.w2.weight": "model-00018-of-00019.safetensors",
760
+ "model.layers.30.block_sparse_moe.experts.2.w3.weight": "model-00018-of-00019.safetensors",
761
+ "model.layers.30.block_sparse_moe.experts.3.w1.weight": "model-00018-of-00019.safetensors",
762
+ "model.layers.30.block_sparse_moe.experts.3.w2.weight": "model-00018-of-00019.safetensors",
763
+ "model.layers.30.block_sparse_moe.experts.3.w3.weight": "model-00018-of-00019.safetensors",
764
+ "model.layers.30.block_sparse_moe.experts.4.w1.weight": "model-00018-of-00019.safetensors",
765
+ "model.layers.30.block_sparse_moe.experts.4.w2.weight": "model-00018-of-00019.safetensors",
766
+ "model.layers.30.block_sparse_moe.experts.4.w3.weight": "model-00018-of-00019.safetensors",
767
+ "model.layers.30.block_sparse_moe.experts.5.w1.weight": "model-00019-of-00019.safetensors",
768
+ "model.layers.30.block_sparse_moe.experts.5.w2.weight": "model-00019-of-00019.safetensors",
769
+ "model.layers.30.block_sparse_moe.experts.5.w3.weight": "model-00019-of-00019.safetensors",
770
+ "model.layers.30.block_sparse_moe.experts.6.w1.weight": "model-00019-of-00019.safetensors",
771
+ "model.layers.30.block_sparse_moe.experts.6.w2.weight": "model-00019-of-00019.safetensors",
772
+ "model.layers.30.block_sparse_moe.experts.6.w3.weight": "model-00019-of-00019.safetensors",
773
+ "model.layers.30.block_sparse_moe.experts.7.w1.weight": "model-00019-of-00019.safetensors",
774
+ "model.layers.30.block_sparse_moe.experts.7.w2.weight": "model-00019-of-00019.safetensors",
775
+ "model.layers.30.block_sparse_moe.experts.7.w3.weight": "model-00019-of-00019.safetensors",
776
+ "model.layers.30.block_sparse_moe.gate.weight": "model-00018-of-00019.safetensors",
777
+ "model.layers.30.input_layernorm.weight": "model-00019-of-00019.safetensors",
778
+ "model.layers.30.post_attention_layernorm.weight": "model-00019-of-00019.safetensors",
779
+ "model.layers.30.self_attn.k_proj.weight": "model-00018-of-00019.safetensors",
780
+ "model.layers.30.self_attn.o_proj.weight": "model-00018-of-00019.safetensors",
781
+ "model.layers.30.self_attn.q_proj.weight": "model-00018-of-00019.safetensors",
782
+ "model.layers.30.self_attn.v_proj.weight": "model-00018-of-00019.safetensors",
783
+ "model.layers.31.block_sparse_moe.experts.0.w1.weight": "model-00019-of-00019.safetensors",
784
+ "model.layers.31.block_sparse_moe.experts.0.w2.weight": "model-00019-of-00019.safetensors",
785
+ "model.layers.31.block_sparse_moe.experts.0.w3.weight": "model-00019-of-00019.safetensors",
786
+ "model.layers.31.block_sparse_moe.experts.1.w1.weight": "model-00019-of-00019.safetensors",
787
+ "model.layers.31.block_sparse_moe.experts.1.w2.weight": "model-00019-of-00019.safetensors",
788
+ "model.layers.31.block_sparse_moe.experts.1.w3.weight": "model-00019-of-00019.safetensors",
789
+ "model.layers.31.block_sparse_moe.experts.2.w1.weight": "model-00019-of-00019.safetensors",
790
+ "model.layers.31.block_sparse_moe.experts.2.w2.weight": "model-00019-of-00019.safetensors",
791
+ "model.layers.31.block_sparse_moe.experts.2.w3.weight": "model-00019-of-00019.safetensors",
792
+ "model.layers.31.block_sparse_moe.experts.3.w1.weight": "model-00019-of-00019.safetensors",
793
+ "model.layers.31.block_sparse_moe.experts.3.w2.weight": "model-00019-of-00019.safetensors",
794
+ "model.layers.31.block_sparse_moe.experts.3.w3.weight": "model-00019-of-00019.safetensors",
795
+ "model.layers.31.block_sparse_moe.experts.4.w1.weight": "model-00019-of-00019.safetensors",
796
+ "model.layers.31.block_sparse_moe.experts.4.w2.weight": "model-00019-of-00019.safetensors",
797
+ "model.layers.31.block_sparse_moe.experts.4.w3.weight": "model-00019-of-00019.safetensors",
798
+ "model.layers.31.block_sparse_moe.experts.5.w1.weight": "model-00019-of-00019.safetensors",
799
+ "model.layers.31.block_sparse_moe.experts.5.w2.weight": "model-00019-of-00019.safetensors",
800
+ "model.layers.31.block_sparse_moe.experts.5.w3.weight": "model-00019-of-00019.safetensors",
801
+ "model.layers.31.block_sparse_moe.experts.6.w1.weight": "model-00019-of-00019.safetensors",
802
+ "model.layers.31.block_sparse_moe.experts.6.w2.weight": "model-00019-of-00019.safetensors",
803
+ "model.layers.31.block_sparse_moe.experts.6.w3.weight": "model-00019-of-00019.safetensors",
804
+ "model.layers.31.block_sparse_moe.experts.7.w1.weight": "model-00019-of-00019.safetensors",
805
+ "model.layers.31.block_sparse_moe.experts.7.w2.weight": "model-00019-of-00019.safetensors",
806
+ "model.layers.31.block_sparse_moe.experts.7.w3.weight": "model-00019-of-00019.safetensors",
807
+ "model.layers.31.block_sparse_moe.gate.weight": "model-00019-of-00019.safetensors",
808
+ "model.layers.31.input_layernorm.weight": "model-00019-of-00019.safetensors",
809
+ "model.layers.31.post_attention_layernorm.weight": "model-00019-of-00019.safetensors",
810
+ "model.layers.31.self_attn.k_proj.weight": "model-00019-of-00019.safetensors",
811
+ "model.layers.31.self_attn.o_proj.weight": "model-00019-of-00019.safetensors",
812
+ "model.layers.31.self_attn.q_proj.weight": "model-00019-of-00019.safetensors",
813
+ "model.layers.31.self_attn.v_proj.weight": "model-00019-of-00019.safetensors",
814
+ "model.layers.4.block_sparse_moe.experts.0.w1.weight": "model-00003-of-00019.safetensors",
815
+ "model.layers.4.block_sparse_moe.experts.0.w2.weight": "model-00003-of-00019.safetensors",
816
+ "model.layers.4.block_sparse_moe.experts.0.w3.weight": "model-00003-of-00019.safetensors",
817
+ "model.layers.4.block_sparse_moe.experts.1.w1.weight": "model-00003-of-00019.safetensors",
818
+ "model.layers.4.block_sparse_moe.experts.1.w2.weight": "model-00003-of-00019.safetensors",
819
+ "model.layers.4.block_sparse_moe.experts.1.w3.weight": "model-00003-of-00019.safetensors",
820
+ "model.layers.4.block_sparse_moe.experts.2.w1.weight": "model-00003-of-00019.safetensors",
821
+ "model.layers.4.block_sparse_moe.experts.2.w2.weight": "model-00003-of-00019.safetensors",
822
+ "model.layers.4.block_sparse_moe.experts.2.w3.weight": "model-00003-of-00019.safetensors",
823
+ "model.layers.4.block_sparse_moe.experts.3.w1.weight": "model-00003-of-00019.safetensors",
824
+ "model.layers.4.block_sparse_moe.experts.3.w2.weight": "model-00003-of-00019.safetensors",
825
+ "model.layers.4.block_sparse_moe.experts.3.w3.weight": "model-00003-of-00019.safetensors",
826
+ "model.layers.4.block_sparse_moe.experts.4.w1.weight": "model-00003-of-00019.safetensors",
827
+ "model.layers.4.block_sparse_moe.experts.4.w2.weight": "model-00003-of-00019.safetensors",
828
+ "model.layers.4.block_sparse_moe.experts.4.w3.weight": "model-00003-of-00019.safetensors",
829
+ "model.layers.4.block_sparse_moe.experts.5.w1.weight": "model-00003-of-00019.safetensors",
830
+ "model.layers.4.block_sparse_moe.experts.5.w2.weight": "model-00003-of-00019.safetensors",
831
+ "model.layers.4.block_sparse_moe.experts.5.w3.weight": "model-00003-of-00019.safetensors",
832
+ "model.layers.4.block_sparse_moe.experts.6.w1.weight": "model-00003-of-00019.safetensors",
833
+ "model.layers.4.block_sparse_moe.experts.6.w2.weight": "model-00003-of-00019.safetensors",
834
+ "model.layers.4.block_sparse_moe.experts.6.w3.weight": "model-00003-of-00019.safetensors",
835
+ "model.layers.4.block_sparse_moe.experts.7.w1.weight": "model-00003-of-00019.safetensors",
836
+ "model.layers.4.block_sparse_moe.experts.7.w2.weight": "model-00003-of-00019.safetensors",
837
+ "model.layers.4.block_sparse_moe.experts.7.w3.weight": "model-00003-of-00019.safetensors",
838
+ "model.layers.4.block_sparse_moe.gate.weight": "model-00003-of-00019.safetensors",
839
+ "model.layers.4.input_layernorm.weight": "model-00003-of-00019.safetensors",
840
+ "model.layers.4.post_attention_layernorm.weight": "model-00003-of-00019.safetensors",
841
+ "model.layers.4.self_attn.k_proj.weight": "model-00003-of-00019.safetensors",
842
+ "model.layers.4.self_attn.o_proj.weight": "model-00003-of-00019.safetensors",
843
+ "model.layers.4.self_attn.q_proj.weight": "model-00003-of-00019.safetensors",
844
+ "model.layers.4.self_attn.v_proj.weight": "model-00003-of-00019.safetensors",
845
+ "model.layers.5.block_sparse_moe.experts.0.w1.weight": "model-00004-of-00019.safetensors",
846
+ "model.layers.5.block_sparse_moe.experts.0.w2.weight": "model-00004-of-00019.safetensors",
847
+ "model.layers.5.block_sparse_moe.experts.0.w3.weight": "model-00004-of-00019.safetensors",
848
+ "model.layers.5.block_sparse_moe.experts.1.w1.weight": "model-00004-of-00019.safetensors",
849
+ "model.layers.5.block_sparse_moe.experts.1.w2.weight": "model-00004-of-00019.safetensors",
850
+ "model.layers.5.block_sparse_moe.experts.1.w3.weight": "model-00004-of-00019.safetensors",
851
+ "model.layers.5.block_sparse_moe.experts.2.w1.weight": "model-00004-of-00019.safetensors",
852
+ "model.layers.5.block_sparse_moe.experts.2.w2.weight": "model-00004-of-00019.safetensors",
853
+ "model.layers.5.block_sparse_moe.experts.2.w3.weight": "model-00004-of-00019.safetensors",
854
+ "model.layers.5.block_sparse_moe.experts.3.w1.weight": "model-00004-of-00019.safetensors",
855
+ "model.layers.5.block_sparse_moe.experts.3.w2.weight": "model-00004-of-00019.safetensors",
856
+ "model.layers.5.block_sparse_moe.experts.3.w3.weight": "model-00004-of-00019.safetensors",
857
+ "model.layers.5.block_sparse_moe.experts.4.w1.weight": "model-00004-of-00019.safetensors",
858
+ "model.layers.5.block_sparse_moe.experts.4.w2.weight": "model-00004-of-00019.safetensors",
859
+ "model.layers.5.block_sparse_moe.experts.4.w3.weight": "model-00004-of-00019.safetensors",
860
+ "model.layers.5.block_sparse_moe.experts.5.w1.weight": "model-00004-of-00019.safetensors",
861
+ "model.layers.5.block_sparse_moe.experts.5.w2.weight": "model-00004-of-00019.safetensors",
862
+ "model.layers.5.block_sparse_moe.experts.5.w3.weight": "model-00004-of-00019.safetensors",
863
+ "model.layers.5.block_sparse_moe.experts.6.w1.weight": "model-00004-of-00019.safetensors",
864
+ "model.layers.5.block_sparse_moe.experts.6.w2.weight": "model-00004-of-00019.safetensors",
865
+ "model.layers.5.block_sparse_moe.experts.6.w3.weight": "model-00004-of-00019.safetensors",
866
+ "model.layers.5.block_sparse_moe.experts.7.w1.weight": "model-00004-of-00019.safetensors",
867
+ "model.layers.5.block_sparse_moe.experts.7.w2.weight": "model-00004-of-00019.safetensors",
868
+ "model.layers.5.block_sparse_moe.experts.7.w3.weight": "model-00004-of-00019.safetensors",
869
+ "model.layers.5.block_sparse_moe.gate.weight": "model-00003-of-00019.safetensors",
870
+ "model.layers.5.input_layernorm.weight": "model-00004-of-00019.safetensors",
871
+ "model.layers.5.post_attention_layernorm.weight": "model-00004-of-00019.safetensors",
872
+ "model.layers.5.self_attn.k_proj.weight": "model-00003-of-00019.safetensors",
873
+ "model.layers.5.self_attn.o_proj.weight": "model-00003-of-00019.safetensors",
874
+ "model.layers.5.self_attn.q_proj.weight": "model-00003-of-00019.safetensors",
875
+ "model.layers.5.self_attn.v_proj.weight": "model-00003-of-00019.safetensors",
876
+ "model.layers.6.block_sparse_moe.experts.0.w1.weight": "model-00004-of-00019.safetensors",
877
+ "model.layers.6.block_sparse_moe.experts.0.w2.weight": "model-00004-of-00019.safetensors",
878
+ "model.layers.6.block_sparse_moe.experts.0.w3.weight": "model-00004-of-00019.safetensors",
879
+ "model.layers.6.block_sparse_moe.experts.1.w1.weight": "model-00004-of-00019.safetensors",
880
+ "model.layers.6.block_sparse_moe.experts.1.w2.weight": "model-00004-of-00019.safetensors",
881
+ "model.layers.6.block_sparse_moe.experts.1.w3.weight": "model-00004-of-00019.safetensors",
882
+ "model.layers.6.block_sparse_moe.experts.2.w1.weight": "model-00004-of-00019.safetensors",
883
+ "model.layers.6.block_sparse_moe.experts.2.w2.weight": "model-00004-of-00019.safetensors",
884
+ "model.layers.6.block_sparse_moe.experts.2.w3.weight": "model-00004-of-00019.safetensors",
885
+ "model.layers.6.block_sparse_moe.experts.3.w1.weight": "model-00004-of-00019.safetensors",
886
+ "model.layers.6.block_sparse_moe.experts.3.w2.weight": "model-00004-of-00019.safetensors",
887
+ "model.layers.6.block_sparse_moe.experts.3.w3.weight": "model-00004-of-00019.safetensors",
888
+ "model.layers.6.block_sparse_moe.experts.4.w1.weight": "model-00004-of-00019.safetensors",
889
+ "model.layers.6.block_sparse_moe.experts.4.w2.weight": "model-00004-of-00019.safetensors",
890
+ "model.layers.6.block_sparse_moe.experts.4.w3.weight": "model-00004-of-00019.safetensors",
891
+ "model.layers.6.block_sparse_moe.experts.5.w1.weight": "model-00004-of-00019.safetensors",
892
+ "model.layers.6.block_sparse_moe.experts.5.w2.weight": "model-00004-of-00019.safetensors",
893
+ "model.layers.6.block_sparse_moe.experts.5.w3.weight": "model-00005-of-00019.safetensors",
894
+ "model.layers.6.block_sparse_moe.experts.6.w1.weight": "model-00005-of-00019.safetensors",
895
+ "model.layers.6.block_sparse_moe.experts.6.w2.weight": "model-00005-of-00019.safetensors",
896
+ "model.layers.6.block_sparse_moe.experts.6.w3.weight": "model-00005-of-00019.safetensors",
897
+ "model.layers.6.block_sparse_moe.experts.7.w1.weight": "model-00005-of-00019.safetensors",
898
+ "model.layers.6.block_sparse_moe.experts.7.w2.weight": "model-00005-of-00019.safetensors",
899
+ "model.layers.6.block_sparse_moe.experts.7.w3.weight": "model-00005-of-00019.safetensors",
900
+ "model.layers.6.block_sparse_moe.gate.weight": "model-00004-of-00019.safetensors",
901
+ "model.layers.6.input_layernorm.weight": "model-00005-of-00019.safetensors",
902
+ "model.layers.6.post_attention_layernorm.weight": "model-00005-of-00019.safetensors",
903
+ "model.layers.6.self_attn.k_proj.weight": "model-00004-of-00019.safetensors",
904
+ "model.layers.6.self_attn.o_proj.weight": "model-00004-of-00019.safetensors",
905
+ "model.layers.6.self_attn.q_proj.weight": "model-00004-of-00019.safetensors",
906
+ "model.layers.6.self_attn.v_proj.weight": "model-00004-of-00019.safetensors",
907
+ "model.layers.7.block_sparse_moe.experts.0.w1.weight": "model-00005-of-00019.safetensors",
908
+ "model.layers.7.block_sparse_moe.experts.0.w2.weight": "model-00005-of-00019.safetensors",
909
+ "model.layers.7.block_sparse_moe.experts.0.w3.weight": "model-00005-of-00019.safetensors",
910
+ "model.layers.7.block_sparse_moe.experts.1.w1.weight": "model-00005-of-00019.safetensors",
911
+ "model.layers.7.block_sparse_moe.experts.1.w2.weight": "model-00005-of-00019.safetensors",
912
+ "model.layers.7.block_sparse_moe.experts.1.w3.weight": "model-00005-of-00019.safetensors",
913
+ "model.layers.7.block_sparse_moe.experts.2.w1.weight": "model-00005-of-00019.safetensors",
914
+ "model.layers.7.block_sparse_moe.experts.2.w2.weight": "model-00005-of-00019.safetensors",
915
+ "model.layers.7.block_sparse_moe.experts.2.w3.weight": "model-00005-of-00019.safetensors",
916
+ "model.layers.7.block_sparse_moe.experts.3.w1.weight": "model-00005-of-00019.safetensors",
917
+ "model.layers.7.block_sparse_moe.experts.3.w2.weight": "model-00005-of-00019.safetensors",
918
+ "model.layers.7.block_sparse_moe.experts.3.w3.weight": "model-00005-of-00019.safetensors",
919
+ "model.layers.7.block_sparse_moe.experts.4.w1.weight": "model-00005-of-00019.safetensors",
920
+ "model.layers.7.block_sparse_moe.experts.4.w2.weight": "model-00005-of-00019.safetensors",
921
+ "model.layers.7.block_sparse_moe.experts.4.w3.weight": "model-00005-of-00019.safetensors",
922
+ "model.layers.7.block_sparse_moe.experts.5.w1.weight": "model-00005-of-00019.safetensors",
923
+ "model.layers.7.block_sparse_moe.experts.5.w2.weight": "model-00005-of-00019.safetensors",
924
+ "model.layers.7.block_sparse_moe.experts.5.w3.weight": "model-00005-of-00019.safetensors",
925
+ "model.layers.7.block_sparse_moe.experts.6.w1.weight": "model-00005-of-00019.safetensors",
926
+ "model.layers.7.block_sparse_moe.experts.6.w2.weight": "model-00005-of-00019.safetensors",
927
+ "model.layers.7.block_sparse_moe.experts.6.w3.weight": "model-00005-of-00019.safetensors",
928
+ "model.layers.7.block_sparse_moe.experts.7.w1.weight": "model-00005-of-00019.safetensors",
929
+ "model.layers.7.block_sparse_moe.experts.7.w2.weight": "model-00005-of-00019.safetensors",
930
+ "model.layers.7.block_sparse_moe.experts.7.w3.weight": "model-00005-of-00019.safetensors",
931
+ "model.layers.7.block_sparse_moe.gate.weight": "model-00005-of-00019.safetensors",
932
+ "model.layers.7.input_layernorm.weight": "model-00005-of-00019.safetensors",
933
+ "model.layers.7.post_attention_layernorm.weight": "model-00005-of-00019.safetensors",
934
+ "model.layers.7.self_attn.k_proj.weight": "model-00005-of-00019.safetensors",
935
+ "model.layers.7.self_attn.o_proj.weight": "model-00005-of-00019.safetensors",
936
+ "model.layers.7.self_attn.q_proj.weight": "model-00005-of-00019.safetensors",
937
+ "model.layers.7.self_attn.v_proj.weight": "model-00005-of-00019.safetensors",
938
+ "model.layers.8.block_sparse_moe.experts.0.w1.weight": "model-00005-of-00019.safetensors",
939
+ "model.layers.8.block_sparse_moe.experts.0.w2.weight": "model-00005-of-00019.safetensors",
940
+ "model.layers.8.block_sparse_moe.experts.0.w3.weight": "model-00005-of-00019.safetensors",
941
+ "model.layers.8.block_sparse_moe.experts.1.w1.weight": "model-00005-of-00019.safetensors",
942
+ "model.layers.8.block_sparse_moe.experts.1.w2.weight": "model-00005-of-00019.safetensors",
943
+ "model.layers.8.block_sparse_moe.experts.1.w3.weight": "model-00005-of-00019.safetensors",
944
+ "model.layers.8.block_sparse_moe.experts.2.w1.weight": "model-00005-of-00019.safetensors",
945
+ "model.layers.8.block_sparse_moe.experts.2.w2.weight": "model-00005-of-00019.safetensors",
946
+ "model.layers.8.block_sparse_moe.experts.2.w3.weight": "model-00005-of-00019.safetensors",
947
+ "model.layers.8.block_sparse_moe.experts.3.w1.weight": "model-00005-of-00019.safetensors",
948
+ "model.layers.8.block_sparse_moe.experts.3.w2.weight": "model-00006-of-00019.safetensors",
949
+ "model.layers.8.block_sparse_moe.experts.3.w3.weight": "model-00006-of-00019.safetensors",
950
+ "model.layers.8.block_sparse_moe.experts.4.w1.weight": "model-00006-of-00019.safetensors",
951
+ "model.layers.8.block_sparse_moe.experts.4.w2.weight": "model-00006-of-00019.safetensors",
952
+ "model.layers.8.block_sparse_moe.experts.4.w3.weight": "model-00006-of-00019.safetensors",
953
+ "model.layers.8.block_sparse_moe.experts.5.w1.weight": "model-00006-of-00019.safetensors",
954
+ "model.layers.8.block_sparse_moe.experts.5.w2.weight": "model-00006-of-00019.safetensors",
955
+ "model.layers.8.block_sparse_moe.experts.5.w3.weight": "model-00006-of-00019.safetensors",
956
+ "model.layers.8.block_sparse_moe.experts.6.w1.weight": "model-00006-of-00019.safetensors",
957
+ "model.layers.8.block_sparse_moe.experts.6.w2.weight": "model-00006-of-00019.safetensors",
958
+ "model.layers.8.block_sparse_moe.experts.6.w3.weight": "model-00006-of-00019.safetensors",
959
+ "model.layers.8.block_sparse_moe.experts.7.w1.weight": "model-00006-of-00019.safetensors",
960
+ "model.layers.8.block_sparse_moe.experts.7.w2.weight": "model-00006-of-00019.safetensors",
961
+ "model.layers.8.block_sparse_moe.experts.7.w3.weight": "model-00006-of-00019.safetensors",
962
+ "model.layers.8.block_sparse_moe.gate.weight": "model-00005-of-00019.safetensors",
963
+ "model.layers.8.input_layernorm.weight": "model-00006-of-00019.safetensors",
964
+ "model.layers.8.post_attention_layernorm.weight": "model-00006-of-00019.safetensors",
965
+ "model.layers.8.self_attn.k_proj.weight": "model-00005-of-00019.safetensors",
966
+ "model.layers.8.self_attn.o_proj.weight": "model-00005-of-00019.safetensors",
967
+ "model.layers.8.self_attn.q_proj.weight": "model-00005-of-00019.safetensors",
968
+ "model.layers.8.self_attn.v_proj.weight": "model-00005-of-00019.safetensors",
969
+ "model.layers.9.block_sparse_moe.experts.0.w1.weight": "model-00006-of-00019.safetensors",
970
+ "model.layers.9.block_sparse_moe.experts.0.w2.weight": "model-00006-of-00019.safetensors",
971
+ "model.layers.9.block_sparse_moe.experts.0.w3.weight": "model-00006-of-00019.safetensors",
972
+ "model.layers.9.block_sparse_moe.experts.1.w1.weight": "model-00006-of-00019.safetensors",
973
+ "model.layers.9.block_sparse_moe.experts.1.w2.weight": "model-00006-of-00019.safetensors",
974
+ "model.layers.9.block_sparse_moe.experts.1.w3.weight": "model-00006-of-00019.safetensors",
975
+ "model.layers.9.block_sparse_moe.experts.2.w1.weight": "model-00006-of-00019.safetensors",
976
+ "model.layers.9.block_sparse_moe.experts.2.w2.weight": "model-00006-of-00019.safetensors",
977
+ "model.layers.9.block_sparse_moe.experts.2.w3.weight": "model-00006-of-00019.safetensors",
978
+ "model.layers.9.block_sparse_moe.experts.3.w1.weight": "model-00006-of-00019.safetensors",
979
+ "model.layers.9.block_sparse_moe.experts.3.w2.weight": "model-00006-of-00019.safetensors",
980
+ "model.layers.9.block_sparse_moe.experts.3.w3.weight": "model-00006-of-00019.safetensors",
981
+ "model.layers.9.block_sparse_moe.experts.4.w1.weight": "model-00006-of-00019.safetensors",
982
+ "model.layers.9.block_sparse_moe.experts.4.w2.weight": "model-00006-of-00019.safetensors",
983
+ "model.layers.9.block_sparse_moe.experts.4.w3.weight": "model-00006-of-00019.safetensors",
984
+ "model.layers.9.block_sparse_moe.experts.5.w1.weight": "model-00006-of-00019.safetensors",
985
+ "model.layers.9.block_sparse_moe.experts.5.w2.weight": "model-00006-of-00019.safetensors",
986
+ "model.layers.9.block_sparse_moe.experts.5.w3.weight": "model-00006-of-00019.safetensors",
987
+ "model.layers.9.block_sparse_moe.experts.6.w1.weight": "model-00006-of-00019.safetensors",
988
+ "model.layers.9.block_sparse_moe.experts.6.w2.weight": "model-00006-of-00019.safetensors",
989
+ "model.layers.9.block_sparse_moe.experts.6.w3.weight": "model-00006-of-00019.safetensors",
990
+ "model.layers.9.block_sparse_moe.experts.7.w1.weight": "model-00006-of-00019.safetensors",
991
+ "model.layers.9.block_sparse_moe.experts.7.w2.weight": "model-00006-of-00019.safetensors",
992
+ "model.layers.9.block_sparse_moe.experts.7.w3.weight": "model-00006-of-00019.safetensors",
993
+ "model.layers.9.block_sparse_moe.gate.weight": "model-00006-of-00019.safetensors",
994
+ "model.layers.9.input_layernorm.weight": "model-00006-of-00019.safetensors",
995
+ "model.layers.9.post_attention_layernorm.weight": "model-00006-of-00019.safetensors",
996
+ "model.layers.9.self_attn.k_proj.weight": "model-00006-of-00019.safetensors",
997
+ "model.layers.9.self_attn.o_proj.weight": "model-00006-of-00019.safetensors",
998
+ "model.layers.9.self_attn.q_proj.weight": "model-00006-of-00019.safetensors",
999
+ "model.layers.9.self_attn.v_proj.weight": "model-00006-of-00019.safetensors",
1000
+ "model.norm.weight": "model-00019-of-00019.safetensors"
1001
+ }
1002
+ }
requirements.txt ADDED
@@ -0,0 +1 @@
 
 
1
+ git+https://github.com/huggingface/evaluate@8b9373dc8693ffe0244a52551ac5573cffa503aa
special_tokens_map.json ADDED
@@ -0,0 +1,23 @@
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
1
+ {
2
+ "bos_token": {
3
+ "content": "<s>",
4
+ "lstrip": false,
5
+ "normalized": false,
6
+ "rstrip": false,
7
+ "single_word": false
8
+ },
9
+ "eos_token": {
10
+ "content": "</s>",
11
+ "lstrip": false,
12
+ "normalized": false,
13
+ "rstrip": false,
14
+ "single_word": false
15
+ },
16
+ "unk_token": {
17
+ "content": "<unk>",
18
+ "lstrip": false,
19
+ "normalized": false,
20
+ "rstrip": false,
21
+ "single_word": false
22
+ }
23
+ }
tokenizer.json ADDED
The diff for this file is too large to render. See raw diff
 
tokenizer.model ADDED
@@ -0,0 +1,3 @@
 
 
 
 
1
+ version https://git-lfs.github.com/spec/v1
2
+ oid sha256:dadfd56d766715c61d2ef780a525ab43b8e6da4de6865bda3d95fdef5e134055
3
+ size 493443
tokenizer_config.json ADDED
@@ -0,0 +1,42 @@
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
1
+ {
2
+ "add_bos_token": true,
3
+ "add_eos_token": false,
4
+ "added_tokens_decoder": {
5
+ "0": {
6
+ "content": "<unk>",
7
+ "lstrip": false,
8
+ "normalized": false,
9
+ "rstrip": false,
10
+ "single_word": false,
11
+ "special": true
12
+ },
13
+ "1": {
14
+ "content": "<s>",
15
+ "lstrip": false,
16
+ "normalized": false,
17
+ "rstrip": false,
18
+ "single_word": false,
19
+ "special": true
20
+ },
21
+ "2": {
22
+ "content": "</s>",
23
+ "lstrip": false,
24
+ "normalized": false,
25
+ "rstrip": false,
26
+ "single_word": false,
27
+ "special": true
28
+ }
29
+ },
30
+ "additional_special_tokens": [],
31
+ "bos_token": "<s>",
32
+ "clean_up_tokenization_spaces": false,
33
+ "eos_token": "</s>",
34
+ "legacy": true,
35
+ "model_max_length": 1000000000000000019884624838656,
36
+ "pad_token": null,
37
+ "sp_model_kwargs": {},
38
+ "spaces_between_special_tokens": false,
39
+ "tokenizer_class": "LlamaTokenizer",
40
+ "unk_token": "<unk>",
41
+ "use_default_system_prompt": false
42
+ }