File size: 13,497 Bytes
88e4b39 b5959bb 88e4b39 13b678f b5959bb 13b678f b5959bb 13b678f b5959bb 13b678f 9a99284 13b678f 9a99284 13b678f 9a99284 13b678f 9a99284 13b678f 9a99284 13b678f d1bf200 9a99284 d1bf200 13b678f 3edb380 13b678f 9a99284 4163e84 9a99284 13b678f 9a99284 13b678f 3edb380 13b678f 9b8e0c2 9a99284 9b8e0c2 aec8d35 13b678f b5959bb d1bf200 13b678f d1bf200 13b678f d1bf200 13b678f 3dbd540 13b678f 9a99284 13b678f 9a99284 13b678f 9a99284 13b678f 9a99284 13b678f 9a99284 13b678f 4163e84 13b678f 4163e84 13b678f 3edb380 13b678f 9b8e0c2 aec8d35 9b8e0c2 13b678f b5959bb d1bf200 13b678f d1bf200 13b678f d1bf200 13b678f |
1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27 28 29 30 31 32 33 34 35 36 37 38 39 40 41 42 43 44 45 46 47 48 49 50 51 52 53 54 55 56 57 58 59 60 61 62 63 64 65 66 67 68 69 70 71 72 73 74 75 76 77 78 79 80 81 82 83 84 85 86 87 88 89 90 91 92 93 94 95 96 97 98 99 100 101 102 103 104 105 106 107 108 109 110 111 112 113 114 115 116 117 118 119 120 121 122 123 124 125 126 127 128 129 130 131 132 133 134 135 136 137 138 139 140 141 142 143 144 145 146 147 148 149 150 151 152 153 154 155 156 157 158 159 160 161 162 163 164 165 166 167 168 169 170 171 172 173 174 175 176 177 178 179 180 181 182 183 184 185 186 187 188 189 190 191 192 193 194 195 196 197 198 199 200 201 202 203 204 205 206 207 208 209 210 211 212 213 214 215 216 217 218 219 220 221 222 223 224 225 226 227 228 229 230 231 232 233 234 235 236 237 238 239 240 241 242 243 244 245 246 247 248 249 250 251 252 253 254 255 256 257 258 259 260 261 262 263 264 265 266 267 268 269 270 271 272 273 274 275 276 277 278 279 280 281 282 283 284 285 286 287 288 289 290 291 292 293 294 295 296 297 298 299 300 301 302 303 304 305 306 307 308 309 310 311 312 313 314 315 316 317 318 319 320 321 322 323 324 325 326 327 328 329 330 331 332 333 334 335 336 337 338 339 340 341 342 343 344 345 346 347 348 349 350 351 352 353 354 355 356 357 358 359 360 361 362 363 364 365 366 367 368 369 370 371 372 373 374 375 376 377 378 379 380 381 382 383 384 385 386 387 |
---
license: other
tasks:
- code-generation
---
# Model Card for CodeFuse-DeepSeek-33B
![logo](LOGO.jpg)
[[中文]](#chinese) [[English]](#english)
<a id="english"></a>
## Model Description
CodeFuse-DeepSeek-33B is a 33B Code-LLM finetuned by QLoRA on multiple code-related tasks on the base model DeepSeek-Coder-33B.
<br>
## News and Updates
🔥🔥🔥 2024-01-12 CodeFuse-DeepSeek-33B has been released, achieving a pass@1 (greedy decoding) score of 78.65% on HumanEval.
🔥🔥🔥 2024-01-12 CodeFuse-Mixtral-8x7B has been released, achieving a pass@1 (greedy decoding) score of 56.1% on HumanEval, which is a 15% increase compared to Mixtral-8x7b's 40%.
🔥🔥 2023-11-10 CodeFuse-CodeGeeX2-6B has been released, achieving a pass@1 (greedy decoding) score of 45.12% on HumanEval, which is a 9.22% increase compared to CodeGeeX2 35.9%.
🔥🔥 2023-10-20 CodeFuse-QWen-14B technical documentation has been released. For those interested, please refer to the CodeFuse article on our WeChat official account via the provided link.(https://mp.weixin.qq.com/s/PCQPkvbvfxSPzsqjOILCDw)
🔥🔥 2023-10-16 CodeFuse-QWen-14B has been released, achieving a pass@1 (greedy decoding) score of 48.78% on HumanEval, which is a 16% increase compared to Qwen-14b's 32.3%.
🔥🔥 2023-09-27 CodeFuse-StarCoder-15B has been released, achieving a pass@1 (greedy decoding) score of 54.9% on HumanEval, which is a 21% increase compared to StarCoder's 33.6%.
🔥🔥 2023-09-26 We are pleased to announce the release of the 4-bit quantized version of CodeFuse-CodeLlama-34B. Despite the quantization process, the model still achieves a remarkable 73.8% accuracy (greedy decoding) on the HumanEval pass@1 metric.
🔥🔥 2023-09-11 CodeFuse-CodeLlama-34B has achieved 74.4% of pass@1 (greedy decoding) on HumanEval, which is SOTA results for openspurced LLMs at present.
<br>
## Code Community
**Homepage**: 🏡 https://github.com/codefuse-ai (**Please give us your support with a Star🌟 + Fork🚀 + Watch👀**)
+ If you wish to fine-tune the model yourself, you can visit ✨[MFTCoder](https://github.com/codefuse-ai/MFTCoder)✨✨
+ If you wish to see a demo of the model, you can visit ✨[CodeFuse Demo](https://github.com/codefuse-ai/codefuse)✨✨
<br>
## Performance
### Code
| Model | HumanEval(pass@1) | Date |
|:----------------------------|:-----------------:|:-------:|
| **CodeFuse-DeepSeek-33B** | **78.65%** | 2024.01 |
| **CodeFuse-Mixtral-8x7B** | **56.10%** | 2024.01 |
| **CodeFuse-CodeLlama-34B** | 74.4% | 2023.9 |
|**CodeFuse-CodeLlama-34B-4bits** | 73.8% | 2023.9 |
| **CodeFuse-StarCoder-15B** | 54.9% | 2023.9 |
| **CodeFuse-QWen-14B** | 48.78% | 2023.10 |
| **CodeFuse-CodeGeeX2-6B** | 45.12% | 2023.11 |
| WizardCoder-Python-34B-V1.0 | 73.2% | 2023.8 |
| GPT-4(zero-shot) | 67.0% | 2023.3 |
| PanGu-Coder2 15B | 61.6% | 2023.8 |
| CodeLlama-34b-Python | 53.7% | 2023.8 |
| CodeLlama-34b | 48.8% | 2023.8 |
| GPT-3.5(zero-shot) | 48.1% | 2022.11 |
| OctoCoder | 46.2% | 2023.8 |
| StarCoder-15B | 33.6% | 2023.5 |
| Qwen-14b | 32.3% | 2023.10 |
### NLP
![NLP Performance Radar](codefuse-deepseek-33b-nlp.png)
<br>
## Requirements
* python>=3.8
* pytorch>=2.0.0
* transformers>=4.33.2
* Sentencepiece
* CUDA 11.4
<br>
## Inference String Format
The inference string is a concatenated string formed by combining conversation data(system, human and bot contents) in the training data format. It is used as input during the inference process.
Here are examples of prompts used to request the model:
**Multi-Round with System Prompt:**
```python
"""
<s>system
System instruction
<s>human
Human 1st round input
<s>bot
Bot 1st round output<|end▁of▁sentence|>
<s>human
Human 2nd round input
<s>bot
Bot 2nd round output<|end▁of▁sentence|>
...
...
...
<s>human
Human nth round input
<s>bot
"""
```
**Single-Round without System Prompt:**
```python
"""
<s>human
User prompt...
<s>bot
"""
```
In this format, the system section is optional and the conversation can be either single-turn or multi-turn. When applying inference, you always make your input string end with "\<s\>bot" to ask the model generating answers.
For example, the format used to infer HumanEval is like the following:
```
<s>human
# language: Python
from typing import List
def separate_paren_groups(paren_string: str) -> List[str]:
""" Input to this function is a string containing multiple groups of nested parentheses. Your goal is to
separate those group into separate strings and return the list of those.
Separate groups are balanced (each open brace is properly closed) and not nested within each other
Ignore any spaces in the input string.
>>> separate_paren_groups('( ) (( )) (( )( ))')
['()', '(())', '(()())']
"""
<s>bot
```
Specifically, we also add the Programming Language Tag (e.g. "```# language: Python```" for Python) used by CodeGeex models.
## Quickstart
```python
import torch
from transformers import AutoTokenizer, AutoModelForCausalLM, GenerationConfig
model_dir = "codefuse-ai/CodeFuse-DeepSeek-33B"
def load_model_tokenizer(model_path):
tokenizer = AutoTokenizer.from_pretrained(model_path, trust_remote_code=True)
tokenizer.eos_token = "<|end▁of▁sentence|>"
tokenizer.pad_token = "<|end▁of▁sentence|>"
tokenizer.eos_token_id = tokenizer.convert_tokens_to_ids(tokenizer.eos_token)
tokenizer.pad_token_id = tokenizer.convert_tokens_to_ids(tokenizer.pad_token)
tokenizer.padding_side = "left"
model = AutoModelForCausalLM.from_pretrained(model_path, device_map='auto',torch_dtype=torch.bfloat16, trust_remote_code=True)
return model, tokenizer
HUMAN_ROLE_START_TAG = "<s>human\n"
BOT_ROLE_START_TAG = "<s>bot\n"
text_list = [f'{HUMAN_ROLE_START_TAG}Write a QuickSort program\n#Python\n{BOT_ROLE_START_TAG}']
model, tokenizer = load_model_tokenizer(model_dir)
inputs = tokenizer(text_list, return_tensors='pt', padding=True, add_special_tokens=False).to('cuda')
input_ids = inputs["input_ids"]
attention_mask = inputs["attention_mask"]
generation_config = GenerationConfig(
eos_token_id=tokenizer.eos_token_id,
pad_token_id=tokenizer.pad_token_id,
temperature=0.1,
max_new_tokens=512,
num_return_sequences=1,
num_beams=1,
top_p=0.95,
do_sample=False
)
outputs = model.generate(
inputs= input_ids,
attention_mask=attention_mask,
**generation_config.to_dict()
)
gen_text = tokenizer.batch_decode(outputs[:, input_ids.shape[1]:], skip_special_tokens=True)
print(gen_text[0])
```
<a id="chinese"></a>
## 模型简介
CodeFuse-DeepSeek-33B 是一个通过QLoRA对基座模型DeepSeek-Coder-33B进行多代码任务微调而得到的代码大模型。
<br>
## 新闻
🔥🔥🔥 2024-01-12 CodeFuse-DeepSeek-33B模型发布,模型在HumanEval pass@1指标为78.65% (贪婪解码)。
🔥🔥🔥 2023-11-10 开源了CodeFuse-CodeGeeX2-6B模型,在HumanEval pass@1(greedy decoding)上可以达到48.12%, 比CodeGeeX2提高了9.22%的代码能力(HumanEval)
🔥🔥🔥 2023-10-20 公布了CodeFuse-QWen-14B技术文档,感兴趣详见微信公众号CodeFuse文章:https://mp.weixin.qq.com/s/PCQPkvbvfxSPzsqjOILCDw
🔥🔥🔥 2023-10-16开源了CodeFuse-QWen-14B模型,在HumanEval pass@1(greedy decoding)上可以达到48.78%, 比Qwen-14b提高了16%的代码能力(HumanEval)
🔥🔥🔥 2023-09-27开源了CodeFuse-StarCoder-15B模型,在HumanEval pass@1(greedy decoding)上可以达到54.9%, 比StarCoder提高了21%的代码能力(HumanEval)
🔥🔥🔥 2023-09-26 [CodeFuse-CodeLlama-34B 4bits](https://modelscope.cn/models/codefuse-ai/CodeFuse-CodeLlama-34B-4bits/summary)量化版本发布,量化后模型在HumanEval pass@1指标为73.8% (贪婪解码)。
🔥🔥🔥 2023-09-11 [CodeFuse-CodeLlama-34B](https://modelscope.cn/models/codefuse-ai/CodeFuse-CodeLlama-34B/summary)发布,HumanEval pass@1指标达到74.4% (贪婪解码), 为当前开源SOTA。
<br>
## 代码社区
**大本营**: 🏡 https://github.com/codefuse-ai (**请支持我们的项目Star🌟 + Fork🚀 + Watch👀**)
+ 如果您想自己微调该模型,可以访问 ✨[MFTCoder](https://github.com/codefuse-ai/MFTCoder)✨✨
+ 如果您想自己部署该模型,可以访问 ✨[FasterTransformer4CodeFuse](https://github.com/codefuse-ai/FasterTransformer4CodeFuse)✨✨
+ 如果您想观看该模型示例,可以访问 ✨[CodeFuse Demo](https://github.com/codefuse-ai/codefuse)✨✨
<br>
## 评测表现
### 代码
| 模型 | HumanEval(pass@1) | 日期 |
|:----------------------------|:-----------------:|:-------:|
| **CodeFuse-CodeLlama-34B** | 74.4% | 2023.9 |
|**CodeFuse-CodeLlama-34B-4bits** | 73.8% | 2023.9 |
| WizardCoder-Python-34B-V1.0 | 73.2% | 2023.8 |
| GPT-4(zero-shot) | 67.0% | 2023.3 |
| PanGu-Coder2 15B | 61.6% | 2023.8 |
| CodeLlama-34b-Python | 53.7% | 2023.8 |
| CodeLlama-34b | 48.8% | 2023.8 |
| GPT-3.5(zero-shot) | 48.1% | 2022.11 |
| OctoCoder | 46.2% | 2023.8 |
| StarCoder-15B | 33.6% | 2023.5 |
| Qwen-14b | 32.3% | 2023.10 |
| **CodeFuse-StarCoder-15B** | 54.9% | 2023.9 |
| **CodeFuse-QWen-14B** | 48.78% | 2023.8 |
| **CodeFuse-CodeGeeX2-6B** | 45.12% | 2023.11 |
| **CodeFuse-DeepSeek-33B**. | **78.65%** | 2024.01 |
### NLP
![NLP Performance Radar](codefuse-deepseek-33b-nlp.png)
## Requirements
* python>=3.8
* pytorch>=2.0.0
* transformers>=4.33.2
* Sentencepiece
* CUDA 11.4
<br>
## 推理数据格式
推理数据为模型在训练数据格式下拼接的字符串形式,它也是推理时输入prompt拼接的方式. 下面分别是带系统提示的多轮会话格式和不带系统提示的单轮会话格式:
**带System提示的多轮会话格式:**
```python
"""
<s>system
System instruction
<s>human
Human 1st round input
<s>bot
Bot 1st round output<|end▁of▁sentence|>
<s>human
Human 2nd round input
<s>bot
Bot 2nd round output<|end▁of▁sentence|>
...
...
...
<s>human
Human nth round input
<s>bot
"""
```
**不带System提示的单轮会话格式:**
```python
"""
<s>human
User prompt...
<s>bot
"""
```
在这个格式中,System提示是可选的(按需设定),支持单轮会话也支持多轮会话。推理时,请确保拼接的prompt字符串以"\<s\>bot\n"结尾,引导模型生成回答。
例如,推理HumanEval数据时使用的格式如下所示:
```python
<s>human
# language: Python
from typing import List
def separate_paren_groups(paren_string: str) -> List[str]:
""" Input to this function is a string containing multiple groups of nested parentheses. Your goal is to
separate those group into separate strings and return the list of those.
Separate groups are balanced (each open brace is properly closed) and not nested within each other
Ignore any spaces in the input string.
>>> separate_paren_groups('( ) (( )) (( )( ))')
['()', '(())', '(()())']
"""
<s>bot
```
特别地,我们也使用了CodeGeeX系列模型采用的编程语言区分标签(例如,对于Python语言,我们会使用"```# language: Python```")。
## 快速使用
```python
import torch
from transformers import AutoTokenizer, AutoModelForCausalLM, GenerationConfig
model_dir = "codefuse-ai/CodeFuse-DeepSeek-33B"
def load_model_tokenizer(model_path):
tokenizer = AutoTokenizer.from_pretrained(model_path, trust_remote_code=True)
tokenizer.eos_token = "<|end▁of▁sentence|>"
tokenizer.pad_token = "<|end▁of▁sentence|>"
tokenizer.eos_token_id = tokenizer.convert_tokens_to_ids(tokenizer.eos_token)
tokenizer.pad_token_id = tokenizer.convert_tokens_to_ids(tokenizer.pad_token)
tokenizer.padding_side = "left"
model = AutoModelForCausalLM.from_pretrained(model_path, device_map='auto',torch_dtype=torch.bfloat16, trust_remote_code=True)
return model, tokenizer
HUMAN_ROLE_START_TAG = "<s>human\n"
BOT_ROLE_START_TAG = "<s>bot\n"
text_list = [f'{HUMAN_ROLE_START_TAG}请写一个快排程序\n#Python\n{BOT_ROLE_START_TAG}']
model, tokenizer = load_model_tokenizer(model_dir)
inputs = tokenizer(text_list, return_tensors='pt', padding=True, add_special_tokens=False).to('cuda')
input_ids = inputs["input_ids"]
attention_mask = inputs["attention_mask"]
generation_config = GenerationConfig(
eos_token_id=tokenizer.eos_token_id,
pad_token_id=tokenizer.pad_token_id,
temperature=0.2,
max_new_tokens=512,
num_return_sequences=1,
num_beams=1,
top_p=0.95,
do_sample=False
)
outputs = model.generate(
inputs= input_ids,
attention_mask=attention_mask,
**generation_config.to_dict()
)
gen_text = tokenizer.batch_decode(outputs[:, input_ids.shape[1]:], skip_special_tokens=True)
print(gen_text[0])
```
|