File size: 8,889 Bytes
d13bcfe fbd6063 d13bcfe 37a6b66 fbd6063 37a6b66 7b92b5b 37a6b66 a005314 37a6b66 a005314 37a6b66 fbd6063 37a6b66 fbd6063 37a6b66 7b92b5b 37a6b66 a005314 37a6b66 859fef0 37a6b66 fbd6063 |
1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27 28 29 30 31 32 33 34 35 36 37 38 39 40 41 42 43 44 45 46 47 48 49 50 51 52 53 54 55 56 57 58 59 60 61 62 63 64 65 66 67 68 69 70 71 72 73 74 75 76 77 78 79 80 81 82 83 84 85 86 87 88 89 90 91 92 93 94 95 96 97 98 99 100 101 102 103 104 105 106 107 108 109 110 111 112 113 114 115 116 117 118 119 120 121 122 123 124 125 126 127 128 129 130 131 132 133 134 135 136 137 138 139 140 141 142 143 144 145 146 147 148 149 150 151 152 153 154 155 156 157 158 159 160 161 162 163 164 165 166 167 168 169 170 171 172 173 174 175 176 177 178 179 180 181 182 183 184 185 186 187 188 189 190 191 192 193 194 195 196 197 198 199 200 201 202 203 204 205 206 207 208 209 210 211 212 213 214 215 216 217 218 219 220 221 222 223 224 225 226 227 228 229 230 231 232 233 234 235 236 237 238 239 240 241 242 |
---
license: other
tasks:
- code-generation
---
# Model Card for CodeFuse-CodeLlama-34B
![logo](LOGO.png)
[[中文]](#chinese) [[English]](#english)
<a id="english"></a>
## Model Description
CodeFuse-CodeLlama-34B is a 34B Code-LLM finetuned by QLoRA of multiple code tasks(600k instrunctions/answers) on the base model CodeLlama-34b-Python.
The context length of finetuning is 4K while it is able to be finetuned by 16k context if necessary.
<br>
## News and Updates
🔥🔥🔥 CodeFuse-CodeLlama34B-MFT has achived 74.4% of pass@1 on HumanEval, which is SOTA at present.
<br>
## Performance
| Model | HumanEval(pass@1) | Date |
|:----------------------------|:-----------------:|:-------:|
| **CodeFuse-CodeLlama-34B** | **74.4%** | 2023.9 |
| WizardCoder-Python-34B-V1.0 | 73.2% | 2023.8 |
| GPT-4(zero-shot) | 67.0% | 2023.3 |
| PanGu-Coder2 15B | 61.6% | 2023.8 |
| CodeLlama-34b-Python | 53.7% | 2023.8 |
| CodeLlama-34b | 48.8% | 2023.8 |
| GPT-3.5(zero-shot) | 48.1% | 2022.11 |
| OctoCoder | 46.2% | 2023.8 |
| StarCoder-15B | 33.6% | 2023.5 |
| LLaMA 2 70B(zero-shot) | 29.9% | 2023.7 |
<br>
## Requirements
* python>=3.8
* pytorch>=2.0.0
* transformers==4.32.0
* Sentencepiece
* CUDA 11.4
<br>
## Inference String Format
The inference string is a concatenated string formed by combining conversation data(system, human and bot contents) in the training data format. It is used as input during the inference process.
Here is an example format of the concatenated string:
```python
"""
<|role_start|>system<|role_end|>System instruction
<|role_start|>human<|role_end|>Human 1st round input
<|role_start|>bot<|role_end|>Bot 1st round output</s>
<|role_start|>human<|role_end|>Human 2nd round input
<|role_start|>bot<|role_end|>Bot 2nd round output</s>
...
...
...
<|role_start|>human<|role_end|>Human nth round input
<|role_start|>bot<|role_end|>{Bot output to be genreated}</s>
"""
```
When applying inference, you always make your input string end with "<|role_start|>bot<|role_end|>" to ask the model generating answers.
## Quickstart
```bash
pip install -r requirements.txt
```
```python
import torch
from transformers import (
AutoTokenizer,
AutoModelForCausalLM,
)
tokenizer = AutoTokenizer.from_pretrained(mode_name_or_path, trust_remote_code=True, use_fast=False, legacy=False)
tokenizer.padding_side = "left"
tokenizer.pad_token_id = tokenizer.convert_tokens_to_ids("<unk>")
tokenizer.eos_token_id = tokenizer.convert_tokens_to_ids("</s>")
# try 4bit loading if cuda memory not enough
model = AutoModelForCausalLM.from_pretrained(mode_name_or_path,
trust_remote_code=True,
load_in_4bit=False,
device_map="auto",
torch_dtype=torch.bfloat16)
model.eval()
HUMAN_ROLE_START_TAG = "<|role_start|>human<|role_end|>"
BOT_ROLE_START_TAG = "<|role_start|>bot<|role_end|>"
text = f"{HUMAN_ROLE_START_TAG}write a python function of quick sort.{BOT_ROLE_START_TAG}"
inputs = tokenizer(text, return_tensors='pt', padding=True, add_special_tokens=False).to("cuda")
outputs = model.generate(
inputs=inputs["input_ids"],
attention_mask=inputs["attention_mask"],
max_new_tokens=512,
top_p=0.95,
temperature=0.1,
do_sample=True,
eos_token_id=tokenizer.eos_token_id,
pad_token_id=tokenizer.pad_token_id
)
gen_text = tokenizer.batch_decode(outputs[:, inputs["input_ids"].shape[1]:], skip_special_tokens=True)
print(gen_text)
```
## MD5
We notice that the file may be corrupted during transfer process. Please check MD5 value before use.
| Model File | MD5 Value |
|:---------------------------------|:--------------------------------:|
| pytorch_model-00001-of-00007.bin | 8d544b1bcb3449934184d4141137329c |
| pytorch_model-00002-of-00007.bin | 9d5dbb30911e48a42fb6d0fcabb322a4 |
| pytorch_model-00003-of-00007.bin | b0d4aecee0457d9332005a187e1fffed |
| pytorch_model-00004-of-00007.bin | 5c7e002de5eab77d0194a2b0f6de0c24 |
| pytorch_model-00005-of-00007.bin | d22a511aa26b5b17117b665a877490ab |
| pytorch_model-00006-of-00007.bin | a5c28ac277fac07d16dd66537e54d109 |
| pytorch_model-00007-of-00007.bin | a967e2c6195477b7407089c0bffa2d53 |
<a id="chinese"></a>
## 模型简介
CodeFuse-CodeLlama34B-MFT 是一个通过QLoRA对基座模型CodeLlama-34b-Python进行多代码任务微调的代码大模型。模型微调采用了4k上下文。如果有必要,可以扩展到16k。
<br>
## 新闻
🔥🔥🔥 CodeFuse-CodeLlama34B-MFT模型在HumanEval pass@1上可以达到74.4%, 为当前开源SOTA。
<br>
## 评测表现(代码)
| 模型 | HumanEval(pass@1) | 日期 |
|:----------------------------|:-----------------:|:-------:|
| **CodeFuse-CodeLlama-34B** | **74.4%** | 2023.9 |
| WizardCoder-Python-34B-V1.0 | 73.2% | 2023.8 |
| GPT-4(zero-shot) | 67.0% | 2023.3 |
| PanGu-Coder2 15B | 61.6% | 2023.8 |
| CodeLlama-34b-Python | 53.7% | 2023.8 |
| CodeLlama-34b | 48.8% | 2023.8 |
| GPT-3.5(zero-shot) | 48.1% | 2022.11 |
| OctoCoder | 46.2% | 2023.8 |
| StarCoder-15B | 33.6% | 2023.5 |
| LLaMA 2 70B(zero-shot) | 29.9% | 2023.7 |
<br>
## Requirements
* python>=3.8
* pytorch>=2.0.0
* transformers==4.32.0
* CUDA 11.4
<br>
## 推理数据格式
推理数据为模型在训练数据格式下拼接的字符串形式,它也是推理时输入prompt拼接的方式:
```python
"""
<|role_start|>system<|role_end|>这是System指令
<|role_start|>human<|role_end|>这是第1轮用户输入的问题
<|role_start|>bot<|role_end|>这是第1轮模型生成的内容</s>
<|role_start|>human<|role_end|>这是第2轮用户输入的问题
<|role_start|>bot<|role_end|>这是第2轮模型生成的内容</s>
...
...
...
<|role_start|>human<|role_end|>这是第n轮用户输入的问题
<|role_start|>bot<|role_end|>{模型现在要生成的内容}</s>
"""
```
推理时,请确保拼接的prompt字符串以"<|role_start|>bot<|role_end|>"结尾,引导模型生成回答。
## 快速使用
```python
from transformers import (
AutoTokenizer,
AutoModelForCausalLM,
)
tokenizer = AutoTokenizer.from_pretrained(mode_name_or_path, trust_remote_code=True, use_fast=False, legacy=False)
tokenizer.padding_side = "left"
tokenizer.pad_token_id = tokenizer.convert_tokens_to_ids("<unk>")
tokenizer.eos_token_id = tokenizer.convert_tokens_to_ids("</s>")
# 如果显存不够,可以考虑量化加载
model = AutoModelForCausalLM.from_pretrained(mode_name_or_path,
trust_remote_code=True,
load_in_4bit=False,
device_map="auto",
torch_dtype=torch.bfloat16)
model.eval()
HUMAN_ROLE_START_TAG = "<|role_start|>human<|role_end|>"
BOT_ROLE_START_TAG = "<|role_start|>bot<|role_end|>"
text = f"{HUMAN_ROLE_START_TAG}请用C++实现求解第n个斐波那契数{BOT_ROLE_START_TAG}"
inputs = tokenizer(text, return_tensors='pt', padding=True, add_special_tokens=False).to("cuda")
outputs = model.generate(
inputs=inputs["input_ids"],
attention_mask=inputs["attention_mask"],
max_new_tokens=512,
top_p=0.95,
temperature=0.1,
do_sample=True,
eos_token_id=tokenizer.eos_token_id,
pad_token_id=tokenizer.pad_token_id
)
gen_text = tokenizer.batch_decode(outputs[:, inputs["input_ids"].shape[1]:], skip_special_tokens=True)
print(gen_text)
```
## MD5
我们发现模型文件可能会在传输过程中损坏,使用前请检查文件MD5值。
| 模型文件 | MD5值 |
|:---------------------------------|:--------------------------------:|
| pytorch_model-00001-of-00007.bin | 8d544b1bcb3449934184d4141137329c |
| pytorch_model-00002-of-00007.bin | 9d5dbb30911e48a42fb6d0fcabb322a4 |
| pytorch_model-00003-of-00007.bin | b0d4aecee0457d9332005a187e1fffed |
| pytorch_model-00004-of-00007.bin | 5c7e002de5eab77d0194a2b0f6de0c24 |
| pytorch_model-00005-of-00007.bin | d22a511aa26b5b17117b665a877490ab |
| pytorch_model-00006-of-00007.bin | a5c28ac277fac07d16dd66537e54d109 |
| pytorch_model-00007-of-00007.bin | a967e2c6195477b7407089c0bffa2d53 | |