File size: 10,159 Bytes
8b76ef3 |
1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27 28 29 30 31 32 33 34 35 36 37 38 39 40 41 42 43 44 45 46 47 48 49 50 51 52 53 54 55 56 57 58 59 60 61 62 63 64 65 66 67 68 69 70 71 72 73 74 75 76 77 78 79 80 81 82 83 84 85 86 87 88 89 90 91 92 93 94 95 96 97 98 99 100 101 102 103 104 105 106 107 108 109 110 111 112 113 114 115 116 117 118 119 120 121 122 123 124 125 126 127 128 129 130 131 132 133 134 135 136 137 138 139 140 141 142 143 144 145 146 147 148 149 150 151 152 153 154 155 156 157 158 159 160 161 162 163 164 165 166 167 168 169 170 171 172 173 174 175 176 177 178 179 180 181 182 183 184 185 186 187 188 189 190 191 192 193 194 195 196 197 198 199 200 201 202 203 204 205 206 207 208 209 210 211 212 213 214 215 216 217 218 219 220 221 222 223 224 225 226 227 228 229 230 231 232 233 234 235 236 237 238 239 240 241 242 243 244 |
import inspect
import math
import os
import warnings
from typing import List, Optional, Tuple, Union
import torch
import torch.nn.functional as F
import torch.utils.checkpoint
from torch import nn
from torch.nn import BCEWithLogitsLoss, CrossEntropyLoss, MSELoss
from transformers import PretrainedConfig
from transformers.activations import ACT2FN
from transformers.cache_utils import Cache, DynamicCache
from transformers.modeling_attn_mask_utils import _prepare_4d_causal_attention_mask, _prepare_4d_causal_attention_mask_for_sdpa, _prepare_4d_attention_mask, _prepare_4d_attention_mask_for_sdpa
from transformers.modeling_outputs import BaseModelOutputWithPast, CausalLMOutputWithPast, SequenceClassifierOutputWithPast
from transformers.modeling_utils import PreTrainedModel
from transformers.utils import (
add_start_docstrings,
add_start_docstrings_to_model_forward,
is_flash_attn_2_available,
is_flash_attn_greater_or_equal_2_10,
logging,
replace_return_docstrings,
)
import numpy as np
from transformers import Phi3ForCausalLM
import inspect
import math
import os
import warnings
from typing import List, Optional, Tuple, Union
from tqdm import tqdm, trange
import torch
import torch.nn.functional as F
import torch.utils.checkpoint
from torch import nn
from torch.nn import BCEWithLogitsLoss, CrossEntropyLoss, MSELoss
from transformers.activations import ACT2FN
from transformers.cache_utils import Cache, DynamicCache
from transformers.modeling_attn_mask_utils import _prepare_4d_causal_attention_mask, _prepare_4d_causal_attention_mask_for_sdpa, _prepare_4d_attention_mask, _prepare_4d_attention_mask_for_sdpa
from transformers.modeling_outputs import BaseModelOutputWithPast, CausalLMOutputWithPast, SequenceClassifierOutputWithPast
from transformers.modeling_utils import PreTrainedModel
from transformers.utils import (
add_start_docstrings,
add_start_docstrings_to_model_forward,
is_flash_attn_2_available,
is_flash_attn_greater_or_equal_2_10,
logging,
replace_return_docstrings,
)
import numpy as np
import torch
import os
import argparse
import json
from tqdm import tqdm
from typing import cast, List, Union, Tuple
from transformers import AutoTokenizer, AutoModel # pylint: disable=C0413
from peft import LoraConfig, get_peft_model, TaskType
import time
import torch.nn.functional as F
import sys
import time
import torch
import torch.nn as nn
import torch.nn.functional as F
import numpy as np
from tqdm import tqdm, trange
from collections import defaultdict
from transformers import AutoTokenizer, AutoModel, AutoModelForCausalLM, AutoConfig
import torch.distributed as dist
from deepspeed.utils.zero_to_fp32 import get_fp32_state_dict_from_zero_checkpoint
import sys
import torch
import torch.nn as nn
import torch.nn.functional as F
import math
import re
class MAB_POST(nn.Module):
def __init__(self, dim_Q, dim_K, dim_V, num_heads, ln=False):
super(MAB_POST, self).__init__()
self.dim_V = dim_V
self.num_heads = num_heads
self.fc_q = nn.Linear(dim_Q, dim_V)
self.fc_k = nn.Linear(dim_K, dim_V)
self.fc_v = nn.Linear(dim_K, dim_V)
if ln:
self.ln0 = nn.LayerNorm(dim_V)
self.ln1 = nn.LayerNorm(dim_V)
self.fc_o = nn.Linear(dim_V, dim_V)
nn.init.xavier_uniform_(self.fc_q.weight)
nn.init.xavier_uniform_(self.fc_k.weight)
nn.init.xavier_uniform_(self.fc_v.weight)
nn.init.xavier_uniform_(self.fc_o.weight)
def forward(self, Q, K, pad_mask=None):
Q_ = self.fc_q(Q)
K_, V_ = self.fc_k(K), self.fc_v(K)
dim_split = self.dim_V // self.num_heads
Q_ = torch.cat(Q_.split(dim_split, 2), 0)
K_ = torch.cat(K_.split(dim_split, 2), 0)
V_ = torch.cat(V_.split(dim_split, 2), 0)
pad_mask = pad_mask.unsqueeze(1).repeat(self.num_heads, Q.size(1), 1)
score = Q_.bmm(K_.transpose(1,2))/math.sqrt(self.dim_V)
score = score.masked_fill(pad_mask == 0, -1e12)
A = torch.softmax(score, 2)
A = A * pad_mask
O = torch.cat(A.bmm(V_).split(Q.size(0), 0), 2)
O = Q + O
O = O if getattr(self, 'ln0', None) is None else self.ln0(O)
O = O + F.relu(self.fc_o(O))
O = O if getattr(self, 'ln1', None) is None else self.ln1(O)
return O
class PMA(nn.Module):
def __init__(self, dim, compress_dim, num_heads, num_seeds, ln=False, pma_mode=None):
super(PMA, self).__init__()
self.S = nn.Parameter(torch.Tensor(1, num_seeds, compress_dim))
nn.init.xavier_uniform_(self.S)
if pma_mode == 'post_normal':
self.mab = MAB_POST(compress_dim, dim, compress_dim, num_heads, ln=ln)
elif pma_mode == 'pre_normal':
self.mab = MAB_PRE_NORMAL(compress_dim, dim, compress_dim, num_heads, ln=ln)
elif pma_mode == 'pre_gptj':
self.mab = MAB_PRE_GPTJ(compress_dim, dim, compress_dim, num_heads, ln=ln)
else:
raise ValueError(f"Error, the pma_mode {pma_mode} is not implemented !")
def forward(self, X, pad_mask):
if self.S.dtype != torch.bfloat16:
X = X.float()
return self.mab(self.S.repeat(X.size(0), 1, 1), X, pad_mask)
class CodeFuse_CGE_Small(PreTrainedModel):
def __init__(self, config):
super().__init__(config)
self.plm_model = Phi3ForCausalLM(config)
self.embedding_method = config.embedding_method
self.inf_seq_length = config.inf_seq_length
self.padding_side = config.padding_side
self.keep_max_layer = config.keep_max_layer
self.emb_dim = self.plm_model.model.embed_tokens.weight.size(1)
self.num_heads = config.pma_num_heads
self.ln = config.pma_ln
self.norm = config.pma_norm
self.compress_dim = config.compress_dim
self.pma_mode = config.pma_norm_mode
self.mha_pma = PMA(self.emb_dim, self.compress_dim, self.num_heads, 1, ln=self.ln, pma_mode=self.pma_mode)
def last_embedding(self, A, index):
bs, seq, emb = A.size()
res = A[torch.arange(bs), index, :]
return res
def mean_embedding(self, A, mask):
bs, seq, emb = A.size()
res = (A * (mask.unsqueeze(-1))).sum(1) / (mask.sum(1).unsqueeze(-1))
return res
def weighted_embedding(self, A, mask):
weights = (torch.arange(start=1, end=A.size(1) + 1).unsqueeze(0).unsqueeze(-1).expand(A.size()).float()).to(A.device)
input_mask_expanded = (mask.squeeze(1).unsqueeze(-1).expand(A.size()).float()).to(A.device)
sum_embedding = torch.sum(A * input_mask_expanded * weights, dim=1)
sum_mask = torch.sum(input_mask_expanded * weights, dim=1)
weighted_embedding = sum_embedding / sum_mask
return weighted_embedding
def pma_embedding(self, A, mask):
res = self.mha_pma(A, mask).squeeze(1)
return res
def get_sentence_embedding(self, embedding_method, **inputs):
outputs = self.plm_model(inputs['input_ids'], inputs['attention_mask'], output_hidden_states=True)
if embedding_method == 'last':
embedding = outputs.hidden_states[self.keep_max_layer]
index = inputs['attention_mask'].sum(-1).long() - 1
res_embedding = self.last_embedding(embedding, index)
elif embedding_method == 'mean':
embedding = outputs.hidden_states[self.keep_max_layer]
res_embedding = self.mean_embedding(embedding, inputs['attention_mask'])
elif embedding_method == 'weighted':
embedding = outputs.hidden_states[self.keep_max_layer]
res_embedding = self.weighted_embedding(embedding, inputs['attention_mask'])
elif embedding_method == 'pma':
embedding = outputs.hidden_states[self.keep_max_layer]
attention_mask = inputs['attention_mask']
res_embedding = self.pma_embedding(embedding, attention_mask)
else:
logger.debug('Error, no {} way to obtain embbedings'.format(embedding_method))
if not self.norm:
res_embedding = torch.nn.functional.normalize(res_embedding, p=2.0, dim=-1, eps=1e-12, out=None)
return res_embedding
def encode(self, tokenizer, sentences, batch_size=32, convert_to_numpy=True,
convert_to_tensor=False, show_progress_bar=True, max_seq_length=None, **kwargs):
if max_seq_length is None:
max_seq_length = self.inf_seq_length
input_is_string = False
if isinstance(sentences, str) or not hasattr(sentences, "__len__"):
sentences = [sentences]
input_is_string = True
all_embeddings = []
length_sorted_idx = np.argsort([-len(s) for s in sentences])
sentences_sorted = [sentences[idx] for idx in length_sorted_idx]
with torch.no_grad():
for start_index in trange(0, len(sentences), batch_size, desc="Batches", disable=not show_progress_bar):
sentences_batch = sentences_sorted[start_index: start_index + batch_size]
with torch.no_grad():
inputs = tokenizer(sentences_batch, padding=True, truncation=True, max_length=max_seq_length, add_special_tokens=False, return_tensors='pt').to(self.plm_model.device)
embeddings = self.get_sentence_embedding(self.embedding_method, **inputs)
embeddings = embeddings.detach()
if convert_to_numpy:
if embeddings.dtype == torch.bfloat16:
embeddings = embeddings.cpu().to(torch.float32)
else:
embeddings = embeddings.cpu()
all_embeddings.extend(embeddings)
all_embeddings = [all_embeddings[idx] for idx in np.argsort(length_sorted_idx)]
if convert_to_tensor:
all_embeddings = torch.stack(all_embeddings)
elif convert_to_numpy:
all_embeddings = np.asarray([emb.numpy() for emb in all_embeddings])
if input_is_string:
all_embeddings = all_embeddings[0]
return all_embeddings
|