File size: 4,128 Bytes
e00d68b 0074412 e00d68b 0074412 e00d68b |
1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27 28 29 30 31 32 33 34 35 36 37 38 39 40 41 42 43 44 45 46 47 48 49 50 51 52 53 54 55 56 57 58 59 60 61 62 63 64 65 66 67 68 69 70 71 72 73 74 75 76 77 78 79 80 81 82 83 84 85 86 87 88 89 90 91 92 93 |
---
license: other
tasks:
- code-generation
---
# Model Card for CodeFuse-13B
![logo](LOGO.png)
[[中文]](#chinese) [[English]](#english)
<a id="english"></a>
## Model Description
CodeFuse-13B is a 13 billion parameter code generation model trained on the GPT-NeoX framework, capable of handling code sequences of up to 4096 characters. This model was pretrained on a dataset consisting of 1000B token code, Chinese, and English data, covering over 40 programming languages. To further enhance the effectiveness and quality of the generated code, the model was fine-tuned on the CodeFuse-Evol-instruction-66k dataset, enabling it to produce more accurate, efficient, and compliant code. Pass@1 achieved 37.1% on the HumanEval evaluation set(BeamSearch strategy, BeamSize=3).
## Requirements
* Python 3.8 or above.
* PyTorch 1.12 or above, with a recommendation for 2.0 or above.
* Transformers 4.24.0 or above.
* It is advisable to use CUDA 11.4 or above (for GPU users and flash-attention users, this option should be considered).
## Quickstart
```
import torch
from transformers import AutoModelForCausalLM, AutoTokenizer
tokenizer = AutoTokenizer.from_pretrained(("CodeFuse-13B"))
model = AutoModelForCausalLM.from_pretrained(("CodeFuse-13B"), device_map="auto").half().eval()
input_ids = tokenizer.encode("# language: Python\ndef quick_sort(array):\n", return_tensors="pt").to("cuda")
output_ids = model.generate(input_ids, max_new_tokens=200)
print(tokenizer.decode(output_ids[0]))
```
## MD5
We notice that the file may be corrupted during transfer process. Please check MD5 value before use.
| Model File | MD5 Value |
|:---------------------------------|:--------------------------------:|
| pytorch_model-00001-of-00006.bin | b79e4ccc93c40fa6113aaf6a434473d5 |
| pytorch_model-00002-of-00006.bin | 5a82f19e3f62c693e41fe627084c722b |
| pytorch_model-00003-of-00006.bin | d4b53c391a353d0fc0a1be1c913d5f04 |
| pytorch_model-00004-of-00006.bin | f9e3dcdea13ff02f4e3aad4f9db7a33f |
| pytorch_model-00005-of-00006.bin | 698a8f2f05723a572193733bce12eb93 |
| pytorch_model-00006-of-00006.bin | 312439d0b810f1bb81034fe094ff84c7 |
<a id="chinese"></a>
## 简介
CodeFuse-13B是基于GPT-NeoX框架训练的13B参数代码生成模型,能够处理4096个字符的代码序列。该模型在1000B Token的代码、中文、英文数据数据集上进行预训练,覆盖超过40种编程语言。为了进一步提升生成代码的效果和质量,该模型还在CodeFuse-Evol-instruction-66k数据集上进行了微调,使得该模型能够生成更加准确、高效、符合要求的代码。在HumanEval评测集上Pass@1达到37.1%(采用BeamSearch解码,其中BeamSize=3)。
## 要求
* python 3.8及以上版本
* pytorch 1.12及以上版本,推荐2.0及以上版本
* transformers 4.24.0及以上版本
* 建议使用CUDA 11.4及以上(GPU用户、flash-attention用户等需考虑此选
## 快速使用
```
import torch
from transformers import AutoModelForCausalLM, AutoTokenizer
tokenizer = AutoTokenizer.from_pretrained(("CodeFuse-13B"))
model = AutoModelForCausalLM.from_pretrained(("CodeFuse-13B"), device_map="auto").half().eval()
input_ids = tokenizer.encode("# language: Python\ndef quick_sort(array):\n", return_tensors="pt").to("cuda")
output_ids = model.generate(input_ids, max_new_tokens=200)
print(tokenizer.decode(output_ids[0]))
```
## MD5
我们发现模型文件可能会在传输过程中损坏,使用前请检查文件MD5值。
| 模型文件 | MD5值 |
|:---------------------------------|:--------------------------------:|
| pytorch_model-00001-of-00006.bin | b79e4ccc93c40fa6113aaf6a434473d5 |
| pytorch_model-00002-of-00006.bin | 5a82f19e3f62c693e41fe627084c722b |
| pytorch_model-00003-of-00006.bin | d4b53c391a353d0fc0a1be1c913d5f04 |
| pytorch_model-00004-of-00006.bin | f9e3dcdea13ff02f4e3aad4f9db7a33f |
| pytorch_model-00005-of-00006.bin | 698a8f2f05723a572193733bce12eb93 |
| pytorch_model-00006-of-00006.bin | 312439d0b810f1bb81034fe094ff84c7 |
|