File size: 2,040 Bytes
1bad8e0 650dab3 1bad8e0 |
1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27 28 29 30 31 32 33 34 35 36 37 38 39 40 41 42 43 44 45 46 47 48 49 50 51 52 53 54 55 56 57 58 59 60 61 62 63 64 65 66 67 68 69 70 71 72 73 74 75 76 77 78 79 80 81 82 83 |
---
base_model: microsoft/wavlm-base
tags:
- audio-classification
- generated_from_trainer
datasets:
- superb
metrics:
- accuracy
model-index:
- name: wav2vec2-base-ft-keyword-spotting
results:
- task:
name: Audio Classification
type: audio-classification
dataset:
name: superb
type: superb
config: ks
split: validation
args: ks
metrics:
- name: Accuracy
type: accuracy
value: 0.9694027655192704
---
<!-- This model card has been generated automatically according to the information the Trainer had access to. You
should probably proofread and complete it, then remove this comment. -->
# wav2vec2-base-ft-keyword-spotting
This model is a fine-tuned version of [microsoft/wavlm-base](https://huggingface.co/microsoft/wavlm-base) on the superb dataset.
It achieves the following results on the evaluation set:
- Loss: 0.2270
- Accuracy: 0.9694
## Model description
More information needed
## Intended uses & limitations
More information needed
## Training and evaluation data
More information needed
## Training procedure
### Training hyperparameters
The following hyperparameters were used during training:
- learning_rate: 3e-05
- train_batch_size: 64
- eval_batch_size: 64
- seed: 0
- gradient_accumulation_steps: 4
- total_train_batch_size: 256
- optimizer: Adam with betas=(0.9,0.999) and epsilon=1e-08
- lr_scheduler_type: linear
- lr_scheduler_warmup_ratio: 0.1
- num_epochs: 5.0
### Training results
| Training Loss | Epoch | Step | Validation Loss | Accuracy |
|:-------------:|:-----:|:----:|:---------------:|:--------:|
| 1.3203 | 1.0 | 199 | 1.2906 | 0.6328 |
| 0.9587 | 2.0 | 399 | 0.7793 | 0.7355 |
| 0.6218 | 3.0 | 599 | 0.3858 | 0.9289 |
| 0.4379 | 4.0 | 799 | 0.2581 | 0.9688 |
| 0.3779 | 4.98 | 995 | 0.2270 | 0.9694 |
### Framework versions
- Transformers 4.34.0.dev0
- Pytorch 2.0.0.post302
- Datasets 2.14.5
- Tokenizers 0.13.3
|