# coding=utf-8 # Copyright 2022 the Big Science Workshop and HuggingFace Inc. team. All rights reserved. # # Licensed under the Apache License, Version 2.0 (the "License"); # you may not use this file except in compliance with the License. # You may obtain a copy of the License at # # http://www.apache.org/licenses/LICENSE-2.0 # # Unless required by applicable law or agreed to in writing, software # distributed under the License is distributed on an "AS IS" BASIS, # WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied. # See the License for the specific language governing permissions and # limitations under the License. """ Telechat configuration""" from packaging import version from collections import OrderedDict from transformers.utils import is_torch_available, logging from transformers.configuration_utils import PretrainedConfig from typing import TYPE_CHECKING, Any, List, Mapping, Optional logger = logging.get_logger(__name__) class TelechatConfig(PretrainedConfig): """ Args: vocab_size (`int`, *optional*, defaults to 160256): Vocabulary size of the Telechat model. hidden_size (`int`, *optional*, defaults to 4096): Dimensionality of the embeddings and hidden states. ffn_hidden_size (`int`, *optional*, defaults to 12288): Dimensionality of the feed-forward hidden states. n_layer (`int`, *optional*, defaults to 30): Number of hidden layers in the Transformer n_head (`int`, *optional*, defaults to 32): Number of attention heads for each attention layer. layer_norm_epsilon (`float`, *optional*, defaults to 1e-5): The epsilon to use in the layer normalization layers. initializer_range (`float`, *optional*, defaults to 0.02): The standard deviation of the truncated_normal_initializer for initializing all weight matrices. apply_residual_connection_post_layernorm (`bool`, *optional*, defaults to `False`): If enabled, use the layer norm of the hidden states as the residual in the transformer blocks hidden_dropout (`float`, *optional*, defaults to 0.0): Dropout rate of the dropout function on the bias dropout. attention_dropout (`float`, *optional*, defaults to 0.0): Dropout rate applied to the attention probs use_cache (`bool`, *optional*, defaults to `True`): Whether or not the model should return the last key/values attentions. training_seqlen (`int`, *optional*, defaults to 8192): Sequence length during last finetuning. logn (`bool`, *optional*, defaults to `True`): Whether or not to use logN during extrapolation. embed_layernorm (`bool`, *optional*, defaults to `True`): Whether or not to use embedding layernorm. """ model_type = "telechat" keys_to_ignore_at_inference = ["past_key_values"] attribute_map = { "num_hidden_layers": "n_layer", "num_attention_heads": "n_head", } def __init__( self, vocab_size=160256, hidden_size=4096, n_layer=30, n_head=32, layer_norm_epsilon=1e-5, initializer_range=0.02, use_cache=True, bos_token_id=1, eos_token_id=2, apply_residual_connection_post_layernorm=False, hidden_dropout=0.0, attention_dropout=0.0, ffn_hidden_size=12288, training_seqlen = 8192, logn = True, embed_layernorm = False, **kwargs, ): self.vocab_size = vocab_size n_embed = kwargs.pop("n_embed", None) self.hidden_size = hidden_size if n_embed is None else n_embed self.n_layer = n_layer self.n_head = n_head self.layer_norm_epsilon = layer_norm_epsilon self.initializer_range = initializer_range self.use_cache = use_cache self.apply_residual_connection_post_layernorm = apply_residual_connection_post_layernorm self.hidden_dropout = hidden_dropout self.attention_dropout = attention_dropout self.bos_token_id = bos_token_id self.eos_token_id = eos_token_id self.logn = logn self.ffn_hidden_size = ffn_hidden_size self.training_seqlen = training_seqlen self.embed_layernorm = embed_layernorm self.num_key_value_heads= kwargs.pop("num_key_value_heads", None) super().__init__(bos_token_id=bos_token_id, eos_token_id=eos_token_id, **kwargs)