name: "ennr4000baseline_transformer" data: src: "en" trg: "nr" train: "/content/drive/My Drive/masakhane/en-nr-baseline/train.bpe" dev: "/content/drive/My Drive/masakhane/en-nr-baseline/dev.bpe" test: "/content/drive/My Drive/masakhane/en-nr-baseline/test.bpe" level: "bpe" lowercase: False max_sent_length: 100 src_vocab: "/content/drive/My Drive/masakhane/en-nr-baseline/vocab.txt" trg_vocab: "/content/drive/My Drive/masakhane/en-nr-baseline/vocab.txt" testing: beam_size: 5 alpha: 1.0 training: load_model: "/content/drive/My Drive/masakhane/en-nr-baseline/pretrained/ennr4000baseline/46000.ckpt" random_seed: 42 optimizer: "adam" normalization: "tokens" adam_betas: [0.9, 0.999] scheduling: "plateau" # TODO: try switching from plateau to Noam scheduling patience: 5 # For plateau: decrease learning rate by decrease_factor if validation score has not improved for this many validation rounds. learning_rate_factor: 0.5 # factor for Noam scheduler (used with Transformer) learning_rate_warmup: 1000 # warmup steps for Noam scheduler (used with Transformer) decrease_factor: 0.7 loss: "crossentropy" learning_rate: 0.0003 learning_rate_min: 0.00000001 weight_decay: 0.0 label_smoothing: 0.1 batch_size: 4096 batch_type: "token" eval_batch_size: 3600 eval_batch_type: "token" batch_multiplier: 1 early_stopping_metric: "ppl" epochs: 30 # TODO: Decrease for when playing around and checking of working. Around 30 is sufficient to check if its working at all validation_freq: 1000 # TODO: Set to at least once per epoch. logging_freq: 100 eval_metric: "bleu" model_dir: "models/ennr4000baseline_transformer/ennr4000baseline" overwrite: True # TODO: Set to True if you want to overwrite possibly existing models. shuffle: True use_cuda: True max_output_length: 100 print_valid_sents: [0, 1, 2, 3] keep_last_ckpts: 3 model: initializer: "xavier" bias_initializer: "zeros" init_gain: 1.0 embed_initializer: "xavier" embed_init_gain: 1.0 tied_embeddings: True tied_softmax: True encoder: type: "transformer" num_layers: 6 num_heads: 4 # TODO: Increase to 8 for larger data. embeddings: embedding_dim: 256 # TODO: Increase to 512 for larger data. scale: True dropout: 0.3 # typically ff_size = 4 x hidden_size hidden_size: 256 # TODO: Increase to 512 for larger data. ff_size: 1024 # TODO: Increase to 2048 for larger data. dropout: 0.4 decoder: type: "transformer" num_layers: 6 num_heads: 8 # TODO: Increase to 8 for larger data. embeddings: embedding_dim: 256 # TODO: Increase to 512 for larger data. scale: True dropout: 0.3 # typically ff_size = 4 x hidden_size hidden_size: 256 # TODO: Increase to 512 for larger data. ff_size: 1024 # TODO: Increase to 2048 for larger data. dropout: 0.4