{ "nbformat": 4, "nbformat_minor": 0, "metadata": { "accelerator": "GPU", "colab": { "name": "English_To_Dendi_BPE_notebook_custom_data.ipynb", "provenance": [], "collapsed_sections": [], "toc_visible": true, "include_colab_link": true }, "kernelspec": { "display_name": "Python 3", "language": "python", "name": "python3" }, "language_info": { "codemirror_mode": { "name": "ipython", "version": 3 }, "file_extension": ".py", "mimetype": "text/x-python", "name": "python", "nbconvert_exporter": "python", "pygments_lexer": "ipython3", "version": "3.5.8" } }, "cells": [ { "cell_type": "markdown", "metadata": { "id": "view-in-github", "colab_type": "text" }, "source": [ "\"Open" ] }, { "cell_type": "markdown", "metadata": { "colab_type": "text", "id": "Igc5itf-xMGj" }, "source": [ "# Masakhane - Machine Translation for African Languages (Using JoeyNMT)" ] }, { "cell_type": "markdown", "metadata": { "colab_type": "text", "id": "x4fXCKCf36IK" }, "source": [ "## Note before beginning:\n", "### - The idea is that you should be able to make minimal changes to this in order to get SOME result for your own translation corpus. \n", "\n", "### - The tl;dr: Go to the **\"TODO\"** comments which will tell you what to update to get up and running\n", "\n", "### - If you actually want to have a clue what you're doing, read the text and peek at the links\n", "\n", "### - With 100 epochs, it should take around 7 hours to run in Google Colab\n", "\n", "### - Once you've gotten a result for your language, please attach and email your notebook that generated it to masakhanetranslation@gmail.com\n", "\n", "### - If you care enough and get a chance, doing a brief background on your language would be amazing. See examples in [(Martinus, 2019)](https://arxiv.org/abs/1906.05685)\n", "\n", "### - This notebook is intended to be used with custom parallel data. That means that you need two files, where one is in your language, the other English, and the lines in the files are corresponding translations." ] }, { "cell_type": "markdown", "metadata": { "colab_type": "text", "id": "l929HimrxS0a" }, "source": [ "## Pre-process your data\n", "\n", "We assume here that you already have a data set. The format in which we will process it here requires that \n", "1. you have two files, one for each language\n", "2. the files are sentence-aligned, which means that each line should correspond to the same line in the other file.\n" ] }, { "cell_type": "code", "metadata": { "colab_type": "code", "id": "oGRmDELn7Az0", "outputId": "0ffd4c96-92c0-4630-ce07-e03bf4bc5f66", "colab": { "base_uri": "https://localhost:8080/", "height": 124 } }, "source": [ "from google.colab import drive\n", "drive.mount('/content/drive')" ], "execution_count": 1, "outputs": [ { "output_type": "stream", "text": [ "Go to this URL in a browser: https://accounts.google.com/o/oauth2/auth?client_id=947318989803-6bn6qk8qdgf4n4g3pfee6491hc0brc4i.apps.googleusercontent.com&redirect_uri=urn%3aietf%3awg%3aoauth%3a2.0%3aoob&response_type=code&scope=email%20https%3a%2f%2fwww.googleapis.com%2fauth%2fdocs.test%20https%3a%2f%2fwww.googleapis.com%2fauth%2fdrive%20https%3a%2f%2fwww.googleapis.com%2fauth%2fdrive.photos.readonly%20https%3a%2f%2fwww.googleapis.com%2fauth%2fpeopleapi.readonly\n", "\n", "Enter your authorization code:\n", "··········\n", "Mounted at /content/drive\n" ], "name": "stdout" } ] }, { "cell_type": "code", "metadata": { "colab_type": "code", "id": "Cn3tgQLzUxwn", "colab": {} }, "source": [ "# TODO: Set your source and target languages. Keep in mind, these traditionally use language codes as found here:\n", "# These will also become the suffix's of all vocab and corpus files used throughout\n", "import os\n", "source_language = \"en\"\n", "target_language = \"ddn\" \n", "lc = False # If True, lowercase the data.\n", "seed = 42 # Random seed for shuffling.\n", "tag = \"baseline\" # Give a unique name to your folder - this is to ensure you don't rewrite any models you've already submitted\n", "\n", "os.environ[\"src\"] = source_language # Sets them in bash as well, since we often use bash scripts\n", "os.environ[\"tgt\"] = target_language\n", "os.environ[\"tag\"] = tag\n", "\n", "# This will save it to a folder in our gdrive instead!\n", "!mkdir -p \"/content/drive/My Drive/masakhane/$src-$tgt-$tag\"\n", "os.environ[\"gdrive_path\"] = \"/content/drive/My Drive/masakhane/%s-%s-%s\" % (source_language, target_language, tag)" ], "execution_count": 0, "outputs": [] }, { "cell_type": "code", "metadata": { "colab_type": "code", "id": "kBSgJHEw7Nvx", "outputId": "daf07487-72e2-425f-fd48-fa07fc942446", "colab": { "base_uri": "https://localhost:8080/", "height": 34 } }, "source": [ "!echo $gdrive_path" ], "execution_count": 3, "outputs": [ { "output_type": "stream", "text": [ "/content/drive/My Drive/masakhane/en-ddn-baseline\n" ], "name": "stdout" } ] }, { "cell_type": "code", "metadata": { "colab_type": "code", "id": "gA75Fs9ys8Y9", "outputId": "4cd4ac9b-6e20-4212-de29-3c2fd7c02206", "colab": { "base_uri": "https://localhost:8080/", "height": 104 } }, "source": [ "# Install opus-tools\n", "! pip install opustools-pkg" ], "execution_count": 4, "outputs": [ { "output_type": "stream", "text": [ "Collecting opustools-pkg\n", "\u001b[?25l Downloading https://files.pythonhosted.org/packages/6c/9f/e829a0cceccc603450cd18e1ff80807b6237a88d9a8df2c0bb320796e900/opustools_pkg-0.0.52-py3-none-any.whl (80kB)\n", "\r\u001b[K |████ | 10kB 21.3MB/s eta 0:00:01\r\u001b[K |████████ | 20kB 2.2MB/s eta 0:00:01\r\u001b[K |████████████▏ | 30kB 3.3MB/s eta 0:00:01\r\u001b[K |████████████████▏ | 40kB 2.1MB/s eta 0:00:01\r\u001b[K |████████████████████▎ | 51kB 2.6MB/s eta 0:00:01\r\u001b[K |████████████████████████▎ | 61kB 3.1MB/s eta 0:00:01\r\u001b[K |████████████████████████████▎ | 71kB 3.6MB/s eta 0:00:01\r\u001b[K |████████████████████████████████| 81kB 3.1MB/s \n", "\u001b[?25hInstalling collected packages: opustools-pkg\n", "Successfully installed opustools-pkg-0.0.52\n" ], "name": "stdout" } ] }, { "cell_type": "code", "metadata": { "colab_type": "code", "id": "xq-tDZVks7ZD", "outputId": "8ef197f9-aab8-48a0-c808-b802103dc366", "colab": { "base_uri": "https://localhost:8080/", "height": 52 } }, "source": [ "# TODO: specify the file paths here\n", "source_file = \"/test.en\"\n", "target_file = \"/test.ddn\"\n", "\n", "# They should both have the same length.\n", "! wc -l $source_file\n", "! wc -l $target_file" ], "execution_count": 6, "outputs": [ { "output_type": "stream", "text": [ "7943 /test.en\n", "7943 /test.ddn\n" ], "name": "stdout" } ] }, { "cell_type": "code", "metadata": { "id": "BNmkusFfGorx", "colab_type": "code", "colab": {} }, "source": [ "# TODO: Pre-processing! (OPTIONAL)\n", "\n", "# If your data contains weird symbols or the like, you might want to do some cleaning and normalization.\n", "# We don't have the code in the notebook for that, but you can use sacremoses \"normalize\" for example for normalization punctuation: https://github.com/alvations/sacremoses.\n", "\n", "# We apply tokenization to separate punctuation marks from the actual words, split words at hyphens etc.\n", "# If your data is already tokenized, that's great! Skip this cell.\n", "# Otherwise we can use sacremoses to do the tokenization for us. \n", "# We need the data to be tokenized such that it matches the global test set.\n", "\n", "#! pip install sacremoses\n", "\n", "#tok_source_file = source_file+\".tok\"\n", "#tok_target_file = target_file+\".tok\"\n", "\n", "# Tokenize the source\n", "#! sacremoses tokenize -l $source_language < $source_file > $tok_source_file\n", "# Tokenize the target\n", "#! sacremoses tokenize -l $target_language < $target_file > $tok_target_file\n", "\n", "# Let's take a look what tokenization did to the text.\n", "#! head $source_file*\n", "#! head $target_file*\n", "\n", "# Change the pointers to our files such that we continue to work with the tokenized data.\n", "#source_file = tok_source_file\n", "#target_file = tok_target_file" ], "execution_count": 0, "outputs": [] }, { "cell_type": "code", "metadata": { "colab_type": "code", "id": "n48GDRnP8y2G", "colab": {} }, "source": [ "# Download the global test set.\n", "#! wget https://raw.githubusercontent.com/masakhane-io/masakhane/master/jw300_utils/test/test.en-any.en\n", " \n", "# And the specific test set for this language pair.\n", "#os.environ[\"trg\"] = target_language \n", "#os.environ[\"src\"] = target_language \n", "\n", "#! wget https://raw.githubusercontent.com/masakhane-io/masakhane/master/jw300_utils/test/test.en-$trg.en \n", "#! mv test.en-$trg.en test.en\n", "#! wget https://raw.githubusercontent.com/masakhane-io/masakhane/master/jw300_utils/test/test.en-$trg.$trg \n", "#! mv test.en-$trg.$trg test.$trg\n", "\n", "# TODO: if this fails it means that there is NO test set for your language yet. It's on you to create one.\n", "# A good idea would be to take a random subset of your data, and add it to https://raw.githubusercontent.com/masakhane-io/masakhane/master/jw300_utils/test/test.en-any.en.\n", "# Make a Pull Request and get it approved and merged.\n", "# Then repeat this cell to retrieve the new test set.\n", "# Then proceed to the next cell that will filter out all duplicates from the training set, so that there is no overlap between training and test set." ], "execution_count": 0, "outputs": [] }, { "cell_type": "code", "metadata": { "colab_type": "code", "id": "NqDG-CI28y2L", "colab": {} }, "source": [ "# Read the test data to filter from train and dev splits.\n", "# Store english portion in set for quick filtering checks.\n", "#en_test_sents = set()\n", "#filter_test_sents = \"test.en-any.en\"\n", "#j = 0\n", "#with open(filter_test_sents) as f:\n", "# for line in f:\n", "# en_test_sents.add(line.strip())\n", "# j += 1\n", "#print('Loaded {} global test sentences to filter from the training/dev data.'.format(j))" ], "execution_count": 0, "outputs": [] }, { "cell_type": "code", "metadata": { "colab_type": "code", "id": "3CNdwLBCfSIl", "outputId": "dd4274db-a18a-4bcd-e301-7ef2d85fb842", "colab": { "base_uri": "https://localhost:8080/", "height": 161 } }, "source": [ "import pandas as pd\n", "\n", "source = []\n", "target = []\n", "skip_lines = [] # Collect the line numbers of the source portion to skip the same lines for the target portion.\n", "with open(source_file) as f:\n", " for i, line in enumerate(f):\n", " # Skip sentences that are contained in the test set.\n", " #if line.strip() not in en_test_sents:\n", " source.append(line.strip())\n", " #else:\n", " # skip_lines.append(i) \n", "with open(target_file) as f:\n", " for j, line in enumerate(f):\n", " # Only add to corpus if corresponding source was not skipped.\n", " #if j not in skip_lines:\n", " target.append(line.strip())\n", " \n", "print('Loaded data and skipped {}/{} lines since contained in test set.'.format(len(skip_lines), i))\n", " \n", "df = pd.DataFrame(zip(source, target), columns=['source_sentence', 'target_sentence'])\n", "df.head(3)" ], "execution_count": 10, "outputs": [ { "output_type": "stream", "text": [ "Loaded data and skipped 0/7942 lines since contained in test set.\n" ], "name": "stdout" }, { "output_type": "execute_result", "data": { "text/html": [ "
\n", "\n", "\n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", "
source_sentencetarget_sentence
0The book of the generation of Jesus Christ, th...Yesu Mɛsiyɑ ko ɑ̀ ci Dɑfidi ize, Abulɛmɑ ize, ...
1Abraham begat Isaac; and Isaac begat Jacob; an...Abulɛmɑ nɑ Isɑɑkɑ hɛi. Isɑɑkɑ nɑ Yɑkɔfu hɛi. Y...
2and Judah begat Perez and Zerah of Tamar; and ...Yudɑ mo nɑ Fɑresi ndɑ Zerɑ hɛi Tɑmɑrɑ gɑɑ. Fɑr...
\n", "
" ], "text/plain": [ " source_sentence target_sentence\n", "0 The book of the generation of Jesus Christ, th... Yesu Mɛsiyɑ ko ɑ̀ ci Dɑfidi ize, Abulɛmɑ ize, ...\n", "1 Abraham begat Isaac; and Isaac begat Jacob; an... Abulɛmɑ nɑ Isɑɑkɑ hɛi. Isɑɑkɑ nɑ Yɑkɔfu hɛi. Y...\n", "2 and Judah begat Perez and Zerah of Tamar; and ... Yudɑ mo nɑ Fɑresi ndɑ Zerɑ hɛi Tɑmɑrɑ gɑɑ. Fɑr..." ] }, "metadata": { "tags": [] }, "execution_count": 10 } ] }, { "cell_type": "markdown", "metadata": { "colab_type": "text", "id": "YkuK3B4p2AkN" }, "source": [ "## Pre-processing and export\n", "\n", "It is generally a good idea to remove duplicate translations and conflicting translations from the corpus. In practice, these public corpora include some number of these that need to be cleaned.\n", "\n", "In addition we will split our data into dev/test/train and export to the filesystem." ] }, { "cell_type": "code", "metadata": { "colab_type": "code", "id": "M_2ouEOH1_1q", "colab": {} }, "source": [ "# drop duplicate translations\n", "df_pp = df.drop_duplicates()\n", "\n", "# drop conflicting translations\n", "#df_pp.drop_duplicates(subset='source_sentence', inplace=True)\n", "#df_pp.drop_duplicates(subset='target_sentence', inplace=True)\n", "\n", "# Shuffle the data to remove bias in dev set selection.\n", "df_pp = df_pp.sample(frac=1, random_state=seed).reset_index(drop=True)" ], "execution_count": 0, "outputs": [] }, { "cell_type": "code", "metadata": { "id": "niVvXvLV0bkE", "colab_type": "code", "outputId": "df7805a7-4e56-4d83-b326-cdf0cc0734da", "colab": { "base_uri": "https://localhost:8080/", "height": 34 } }, "source": [ "df_pp.shape" ], "execution_count": 12, "outputs": [ { "output_type": "execute_result", "data": { "text/plain": [ "(7937, 2)" ] }, "metadata": { "tags": [] }, "execution_count": 12 } ] }, { "cell_type": "code", "metadata": { "colab_type": "code", "id": "hxxBOCA-xXhy", "outputId": "05e690d4-6561-41c9-c058-d0facedcf7ba", "colab": { "base_uri": "https://localhost:8080/", "height": 1000 } }, "source": [ "# This section does the split between train/dev for the parallel corpora then saves them as separate files\n", "# We use 1000 dev test and the given test set.\n", "import csv\n", "import numpy as np\n", "\n", "# TODO: if your corpus is smaller than 1000, reduce this number. With a corpus that small you might not obtain good results with NMT though :/\n", "# Do the split between dev/train and create parallel corpora\n", "num_dev_patterns = 1000\n", "\n", "# Optional: lower case the corpora - this will make it easier to generalize, but without proper casing.\n", "if lc: # Julia: making lowercasing optional\n", " df_pp[\"source_sentence\"] = df_pp[\"source_sentence\"].str.lower()\n", " df_pp[\"target_sentence\"] = df_pp[\"target_sentence\"].str.lower()\n", "\n", "\n", "#Divide df_pp into train and test sets\n", "\n", "msk = np.random.rand(len(df_pp)) < 0.98\n", "train = df_pp[msk]\n", "test_df = df_pp[~msk]\n", "\n", "# Julia: test sets are already generated\n", "dev_df = df_pp.tail(num_dev_patterns) # Herman: Error in original\n", "stripped_df = df_pp.drop(df_pp.tail(num_dev_patterns).index)\n", "\n", "with open(\"train.\"+source_language, \"w\") as src_file, open(\"train.\"+target_language, \"w\") as trg_file:\n", " for index, row in stripped_df.iterrows():\n", " src_file.write(row[\"source_sentence\"]+\"\\n\")\n", " trg_file.write(row[\"target_sentence\"]+\"\\n\")\n", " \n", "with open(\"dev.\"+source_language, \"w\") as src_file, open(\"dev.\"+target_language, \"w\") as trg_file:\n", " for index, row in dev_df.iterrows():\n", " src_file.write(row[\"source_sentence\"]+\"\\n\")\n", " trg_file.write(row[\"target_sentence\"]+\"\\n\")\n", "\n", "with open(\"test.\"+source_language, \"w\") as src_file, open(\"test.\"+target_language, \"w\") as trg_file:\n", " for index, row in test_df.iterrows():\n", " src_file.write(row[\"source_sentence\"]+\"\\n\")\n", " trg_file.write(row[\"target_sentence\"]+\"\\n\")\n", "\n", "\n", "#stripped[[\"source_sentence\"]].to_csv(\"train.\"+source_language, header=False, index=False) # Herman: Added `header=False` everywhere\n", "#stripped[[\"target_sentence\"]].to_csv(\"train.\"+target_language, header=False, index=False) # Julia: Problematic handling of quotation marks.\n", "\n", "#dev[[\"source_sentence\"]].to_csv(\"dev.\"+source_language, header=False, index=False)\n", "#dev[[\"target_sentence\"]].to_csv(\"dev.\"+target_language, header=False, index=False)\n", "\n", "\n", "# TODO: Doublecheck the format below. There should be no extra quotation marks or weird characters. It should also not be empty.\n", "! head train.*\n", "! head dev.*\n", "! head test.*" ], "execution_count": 13, "outputs": [ { "output_type": "stream", "text": [ "==> train.ddn <==\n", "À kɑɑ hunu kɑ hɑndunyɑ dimi yom kɑ ǹ goono hɑndunyɑ cɛnjɛ tɑɑci gɑɑ dɛrɑndi, wɑtom Gɔgu ndɑ Mɑgɔgu. À gɑ ǹ meigu wɑngu tɛyom sɛ. Ǹ bɑyom bisɑ tɛku tɑɑsi.\n", "Zɑngɑ Ikpɛ Sendi hɑntumɑntɛ cii: Ikpɛ nɑ ǹ nɑ birikɑyom biyɑ. À nɑ ǹ nɑ moo yom kɑ ǹ si di, ndɑ hɑngɑ yom kɑ ǹ si mɑɑ hɑli kɑ kɑɑ hɔ.\n", "A mɑɑ jinde beeri fɔ kɑ ɑ̀ go hunu zɑ Ikpɛ goonoyom dɔ. À go cii Ikpɛ dɔntɔneize iye di sɛ: Wɑ kpei kɑ Ikpɛ binefute gɑɑsiɑ iye munu hɑndunyɑ bɔm.\n", "Kɑnkɑmi kunɑ ɑ nɑ gbei futu yom tɛ. A zɑm jiibi ce boobo. A mɑɑ hɛrɛɛ. A mɑɑ jo. A nɑ meehɔ yom zɑɑ cɛrɛ bɔm. A mɑɑ yeeni. A gɔrɔ bumbum.\n", "Ammɑ Piɛɛ nɑ Yesu ze kɑ cii: A si ɑ̀ bei. A si fɑhɑm mo ndɑ hɛ kɑ n gɑ cii. Piɛɛ hunu hundi bɑtumɑ kunɑ kɑ kpei kɑtɑ dɔ. À gɑɑ no, gɔrɔngɔ cɑ jinde fɔ.\n", "Ammɑ sɑɑ kɑ i nɑ jiribi iye tɔnɑndi, i tunu kɑ dirɑ. Ǹ kulu ndɑ ǹ wɛndɛ yom ndɑ ǹ koo yom nɑ i dum kɑlɑ wɑngɑrɑ bɑndɑ. I sɔmbu tɛkuɑ mee gɑɑ kɑ ɑduwɑ tɛ.\n", "Yesu cii ɑ̀ sɛ: A koo hundiyo, n lɑɑkɑli mɑ si tunu. N nɑɑne nɑ n no bɑɑni. Kpei ndɑ lɑɑkɑli kɑne.\n", "Ǹ kɔmɑ hɑndunyɑ ziibi yom gɑɑ Kpe Yesu Mɛsiyɑ kɑ ɑ̀ ci Fɑɑbɑkɔ ɑ̀ beiyom dɔ. À bɑndɑ de ǹ kɑɑ yɑɑrɑ kɑ wuluwɑli hɑndunyɑ ziibi yom kunɑ, hɑndunyɑ wɔ gɑɑŋmɑɑ ǹ bɔm. Ǹ kɔkɔrɔ bɑndɑ goonoyom, ɑ̀ jɑɑsɑ sintine gɔrɛ.\n", "Zɑngɑ koo yom go kɑ ngei bɑɑbɑ gɑnɑ, wɑ si wom bɔm no wom dom bineibɑɑi sɛ kɑ ɑ̀ kunɑ wom gɔrɔ sɑɑ fɔ zɑm kɑ bei kunɑ.\n", "Ngɑ di no, Biyɑ Hɑlɑɑlɑ mo go tɛ sɛdɑ i sɛ ngɑ di bɔm. Sintine ɑ̀ cii:\n", "\n", "==> train.en <==\n", "and shall come forth to deceive the nations which are in the four corners of the earth, Gog and Magog, to gather them together to the war: the number of whom is as the sand of the sea.\n", "according as it is written, God gave them a spirit of stupor, eyes that they should not see, and ears that they should not hear, unto this very day.\n", "And I heard a great voice out of the temple, saying to the seven angels, Go ye, and pour out the seven bowls of the wrath of God into the earth.\n", "in labor and travail, in watchings often, in hunger and thirst, in fastings often, in cold and nakedness.\n", "But he denied, saying, I neither know, nor understand what thou sayest: and he went out into the porch; and the cock crew.\n", "And when it came to pass that we had accomplished the days, we departed and went on our journey; and they all, with wives and children, brought us on our way till we were out of the city: and kneeling down on the beach, we prayed, and bade each other farewell;\n", "And he said unto her, Daughter, thy faith hath made thee whole; go in peace.\n", "For if, after they have escaped the defilements of the world through the knowledge of the Lord and Saviour Jesus Christ, they are again entangled therein and overcome, the last state is become worse with them than the first.\n", "as children of obedience, not fashioning yourselves according to your former lusts in the time of your ignorance:\n", "And the Holy Spirit also beareth witness to us; for after he hath said,\n", "==> dev.ddn <==\n", "A go sɑɑbu i Kpe Yesu Mɛsiyɑ sɛ, ngɑ kɑ ɑ̀ nɑ ɑ no gɑɑbi. A gɑ kɑ ɑ̀ sɑɑbu domi ɑ̀ nɑ ɑ lɑsɑbu nɑɑnekpɛ kɑ ɑ dɑm ngɑ gbei kunɑ.\n", "Mɑɑsɑnkulu Kpe, n mɑ tu n bɑnyɑ mɑ kpei ndɑ bɑɑni zɑngɑ n Sendɑ cii.\n", "Ikpɛ fɔlɔnku yɑ gɑ bɑnguize yom cɛɑndi susu nɑɑne gɑɑ. À go zɑm kɑ dɑmbɑnguize yom mo cɛɑndi susu nɑɑne gɑɑ.\n", "Wɑngɑrɑ ngɑ di, Sɑmɑriɑncɛ boobo nɑɑne Yesu gɑɑ weibɔrɔ di sendɑ sɑbu sɛ. Weibɔrɔ di tɛ sɛdɑ kɑ cii: Hɛ kulu kɑ ɑ jinɑ kɑ tɛ, ɑ̀ nɑ ɑ̀ cii ɑ sɛ.\n", "Cɔfɔ ɑ̀ go cii: A fuu kɑ ɑ̀ kunɑ ɑ hunu no, ɑ kɑɑ ye. Sɑɑ kɑ hɔllɛ di ye fuu di, ɑ̀ gɑru hɛ fɔ kulu si ɑ̀ kunɑ. Ammɑ ǹ nɑ ɑ̀ hɑɑbu kɑ booriɑndi.\n", "Kɑ Yesu ye kɑ huro hɑrihi ɑ̀ nɑ buulɑ dem kɑ kpei ngɑ kpɑɑrɑ.\n", "Cɔfɔ jinde fɔ hunu zɑ bɛɛnɛ kɑ cii: Ni yɑ cii ɑ Ize Binegɑnji. N gɑɑ nɑ ɑ du ɑ binekɑɑne.\n", "Yesu tu ǹ sɛ kɑ cii: Beerem kɑ ǹ gundɑ bɑɑni si bɑɑ lokotoro kɑlɑ beerem kɑ ǹ sindɑ bɑɑni.\n", "Sɑɑ kɑ Pɔlu ndɑ Silɑ bisɑ Amfipoli wɑngɑrɑ ndɑ Apoloni wɑngɑrɑ ǹ kɑɑ Tesɑlonikɑ wɑngɑrɑ. Nungu di Yuifu yom mɑrgɑ fuu fɔ goono.\n", "Ikpɛ mɑnɑ ɑ̀ nɑ gɑndɑ hɛ fɔ kulu ɑ̀ mɑ tubu, bɑ cee dɛcɛyom dɔ sɑrɑ. Ammɑ Ikpɛ nɑ ɑlikɑwɑli tɛ ɑ̀ sɛ kɑ cii ngɑ gɑ ɑ̀ no lɑɑbu ɑ̀ mɑ ci ɑ̀ ŋmɔne ndɑ ɑ̀ bɑndɑ yom ŋmɔne mo. Sɑɑ ngɑ di Abulɛmɑ sindɑ koo jinɑ.\n", "\n", "==> dev.en <==\n", "I thank him that enabled me, even Christ Jesus our Lord, for that he counted me faithful, appointing me to his service;\n", "Now lettest thou thy servant depart, Lord, According to thy word, in peace;\n", "if so be that God is one, and he shall justify the circumcision by faith, and the uncircumcision through faith.\n", "And from that city many of the Samaritans believed on him because of the word of the woman, who testified, He told me all things that ever I did.\n", "Then he saith, I will return into my house whence I came out; and when he is come, he findeth it empty, swept, and garnished.\n", "And he entered into a boat, and crossed over, and came into his own city.\n", "and a voice came out of the heavens, Thou art my beloved Son, in thee I am well pleased.\n", "And Jesus answering said unto them, They that are in health have no need of a physician; but they that are sick.\n", "Now when they had passed through Amphipolis and Apollonia, they came to Thessalonica, where was a synagogue of the Jews:\n", "and he gave him none inheritance in it, no, not so much as to set his foot on: and he promised that he would give it to him in possession, and to his seed after him, when as yet he had no child.\n", "==> test.ddn <==\n", "Abulɛmɑ bine hunu Kɑlɛdɑncei lɑɑbu kɑ kpei gɔrɔ Hɑrɑm lɑɑbu. Nungu di no ɑ̀ bɑɑbɑ bu. À bɑndɑ Ikpɛ kpeindɑ Abulɛmɑ lɑɑbu kɑ ɑ̀ kunɑ wom gɑ gɔrɔ hɑli mɑɑsɑ.\n", "Cɔfɔ ɑ̀ nɑ ǹ moo yom hɑmɑ kɑ cii: À mɑ tɛ wom sɛ ndɑ zɑngɑ wom nɑɑne goono ndɑ.\n", "Wom mɑ si ǹ gɑnɑ ndɑ ǹ moo diyom kɑ kɑɑni iburɑdɑm yom sɛ. Ammɑ wɑ ǹ gɑnɑ zɑngɑ Mɛsiyɑ tɑm yom kɑ ǹ gɑ kɑ Ikpɛ binebɑɑ tɛ ndɑ bine fɔ.\n", "Ǹ mɑ si cɛyom susu fɔndɔ bei ɑ̀ bisɑ, de sɑɑ kɑ ǹ nɑ ɑ̀ bei, ɑ̀ bɑndɑ ǹ mɑ bɑndɑ bɛrɛ ɑ̀ gɑɑ ndɑ meire hɑlɑɑlɑ kɑ ǹ jinɑ kɑ no ǹ sɛ.\n", "À nɑ ngɑ di tɛ zɑmɑ hɛ kɑ ɑndebi cii di mɑ tɔ sɛ kɑ ɑ̀ cii: A gɑ ɑ mee feeri ndɑ yɑɑse yom. A kɑɑ hɛ yom kɑɑtɛrɛ kɑ ǹ goono tugɑntɛ zɑ hɑndunyɑ sinjiyom.\n", "Bɔrɔ mɑntɑm di cii Filipu sɛ: A gɑ n hã, mee bɔm nɑ ɑndebi go sendi yɑ wɔ dimi? À go sendi ngɑ bɔm nɑ dee, wɑlɑ bɔrɔ fɔ ŋmɑni bɔm no?\n", "Beerem kɑ ǹ ci Mɛsiyɑ ŋmɔne yom ǹ nɑ ngei dulum hɑɑli kɑnji ndɑ ɑ̀ bɑɑyom futu yom ndɑ ɑ̀ bineibɑɑi.\n", "Ǹ go kɑ ɑ bɛɛrɑndi no kɔnu zɑmɑ cɛbɛ yom kɑ ǹ go tɛ mo iburɑdɑm yom ɑlɑɑdɑ yom no.\n", "Ngɑ di kulu tɛ zɑmɑ hɛ kɑ ɑndebi cii mɑ tɔ sɛ. À cii:\n", "Zɑ Moisi gɑɑ kɑlɑ kɑ kpei ɑndebi yom kulu gɑɑ, ɑ̀ sinti kɑ fɑsɑli ǹ sɛ Ikpɛ Sendi hɑntumɑntɛ yom kulu kunɑ, hɛ yom kɑ ǹ goono kɑ simbɑ ndɑ ngɑ bumbum.\n", "\n", "==> test.en <==\n", "Then came he out of the land of the Chaldæans, and dwelt in Haran: and from thence, when his father was dead, God removed him into this land, wherein ye now dwell:\n", "Then touched he their eyes, saying, According to your faith be it done unto you.\n", "not in the way of eyeservice, as men-pleasers; but as servants of Christ, doing the will of God from the heart;\n", "For it were better for them not to have known the way of righteousness, than, after knowing it, to turn back from the holy commandment delivered unto them.\n", "that it might be fulfilled which was spoken through the prophet, saying, I will open my mouth in parables; I will utter things hidden from the foundation of the world.\n", "And the eunuch answered Philip, and said, I pray thee, of whom speaketh the prophet this? of himself, or of some other?\n", "And they that are of Christ Jesus have crucified the flesh with the passions and the lusts thereof.\n", "But in vain do they worship me, Teaching as their doctrines the precepts of men.\n", "Now this is come to pass, that it might be fulfilled which was spoken through the prophet, saying,\n", "And beginning from Moses and from all the prophets, he interpreted to them in all the scriptures the things concerning himself.\n" ], "name": "stdout" } ] }, { "cell_type": "code", "metadata": { "id": "gEDAsKXPw28d", "colab_type": "code", "colab": {} }, "source": [ "stripped_df.to_csv('train.csv')\n", "!cp train.csv \"/content/drive/My Drive/masakhane/$src-$tgt-$tag\"" ], "execution_count": 0, "outputs": [] }, { "cell_type": "code", "metadata": { "id": "_yGbVVjlw61I", "colab_type": "code", "colab": {} }, "source": [ "test_df.to_csv('test.csv')\n", "!cp test.csv \"/content/drive/My Drive/masakhane/$src-$tgt-$tag\"" ], "execution_count": 0, "outputs": [] }, { "cell_type": "code", "metadata": { "id": "f--enEIOw-2I", "colab_type": "code", "colab": {} }, "source": [ "dev_df.to_csv('dev.csv')\n", "!cp dev.csv \"/content/drive/My Drive/masakhane/$src-$tgt-$tag\"" ], "execution_count": 0, "outputs": [] }, { "cell_type": "markdown", "metadata": { "colab_type": "text", "id": "epeCydmCyS8X" }, "source": [ "\n", "\n", "---\n", "\n", "\n", "## Installation of JoeyNMT\n", "\n", "JoeyNMT is a simple, minimalist NMT package which is useful for learning and teaching. Check out the documentation for JoeyNMT [here](https://joeynmt.readthedocs.io) " ] }, { "cell_type": "code", "metadata": { "colab_type": "code", "id": "iBRMm4kMxZ8L", "outputId": "dfaac3fd-7a64-4a05-d4b3-0c366ad2c28d", "colab": { "base_uri": "https://localhost:8080/", "height": 1000 } }, "source": [ "# Install JoeyNMT\n", "! git clone https://github.com/joeynmt/joeynmt.git\n", "! cd joeynmt; pip3 install ." ], "execution_count": 17, "outputs": [ { "output_type": "stream", "text": [ "Cloning into 'joeynmt'...\n", "remote: Enumerating objects: 97, done.\u001b[K\n", "remote: Counting objects: 1% (1/97)\u001b[K\rremote: Counting objects: 2% (2/97)\u001b[K\rremote: Counting objects: 3% (3/97)\u001b[K\rremote: Counting objects: 4% (4/97)\u001b[K\rremote: Counting objects: 5% (5/97)\u001b[K\rremote: Counting objects: 6% (6/97)\u001b[K\rremote: Counting objects: 7% (7/97)\u001b[K\rremote: Counting objects: 8% (8/97)\u001b[K\rremote: Counting objects: 9% (9/97)\u001b[K\rremote: Counting objects: 10% (10/97)\u001b[K\rremote: Counting objects: 11% (11/97)\u001b[K\rremote: Counting objects: 12% (12/97)\u001b[K\rremote: Counting objects: 13% (13/97)\u001b[K\rremote: Counting objects: 14% (14/97)\u001b[K\rremote: Counting objects: 15% (15/97)\u001b[K\rremote: Counting objects: 16% (16/97)\u001b[K\rremote: Counting objects: 17% (17/97)\u001b[K\rremote: Counting objects: 18% (18/97)\u001b[K\rremote: Counting objects: 19% (19/97)\u001b[K\rremote: Counting objects: 20% (20/97)\u001b[K\rremote: Counting objects: 21% (21/97)\u001b[K\rremote: Counting objects: 22% (22/97)\u001b[K\rremote: Counting objects: 23% (23/97)\u001b[K\rremote: Counting objects: 24% (24/97)\u001b[K\rremote: Counting objects: 25% (25/97)\u001b[K\rremote: Counting objects: 26% (26/97)\u001b[K\rremote: Counting objects: 27% (27/97)\u001b[K\rremote: Counting objects: 28% (28/97)\u001b[K\rremote: Counting objects: 29% (29/97)\u001b[K\rremote: Counting objects: 30% (30/97)\u001b[K\rremote: Counting objects: 31% (31/97)\u001b[K\rremote: Counting objects: 32% (32/97)\u001b[K\rremote: Counting objects: 34% (33/97)\u001b[K\rremote: Counting objects: 35% (34/97)\u001b[K\rremote: Counting objects: 36% (35/97)\u001b[K\rremote: Counting objects: 37% (36/97)\u001b[K\rremote: Counting objects: 38% (37/97)\u001b[K\rremote: Counting objects: 39% (38/97)\u001b[K\rremote: Counting objects: 40% (39/97)\u001b[K\rremote: Counting objects: 41% (40/97)\u001b[K\rremote: Counting objects: 42% (41/97)\u001b[K\rremote: Counting objects: 43% (42/97)\u001b[K\rremote: Counting objects: 44% (43/97)\u001b[K\rremote: Counting objects: 45% (44/97)\u001b[K\rremote: Counting objects: 46% (45/97)\u001b[K\rremote: Counting objects: 47% (46/97)\u001b[K\rremote: Counting objects: 48% (47/97)\u001b[K\rremote: Counting objects: 49% (48/97)\u001b[K\rremote: Counting objects: 50% (49/97)\u001b[K\rremote: Counting objects: 51% (50/97)\u001b[K\rremote: Counting objects: 52% (51/97)\u001b[K\rremote: Counting objects: 53% (52/97)\u001b[K\rremote: Counting objects: 54% (53/97)\u001b[K\rremote: Counting objects: 55% (54/97)\u001b[K\rremote: Counting objects: 56% (55/97)\u001b[K\rremote: Counting objects: 57% (56/97)\u001b[K\rremote: Counting objects: 58% (57/97)\u001b[K\rremote: Counting objects: 59% (58/97)\u001b[K\rremote: Counting objects: 60% (59/97)\u001b[K\rremote: Counting objects: 61% (60/97)\u001b[K\rremote: Counting objects: 62% (61/97)\u001b[K\rremote: Counting objects: 63% (62/97)\u001b[K\rremote: Counting objects: 64% (63/97)\u001b[K\rremote: Counting objects: 65% (64/97)\u001b[K\rremote: Counting objects: 67% (65/97)\u001b[K\rremote: Counting objects: 68% (66/97)\u001b[K\rremote: Counting objects: 69% (67/97)\u001b[K\rremote: Counting objects: 70% (68/97)\u001b[K\rremote: Counting objects: 71% (69/97)\u001b[K\rremote: Counting objects: 72% (70/97)\u001b[K\rremote: Counting objects: 73% (71/97)\u001b[K\rremote: Counting objects: 74% (72/97)\u001b[K\rremote: Counting objects: 75% (73/97)\u001b[K\rremote: Counting objects: 76% (74/97)\u001b[K\rremote: Counting objects: 77% (75/97)\u001b[K\rremote: Counting objects: 78% (76/97)\u001b[K\rremote: Counting objects: 79% (77/97)\u001b[K\rremote: Counting objects: 80% (78/97)\u001b[K\rremote: Counting objects: 81% (79/97)\u001b[K\rremote: Counting objects: 82% (80/97)\u001b[K\rremote: Counting objects: 83% (81/97)\u001b[K\rremote: Counting objects: 84% (82/97)\u001b[K\rremote: Counting objects: 85% (83/97)\u001b[K\rremote: Counting objects: 86% (84/97)\u001b[K\rremote: Counting objects: 87% (85/97)\u001b[K\rremote: Counting objects: 88% (86/97)\u001b[K\rremote: Counting objects: 89% (87/97)\u001b[K\rremote: Counting objects: 90% (88/97)\u001b[K\rremote: Counting objects: 91% (89/97)\u001b[K\rremote: Counting objects: 92% (90/97)\u001b[K\rremote: Counting objects: 93% (91/97)\u001b[K\rremote: Counting objects: 94% (92/97)\u001b[K\rremote: Counting objects: 95% (93/97)\u001b[K\rremote: Counting objects: 96% (94/97)\u001b[K\rremote: Counting objects: 97% (95/97)\u001b[K\rremote: Counting objects: 98% (96/97)\u001b[K\rremote: Counting objects: 100% (97/97)\u001b[K\rremote: Counting objects: 100% (97/97), done.\u001b[K\n", "remote: Compressing objects: 100% (72/72), done.\u001b[K\n", "remote: Total 2281 (delta 57), reused 46 (delta 25), pack-reused 2184\u001b[K\n", "Receiving objects: 100% (2281/2281), 2.63 MiB | 15.58 MiB/s, done.\n", "Resolving deltas: 100% (1578/1578), done.\n", "Processing /content/joeynmt\n", "Requirement already satisfied: future in /usr/local/lib/python3.6/dist-packages (from joeynmt==0.0.1) (0.16.0)\n", "Requirement already satisfied: pillow in /usr/local/lib/python3.6/dist-packages (from joeynmt==0.0.1) (6.2.2)\n", "Requirement already satisfied: numpy<2.0,>=1.14.5 in /usr/local/lib/python3.6/dist-packages (from joeynmt==0.0.1) (1.17.5)\n", "Requirement already satisfied: setuptools>=41.0.0 in /usr/local/lib/python3.6/dist-packages (from joeynmt==0.0.1) (45.1.0)\n", "Requirement already satisfied: torch>=1.1 in /usr/local/lib/python3.6/dist-packages (from joeynmt==0.0.1) (1.4.0)\n", "Requirement already satisfied: tensorflow>=1.14 in /usr/local/lib/python3.6/dist-packages (from joeynmt==0.0.1) (1.15.0)\n", "Requirement already satisfied: torchtext in /usr/local/lib/python3.6/dist-packages (from joeynmt==0.0.1) (0.3.1)\n", "Collecting sacrebleu>=1.3.6\n", " Downloading https://files.pythonhosted.org/packages/45/31/1a135b964c169984b27fb2f7a50280fa7f8e6d9d404d8a9e596180487fd1/sacrebleu-1.4.3-py3-none-any.whl\n", "Collecting subword-nmt\n", " Downloading https://files.pythonhosted.org/packages/74/60/6600a7bc09e7ab38bc53a48a20d8cae49b837f93f5842a41fe513a694912/subword_nmt-0.3.7-py2.py3-none-any.whl\n", "Requirement already satisfied: matplotlib in /usr/local/lib/python3.6/dist-packages (from joeynmt==0.0.1) (3.1.3)\n", "Requirement already satisfied: seaborn in /usr/local/lib/python3.6/dist-packages (from joeynmt==0.0.1) (0.10.0)\n", "Collecting pyyaml>=5.1\n", "\u001b[?25l Downloading https://files.pythonhosted.org/packages/3d/d9/ea9816aea31beeadccd03f1f8b625ecf8f645bd66744484d162d84803ce5/PyYAML-5.3.tar.gz (268kB)\n", "\u001b[K |████████████████████████████████| 276kB 9.3MB/s \n", "\u001b[?25hCollecting pylint\n", "\u001b[?25l Downloading https://files.pythonhosted.org/packages/e9/59/43fc36c5ee316bb9aeb7cf5329cdbdca89e5749c34d5602753827c0aa2dc/pylint-2.4.4-py3-none-any.whl (302kB)\n", "\u001b[K |████████████████████████████████| 307kB 41.1MB/s \n", "\u001b[?25hRequirement already satisfied: six==1.12 in /usr/local/lib/python3.6/dist-packages (from joeynmt==0.0.1) (1.12.0)\n", "Requirement already satisfied: opt-einsum>=2.3.2 in /usr/local/lib/python3.6/dist-packages (from tensorflow>=1.14->joeynmt==0.0.1) (3.1.0)\n", "Requirement already satisfied: absl-py>=0.7.0 in /usr/local/lib/python3.6/dist-packages (from tensorflow>=1.14->joeynmt==0.0.1) (0.9.0)\n", "Requirement already satisfied: grpcio>=1.8.6 in /usr/local/lib/python3.6/dist-packages (from tensorflow>=1.14->joeynmt==0.0.1) (1.15.0)\n", "Requirement already satisfied: termcolor>=1.1.0 in /usr/local/lib/python3.6/dist-packages (from tensorflow>=1.14->joeynmt==0.0.1) (1.1.0)\n", "Requirement already satisfied: keras-preprocessing>=1.0.5 in /usr/local/lib/python3.6/dist-packages (from tensorflow>=1.14->joeynmt==0.0.1) (1.1.0)\n", "Requirement already satisfied: wheel>=0.26 in /usr/local/lib/python3.6/dist-packages (from tensorflow>=1.14->joeynmt==0.0.1) (0.34.2)\n", "Requirement already satisfied: google-pasta>=0.1.6 in /usr/local/lib/python3.6/dist-packages (from tensorflow>=1.14->joeynmt==0.0.1) (0.1.8)\n", "Requirement already satisfied: astor>=0.6.0 in /usr/local/lib/python3.6/dist-packages (from tensorflow>=1.14->joeynmt==0.0.1) (0.8.1)\n", "Requirement already satisfied: wrapt>=1.11.1 in /usr/local/lib/python3.6/dist-packages (from tensorflow>=1.14->joeynmt==0.0.1) (1.11.2)\n", "Requirement already satisfied: gast==0.2.2 in /usr/local/lib/python3.6/dist-packages (from tensorflow>=1.14->joeynmt==0.0.1) (0.2.2)\n", "Requirement already satisfied: keras-applications>=1.0.8 in /usr/local/lib/python3.6/dist-packages (from tensorflow>=1.14->joeynmt==0.0.1) (1.0.8)\n", "Requirement already satisfied: tensorboard<1.16.0,>=1.15.0 in /usr/local/lib/python3.6/dist-packages (from tensorflow>=1.14->joeynmt==0.0.1) (1.15.0)\n", "Requirement already satisfied: tensorflow-estimator==1.15.1 in /usr/local/lib/python3.6/dist-packages (from tensorflow>=1.14->joeynmt==0.0.1) (1.15.1)\n", "Requirement already satisfied: protobuf>=3.6.1 in /usr/local/lib/python3.6/dist-packages (from tensorflow>=1.14->joeynmt==0.0.1) (3.10.0)\n", "Requirement already satisfied: tqdm in /usr/local/lib/python3.6/dist-packages (from torchtext->joeynmt==0.0.1) (4.28.1)\n", "Requirement already satisfied: requests in /usr/local/lib/python3.6/dist-packages (from torchtext->joeynmt==0.0.1) (2.21.0)\n", "Requirement already satisfied: typing in /usr/local/lib/python3.6/dist-packages (from sacrebleu>=1.3.6->joeynmt==0.0.1) (3.6.6)\n", "Collecting portalocker\n", " Downloading https://files.pythonhosted.org/packages/91/db/7bc703c0760df726839e0699b7f78a4d8217fdc9c7fcb1b51b39c5a22a4e/portalocker-1.5.2-py2.py3-none-any.whl\n", "Requirement already satisfied: kiwisolver>=1.0.1 in /usr/local/lib/python3.6/dist-packages (from matplotlib->joeynmt==0.0.1) (1.1.0)\n", "Requirement already satisfied: pyparsing!=2.0.4,!=2.1.2,!=2.1.6,>=2.0.1 in /usr/local/lib/python3.6/dist-packages (from matplotlib->joeynmt==0.0.1) (2.4.6)\n", "Requirement already satisfied: python-dateutil>=2.1 in /usr/local/lib/python3.6/dist-packages (from matplotlib->joeynmt==0.0.1) (2.6.1)\n", "Requirement already satisfied: cycler>=0.10 in /usr/local/lib/python3.6/dist-packages (from matplotlib->joeynmt==0.0.1) (0.10.0)\n", "Requirement already satisfied: pandas>=0.22.0 in /usr/local/lib/python3.6/dist-packages (from seaborn->joeynmt==0.0.1) (0.25.3)\n", "Requirement already satisfied: scipy>=1.0.1 in /usr/local/lib/python3.6/dist-packages (from seaborn->joeynmt==0.0.1) (1.4.1)\n", "Collecting mccabe<0.7,>=0.6\n", " Downloading https://files.pythonhosted.org/packages/87/89/479dc97e18549e21354893e4ee4ef36db1d237534982482c3681ee6e7b57/mccabe-0.6.1-py2.py3-none-any.whl\n", "Collecting isort<5,>=4.2.5\n", "\u001b[?25l Downloading https://files.pythonhosted.org/packages/e5/b0/c121fd1fa3419ea9bfd55c7f9c4fedfec5143208d8c7ad3ce3db6c623c21/isort-4.3.21-py2.py3-none-any.whl (42kB)\n", "\u001b[K |████████████████████████████████| 51kB 8.5MB/s \n", "\u001b[?25hCollecting astroid<2.4,>=2.3.0\n", "\u001b[?25l Downloading https://files.pythonhosted.org/packages/ad/ae/86734823047962e7b8c8529186a1ac4a7ca19aaf1aa0c7713c022ef593fd/astroid-2.3.3-py3-none-any.whl (205kB)\n", "\u001b[K |████████████████████████████████| 215kB 58.1MB/s \n", "\u001b[?25hRequirement already satisfied: h5py in /usr/local/lib/python3.6/dist-packages (from keras-applications>=1.0.8->tensorflow>=1.14->joeynmt==0.0.1) (2.8.0)\n", "Requirement already satisfied: markdown>=2.6.8 in /usr/local/lib/python3.6/dist-packages (from tensorboard<1.16.0,>=1.15.0->tensorflow>=1.14->joeynmt==0.0.1) (3.1.1)\n", "Requirement already satisfied: werkzeug>=0.11.15 in /usr/local/lib/python3.6/dist-packages (from tensorboard<1.16.0,>=1.15.0->tensorflow>=1.14->joeynmt==0.0.1) (0.16.1)\n", "Requirement already satisfied: certifi>=2017.4.17 in /usr/local/lib/python3.6/dist-packages (from requests->torchtext->joeynmt==0.0.1) (2019.11.28)\n", "Requirement already satisfied: chardet<3.1.0,>=3.0.2 in /usr/local/lib/python3.6/dist-packages (from requests->torchtext->joeynmt==0.0.1) (3.0.4)\n", "Requirement already satisfied: urllib3<1.25,>=1.21.1 in /usr/local/lib/python3.6/dist-packages (from requests->torchtext->joeynmt==0.0.1) (1.24.3)\n", "Requirement already satisfied: idna<2.9,>=2.5 in /usr/local/lib/python3.6/dist-packages (from requests->torchtext->joeynmt==0.0.1) (2.8)\n", "Requirement already satisfied: pytz>=2017.2 in /usr/local/lib/python3.6/dist-packages (from pandas>=0.22.0->seaborn->joeynmt==0.0.1) (2018.9)\n", "Collecting typed-ast<1.5,>=1.4.0; implementation_name == \"cpython\" and python_version < \"3.8\"\n", "\u001b[?25l Downloading https://files.pythonhosted.org/packages/90/ed/5459080d95eb87a02fe860d447197be63b6e2b5e9ff73c2b0a85622994f4/typed_ast-1.4.1-cp36-cp36m-manylinux1_x86_64.whl (737kB)\n", "\u001b[K |████████████████████████████████| 747kB 69.7MB/s \n", "\u001b[?25hCollecting lazy-object-proxy==1.4.*\n", "\u001b[?25l Downloading https://files.pythonhosted.org/packages/0b/dd/b1e3407e9e6913cf178e506cd0dee818e58694d9a5cd1984e3f6a8b9a10f/lazy_object_proxy-1.4.3-cp36-cp36m-manylinux1_x86_64.whl (55kB)\n", "\u001b[K |████████████████████████████████| 61kB 10.3MB/s \n", "\u001b[?25hBuilding wheels for collected packages: joeynmt, pyyaml\n", " Building wheel for joeynmt (setup.py) ... \u001b[?25l\u001b[?25hdone\n", " Created wheel for joeynmt: filename=joeynmt-0.0.1-cp36-none-any.whl size=73054 sha256=1324e06966a9e79bc3d60e55f6a3f9a5cfa3c289d9af531a3cfb64f8ecacc06b\n", " Stored in directory: /tmp/pip-ephem-wheel-cache-udwyeym6/wheels/db/01/db/751cc9f3e7f6faec127c43644ba250a3ea7ad200594aeda70a\n", " Building wheel for pyyaml (setup.py) ... \u001b[?25l\u001b[?25hdone\n", " Created wheel for pyyaml: filename=PyYAML-5.3-cp36-cp36m-linux_x86_64.whl size=44229 sha256=484cf5ff7c346bd5eaa30dfc8c1d62b918933e1c2aa37234280f1e1a4cbbc692\n", " Stored in directory: /root/.cache/pip/wheels/e4/76/4d/a95b8dd7b452b69e8ed4f68b69e1b55e12c9c9624dd962b191\n", "Successfully built joeynmt pyyaml\n", "Installing collected packages: portalocker, sacrebleu, subword-nmt, pyyaml, mccabe, isort, typed-ast, lazy-object-proxy, astroid, pylint, joeynmt\n", " Found existing installation: PyYAML 3.13\n", " Uninstalling PyYAML-3.13:\n", " Successfully uninstalled PyYAML-3.13\n", "Successfully installed astroid-2.3.3 isort-4.3.21 joeynmt-0.0.1 lazy-object-proxy-1.4.3 mccabe-0.6.1 portalocker-1.5.2 pylint-2.4.4 pyyaml-5.3 sacrebleu-1.4.3 subword-nmt-0.3.7 typed-ast-1.4.1\n" ], "name": "stdout" } ] }, { "cell_type": "markdown", "metadata": { "colab_type": "text", "id": "AaE77Tcppex9" }, "source": [ "# Preprocessing the Data into Subword BPE Tokens\n", "\n", "- One of the most powerful improvements for agglutinative languages (a feature of most Bantu languages) is using BPE tokenization [ (Sennrich, 2015) ](https://arxiv.org/abs/1508.07909).\n", "\n", "- It was also shown that by optimizing the umber of BPE codes we significantly improve results for low-resourced languages [(Sennrich, 2019)](https://www.aclweb.org/anthology/P19-1021) [(Martinus, 2019)](https://arxiv.org/abs/1906.05685)\n", "\n", "- Below we have the scripts for doing BPE tokenization of our data. We use 4000 tokens as recommended by [(Sennrich, 2019)](https://www.aclweb.org/anthology/P19-1021). You do not need to change anything. Simply running the below will be suitable. " ] }, { "cell_type": "code", "metadata": { "colab_type": "code", "id": "H-TyjtmXB1mL", "outputId": "67528fd4-b111-461f-9a68-d05323d998a2", "colab": { "base_uri": "https://localhost:8080/", "height": 416 } }, "source": [ "# One of the huge boosts in NMT performance was to use a different method of tokenizing. \n", "# Usually, NMT would tokenize by words. However, using a method called BPE gave amazing boosts to performance\n", "\n", "# Do subword NMT\n", "from os import path\n", "os.environ[\"src\"] = source_language # Sets them in bash as well, since we often use bash scripts\n", "os.environ[\"tgt\"] = target_language\n", "\n", "# Learn BPEs on the training data.\n", "os.environ[\"data_path\"] = path.join(\"joeynmt\", \"data\", source_language + target_language) # Herman! \n", "! subword-nmt learn-joint-bpe-and-vocab --input train.$src train.$tgt -s 4000 -o bpe.codes.4000 --write-vocabulary vocab.$src vocab.$tgt\n", "\n", "# Apply BPE splits to the development and test data.\n", "! subword-nmt apply-bpe -c bpe.codes.4000 --vocabulary vocab.$src < train.$src > train.bpe.$src\n", "! subword-nmt apply-bpe -c bpe.codes.4000 --vocabulary vocab.$tgt < train.$tgt > train.bpe.$tgt\n", "\n", "! subword-nmt apply-bpe -c bpe.codes.4000 --vocabulary vocab.$src < dev.$src > dev.bpe.$src\n", "! subword-nmt apply-bpe -c bpe.codes.4000 --vocabulary vocab.$tgt < dev.$tgt > dev.bpe.$tgt\n", "! subword-nmt apply-bpe -c bpe.codes.4000 --vocabulary vocab.$src < test.$src > test.bpe.$src\n", "! subword-nmt apply-bpe -c bpe.codes.4000 --vocabulary vocab.$tgt < test.$tgt > test.bpe.$tgt\n", "\n", "# Create directory, move everyone we care about to the correct location\n", "! mkdir -p $data_path\n", "! cp train.* $data_path\n", "! cp test.* $data_path\n", "! cp dev.* $data_path\n", "! cp bpe.codes.4000 $data_path\n", "! ls $data_path\n", "\n", "# Also move everything we care about to a mounted location in google drive (relevant if running in colab) at gdrive_path\n", "! cp train.* \"$gdrive_path\"\n", "! cp test.* \"$gdrive_path\"\n", "! cp dev.* \"$gdrive_path\"\n", "! cp bpe.codes.4000 \"$gdrive_path\"\n", "! ls \"$gdrive_path\"\n", "\n", "# Create that vocab using build_vocab\n", "! sudo chmod 777 joeynmt/scripts/build_vocab.py\n", "! joeynmt/scripts/build_vocab.py joeynmt/data/$src$tgt/train.bpe.$src joeynmt/data/$src$tgt/train.bpe.$tgt --output_path joeynmt/data/$src$tgt/vocab.txt\n", "\n", "# Some output\n", "! echo \"BPE Dendi Sentences\"\n", "! tail -n 5 test.bpe.$tgt\n", "! echo \"Combined BPE Vocab\"\n", "! tail -n 10 joeynmt/data/$src$tgt/vocab.txt # Herman" ], "execution_count": 18, "outputs": [ { "output_type": "stream", "text": [ "bpe.codes.4000\tdev.csv test.bpe.ddn test.ddn train.bpe.en train.en\n", "dev.bpe.ddn\tdev.ddn test.bpe.en test.en\t train.csv\n", "dev.bpe.en\tdev.en\t test.csv train.bpe.ddn train.ddn\n", "bpe.codes.4000\tdev.csv models test.csv train.bpe.ddn\ttrain.ddn\n", "dev.bpe.ddn\tdev.ddn test.bpe.ddn test.ddn train.bpe.en\ttrain.en\n", "dev.bpe.en\tdev.en\t test.bpe.en test.en\t train.csv\n", "BPE Dendi Sentences\n", "Nɑɑne gɑɑ no, Moisi nɑ Bɔmdɑɑrum jingɑru tɛ. À nɑ kuri se@@ es@@ ee hɑli hɑlɑci@@ kɔ kɑ ɑ̀ nɑ koo hɑibɔrɔ sintine yom hɑlɑci mɑ si kɑmbɛ dɛcɛ Isirɑilɑ ŋmɔne yom gɑɑ.\n", "Bɔrɔ hin@@ no, ɑ̀ bine ji@@ si@@ ri hinno kunɑ no ɑ̀ gɑ ihinno yom kɑɑ tɛrɛ. Bɔrɔ lɑlɔ mo, ɑ̀ bine ji@@ si@@ ri lɑlɔ kunɑ no ɑ̀ gɑ ilɑlɔ yom kɑɑ tɛrɛ.\n", "À nɑ ɑ dɑm gbei kunɑ bɑ kɑ ɑ ci Ikpɛ cɛn@@ ɑndikɔ ndɑ guruguz@@ ɑndikɔ ndɑ bɔrɔ fu@@ tu. Ammɑ ɑ du suuji domi zɑm kɑ bei kunɑ nɑ ɑ nɑ ɑ̀ tɛ zɑm kɑ nɑɑne kunɑ.\n", "Wom kunɑ bɔrɔ fɔ kulu mɑ si lɑɑkɑli ndɑ ngɑ bɔm mur@@ ɑ@@ du yom hinn@@ e, ɑmmɑ ɑ̀ mɑ lɑɑkɑli mɑ ndɑ bɔrɔ fɔ yom ŋmɔne.\n", "Kɑ wiciri kɑmbu bɑ tɔ ɑ̀ coobɑɑbɑize yom kɑɑ ɑ̀ dɔ kɑ cii: Nungu wɔ gɑnji no. Lɔkɑci mo moor@@ u. Jɑmɑ wɔ tɑm ǹ mɑ kpei kpɑɑrɑ yom kunɑ kɑ ngei ŋmɑɑri dei kɑ ŋmɑɑ.\n", "Combined BPE Vocab\n", "clai@@\n", "ɑ̀@@\n", "secu@@\n", "doni\n", "uda@@\n", "Hol@@\n", "Dɑfi@@\n", "Æ@@\n", "pos@@\n", "ɔkɑci\n" ], "name": "stdout" } ] }, { "cell_type": "code", "metadata": { "colab_type": "code", "id": "IlMitUHR8Qy-", "outputId": "52358ed6-5169-43b4-9c2f-23c8b1351b1f", "colab": { "base_uri": "https://localhost:8080/", "height": 69 } }, "source": [ "# Also move everything we care about to a mounted location in google drive (relevant if running in colab) at gdrive_path\n", "! cp train.* \"$gdrive_path\"\n", "! cp test.* \"$gdrive_path\"\n", "! cp dev.* \"$gdrive_path\"\n", "! cp bpe.codes.4000 \"$gdrive_path\"\n", "! ls \"$gdrive_path\"" ], "execution_count": 19, "outputs": [ { "output_type": "stream", "text": [ "bpe.codes.4000\tdev.csv models test.csv train.bpe.ddn\ttrain.ddn\n", "dev.bpe.ddn\tdev.ddn test.bpe.ddn test.ddn train.bpe.en\ttrain.en\n", "dev.bpe.en\tdev.en\t test.bpe.en test.en\t train.csv\n" ], "name": "stdout" } ] }, { "cell_type": "markdown", "metadata": { "colab_type": "text", "id": "Ixmzi60WsUZ8" }, "source": [ "# Creating the JoeyNMT Config\n", "\n", "JoeyNMT requires a yaml config. We provide a template below. We've also set a number of defaults with it, that you may play with!\n", "\n", "- We used Transformer architecture \n", "- We set our dropout to reasonably high: 0.3 (recommended in [(Sennrich, 2019)](https://www.aclweb.org/anthology/P19-1021))\n", "\n", "Things worth playing with:\n", "- The batch size (also recommended to change for low-resourced languages)\n", "- The number of epochs (we've set it at 30 just so it runs in about an hour, for testing purposes)\n", "- The decoder options (beam_size, alpha)\n", "- Evaluation metrics (BLEU versus Crhf4)" ] }, { "cell_type": "code", "metadata": { "colab_type": "code", "id": "PIs1lY2hxMsl", "colab": {} }, "source": [ "# This creates the config file for our JoeyNMT system. It might seem overwhelming so we've provided a couple of useful parameters you'll need to update\n", "# (You can of course play with all the parameters if you'd like!)\n", "\n", "name = '%s%s' % (source_language, target_language)\n", "gdrive_path = os.environ[\"gdrive_path\"]\n", "\n", "# Create the config\n", "config = \"\"\"\n", "name: \"{name}_transformer\"\n", "\n", "data:\n", " src: \"{source_language}\"\n", " trg: \"{target_language}\"\n", " train: \"data/{name}/train.bpe\"\n", " dev: \"data/{name}/dev.bpe\"\n", " test: \"data/{name}/test.bpe\"\n", " level: \"bpe\"\n", " lowercase: False\n", " max_sent_length: 100\n", " src_vocab: \"data/{name}/vocab.txt\"\n", " trg_vocab: \"data/{name}/vocab.txt\"\n", "\n", "testing:\n", " beam_size: 5\n", " alpha: 1.0\n", "\n", "training:\n", " #load_model: \"{gdrive_path}/models/{name}_transformer/1.ckpt\" # if uncommented, load a pre-trained model from this checkpoint\n", " random_seed: 42\n", " optimizer: \"adam\"\n", " normalization: \"tokens\"\n", " adam_betas: [0.9, 0.999] \n", " scheduling: \"plateau\" # TODO: try switching from plateau to Noam scheduling\n", " patience: 5 # For plateau: decrease learning rate by decrease_factor if validation score has not improved for this many validation rounds.\n", " learning_rate_factor: 0.5 # factor for Noam scheduler (used with Transformer)\n", " learning_rate_warmup: 1000 # warmup steps for Noam scheduler (used with Transformer)\n", " decrease_factor: 0.7\n", " loss: \"crossentropy\"\n", " learning_rate: 0.0003\n", " learning_rate_min: 0.00000001\n", " weight_decay: 0.0\n", " label_smoothing: 0.1\n", " batch_size: 4096\n", " batch_type: \"token\"\n", " eval_batch_size: 3600\n", " eval_batch_type: \"token\"\n", " batch_multiplier: 1\n", " early_stopping_metric: \"ppl\"\n", " epochs: 100 # TODO: Decrease for when playing around and checking of working. Around 30 is sufficient to check if its working at all\n", " validation_freq: 1000 # TODO: Set to at least once per epoch.\n", " logging_freq: 100\n", " eval_metric: \"bleu\"\n", " model_dir: \"models/{name}_transformer\"\n", " overwrite: False # TODO: Set to True if you want to overwrite possibly existing models. \n", " shuffle: True\n", " use_cuda: True\n", " max_output_length: 100\n", " print_valid_sents: [0, 1, 2, 3]\n", " keep_last_ckpts: 3\n", "\n", "model:\n", " initializer: \"xavier\"\n", " bias_initializer: \"zeros\"\n", " init_gain: 1.0\n", " embed_initializer: \"xavier\"\n", " embed_init_gain: 1.0\n", " tied_embeddings: True\n", " tied_softmax: True\n", " encoder:\n", " type: \"transformer\"\n", " num_layers: 6\n", " num_heads: 4 # TODO: Increase to 8 for larger data.\n", " embeddings:\n", " embedding_dim: 256 # TODO: Increase to 512 for larger data.\n", " scale: True\n", " dropout: 0.2\n", " # typically ff_size = 4 x hidden_size\n", " hidden_size: 256 # TODO: Increase to 512 for larger data.\n", " ff_size: 1024 # TODO: Increase to 2048 for larger data.\n", " dropout: 0.3\n", " decoder:\n", " type: \"transformer\"\n", " num_layers: 6\n", " num_heads: 4 # TODO: Increase to 8 for larger data.\n", " embeddings:\n", " embedding_dim: 256 # TODO: Increase to 512 for larger data.\n", " scale: True\n", " dropout: 0.2\n", " # typically ff_size = 4 x hidden_size\n", " hidden_size: 256 # TODO: Increase to 512 for larger data.\n", " ff_size: 1024 # TODO: Increase to 2048 for larger data.\n", " dropout: 0.3\n", "\"\"\".format(name=name, gdrive_path=os.environ[\"gdrive_path\"], source_language=source_language, target_language=target_language)\n", "with open(\"joeynmt/configs/transformer_{name}.yaml\".format(name=name),'w') as f:\n", " f.write(config)" ], "execution_count": 0, "outputs": [] }, { "cell_type": "markdown", "metadata": { "colab_type": "text", "id": "pIifxE3Qzuvs" }, "source": [ "# Train the Model\n", "\n", "This single line of joeynmt runs the training using the config we made above" ] }, { "cell_type": "code", "metadata": { "colab_type": "code", "id": "6ZBPFwT94WpI", "outputId": "2b84de93-977a-4dfa-e7c3-8a7266d93ce5", "colab": { "base_uri": "https://localhost:8080/", "height": 1000 } }, "source": [ "# Train the model\n", "# You can press Ctrl-C to stop. And then run the next cell to save your checkpoints! \n", "!cd joeynmt; python3 -m joeynmt train configs/transformer_$src$tgt.yaml" ], "execution_count": 21, "outputs": [ { "output_type": "stream", "text": [ "2020-02-12 07:57:25,866 Hello! This is Joey-NMT.\n", "2020-02-12 07:57:27,117 Total params: 12102656\n", "2020-02-12 07:57:27,118 Trainable parameters: ['decoder.layer_norm.bias', 'decoder.layer_norm.weight', 'decoder.layers.0.dec_layer_norm.bias', 'decoder.layers.0.dec_layer_norm.weight', 'decoder.layers.0.feed_forward.layer_norm.bias', 'decoder.layers.0.feed_forward.layer_norm.weight', 'decoder.layers.0.feed_forward.pwff_layer.0.bias', 'decoder.layers.0.feed_forward.pwff_layer.0.weight', 'decoder.layers.0.feed_forward.pwff_layer.3.bias', 'decoder.layers.0.feed_forward.pwff_layer.3.weight', 'decoder.layers.0.src_trg_att.k_layer.bias', 'decoder.layers.0.src_trg_att.k_layer.weight', 'decoder.layers.0.src_trg_att.output_layer.bias', 'decoder.layers.0.src_trg_att.output_layer.weight', 'decoder.layers.0.src_trg_att.q_layer.bias', 'decoder.layers.0.src_trg_att.q_layer.weight', 'decoder.layers.0.src_trg_att.v_layer.bias', 'decoder.layers.0.src_trg_att.v_layer.weight', 'decoder.layers.0.trg_trg_att.k_layer.bias', 'decoder.layers.0.trg_trg_att.k_layer.weight', 'decoder.layers.0.trg_trg_att.output_layer.bias', 'decoder.layers.0.trg_trg_att.output_layer.weight', 'decoder.layers.0.trg_trg_att.q_layer.bias', 'decoder.layers.0.trg_trg_att.q_layer.weight', 'decoder.layers.0.trg_trg_att.v_layer.bias', 'decoder.layers.0.trg_trg_att.v_layer.weight', 'decoder.layers.0.x_layer_norm.bias', 'decoder.layers.0.x_layer_norm.weight', 'decoder.layers.1.dec_layer_norm.bias', 'decoder.layers.1.dec_layer_norm.weight', 'decoder.layers.1.feed_forward.layer_norm.bias', 'decoder.layers.1.feed_forward.layer_norm.weight', 'decoder.layers.1.feed_forward.pwff_layer.0.bias', 'decoder.layers.1.feed_forward.pwff_layer.0.weight', 'decoder.layers.1.feed_forward.pwff_layer.3.bias', 'decoder.layers.1.feed_forward.pwff_layer.3.weight', 'decoder.layers.1.src_trg_att.k_layer.bias', 'decoder.layers.1.src_trg_att.k_layer.weight', 'decoder.layers.1.src_trg_att.output_layer.bias', 'decoder.layers.1.src_trg_att.output_layer.weight', 'decoder.layers.1.src_trg_att.q_layer.bias', 'decoder.layers.1.src_trg_att.q_layer.weight', 'decoder.layers.1.src_trg_att.v_layer.bias', 'decoder.layers.1.src_trg_att.v_layer.weight', 'decoder.layers.1.trg_trg_att.k_layer.bias', 'decoder.layers.1.trg_trg_att.k_layer.weight', 'decoder.layers.1.trg_trg_att.output_layer.bias', 'decoder.layers.1.trg_trg_att.output_layer.weight', 'decoder.layers.1.trg_trg_att.q_layer.bias', 'decoder.layers.1.trg_trg_att.q_layer.weight', 'decoder.layers.1.trg_trg_att.v_layer.bias', 'decoder.layers.1.trg_trg_att.v_layer.weight', 'decoder.layers.1.x_layer_norm.bias', 'decoder.layers.1.x_layer_norm.weight', 'decoder.layers.2.dec_layer_norm.bias', 'decoder.layers.2.dec_layer_norm.weight', 'decoder.layers.2.feed_forward.layer_norm.bias', 'decoder.layers.2.feed_forward.layer_norm.weight', 'decoder.layers.2.feed_forward.pwff_layer.0.bias', 'decoder.layers.2.feed_forward.pwff_layer.0.weight', 'decoder.layers.2.feed_forward.pwff_layer.3.bias', 'decoder.layers.2.feed_forward.pwff_layer.3.weight', 'decoder.layers.2.src_trg_att.k_layer.bias', 'decoder.layers.2.src_trg_att.k_layer.weight', 'decoder.layers.2.src_trg_att.output_layer.bias', 'decoder.layers.2.src_trg_att.output_layer.weight', 'decoder.layers.2.src_trg_att.q_layer.bias', 'decoder.layers.2.src_trg_att.q_layer.weight', 'decoder.layers.2.src_trg_att.v_layer.bias', 'decoder.layers.2.src_trg_att.v_layer.weight', 'decoder.layers.2.trg_trg_att.k_layer.bias', 'decoder.layers.2.trg_trg_att.k_layer.weight', 'decoder.layers.2.trg_trg_att.output_layer.bias', 'decoder.layers.2.trg_trg_att.output_layer.weight', 'decoder.layers.2.trg_trg_att.q_layer.bias', 'decoder.layers.2.trg_trg_att.q_layer.weight', 'decoder.layers.2.trg_trg_att.v_layer.bias', 'decoder.layers.2.trg_trg_att.v_layer.weight', 'decoder.layers.2.x_layer_norm.bias', 'decoder.layers.2.x_layer_norm.weight', 'decoder.layers.3.dec_layer_norm.bias', 'decoder.layers.3.dec_layer_norm.weight', 'decoder.layers.3.feed_forward.layer_norm.bias', 'decoder.layers.3.feed_forward.layer_norm.weight', 'decoder.layers.3.feed_forward.pwff_layer.0.bias', 'decoder.layers.3.feed_forward.pwff_layer.0.weight', 'decoder.layers.3.feed_forward.pwff_layer.3.bias', 'decoder.layers.3.feed_forward.pwff_layer.3.weight', 'decoder.layers.3.src_trg_att.k_layer.bias', 'decoder.layers.3.src_trg_att.k_layer.weight', 'decoder.layers.3.src_trg_att.output_layer.bias', 'decoder.layers.3.src_trg_att.output_layer.weight', 'decoder.layers.3.src_trg_att.q_layer.bias', 'decoder.layers.3.src_trg_att.q_layer.weight', 'decoder.layers.3.src_trg_att.v_layer.bias', 'decoder.layers.3.src_trg_att.v_layer.weight', 'decoder.layers.3.trg_trg_att.k_layer.bias', 'decoder.layers.3.trg_trg_att.k_layer.weight', 'decoder.layers.3.trg_trg_att.output_layer.bias', 'decoder.layers.3.trg_trg_att.output_layer.weight', 'decoder.layers.3.trg_trg_att.q_layer.bias', 'decoder.layers.3.trg_trg_att.q_layer.weight', 'decoder.layers.3.trg_trg_att.v_layer.bias', 'decoder.layers.3.trg_trg_att.v_layer.weight', 'decoder.layers.3.x_layer_norm.bias', 'decoder.layers.3.x_layer_norm.weight', 'decoder.layers.4.dec_layer_norm.bias', 'decoder.layers.4.dec_layer_norm.weight', 'decoder.layers.4.feed_forward.layer_norm.bias', 'decoder.layers.4.feed_forward.layer_norm.weight', 'decoder.layers.4.feed_forward.pwff_layer.0.bias', 'decoder.layers.4.feed_forward.pwff_layer.0.weight', 'decoder.layers.4.feed_forward.pwff_layer.3.bias', 'decoder.layers.4.feed_forward.pwff_layer.3.weight', 'decoder.layers.4.src_trg_att.k_layer.bias', 'decoder.layers.4.src_trg_att.k_layer.weight', 'decoder.layers.4.src_trg_att.output_layer.bias', 'decoder.layers.4.src_trg_att.output_layer.weight', 'decoder.layers.4.src_trg_att.q_layer.bias', 'decoder.layers.4.src_trg_att.q_layer.weight', 'decoder.layers.4.src_trg_att.v_layer.bias', 'decoder.layers.4.src_trg_att.v_layer.weight', 'decoder.layers.4.trg_trg_att.k_layer.bias', 'decoder.layers.4.trg_trg_att.k_layer.weight', 'decoder.layers.4.trg_trg_att.output_layer.bias', 'decoder.layers.4.trg_trg_att.output_layer.weight', 'decoder.layers.4.trg_trg_att.q_layer.bias', 'decoder.layers.4.trg_trg_att.q_layer.weight', 'decoder.layers.4.trg_trg_att.v_layer.bias', 'decoder.layers.4.trg_trg_att.v_layer.weight', 'decoder.layers.4.x_layer_norm.bias', 'decoder.layers.4.x_layer_norm.weight', 'decoder.layers.5.dec_layer_norm.bias', 'decoder.layers.5.dec_layer_norm.weight', 'decoder.layers.5.feed_forward.layer_norm.bias', 'decoder.layers.5.feed_forward.layer_norm.weight', 'decoder.layers.5.feed_forward.pwff_layer.0.bias', 'decoder.layers.5.feed_forward.pwff_layer.0.weight', 'decoder.layers.5.feed_forward.pwff_layer.3.bias', 'decoder.layers.5.feed_forward.pwff_layer.3.weight', 'decoder.layers.5.src_trg_att.k_layer.bias', 'decoder.layers.5.src_trg_att.k_layer.weight', 'decoder.layers.5.src_trg_att.output_layer.bias', 'decoder.layers.5.src_trg_att.output_layer.weight', 'decoder.layers.5.src_trg_att.q_layer.bias', 'decoder.layers.5.src_trg_att.q_layer.weight', 'decoder.layers.5.src_trg_att.v_layer.bias', 'decoder.layers.5.src_trg_att.v_layer.weight', 'decoder.layers.5.trg_trg_att.k_layer.bias', 'decoder.layers.5.trg_trg_att.k_layer.weight', 'decoder.layers.5.trg_trg_att.output_layer.bias', 'decoder.layers.5.trg_trg_att.output_layer.weight', 'decoder.layers.5.trg_trg_att.q_layer.bias', 'decoder.layers.5.trg_trg_att.q_layer.weight', 'decoder.layers.5.trg_trg_att.v_layer.bias', 'decoder.layers.5.trg_trg_att.v_layer.weight', 'decoder.layers.5.x_layer_norm.bias', 'decoder.layers.5.x_layer_norm.weight', 'encoder.layer_norm.bias', 'encoder.layer_norm.weight', 'encoder.layers.0.feed_forward.layer_norm.bias', 'encoder.layers.0.feed_forward.layer_norm.weight', 'encoder.layers.0.feed_forward.pwff_layer.0.bias', 'encoder.layers.0.feed_forward.pwff_layer.0.weight', 'encoder.layers.0.feed_forward.pwff_layer.3.bias', 'encoder.layers.0.feed_forward.pwff_layer.3.weight', 'encoder.layers.0.layer_norm.bias', 'encoder.layers.0.layer_norm.weight', 'encoder.layers.0.src_src_att.k_layer.bias', 'encoder.layers.0.src_src_att.k_layer.weight', 'encoder.layers.0.src_src_att.output_layer.bias', 'encoder.layers.0.src_src_att.output_layer.weight', 'encoder.layers.0.src_src_att.q_layer.bias', 'encoder.layers.0.src_src_att.q_layer.weight', 'encoder.layers.0.src_src_att.v_layer.bias', 'encoder.layers.0.src_src_att.v_layer.weight', 'encoder.layers.1.feed_forward.layer_norm.bias', 'encoder.layers.1.feed_forward.layer_norm.weight', 'encoder.layers.1.feed_forward.pwff_layer.0.bias', 'encoder.layers.1.feed_forward.pwff_layer.0.weight', 'encoder.layers.1.feed_forward.pwff_layer.3.bias', 'encoder.layers.1.feed_forward.pwff_layer.3.weight', 'encoder.layers.1.layer_norm.bias', 'encoder.layers.1.layer_norm.weight', 'encoder.layers.1.src_src_att.k_layer.bias', 'encoder.layers.1.src_src_att.k_layer.weight', 'encoder.layers.1.src_src_att.output_layer.bias', 'encoder.layers.1.src_src_att.output_layer.weight', 'encoder.layers.1.src_src_att.q_layer.bias', 'encoder.layers.1.src_src_att.q_layer.weight', 'encoder.layers.1.src_src_att.v_layer.bias', 'encoder.layers.1.src_src_att.v_layer.weight', 'encoder.layers.2.feed_forward.layer_norm.bias', 'encoder.layers.2.feed_forward.layer_norm.weight', 'encoder.layers.2.feed_forward.pwff_layer.0.bias', 'encoder.layers.2.feed_forward.pwff_layer.0.weight', 'encoder.layers.2.feed_forward.pwff_layer.3.bias', 'encoder.layers.2.feed_forward.pwff_layer.3.weight', 'encoder.layers.2.layer_norm.bias', 'encoder.layers.2.layer_norm.weight', 'encoder.layers.2.src_src_att.k_layer.bias', 'encoder.layers.2.src_src_att.k_layer.weight', 'encoder.layers.2.src_src_att.output_layer.bias', 'encoder.layers.2.src_src_att.output_layer.weight', 'encoder.layers.2.src_src_att.q_layer.bias', 'encoder.layers.2.src_src_att.q_layer.weight', 'encoder.layers.2.src_src_att.v_layer.bias', 'encoder.layers.2.src_src_att.v_layer.weight', 'encoder.layers.3.feed_forward.layer_norm.bias', 'encoder.layers.3.feed_forward.layer_norm.weight', 'encoder.layers.3.feed_forward.pwff_layer.0.bias', 'encoder.layers.3.feed_forward.pwff_layer.0.weight', 'encoder.layers.3.feed_forward.pwff_layer.3.bias', 'encoder.layers.3.feed_forward.pwff_layer.3.weight', 'encoder.layers.3.layer_norm.bias', 'encoder.layers.3.layer_norm.weight', 'encoder.layers.3.src_src_att.k_layer.bias', 'encoder.layers.3.src_src_att.k_layer.weight', 'encoder.layers.3.src_src_att.output_layer.bias', 'encoder.layers.3.src_src_att.output_layer.weight', 'encoder.layers.3.src_src_att.q_layer.bias', 'encoder.layers.3.src_src_att.q_layer.weight', 'encoder.layers.3.src_src_att.v_layer.bias', 'encoder.layers.3.src_src_att.v_layer.weight', 'encoder.layers.4.feed_forward.layer_norm.bias', 'encoder.layers.4.feed_forward.layer_norm.weight', 'encoder.layers.4.feed_forward.pwff_layer.0.bias', 'encoder.layers.4.feed_forward.pwff_layer.0.weight', 'encoder.layers.4.feed_forward.pwff_layer.3.bias', 'encoder.layers.4.feed_forward.pwff_layer.3.weight', 'encoder.layers.4.layer_norm.bias', 'encoder.layers.4.layer_norm.weight', 'encoder.layers.4.src_src_att.k_layer.bias', 'encoder.layers.4.src_src_att.k_layer.weight', 'encoder.layers.4.src_src_att.output_layer.bias', 'encoder.layers.4.src_src_att.output_layer.weight', 'encoder.layers.4.src_src_att.q_layer.bias', 'encoder.layers.4.src_src_att.q_layer.weight', 'encoder.layers.4.src_src_att.v_layer.bias', 'encoder.layers.4.src_src_att.v_layer.weight', 'encoder.layers.5.feed_forward.layer_norm.bias', 'encoder.layers.5.feed_forward.layer_norm.weight', 'encoder.layers.5.feed_forward.pwff_layer.0.bias', 'encoder.layers.5.feed_forward.pwff_layer.0.weight', 'encoder.layers.5.feed_forward.pwff_layer.3.bias', 'encoder.layers.5.feed_forward.pwff_layer.3.weight', 'encoder.layers.5.layer_norm.bias', 'encoder.layers.5.layer_norm.weight', 'encoder.layers.5.src_src_att.k_layer.bias', 'encoder.layers.5.src_src_att.k_layer.weight', 'encoder.layers.5.src_src_att.output_layer.bias', 'encoder.layers.5.src_src_att.output_layer.weight', 'encoder.layers.5.src_src_att.q_layer.bias', 'encoder.layers.5.src_src_att.q_layer.weight', 'encoder.layers.5.src_src_att.v_layer.bias', 'encoder.layers.5.src_src_att.v_layer.weight', 'src_embed.lut.weight']\n", "2020-02-12 07:57:37,011 cfg.name : enddn_transformer\n", "2020-02-12 07:57:37,011 cfg.data.src : en\n", "2020-02-12 07:57:37,012 cfg.data.trg : ddn\n", "2020-02-12 07:57:37,012 cfg.data.train : data/enddn/train.bpe\n", "2020-02-12 07:57:37,012 cfg.data.dev : data/enddn/dev.bpe\n", "2020-02-12 07:57:37,012 cfg.data.test : data/enddn/test.bpe\n", "2020-02-12 07:57:37,012 cfg.data.level : bpe\n", "2020-02-12 07:57:37,012 cfg.data.lowercase : False\n", "2020-02-12 07:57:37,012 cfg.data.max_sent_length : 100\n", "2020-02-12 07:57:37,012 cfg.data.src_vocab : data/enddn/vocab.txt\n", "2020-02-12 07:57:37,012 cfg.data.trg_vocab : data/enddn/vocab.txt\n", "2020-02-12 07:57:37,012 cfg.testing.beam_size : 5\n", "2020-02-12 07:57:37,012 cfg.testing.alpha : 1.0\n", "2020-02-12 07:57:37,012 cfg.training.random_seed : 42\n", "2020-02-12 07:57:37,012 cfg.training.optimizer : adam\n", "2020-02-12 07:57:37,013 cfg.training.normalization : tokens\n", "2020-02-12 07:57:37,013 cfg.training.adam_betas : [0.9, 0.999]\n", "2020-02-12 07:57:37,013 cfg.training.scheduling : plateau\n", "2020-02-12 07:57:37,013 cfg.training.patience : 5\n", "2020-02-12 07:57:37,013 cfg.training.learning_rate_factor : 0.5\n", "2020-02-12 07:57:37,013 cfg.training.learning_rate_warmup : 1000\n", "2020-02-12 07:57:37,013 cfg.training.decrease_factor : 0.7\n", "2020-02-12 07:57:37,013 cfg.training.loss : crossentropy\n", "2020-02-12 07:57:37,013 cfg.training.learning_rate : 0.0003\n", "2020-02-12 07:57:37,013 cfg.training.learning_rate_min : 1e-08\n", "2020-02-12 07:57:37,013 cfg.training.weight_decay : 0.0\n", "2020-02-12 07:57:37,013 cfg.training.label_smoothing : 0.1\n", "2020-02-12 07:57:37,013 cfg.training.batch_size : 4096\n", "2020-02-12 07:57:37,013 cfg.training.batch_type : token\n", "2020-02-12 07:57:37,013 cfg.training.eval_batch_size : 3600\n", "2020-02-12 07:57:37,013 cfg.training.eval_batch_type : token\n", "2020-02-12 07:57:37,013 cfg.training.batch_multiplier : 1\n", "2020-02-12 07:57:37,013 cfg.training.early_stopping_metric : ppl\n", "2020-02-12 07:57:37,013 cfg.training.epochs : 100\n", "2020-02-12 07:57:37,013 cfg.training.validation_freq : 1000\n", "2020-02-12 07:57:37,013 cfg.training.logging_freq : 100\n", "2020-02-12 07:57:37,013 cfg.training.eval_metric : bleu\n", "2020-02-12 07:57:37,014 cfg.training.model_dir : models/enddn_transformer\n", "2020-02-12 07:57:37,014 cfg.training.overwrite : False\n", "2020-02-12 07:57:37,014 cfg.training.shuffle : True\n", "2020-02-12 07:57:37,014 cfg.training.use_cuda : True\n", "2020-02-12 07:57:37,014 cfg.training.max_output_length : 100\n", "2020-02-12 07:57:37,014 cfg.training.print_valid_sents : [0, 1, 2, 3]\n", "2020-02-12 07:57:37,014 cfg.training.keep_last_ckpts : 3\n", "2020-02-12 07:57:37,014 cfg.model.initializer : xavier\n", "2020-02-12 07:57:37,014 cfg.model.bias_initializer : zeros\n", "2020-02-12 07:57:37,014 cfg.model.init_gain : 1.0\n", "2020-02-12 07:57:37,014 cfg.model.embed_initializer : xavier\n", "2020-02-12 07:57:37,014 cfg.model.embed_init_gain : 1.0\n", "2020-02-12 07:57:37,014 cfg.model.tied_embeddings : True\n", "2020-02-12 07:57:37,014 cfg.model.tied_softmax : True\n", "2020-02-12 07:57:37,014 cfg.model.encoder.type : transformer\n", "2020-02-12 07:57:37,014 cfg.model.encoder.num_layers : 6\n", "2020-02-12 07:57:37,014 cfg.model.encoder.num_heads : 4\n", "2020-02-12 07:57:37,014 cfg.model.encoder.embeddings.embedding_dim : 256\n", "2020-02-12 07:57:37,014 cfg.model.encoder.embeddings.scale : True\n", "2020-02-12 07:57:37,014 cfg.model.encoder.embeddings.dropout : 0.2\n", "2020-02-12 07:57:37,014 cfg.model.encoder.hidden_size : 256\n", "2020-02-12 07:57:37,015 cfg.model.encoder.ff_size : 1024\n", "2020-02-12 07:57:37,015 cfg.model.encoder.dropout : 0.3\n", "2020-02-12 07:57:37,015 cfg.model.decoder.type : transformer\n", "2020-02-12 07:57:37,015 cfg.model.decoder.num_layers : 6\n", "2020-02-12 07:57:37,015 cfg.model.decoder.num_heads : 4\n", "2020-02-12 07:57:37,015 cfg.model.decoder.embeddings.embedding_dim : 256\n", "2020-02-12 07:57:37,015 cfg.model.decoder.embeddings.scale : True\n", "2020-02-12 07:57:37,015 cfg.model.decoder.embeddings.dropout : 0.2\n", "2020-02-12 07:57:37,015 cfg.model.decoder.hidden_size : 256\n", "2020-02-12 07:57:37,015 cfg.model.decoder.ff_size : 1024\n", "2020-02-12 07:57:37,015 cfg.model.decoder.dropout : 0.3\n", "2020-02-12 07:57:37,015 Data set sizes: \n", "\ttrain 6937,\n", "\tvalid 1000,\n", "\ttest 165\n", "2020-02-12 07:57:37,015 First training example:\n", "\t[SRC] and shall come forth to decei@@ ve the nations which are in the four cor@@ n@@ ers of the earth, Go@@ g and Ma@@ go@@ g@@ , to gather them together to the war@@ : the number of whom is as the sand of the sea@@ .\n", "\t[TRG] À kɑɑ hunu kɑ hɑndunyɑ dimi yom kɑ ǹ goono hɑndunyɑ cɛn@@ jɛ tɑɑci gɑɑ dɛr@@ ɑndi, wɑtom G@@ ɔ@@ gu ndɑ Mɑ@@ g@@ ɔ@@ gu. À gɑ ǹ meigu wɑngu tɛyom sɛ. Ǹ bɑyom bisɑ tɛku tɑɑ@@ si.\n", "2020-02-12 07:57:37,015 First 10 words (src): (0) (1) (2) (3) (4) kɑ (5) the (6) ɑ̀ (7) and (8) yom (9) of\n", "2020-02-12 07:57:37,016 First 10 words (trg): (0) (1) (2) (3) (4) kɑ (5) the (6) ɑ̀ (7) and (8) yom (9) of\n", "2020-02-12 07:57:37,016 Number of Src words (types): 4072\n", "2020-02-12 07:57:37,016 Number of Trg words (types): 4072\n", "2020-02-12 07:57:37,016 Model(\n", "\tencoder=TransformerEncoder(num_layers=6, num_heads=4),\n", "\tdecoder=TransformerDecoder(num_layers=6, num_heads=4),\n", "\tsrc_embed=Embeddings(embedding_dim=256, vocab_size=4072),\n", "\ttrg_embed=Embeddings(embedding_dim=256, vocab_size=4072))\n", "2020-02-12 07:57:37,020 EPOCH 1\n", "2020-02-12 07:57:49,851 Epoch 1: total training loss 466.71\n", "2020-02-12 07:57:49,851 EPOCH 2\n", "2020-02-12 07:57:52,016 Epoch 2 Step: 100 Batch Loss: 5.053507 Tokens per Sec: 16552, Lr: 0.000300\n", "2020-02-12 07:58:02,209 Epoch 2: total training loss 427.56\n", "2020-02-12 07:58:02,210 EPOCH 3\n", "2020-02-12 07:58:06,583 Epoch 3 Step: 200 Batch Loss: 4.733194 Tokens per Sec: 16758, Lr: 0.000300\n", "2020-02-12 07:58:14,748 Epoch 3: total training loss 401.30\n", "2020-02-12 07:58:14,748 EPOCH 4\n", "2020-02-12 07:58:21,509 Epoch 4 Step: 300 Batch Loss: 4.482025 Tokens per Sec: 15946, Lr: 0.000300\n", "2020-02-12 07:58:27,645 Epoch 4: total training loss 376.97\n", "2020-02-12 07:58:27,646 EPOCH 5\n", "2020-02-12 07:58:36,667 Epoch 5 Step: 400 Batch Loss: 4.369053 Tokens per Sec: 16852, Lr: 0.000300\n", "2020-02-12 07:58:40,237 Epoch 5: total training loss 357.45\n", "2020-02-12 07:58:40,237 EPOCH 6\n", "2020-02-12 07:58:51,728 Epoch 6 Step: 500 Batch Loss: 4.072609 Tokens per Sec: 16318, Lr: 0.000300\n", "2020-02-12 07:58:53,063 Epoch 6: total training loss 350.58\n", "2020-02-12 07:58:53,063 EPOCH 7\n", "2020-02-12 07:59:06,112 Epoch 7: total training loss 343.65\n", "2020-02-12 07:59:06,113 EPOCH 8\n", "2020-02-12 07:59:06,921 Epoch 8 Step: 600 Batch Loss: 3.877546 Tokens per Sec: 15682, Lr: 0.000300\n", "2020-02-12 07:59:19,489 Epoch 8: total training loss 333.49\n", "2020-02-12 07:59:19,489 EPOCH 9\n", "2020-02-12 07:59:22,533 Epoch 9 Step: 700 Batch Loss: 3.790495 Tokens per Sec: 15575, Lr: 0.000300\n", "2020-02-12 07:59:32,708 Epoch 9: total training loss 323.89\n", "2020-02-12 07:59:32,709 EPOCH 10\n", "2020-02-12 07:59:37,884 Epoch 10 Step: 800 Batch Loss: 3.614108 Tokens per Sec: 15893, Lr: 0.000300\n", "2020-02-12 07:59:45,831 Epoch 10: total training loss 311.51\n", "2020-02-12 07:59:45,831 EPOCH 11\n", "2020-02-12 07:59:53,157 Epoch 11 Step: 900 Batch Loss: 3.517627 Tokens per Sec: 16008, Lr: 0.000300\n", "2020-02-12 07:59:58,929 Epoch 11: total training loss 303.86\n", "2020-02-12 07:59:58,929 EPOCH 12\n", "2020-02-12 08:00:08,729 Epoch 12 Step: 1000 Batch Loss: 3.723745 Tokens per Sec: 15648, Lr: 0.000300\n", "2020-02-12 08:00:51,979 Hooray! New best validation result [ppl]!\n", "2020-02-12 08:00:51,980 Saving new checkpoint.\n", "2020-02-12 08:00:52,225 Example #0\n", "2020-02-12 08:00:52,227 \tSource: I thank him that enabled me, even Christ Jesus our Lord, for that he counted me faithful, appointing me to his service;\n", "2020-02-12 08:00:52,227 \tReference: A go sɑɑbu i Kpe Yesu Mɛsiyɑ sɛ, ngɑ kɑ ɑ̀ nɑ ɑ no gɑɑbi. A gɑ kɑ ɑ̀ sɑɑbu domi ɑ̀ nɑ ɑ lɑsɑbu nɑɑnekpɛ kɑ ɑ dɑm ngɑ gbei kunɑ.\n", "2020-02-12 08:00:52,227 \tHypothesis: A go kɑ ɑ mɑɑ ɑ sɛ ɑ go kɑ ɑ mɑɑ ɑ sɛ ndɑ ɑ go kɑ ɑ̀ ci ɑ Bɑɑbɑ kɑ ɑ̀ go kɑ ɑ̀ go kɑ ɑ̀ go kɑ ɑ dɑm ɑ sɛ.\n", "2020-02-12 08:00:52,227 Example #1\n", "2020-02-12 08:00:52,228 \tSource: Now lettest thou thy servant depart, Lord, According to thy word, in peace;\n", "2020-02-12 08:00:52,228 \tReference: Mɑɑsɑnkulu Kpe, n mɑ tu n bɑnyɑ mɑ kpei ndɑ bɑɑni zɑngɑ n Sendɑ cii.\n", "2020-02-12 08:00:52,228 \tHypothesis: N mɑ n mɑ n mɑ n mɑ n mɑ n mɑ n mɑ n mɑ n mɑ n mɑ n mɑ n mɑ n mɑ n mɑ n mɑ n sɛ.\n", "2020-02-12 08:00:52,228 Example #2\n", "2020-02-12 08:00:52,228 \tSource: if so be that God is one, and he shall justify the circumcision by faith, and the uncircumcision through faith.\n", "2020-02-12 08:00:52,229 \tReference: Ikpɛ fɔlɔnku yɑ gɑ bɑnguize yom cɛɑndi susu nɑɑne gɑɑ. À go zɑm kɑ dɑmbɑnguize yom mo cɛɑndi susu nɑɑne gɑɑ.\n", "2020-02-12 08:00:52,229 \tHypothesis: Ikpɛ nɑ ɑ̀ tɛ ndɑ Ikpɛ nɑ ɑ̀ tɛ ndɑ ɑ̀ sɛ ndɑ ɑ̀ mɑ ci Ikpɛ dɔntɔneize yom kɑ ǹ go kɑ ɑ̀ ci Ikpɛ nɑ ɑ̀ tɛ ndɑ ɑ̀ sɛ.\n", "2020-02-12 08:00:52,229 Example #3\n", "2020-02-12 08:00:52,229 \tSource: And from that city many of the Samaritans believed on him because of the word of the woman, who testified, He told me all things that ever I did.\n", "2020-02-12 08:00:52,229 \tReference: Wɑngɑrɑ ngɑ di, Sɑmɑriɑncɛ boobo nɑɑne Yesu gɑɑ weibɔrɔ di sendɑ sɑbu sɛ. Weibɔrɔ di tɛ sɛdɑ kɑ cii: Hɛ kulu kɑ ɑ jinɑ kɑ tɛ, ɑ̀ nɑ ɑ̀ cii ɑ sɛ.\n", "2020-02-12 08:00:52,229 \tHypothesis: À nɑ ǹ dɑm ǹ mɑ kpei kɑ cii: A go kɑ ɑ̀ tɛ hɛ kɑ ɑ̀ go kɑ ɑ̀ go kɑ ɑ̀ go kɑ ɑ̀ dɑm ɑ sɛ.\n", "2020-02-12 08:00:52,229 Validation result (greedy) at epoch 12, step 1000: bleu: 2.25, loss: 108241.0781, ppl: 33.3947, duration: 43.5003s\n", "2020-02-12 08:00:55,834 Epoch 12: total training loss 301.16\n", "2020-02-12 08:00:55,834 EPOCH 13\n", "2020-02-12 08:01:07,754 Epoch 13 Step: 1100 Batch Loss: 3.373813 Tokens per Sec: 15904, Lr: 0.000300\n", "2020-02-12 08:01:08,991 Epoch 13: total training loss 290.57\n", "2020-02-12 08:01:08,991 EPOCH 14\n", "2020-02-12 08:01:21,890 Epoch 14: total training loss 284.38\n", "2020-02-12 08:01:21,890 EPOCH 15\n", "2020-02-12 08:01:22,940 Epoch 15 Step: 1200 Batch Loss: 3.351792 Tokens per Sec: 15095, Lr: 0.000300\n", "2020-02-12 08:01:34,859 Epoch 15: total training loss 283.04\n", "2020-02-12 08:01:34,859 EPOCH 16\n", "2020-02-12 08:01:38,137 Epoch 16 Step: 1300 Batch Loss: 3.275927 Tokens per Sec: 15668, Lr: 0.000300\n", "2020-02-12 08:01:48,134 Epoch 16: total training loss 276.65\n", "2020-02-12 08:01:48,134 EPOCH 17\n", "2020-02-12 08:01:53,480 Epoch 17 Step: 1400 Batch Loss: 3.273901 Tokens per Sec: 16228, Lr: 0.000300\n", "2020-02-12 08:02:01,271 Epoch 17: total training loss 271.29\n", "2020-02-12 08:02:01,271 EPOCH 18\n", "2020-02-12 08:02:08,967 Epoch 18 Step: 1500 Batch Loss: 3.121495 Tokens per Sec: 15736, Lr: 0.000300\n", "2020-02-12 08:02:14,515 Epoch 18: total training loss 262.37\n", "2020-02-12 08:02:14,515 EPOCH 19\n", "2020-02-12 08:02:24,482 Epoch 19 Step: 1600 Batch Loss: 2.943789 Tokens per Sec: 15777, Lr: 0.000300\n", "2020-02-12 08:02:27,735 Epoch 19: total training loss 256.87\n", "2020-02-12 08:02:27,735 EPOCH 20\n", "2020-02-12 08:02:39,900 Epoch 20 Step: 1700 Batch Loss: 3.001261 Tokens per Sec: 15690, Lr: 0.000300\n", "2020-02-12 08:02:41,046 Epoch 20: total training loss 255.69\n", "2020-02-12 08:02:41,047 EPOCH 21\n", "2020-02-12 08:02:54,288 Epoch 21: total training loss 247.77\n", "2020-02-12 08:02:54,288 EPOCH 22\n", "2020-02-12 08:02:55,542 Epoch 22 Step: 1800 Batch Loss: 2.730506 Tokens per Sec: 15002, Lr: 0.000300\n", "2020-02-12 08:03:07,423 Epoch 22: total training loss 246.18\n", "2020-02-12 08:03:07,423 EPOCH 23\n", "2020-02-12 08:03:10,863 Epoch 23 Step: 1900 Batch Loss: 2.849777 Tokens per Sec: 15479, Lr: 0.000300\n", "2020-02-12 08:03:20,626 Epoch 23: total training loss 238.07\n", "2020-02-12 08:03:20,626 EPOCH 24\n", "2020-02-12 08:03:26,324 Epoch 24 Step: 2000 Batch Loss: 2.248133 Tokens per Sec: 15810, Lr: 0.000300\n", "2020-02-12 08:03:49,547 Hooray! New best validation result [ppl]!\n", "2020-02-12 08:03:49,547 Saving new checkpoint.\n", "2020-02-12 08:03:49,797 Example #0\n", "2020-02-12 08:03:49,798 \tSource: I thank him that enabled me, even Christ Jesus our Lord, for that he counted me faithful, appointing me to his service;\n", "2020-02-12 08:03:49,798 \tReference: A go sɑɑbu i Kpe Yesu Mɛsiyɑ sɛ, ngɑ kɑ ɑ̀ nɑ ɑ no gɑɑbi. A gɑ kɑ ɑ̀ sɑɑbu domi ɑ̀ nɑ ɑ lɑsɑbu nɑɑnekpɛ kɑ ɑ dɑm ngɑ gbei kunɑ.\n", "2020-02-12 08:03:49,798 \tHypothesis: A go kɑ ɑ ŋmɑɑrɛ ɑ sɛ kɑ ɑ nɑ ɑ no i Kpe Yesu Mɛsiyɑ sɑbu sɛ. À nɑ ɑ no himmɑ kɑ ɑ̀ ci ɑ sɛ ndɑ ɑ nyɑize yom.\n", "2020-02-12 08:03:49,798 Example #1\n", "2020-02-12 08:03:49,798 \tSource: Now lettest thou thy servant depart, Lord, According to thy word, in peace;\n", "2020-02-12 08:03:49,799 \tReference: Mɑɑsɑnkulu Kpe, n mɑ tu n bɑnyɑ mɑ kpei ndɑ bɑɑni zɑngɑ n Sendɑ cii.\n", "2020-02-12 08:03:49,799 \tHypothesis: N mɑ n ŋmɔne ibɛrɛ yom cɛɛ kɑ cii: N mɑ n cɛɛ n mɑ n cee yom tɛ n sɛ.\n", "2020-02-12 08:03:49,799 Example #2\n", "2020-02-12 08:03:49,799 \tSource: if so be that God is one, and he shall justify the circumcision by faith, and the uncircumcision through faith.\n", "2020-02-12 08:03:49,799 \tReference: Ikpɛ fɔlɔnku yɑ gɑ bɑnguize yom cɛɑndi susu nɑɑne gɑɑ. À go zɑm kɑ dɑmbɑnguize yom mo cɛɑndi susu nɑɑne gɑɑ.\n", "2020-02-12 08:03:49,799 \tHypothesis: De bɔrɔ kɑ ɑ̀ go nɑɑne Ikpɛ dɔ, ɑ̀ gɑ ɑ̀ cɛɑndi susu fɔndɑ cire ɑmmɑ ɑ̀ si nɑɑne gɑɑ.\n", "2020-02-12 08:03:49,799 Example #3\n", "2020-02-12 08:03:49,800 \tSource: And from that city many of the Samaritans believed on him because of the word of the woman, who testified, He told me all things that ever I did.\n", "2020-02-12 08:03:49,800 \tReference: Wɑngɑrɑ ngɑ di, Sɑmɑriɑncɛ boobo nɑɑne Yesu gɑɑ weibɔrɔ di sendɑ sɑbu sɛ. Weibɔrɔ di tɛ sɛdɑ kɑ cii: Hɛ kulu kɑ ɑ jinɑ kɑ tɛ, ɑ̀ nɑ ɑ̀ cii ɑ sɛ.\n", "2020-02-12 08:03:49,800 \tHypothesis: Sɑɑ kɑ ǹ nɑ gɑrɑndikɔ jinɑ yom di cɛɛ yom nɑ ǹ kulu tɛ kɑ cii: Bɔrɔ kulu kɑ ɑ̀ go mɑɑ ɑ go mɑɑ ngɑ di hɛ yom kulu kɑ ǹ go cii ɑ sɛ.\n", "2020-02-12 08:03:49,800 Validation result (greedy) at epoch 24, step 2000: bleu: 6.63, loss: 93221.4844, ppl: 20.5235, duration: 23.4751s\n", "2020-02-12 08:03:57,263 Epoch 24: total training loss 234.79\n", "2020-02-12 08:03:57,263 EPOCH 25\n", "2020-02-12 08:04:05,133 Epoch 25 Step: 2100 Batch Loss: 2.622887 Tokens per Sec: 16045, Lr: 0.000300\n", "2020-02-12 08:04:10,346 Epoch 25: total training loss 233.20\n", "2020-02-12 08:04:10,346 EPOCH 26\n", "2020-02-12 08:04:20,603 Epoch 26 Step: 2200 Batch Loss: 2.758588 Tokens per Sec: 15640, Lr: 0.000300\n", "2020-02-12 08:04:23,679 Epoch 26: total training loss 229.16\n", "2020-02-12 08:04:23,679 EPOCH 27\n", "2020-02-12 08:04:36,108 Epoch 27 Step: 2300 Batch Loss: 2.634450 Tokens per Sec: 15872, Lr: 0.000300\n", "2020-02-12 08:04:36,885 Epoch 27: total training loss 221.73\n", "2020-02-12 08:04:36,885 EPOCH 28\n", "2020-02-12 08:04:50,022 Epoch 28: total training loss 218.73\n", "2020-02-12 08:04:50,022 EPOCH 29\n", "2020-02-12 08:04:51,624 Epoch 29 Step: 2400 Batch Loss: 2.472899 Tokens per Sec: 15732, Lr: 0.000300\n", "2020-02-12 08:05:03,291 Epoch 29: total training loss 214.40\n", "2020-02-12 08:05:03,292 EPOCH 30\n", "2020-02-12 08:05:07,248 Epoch 30 Step: 2500 Batch Loss: 2.552207 Tokens per Sec: 15732, Lr: 0.000300\n", "2020-02-12 08:05:16,515 Epoch 30: total training loss 211.05\n", "2020-02-12 08:05:16,515 EPOCH 31\n", "2020-02-12 08:05:22,742 Epoch 31 Step: 2600 Batch Loss: 2.506979 Tokens per Sec: 15792, Lr: 0.000300\n", "2020-02-12 08:05:29,954 Epoch 31: total training loss 210.60\n", "2020-02-12 08:05:29,954 EPOCH 32\n", "2020-02-12 08:05:38,419 Epoch 32 Step: 2700 Batch Loss: 2.617370 Tokens per Sec: 15336, Lr: 0.000300\n", "2020-02-12 08:05:43,472 Epoch 32: total training loss 209.21\n", "2020-02-12 08:05:43,473 EPOCH 33\n", "2020-02-12 08:05:54,031 Epoch 33 Step: 2800 Batch Loss: 2.787237 Tokens per Sec: 15432, Lr: 0.000300\n", "2020-02-12 08:05:56,880 Epoch 33: total training loss 203.96\n", "2020-02-12 08:05:56,881 EPOCH 34\n", "2020-02-12 08:06:09,740 Epoch 34 Step: 2900 Batch Loss: 2.269294 Tokens per Sec: 15684, Lr: 0.000300\n", "2020-02-12 08:06:10,197 Epoch 34: total training loss 198.12\n", "2020-02-12 08:06:10,198 EPOCH 35\n", "2020-02-12 08:06:23,531 Epoch 35: total training loss 196.95\n", "2020-02-12 08:06:23,531 EPOCH 36\n", "2020-02-12 08:06:25,268 Epoch 36 Step: 3000 Batch Loss: 2.253644 Tokens per Sec: 15860, Lr: 0.000300\n", "2020-02-12 08:06:53,915 Hooray! New best validation result [ppl]!\n", "2020-02-12 08:06:53,915 Saving new checkpoint.\n", "2020-02-12 08:06:54,305 Example #0\n", "2020-02-12 08:06:54,306 \tSource: I thank him that enabled me, even Christ Jesus our Lord, for that he counted me faithful, appointing me to his service;\n", "2020-02-12 08:06:54,306 \tReference: A go sɑɑbu i Kpe Yesu Mɛsiyɑ sɛ, ngɑ kɑ ɑ̀ nɑ ɑ no gɑɑbi. A gɑ kɑ ɑ̀ sɑɑbu domi ɑ̀ nɑ ɑ lɑsɑbu nɑɑnekpɛ kɑ ɑ dɑm ngɑ gbei kunɑ.\n", "2020-02-12 08:06:54,306 \tHypothesis: A go kɑ ɑ̀ dɑm ɑ bine yom kunɑ kɑ i Kpe Yesu Mɛsiyɑ nɑ ɑ no himmɑ kɑ ɑ̀ ci ɑ gbei yom kɑ ɑ̀ ci ɑ sɛ ndɑ ɑ nyɑize yom sɛ.\n", "2020-02-12 08:06:54,306 Example #1\n", "2020-02-12 08:06:54,306 \tSource: Now lettest thou thy servant depart, Lord, According to thy word, in peace;\n", "2020-02-12 08:06:54,306 \tReference: Mɑɑsɑnkulu Kpe, n mɑ tu n bɑnyɑ mɑ kpei ndɑ bɑɑni zɑngɑ n Sendɑ cii.\n", "2020-02-12 08:06:54,306 \tHypothesis: N mɑ n ŋmɔne ibɛrɛ bei. N mɑ n ŋmɔne ibɛrɛ bei kɑ n go kɑ n sifɑ. N mɑ n bine yom sɔlu.\n", "2020-02-12 08:06:54,306 Example #2\n", "2020-02-12 08:06:54,306 \tSource: if so be that God is one, and he shall justify the circumcision by faith, and the uncircumcision through faith.\n", "2020-02-12 08:06:54,306 \tReference: Ikpɛ fɔlɔnku yɑ gɑ bɑnguize yom cɛɑndi susu nɑɑne gɑɑ. À go zɑm kɑ dɑmbɑnguize yom mo cɛɑndi susu nɑɑne gɑɑ.\n", "2020-02-12 08:06:54,306 \tHypothesis: De bɔrɔ kɑ ɑ̀ go dulum tɛ, Ikpɛ gɑ ɑ̀ cɛɑndi susu cɛɑndi susu fɔndɑ gɑɑ, ɑ̀ gɑ ɑ̀ cɛɑndi susu fɔndɑ tɛgbei yom gɑɑ.\n", "2020-02-12 08:06:54,306 Example #3\n", "2020-02-12 08:06:54,306 \tSource: And from that city many of the Samaritans believed on him because of the word of the woman, who testified, He told me all things that ever I did.\n", "2020-02-12 08:06:54,306 \tReference: Wɑngɑrɑ ngɑ di, Sɑmɑriɑncɛ boobo nɑɑne Yesu gɑɑ weibɔrɔ di sendɑ sɑbu sɛ. Weibɔrɔ di tɛ sɛdɑ kɑ cii: Hɛ kulu kɑ ɑ jinɑ kɑ tɛ, ɑ̀ nɑ ɑ̀ cii ɑ sɛ.\n", "2020-02-12 08:06:54,307 \tHypothesis: Sɑɑ kɑ jiribi boobo goono Sɑmɑri lɑɑbu bɔrɔ boobo nɑɑne ɑ̀ gɑɑ. À nɑ ɑ̀ bei kɑ ɑ̀ nɑ ngɑ bɔm kɑɑtɛrɛ ɑ sɛ.\n", "2020-02-12 08:06:54,307 Validation result (greedy) at epoch 36, step 3000: bleu: 9.22, loss: 87075.9375, ppl: 16.8168, duration: 29.0380s\n", "2020-02-12 08:07:05,785 Epoch 36: total training loss 194.14\n", "2020-02-12 08:07:05,785 EPOCH 37\n", "2020-02-12 08:07:09,763 Epoch 37 Step: 3100 Batch Loss: 2.478496 Tokens per Sec: 15837, Lr: 0.000300\n", "2020-02-12 08:07:18,983 Epoch 37: total training loss 186.80\n", "2020-02-12 08:07:18,983 EPOCH 38\n", "2020-02-12 08:07:25,326 Epoch 38 Step: 3200 Batch Loss: 2.459899 Tokens per Sec: 16005, Lr: 0.000300\n", "2020-02-12 08:07:32,158 Epoch 38: total training loss 187.90\n", "2020-02-12 08:07:32,158 EPOCH 39\n", "2020-02-12 08:07:40,545 Epoch 39 Step: 3300 Batch Loss: 2.147654 Tokens per Sec: 16118, Lr: 0.000300\n", "2020-02-12 08:07:45,210 Epoch 39: total training loss 183.65\n", "2020-02-12 08:07:45,210 EPOCH 40\n", "2020-02-12 08:07:55,968 Epoch 40 Step: 3400 Batch Loss: 2.215834 Tokens per Sec: 15900, Lr: 0.000300\n", "2020-02-12 08:07:58,273 Epoch 40: total training loss 181.06\n", "2020-02-12 08:07:58,273 EPOCH 41\n", "2020-02-12 08:08:11,320 Epoch 41 Step: 3500 Batch Loss: 2.216592 Tokens per Sec: 15814, Lr: 0.000300\n", "2020-02-12 08:08:11,477 Epoch 41: total training loss 179.41\n", "2020-02-12 08:08:11,477 EPOCH 42\n", "2020-02-12 08:08:24,532 Epoch 42: total training loss 176.67\n", "2020-02-12 08:08:24,532 EPOCH 43\n", "2020-02-12 08:08:26,580 Epoch 43 Step: 3600 Batch Loss: 2.267456 Tokens per Sec: 15997, Lr: 0.000300\n", "2020-02-12 08:08:37,597 Epoch 43: total training loss 175.32\n", "2020-02-12 08:08:37,597 EPOCH 44\n", "2020-02-12 08:08:41,765 Epoch 44 Step: 3700 Batch Loss: 2.231358 Tokens per Sec: 15763, Lr: 0.000300\n", "2020-02-12 08:08:50,648 Epoch 44: total training loss 170.17\n", "2020-02-12 08:08:50,648 EPOCH 45\n", "2020-02-12 08:08:56,997 Epoch 45 Step: 3800 Batch Loss: 1.962990 Tokens per Sec: 16110, Lr: 0.000300\n", "2020-02-12 08:09:03,514 Epoch 45: total training loss 168.11\n", "2020-02-12 08:09:03,514 EPOCH 46\n", "2020-02-12 08:09:12,224 Epoch 46 Step: 3900 Batch Loss: 1.920840 Tokens per Sec: 16143, Lr: 0.000300\n", "2020-02-12 08:09:16,514 Epoch 46: total training loss 164.80\n", "2020-02-12 08:09:16,514 EPOCH 47\n", "2020-02-12 08:09:27,503 Epoch 47 Step: 4000 Batch Loss: 2.051774 Tokens per Sec: 16163, Lr: 0.000300\n", "2020-02-12 08:09:50,187 Hooray! New best validation result [ppl]!\n", "2020-02-12 08:09:50,188 Saving new checkpoint.\n", "2020-02-12 08:09:50,454 Example #0\n", "2020-02-12 08:09:50,455 \tSource: I thank him that enabled me, even Christ Jesus our Lord, for that he counted me faithful, appointing me to his service;\n", "2020-02-12 08:09:50,455 \tReference: A go sɑɑbu i Kpe Yesu Mɛsiyɑ sɛ, ngɑ kɑ ɑ̀ nɑ ɑ no gɑɑbi. A gɑ kɑ ɑ̀ sɑɑbu domi ɑ̀ nɑ ɑ lɑsɑbu nɑɑnekpɛ kɑ ɑ dɑm ngɑ gbei kunɑ.\n", "2020-02-12 08:09:50,455 \tHypothesis: A go kɑ ɑ dɑm ɑ bɑndɑ kɑ ɑ nɑ ɑ hɑlɑɑlɑndi Kpe Yesu Mɛsiyɑ gɑɑ. À go kɑ ɑ cɛbɛ yɑ ci ɑ sɛ kɑ ɑ nɑ gbei tɛ ndɑ ɑ sɛ hinɑbunyɑ.\n", "2020-02-12 08:09:50,455 Example #1\n", "2020-02-12 08:09:50,455 \tSource: Now lettest thou thy servant depart, Lord, According to thy word, in peace;\n", "2020-02-12 08:09:50,455 \tReference: Mɑɑsɑnkulu Kpe, n mɑ tu n bɑnyɑ mɑ kpei ndɑ bɑɑni zɑngɑ n Sendɑ cii.\n", "2020-02-12 08:09:50,455 \tHypothesis: N go tirɑ wɔ hɑntum n sɛ kɑ cii: Kpe, n mɑ lɑɑkɑli ndɑ n gɔrɔkɑsine ndɑ n gɑɑbi kɑ ɑ̀ ci n nyɑize lɑɑkɑli kɑne.\n", "2020-02-12 08:09:50,455 Example #2\n", "2020-02-12 08:09:50,455 \tSource: if so be that God is one, and he shall justify the circumcision by faith, and the uncircumcision through faith.\n", "2020-02-12 08:09:50,455 \tReference: Ikpɛ fɔlɔnku yɑ gɑ bɑnguize yom cɛɑndi susu nɑɑne gɑɑ. À go zɑm kɑ dɑmbɑnguize yom mo cɛɑndi susu nɑɑne gɑɑ.\n", "2020-02-12 08:09:50,455 \tHypothesis: Zɑngɑ yɑ no Ikpɛ go bɔrɔ cɛɑndi susu cɛɑndi susu. À gɑ cɛɑndiyom susu cɛɑndi susu gbei tɛyom gɑɑ, nɑɑne kɑ ɑ̀ go cɛɑndiyom susu tɛ cɛɑndiyom susu.\n", "2020-02-12 08:09:50,455 Example #3\n", "2020-02-12 08:09:50,456 \tSource: And from that city many of the Samaritans believed on him because of the word of the woman, who testified, He told me all things that ever I did.\n", "2020-02-12 08:09:50,456 \tReference: Wɑngɑrɑ ngɑ di, Sɑmɑriɑncɛ boobo nɑɑne Yesu gɑɑ weibɔrɔ di sendɑ sɑbu sɛ. Weibɔrɔ di tɛ sɛdɑ kɑ cii: Hɛ kulu kɑ ɑ jinɑ kɑ tɛ, ɑ̀ nɑ ɑ̀ cii ɑ sɛ.\n", "2020-02-12 08:09:50,456 \tHypothesis: Wɑngɑrɑ boobo kɑ ǹ nɑɑne Sɑmɑriɑncɛ yom gɑɑ nɑɑne ɑ̀ gɑɑ. À gɑɑ no bɔrɔ kulu kɑ ɑ̀ go sendi ɑ sɛ ndɑ zɑngɑ ɑ̀ cii ɑ sɛ hɛ kulu kɑ ɑ̀ tɛ.\n", "2020-02-12 08:09:50,456 Validation result (greedy) at epoch 47, step 4000: bleu: 11.29, loss: 85277.0312, ppl: 15.8643, duration: 22.9526s\n", "2020-02-12 08:09:52,574 Epoch 47: total training loss 163.93\n", "2020-02-12 08:09:52,574 EPOCH 48\n", "2020-02-12 08:10:05,768 Epoch 48 Step: 4100 Batch Loss: 1.702314 Tokens per Sec: 15861, Lr: 0.000300\n", "2020-02-12 08:10:05,768 Epoch 48: total training loss 162.85\n", "2020-02-12 08:10:05,769 EPOCH 49\n", "2020-02-12 08:10:18,843 Epoch 49: total training loss 160.63\n", "2020-02-12 08:10:18,843 EPOCH 50\n", "2020-02-12 08:10:21,067 Epoch 50 Step: 4200 Batch Loss: 1.834686 Tokens per Sec: 15999, Lr: 0.000300\n", "2020-02-12 08:10:32,003 Epoch 50: total training loss 155.13\n", "2020-02-12 08:10:32,003 EPOCH 51\n", "2020-02-12 08:10:36,505 Epoch 51 Step: 4300 Batch Loss: 2.050732 Tokens per Sec: 15220, Lr: 0.000300\n", "2020-02-12 08:10:45,399 Epoch 51: total training loss 155.59\n", "2020-02-12 08:10:45,399 EPOCH 52\n", "2020-02-12 08:10:52,175 Epoch 52 Step: 4400 Batch Loss: 1.790398 Tokens per Sec: 15697, Lr: 0.000300\n", "2020-02-12 08:10:58,800 Epoch 52: total training loss 152.99\n", "2020-02-12 08:10:58,800 EPOCH 53\n", "2020-02-12 08:11:07,604 Epoch 53 Step: 4500 Batch Loss: 1.742444 Tokens per Sec: 15682, Lr: 0.000300\n", "2020-02-12 08:11:12,077 Epoch 53: total training loss 150.35\n", "2020-02-12 08:11:12,077 EPOCH 54\n", "2020-02-12 08:11:23,061 Epoch 54 Step: 4600 Batch Loss: 1.742742 Tokens per Sec: 16035, Lr: 0.000300\n", "2020-02-12 08:11:25,161 Epoch 54: total training loss 147.54\n", "2020-02-12 08:11:25,161 EPOCH 55\n", "2020-02-12 08:11:38,167 Epoch 55: total training loss 145.17\n", "2020-02-12 08:11:38,167 EPOCH 56\n", "2020-02-12 08:11:38,322 Epoch 56 Step: 4700 Batch Loss: 1.371213 Tokens per Sec: 14813, Lr: 0.000300\n", "2020-02-12 08:11:51,342 Epoch 56: total training loss 145.02\n", "2020-02-12 08:11:51,342 EPOCH 57\n", "2020-02-12 08:11:53,589 Epoch 57 Step: 4800 Batch Loss: 0.818968 Tokens per Sec: 15337, Lr: 0.000300\n", "2020-02-12 08:12:04,549 Epoch 57: total training loss 140.81\n", "2020-02-12 08:12:04,549 EPOCH 58\n", "2020-02-12 08:12:09,119 Epoch 58 Step: 4900 Batch Loss: 1.726804 Tokens per Sec: 16059, Lr: 0.000300\n", "2020-02-12 08:12:17,724 Epoch 58: total training loss 139.84\n", "2020-02-12 08:12:17,724 EPOCH 59\n", "2020-02-12 08:12:24,476 Epoch 59 Step: 5000 Batch Loss: 1.663464 Tokens per Sec: 16112, Lr: 0.000300\n", "2020-02-12 08:12:44,550 Example #0\n", "2020-02-12 08:12:44,550 \tSource: I thank him that enabled me, even Christ Jesus our Lord, for that he counted me faithful, appointing me to his service;\n", "2020-02-12 08:12:44,550 \tReference: A go sɑɑbu i Kpe Yesu Mɛsiyɑ sɛ, ngɑ kɑ ɑ̀ nɑ ɑ no gɑɑbi. A gɑ kɑ ɑ̀ sɑɑbu domi ɑ̀ nɑ ɑ lɑsɑbu nɑɑnekpɛ kɑ ɑ dɑm ngɑ gbei kunɑ.\n", "2020-02-12 08:12:44,550 \tHypothesis: A go kɑ ɑ̀ dɑm ɑ bɑndɑ Mɛsiyɑ Yesu sɑbu sɛ. A go kɑ ɑ cɛbɛ yɑ nɑɑnekpɛ no zɑmɑ ngɑ yɑ ci ɑ tɑm yom gbei yom sɛ.\n", "2020-02-12 08:12:44,550 Example #1\n", "2020-02-12 08:12:44,550 \tSource: Now lettest thou thy servant depart, Lord, According to thy word, in peace;\n", "2020-02-12 08:12:44,551 \tReference: Mɑɑsɑnkulu Kpe, n mɑ tu n bɑnyɑ mɑ kpei ndɑ bɑɑni zɑngɑ n Sendɑ cii.\n", "2020-02-12 08:12:44,551 \tHypothesis: A nyɑizei, n mɑ wɔne cii ɑ sɛ, Kpei, n mɑ kpei kɑ n bine yeenɑndi.\n", "2020-02-12 08:12:44,551 Example #2\n", "2020-02-12 08:12:44,551 \tSource: if so be that God is one, and he shall justify the circumcision by faith, and the uncircumcision through faith.\n", "2020-02-12 08:12:44,551 \tReference: Ikpɛ fɔlɔnku yɑ gɑ bɑnguize yom cɛɑndi susu nɑɑne gɑɑ. À go zɑm kɑ dɑmbɑnguize yom mo cɛɑndi susu nɑɑne gɑɑ.\n", "2020-02-12 08:12:44,551 \tHypothesis: Zɑngɑ yɑ no Ikpɛ go bɔrɔ fɔ ŋmɑni tɛ, ɑ̀ gɑ kɑ ɑ̀ cɛɑndi susu. À gɑ nɑɑne cini. À gɑ nɑɑne mo cɛyom susu zɑm kɑ nɑɑne cini.\n", "2020-02-12 08:12:44,551 Example #3\n", "2020-02-12 08:12:44,551 \tSource: And from that city many of the Samaritans believed on him because of the word of the woman, who testified, He told me all things that ever I did.\n", "2020-02-12 08:12:44,551 \tReference: Wɑngɑrɑ ngɑ di, Sɑmɑriɑncɛ boobo nɑɑne Yesu gɑɑ weibɔrɔ di sendɑ sɑbu sɛ. Weibɔrɔ di tɛ sɛdɑ kɑ cii: Hɛ kulu kɑ ɑ jinɑ kɑ tɛ, ɑ̀ nɑ ɑ̀ cii ɑ sɛ.\n", "2020-02-12 08:12:44,551 \tHypothesis: Yude lɑɑbu bɔrɔ boobo nɑɑne kɑ ǹ nɑɑne ɑ̀ gɑɑ zɑmɑ ǹ nɑɑne ɑ̀ gɑɑ no ɑ̀ cii ɑ̀ sɛ ndɑ bɔrɔ kulu kɑ ɑ̀ cii ɑ sɛ.\n", "2020-02-12 08:12:44,551 Validation result (greedy) at epoch 59, step 5000: bleu: 12.00, loss: 85901.3047, ppl: 16.1885, duration: 20.0748s\n", "2020-02-12 08:12:50,706 Epoch 59: total training loss 137.53\n", "2020-02-12 08:12:50,706 EPOCH 60\n", "2020-02-12 08:12:59,895 Epoch 60 Step: 5100 Batch Loss: 1.482252 Tokens per Sec: 15654, Lr: 0.000300\n", "2020-02-12 08:13:04,077 Epoch 60: total training loss 137.19\n", "2020-02-12 08:13:04,077 EPOCH 61\n", "2020-02-12 08:13:15,535 Epoch 61 Step: 5200 Batch Loss: 1.831912 Tokens per Sec: 15724, Lr: 0.000300\n", "2020-02-12 08:13:17,416 Epoch 61: total training loss 133.84\n", "2020-02-12 08:13:17,416 EPOCH 62\n", "2020-02-12 08:13:30,686 Epoch 62: total training loss 132.52\n", "2020-02-12 08:13:30,686 EPOCH 63\n", "2020-02-12 08:13:31,028 Epoch 63 Step: 5300 Batch Loss: 1.674448 Tokens per Sec: 15683, Lr: 0.000300\n", "2020-02-12 08:13:43,747 Epoch 63: total training loss 130.11\n", "2020-02-12 08:13:43,747 EPOCH 64\n", "2020-02-12 08:13:46,363 Epoch 64 Step: 5400 Batch Loss: 1.587212 Tokens per Sec: 15789, Lr: 0.000300\n", "2020-02-12 08:13:56,888 Epoch 64: total training loss 128.50\n", "2020-02-12 08:13:56,888 EPOCH 65\n", "2020-02-12 08:14:01,749 Epoch 65 Step: 5500 Batch Loss: 1.394756 Tokens per Sec: 16017, Lr: 0.000300\n", "2020-02-12 08:14:10,042 Epoch 65: total training loss 127.63\n", "2020-02-12 08:14:10,042 EPOCH 66\n", "2020-02-12 08:14:17,078 Epoch 66 Step: 5600 Batch Loss: 1.455463 Tokens per Sec: 16081, Lr: 0.000300\n", "2020-02-12 08:14:23,112 Epoch 66: total training loss 124.27\n", "2020-02-12 08:14:23,112 EPOCH 67\n", "2020-02-12 08:14:32,570 Epoch 67 Step: 5700 Batch Loss: 1.391649 Tokens per Sec: 16040, Lr: 0.000300\n", "2020-02-12 08:14:36,154 Epoch 67: total training loss 121.23\n", "2020-02-12 08:14:36,154 EPOCH 68\n", "2020-02-12 08:14:47,781 Epoch 68 Step: 5800 Batch Loss: 1.611635 Tokens per Sec: 16005, Lr: 0.000300\n", "2020-02-12 08:14:49,192 Epoch 68: total training loss 121.93\n", "2020-02-12 08:14:49,193 EPOCH 69\n", "2020-02-12 08:15:02,240 Epoch 69: total training loss 119.52\n", "2020-02-12 08:15:02,240 EPOCH 70\n", "2020-02-12 08:15:03,184 Epoch 70 Step: 5900 Batch Loss: 1.386215 Tokens per Sec: 16172, Lr: 0.000300\n", "2020-02-12 08:15:15,354 Epoch 70: total training loss 119.11\n", "2020-02-12 08:15:15,354 EPOCH 71\n", "2020-02-12 08:15:18,488 Epoch 71 Step: 6000 Batch Loss: 1.360763 Tokens per Sec: 15807, Lr: 0.000300\n", "2020-02-12 08:15:43,518 Example #0\n", "2020-02-12 08:15:43,519 \tSource: I thank him that enabled me, even Christ Jesus our Lord, for that he counted me faithful, appointing me to his service;\n", "2020-02-12 08:15:43,519 \tReference: A go sɑɑbu i Kpe Yesu Mɛsiyɑ sɛ, ngɑ kɑ ɑ̀ nɑ ɑ no gɑɑbi. A gɑ kɑ ɑ̀ sɑɑbu domi ɑ̀ nɑ ɑ lɑsɑbu nɑɑnekpɛ kɑ ɑ dɑm ngɑ gbei kunɑ.\n", "2020-02-12 08:15:43,519 \tHypothesis: A go kɑ ɑ hɔngɑndi kɑ Yesu Mɛsiyɑ nɑ ɑ no ngɑ suuji sɑbu sɛ. À go kɑ ɑ cɛbɛ no tɑlikɑ yom sɛ kɑ ǹ ci ɑ sɛ hinɑbunutɛrɛ hɛ kɑ ɑ gundɑ ɑ sɛ ndɑ.\n", "2020-02-12 08:15:43,519 Example #1\n", "2020-02-12 08:15:43,519 \tSource: Now lettest thou thy servant depart, Lord, According to thy word, in peace;\n", "2020-02-12 08:15:43,519 \tReference: Mɑɑsɑnkulu Kpe, n mɑ tu n bɑnyɑ mɑ kpei ndɑ bɑɑni zɑngɑ n Sendɑ cii.\n", "2020-02-12 08:15:43,519 \tHypothesis: A nyɑizei, n mɑ wɔne cii ɑ sɛ, Kpei, Setɑm. N mɑ n bine yeenɑndi kɑ n bine yom kɔnkɔm.\n", "2020-02-12 08:15:43,519 Example #2\n", "2020-02-12 08:15:43,519 \tSource: if so be that God is one, and he shall justify the circumcision by faith, and the uncircumcision through faith.\n", "2020-02-12 08:15:43,519 \tReference: Ikpɛ fɔlɔnku yɑ gɑ bɑnguize yom cɛɑndi susu nɑɑne gɑɑ. À go zɑm kɑ dɑmbɑnguize yom mo cɛɑndi susu nɑɑne gɑɑ.\n", "2020-02-12 08:15:43,519 \tHypothesis: Zɑngɑ yɑ no Ikpɛ go hungu, ngɑ kɑ ɑ̀ gɑ cɛɑndi susu. À gɑ bɔrɔ cɛɑndi susu. À gɑ nɑɑne nɑɑne gɑɑ nɑɑne gɑɑ, nɑɑne kɑ ɑ̀ gɑ nɑɑne cini.\n", "2020-02-12 08:15:43,519 Example #3\n", "2020-02-12 08:15:43,519 \tSource: And from that city many of the Samaritans believed on him because of the word of the woman, who testified, He told me all things that ever I did.\n", "2020-02-12 08:15:43,520 \tReference: Wɑngɑrɑ ngɑ di, Sɑmɑriɑncɛ boobo nɑɑne Yesu gɑɑ weibɔrɔ di sendɑ sɑbu sɛ. Weibɔrɔ di tɛ sɛdɑ kɑ cii: Hɛ kulu kɑ ɑ jinɑ kɑ tɛ, ɑ̀ nɑ ɑ̀ cii ɑ sɛ.\n", "2020-02-12 08:15:43,520 \tHypothesis: Zɑ Sɑmɑri lɑɑbu bɔrɔ boobo nɑɑne ɑ̀ gɑɑ kɑ Yesu mɑɑ sendɑ sɑbu sɛ. À nɑɑne ɑ̀ gɑɑ no ɑ̀ cii bɔrɔ kulu kɑ ɑ̀ sɛ ɑ go sendi hɛ kulu kɑ ɑ̀ sɛ ndɑ hɛ kulu kɑ ɑ̀ ci lɑɑli li boobo.\n", "2020-02-12 08:15:43,520 Validation result (greedy) at epoch 71, step 6000: bleu: 12.57, loss: 87502.0469, ppl: 17.0506, duration: 25.0314s\n", "2020-02-12 08:15:53,449 Epoch 71: total training loss 117.19\n", "2020-02-12 08:15:53,449 EPOCH 72\n", "2020-02-12 08:15:58,872 Epoch 72 Step: 6100 Batch Loss: 1.318082 Tokens per Sec: 15817, Lr: 0.000300\n", "2020-02-12 08:16:06,526 Epoch 72: total training loss 116.32\n", "2020-02-12 08:16:06,526 EPOCH 73\n", "2020-02-12 08:16:14,045 Epoch 73 Step: 6200 Batch Loss: 1.606343 Tokens per Sec: 15923, Lr: 0.000300\n", "2020-02-12 08:16:19,546 Epoch 73: total training loss 113.52\n", "2020-02-12 08:16:19,546 EPOCH 74\n", "2020-02-12 08:16:29,348 Epoch 74 Step: 6300 Batch Loss: 1.334043 Tokens per Sec: 16390, Lr: 0.000300\n", "2020-02-12 08:16:32,383 Epoch 74: total training loss 110.36\n", "2020-02-12 08:16:32,383 EPOCH 75\n", "2020-02-12 08:16:44,515 Epoch 75 Step: 6400 Batch Loss: 1.328613 Tokens per Sec: 15922, Lr: 0.000300\n", "2020-02-12 08:16:45,472 Epoch 75: total training loss 111.58\n", "2020-02-12 08:16:45,472 EPOCH 76\n", "2020-02-12 08:16:58,446 Epoch 76: total training loss 109.24\n", "2020-02-12 08:16:58,447 EPOCH 77\n", "2020-02-12 08:16:59,907 Epoch 77 Step: 6500 Batch Loss: 1.263935 Tokens per Sec: 15999, Lr: 0.000300\n", "2020-02-12 08:17:11,608 Epoch 77: total training loss 108.91\n", "2020-02-12 08:17:11,609 EPOCH 78\n", "2020-02-12 08:17:15,134 Epoch 78 Step: 6600 Batch Loss: 1.015139 Tokens per Sec: 15818, Lr: 0.000300\n", "2020-02-12 08:17:24,678 Epoch 78: total training loss 106.83\n", "2020-02-12 08:17:24,678 EPOCH 79\n", "2020-02-12 08:17:30,369 Epoch 79 Step: 6700 Batch Loss: 1.263142 Tokens per Sec: 16083, Lr: 0.000300\n", "2020-02-12 08:17:37,741 Epoch 79: total training loss 104.67\n", "2020-02-12 08:17:37,742 EPOCH 80\n", "2020-02-12 08:17:45,888 Epoch 80 Step: 6800 Batch Loss: 1.249294 Tokens per Sec: 16000, Lr: 0.000300\n", "2020-02-12 08:17:50,719 Epoch 80: total training loss 103.46\n", "2020-02-12 08:17:50,719 EPOCH 81\n", "2020-02-12 08:18:01,082 Epoch 81 Step: 6900 Batch Loss: 1.248681 Tokens per Sec: 16417, Lr: 0.000300\n", "2020-02-12 08:18:03,519 Epoch 81: total training loss 102.05\n", "2020-02-12 08:18:03,520 EPOCH 82\n", "2020-02-12 08:18:16,247 Epoch 82 Step: 7000 Batch Loss: 0.890814 Tokens per Sec: 16235, Lr: 0.000300\n", "2020-02-12 08:18:35,052 Example #0\n", "2020-02-12 08:18:35,053 \tSource: I thank him that enabled me, even Christ Jesus our Lord, for that he counted me faithful, appointing me to his service;\n", "2020-02-12 08:18:35,053 \tReference: A go sɑɑbu i Kpe Yesu Mɛsiyɑ sɛ, ngɑ kɑ ɑ̀ nɑ ɑ no gɑɑbi. A gɑ kɑ ɑ̀ sɑɑbu domi ɑ̀ nɑ ɑ lɑsɑbu nɑɑnekpɛ kɑ ɑ dɑm ngɑ gbei kunɑ.\n", "2020-02-12 08:18:35,053 \tHypothesis: A go kɑ ɑ dɔntɔm mɑɑsɑ. À gɑ kɑ ɑ Kpe Yesu Mɛsiyɑ cɛbɛ yɑ nɑɑnekpɛ no. À nɑ ɑ cɛbɛ yɑ gbei hinno yom tɛ ɑ sɛ. A go kɑ ɑ nɑ ɑ bɔm no himɑndi ndɑ himmɑ.\n", "2020-02-12 08:18:35,053 Example #1\n", "2020-02-12 08:18:35,053 \tSource: Now lettest thou thy servant depart, Lord, According to thy word, in peace;\n", "2020-02-12 08:18:35,053 \tReference: Mɑɑsɑnkulu Kpe, n mɑ tu n bɑnyɑ mɑ kpei ndɑ bɑɑni zɑngɑ n Sendɑ cii.\n", "2020-02-12 08:18:35,053 \tHypothesis: A nyɑizei, n mɑ wɔne cii n sɛ, Kpei, n mɑ lɑɑkɑli tunɑndi kɑ dimi dɑm n lɑɑkɑli kɑne.\n", "2020-02-12 08:18:35,053 Example #2\n", "2020-02-12 08:18:35,053 \tSource: if so be that God is one, and he shall justify the circumcision by faith, and the uncircumcision through faith.\n", "2020-02-12 08:18:35,053 \tReference: Ikpɛ fɔlɔnku yɑ gɑ bɑnguize yom cɛɑndi susu nɑɑne gɑɑ. À go zɑm kɑ dɑmbɑnguize yom mo cɛɑndi susu nɑɑne gɑɑ.\n", "2020-02-12 08:18:35,053 \tHypothesis: Zɑngɑ yɑ no Ikpɛ go bɔrɔ cɛɑndi susu. Bɔrɔ kɑ ɑ̀ gɑ nɑɑne gɑ ɑ̀ cɛɑndi susu. À gɑ nɑɑne nɑɑne hinnɑ. À gɑ nɑɑne nɑɑne nɑɑne cini.\n", "2020-02-12 08:18:35,053 Example #3\n", "2020-02-12 08:18:35,053 \tSource: And from that city many of the Samaritans believed on him because of the word of the woman, who testified, He told me all things that ever I did.\n", "2020-02-12 08:18:35,053 \tReference: Wɑngɑrɑ ngɑ di, Sɑmɑriɑncɛ boobo nɑɑne Yesu gɑɑ weibɔrɔ di sendɑ sɑbu sɛ. Weibɔrɔ di tɛ sɛdɑ kɑ cii: Hɛ kulu kɑ ɑ jinɑ kɑ tɛ, ɑ̀ nɑ ɑ̀ cii ɑ sɛ.\n", "2020-02-12 08:18:35,053 \tHypothesis: Yude lɑɑbu bɔrɔ boobo nɑɑne ɑ̀ gɑɑ. Ǹ nɑ Yesu nɑɑne ɑ̀ gɑɑ zɑmɑ ɑ̀ cii bɔrɔ kulu kɑ ɑ̀ mɑɑ ɑ sɛ.\n", "2020-02-12 08:18:35,053 Validation result (greedy) at epoch 82, step 7000: bleu: 13.65, loss: 89457.6172, ppl: 18.1664, duration: 18.8061s\n", "2020-02-12 08:18:35,212 Epoch 82: total training loss 99.90\n", "2020-02-12 08:18:35,212 EPOCH 83\n", "2020-02-12 08:18:48,109 Epoch 83: total training loss 99.90\n", "2020-02-12 08:18:48,109 EPOCH 84\n", "2020-02-12 08:18:50,306 Epoch 84 Step: 7100 Batch Loss: 1.299865 Tokens per Sec: 15861, Lr: 0.000300\n", "2020-02-12 08:19:00,884 Epoch 84: total training loss 98.65\n", "2020-02-12 08:19:00,884 EPOCH 85\n", "2020-02-12 08:19:05,137 Epoch 85 Step: 7200 Batch Loss: 0.877816 Tokens per Sec: 15843, Lr: 0.000300\n", "2020-02-12 08:19:13,810 Epoch 85: total training loss 97.33\n", "2020-02-12 08:19:13,810 EPOCH 86\n", "2020-02-12 08:19:20,507 Epoch 86 Step: 7300 Batch Loss: 1.287703 Tokens per Sec: 16485, Lr: 0.000300\n", "2020-02-12 08:19:26,654 Epoch 86: total training loss 95.47\n", "2020-02-12 08:19:26,655 EPOCH 87\n", "2020-02-12 08:19:35,599 Epoch 87 Step: 7400 Batch Loss: 1.237134 Tokens per Sec: 15999, Lr: 0.000300\n", "2020-02-12 08:19:39,705 Epoch 87: total training loss 96.01\n", "2020-02-12 08:19:39,705 EPOCH 88\n", "2020-02-12 08:19:50,814 Epoch 88 Step: 7500 Batch Loss: 1.328148 Tokens per Sec: 16186, Lr: 0.000300\n", "2020-02-12 08:19:52,727 Epoch 88: total training loss 95.81\n", "2020-02-12 08:19:52,728 EPOCH 89\n", "2020-02-12 08:20:05,885 Epoch 89: total training loss 92.46\n", "2020-02-12 08:20:05,885 EPOCH 90\n", "2020-02-12 08:20:06,204 Epoch 90 Step: 7600 Batch Loss: 0.852934 Tokens per Sec: 16006, Lr: 0.000300\n", "2020-02-12 08:20:18,856 Epoch 90: total training loss 91.59\n", "2020-02-12 08:20:18,856 EPOCH 91\n", "2020-02-12 08:20:21,463 Epoch 91 Step: 7700 Batch Loss: 1.099604 Tokens per Sec: 16478, Lr: 0.000300\n", "2020-02-12 08:20:31,836 Epoch 91: total training loss 90.21\n", "2020-02-12 08:20:31,836 EPOCH 92\n", "2020-02-12 08:20:36,833 Epoch 92 Step: 7800 Batch Loss: 1.154287 Tokens per Sec: 16331, Lr: 0.000300\n", "2020-02-12 08:20:44,719 Epoch 92: total training loss 89.19\n", "2020-02-12 08:20:44,719 EPOCH 93\n", "2020-02-12 08:20:51,703 Epoch 93 Step: 7900 Batch Loss: 1.021082 Tokens per Sec: 16284, Lr: 0.000300\n", "2020-02-12 08:20:57,555 Epoch 93: total training loss 89.00\n", "2020-02-12 08:20:57,555 EPOCH 94\n", "2020-02-12 08:21:06,806 Epoch 94 Step: 8000 Batch Loss: 1.096427 Tokens per Sec: 16372, Lr: 0.000300\n", "2020-02-12 08:21:25,191 Example #0\n", "2020-02-12 08:21:25,191 \tSource: I thank him that enabled me, even Christ Jesus our Lord, for that he counted me faithful, appointing me to his service;\n", "2020-02-12 08:21:25,191 \tReference: A go sɑɑbu i Kpe Yesu Mɛsiyɑ sɛ, ngɑ kɑ ɑ̀ nɑ ɑ no gɑɑbi. A gɑ kɑ ɑ̀ sɑɑbu domi ɑ̀ nɑ ɑ lɑsɑbu nɑɑnekpɛ kɑ ɑ dɑm ngɑ gbei kunɑ.\n", "2020-02-12 08:21:25,191 \tHypothesis: A go kɑ ɑ dɔntɔm ɑ̀ mɑ ɑ dii kɑ cii Mɛsiyɑ yɑ Kpe no. A go kɑ ɑ cɛbɛ yɑ nɑɑnekpɛ yom no zɑmɑ ngɑ gbei yom kɑ ɑ gundɑ ɑ sɛ yɑ ɑ himmɑ.\n", "2020-02-12 08:21:25,191 Example #1\n", "2020-02-12 08:21:25,191 \tSource: Now lettest thou thy servant depart, Lord, According to thy word, in peace;\n", "2020-02-12 08:21:25,192 \tReference: Mɑɑsɑnkulu Kpe, n mɑ tu n bɑnyɑ mɑ kpei ndɑ bɑɑni zɑngɑ n Sendɑ cii.\n", "2020-02-12 08:21:25,192 \tHypothesis: A nyɑizei, n mɑ wɔne tɑm tɑm yɑ ci Kpe n nyɑize kɑ ɑ̀ goono ndɑ lɑɑkɑli kɑne.\n", "2020-02-12 08:21:25,192 Example #2\n", "2020-02-12 08:21:25,192 \tSource: if so be that God is one, and he shall justify the circumcision by faith, and the uncircumcision through faith.\n", "2020-02-12 08:21:25,192 \tReference: Ikpɛ fɔlɔnku yɑ gɑ bɑnguize yom cɛɑndi susu nɑɑne gɑɑ. À go zɑm kɑ dɑmbɑnguize yom mo cɛɑndi susu nɑɑne gɑɑ.\n", "2020-02-12 08:21:25,192 \tHypothesis: De Ikpɛ go bɔrɔ fɔ ŋmɑni tɛ, ɑkpɛ mo Ikpɛ gɑ cɛɑndi susu. À gɑ bɔrɔ cɛɑndi susu nɑɑne gɑɑ, nɑɑne gɑ ɑ̀ cɛɑndi susu.\n", "2020-02-12 08:21:25,192 Example #3\n", "2020-02-12 08:21:25,192 \tSource: And from that city many of the Samaritans believed on him because of the word of the woman, who testified, He told me all things that ever I did.\n", "2020-02-12 08:21:25,192 \tReference: Wɑngɑrɑ ngɑ di, Sɑmɑriɑncɛ boobo nɑɑne Yesu gɑɑ weibɔrɔ di sendɑ sɑbu sɛ. Weibɔrɔ di tɛ sɛdɑ kɑ cii: Hɛ kulu kɑ ɑ jinɑ kɑ tɛ, ɑ̀ nɑ ɑ̀ cii ɑ sɛ.\n", "2020-02-12 08:21:25,192 \tHypothesis: Yude lɑɑbu bɔrɔ boobo nɑɑne ɑ̀ gɑɑ kɑ Yesu mɑɑ bɑɑru zɑmɑ ǹ nɑ ɑ̀ sendɑ nɑɑne ɑ̀ gɑɑ kɑ cii mɔngɔlɔ di sɛ: Bɔrɔ kulu kɑ ɑ̀ go kɑ ɑ ze ndɑ hɛ kulu kɑ ɑ̀ ci lɑɑbuyom.\n", "2020-02-12 08:21:25,192 Validation result (greedy) at epoch 94, step 8000: bleu: 14.18, loss: 91254.2891, ppl: 19.2557, duration: 18.3859s\n", "2020-02-12 08:21:28,745 Epoch 94: total training loss 87.77\n", "2020-02-12 08:21:28,745 EPOCH 95\n", "2020-02-12 08:21:40,211 Epoch 95 Step: 8100 Batch Loss: 1.297292 Tokens per Sec: 16383, Lr: 0.000300\n", "2020-02-12 08:21:41,572 Epoch 95: total training loss 87.34\n", "2020-02-12 08:21:41,572 EPOCH 96\n", "2020-02-12 08:21:54,274 Epoch 96: total training loss 86.27\n", "2020-02-12 08:21:54,275 EPOCH 97\n", "2020-02-12 08:21:55,049 Epoch 97 Step: 8200 Batch Loss: 1.032753 Tokens per Sec: 16466, Lr: 0.000300\n", "2020-02-12 08:22:07,257 Epoch 97: total training loss 84.80\n", "2020-02-12 08:22:07,258 EPOCH 98\n", "2020-02-12 08:22:10,303 Epoch 98 Step: 8300 Batch Loss: 0.992160 Tokens per Sec: 15828, Lr: 0.000300\n", "2020-02-12 08:22:20,378 Epoch 98: total training loss 83.56\n", "2020-02-12 08:22:20,378 EPOCH 99\n", "2020-02-12 08:22:25,811 Epoch 99 Step: 8400 Batch Loss: 0.987172 Tokens per Sec: 15959, Lr: 0.000300\n", "2020-02-12 08:22:33,492 Epoch 99: total training loss 83.05\n", "2020-02-12 08:22:33,492 EPOCH 100\n", "2020-02-12 08:22:41,229 Epoch 100 Step: 8500 Batch Loss: 0.951234 Tokens per Sec: 15873, Lr: 0.000300\n", "2020-02-12 08:22:46,610 Epoch 100: total training loss 83.42\n", "2020-02-12 08:22:46,610 Training ended after 100 epochs.\n", "2020-02-12 08:22:46,610 Best validation result (greedy) at step 4000: 15.86 ppl.\n", "2020-02-12 08:23:15,974 dev bleu: 13.32 [Beam search decoding with beam size = 5 and alpha = 1.0]\n", "2020-02-12 08:23:15,975 Translations saved to: models/enddn_transformer/00004000.hyps.dev\n", "2020-02-12 08:23:20,504 test bleu: 22.30 [Beam search decoding with beam size = 5 and alpha = 1.0]\n", "2020-02-12 08:23:20,504 Translations saved to: models/enddn_transformer/00004000.hyps.test\n" ], "name": "stdout" } ] }, { "cell_type": "code", "metadata": { "id": "nJHT-J8tU56N", "colab_type": "code", "outputId": "65d0e7ba-2d23-47ea-ff15-32f1414d2501", "colab": { "base_uri": "https://localhost:8080/", "height": 86 } }, "source": [ "!ls joeynmt/models/${src}${tgt}_transformer" ], "execution_count": 22, "outputs": [ { "output_type": "stream", "text": [ "00004000.hyps.dev 2000.hyps 4000.hyps 8000.hyps\t tensorboard\n", "00004000.hyps.test 3000.ckpt 5000.hyps best.ckpt\t train.log\n", "1000.hyps\t 3000.hyps 6000.hyps config.yaml\t trg_vocab.txt\n", "2000.ckpt\t 4000.ckpt 7000.hyps src_vocab.txt validations.txt\n" ], "name": "stdout" } ] }, { "cell_type": "code", "metadata": { "colab_type": "code", "id": "MBoDS09JM807", "outputId": "f4ed8475-4759-4f2e-fcb0-ba90a59c07c9", "colab": { "base_uri": "https://localhost:8080/", "height": 34 } }, "source": [ "# Copy the created models from the notebook storage to google drive for persistant storage \n", "!cp -r joeynmt/models/${src}${tgt}_transformer/* \"$gdrive_path/models/${src}${tgt}_transformer/\"" ], "execution_count": 23, "outputs": [ { "output_type": "stream", "text": [ "cp: cannot create symbolic link '/content/drive/My Drive/masakhane/en-ddn-baseline/models/enddn_transformer/best.ckpt': Operation not supported\n" ], "name": "stdout" } ] }, { "cell_type": "code", "metadata": { "id": "VNBlLPMFVKc2", "colab_type": "code", "colab": {} }, "source": [ "# Copy the created models from the notebook storage to google drive for persistant storage \n", "!cp joeynmt/models/${src}${tgt}_transformer/best.ckpt \"$gdrive_path/models/${src}${tgt}_transformer/\"" ], "execution_count": 0, "outputs": [] }, { "cell_type": "code", "metadata": { "colab_type": "code", "id": "n94wlrCjVc17", "outputId": "37d6339f-1136-4e11-e0f7-8837ccdf6b3e", "colab": { "base_uri": "https://localhost:8080/", "height": 156 } }, "source": [ "# Output our validation accuracy\n", "! cat \"$gdrive_path/models/${src}${tgt}_transformer/validations.txt\"" ], "execution_count": 25, "outputs": [ { "output_type": "stream", "text": [ "Steps: 1000\tLoss: 108241.07812\tPPL: 33.39471\tbleu: 2.25322\tLR: 0.00030000\t*\n", "Steps: 2000\tLoss: 93221.48438\tPPL: 20.52349\tbleu: 6.63362\tLR: 0.00030000\t*\n", "Steps: 3000\tLoss: 87075.93750\tPPL: 16.81676\tbleu: 9.22080\tLR: 0.00030000\t*\n", "Steps: 4000\tLoss: 85277.03125\tPPL: 15.86425\tbleu: 11.29147\tLR: 0.00030000\t*\n", "Steps: 5000\tLoss: 85901.30469\tPPL: 16.18852\tbleu: 12.00153\tLR: 0.00030000\t\n", "Steps: 6000\tLoss: 87502.04688\tPPL: 17.05063\tbleu: 12.57401\tLR: 0.00030000\t\n", "Steps: 7000\tLoss: 89457.61719\tPPL: 18.16638\tbleu: 13.65009\tLR: 0.00030000\t\n", "Steps: 8000\tLoss: 91254.28906\tPPL: 19.25571\tbleu: 14.18309\tLR: 0.00030000\t\n" ], "name": "stdout" } ] }, { "cell_type": "code", "metadata": { "colab_type": "code", "id": "66WhRE9lIhoD", "outputId": "46270930-9553-4917-c55a-9b1d6fd6cafd", "colab": { "base_uri": "https://localhost:8080/", "height": 69 } }, "source": [ "# Test our model\n", "! cd joeynmt; python3 -m joeynmt test \"$gdrive_path/models/${src}${tgt}_transformer/config.yaml\"" ], "execution_count": 26, "outputs": [ { "output_type": "stream", "text": [ "2020-02-12 08:23:33,730 Hello! This is Joey-NMT.\n", "2020-02-12 08:24:08,045 dev bleu: 13.32 [Beam search decoding with beam size = 5 and alpha = 1.0]\n", "2020-02-12 08:24:12,709 test bleu: 22.30 [Beam search decoding with beam size = 5 and alpha = 1.0]\n" ], "name": "stdout" } ] } ] }