File size: 123,407 Bytes
78aa4ee
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
211
212
213
214
215
216
217
218
219
220
221
222
223
224
225
226
227
228
229
230
231
232
233
234
235
236
237
238
239
240
241
242
243
244
245
246
247
248
249
250
251
252
253
254
255
256
257
258
259
260
261
262
263
264
265
266
267
268
269
270
271
272
273
274
275
276
277
278
279
280
281
282
283
284
285
286
287
288
289
290
291
292
293
294
295
296
297
298
299
300
301
302
303
304
305
306
307
308
309
310
311
312
313
314
315
316
317
318
319
320
321
322
323
324
325
326
327
328
329
330
331
332
333
334
335
336
337
338
339
340
341
342
343
344
345
346
347
348
349
350
351
352
353
354
355
356
357
358
359
360
361
362
363
364
365
366
367
368
369
370
371
372
373
374
375
376
377
378
379
380
381
382
383
384
385
386
387
388
389
390
391
392
393
394
395
396
397
398
399
400
401
402
403
404
405
406
407
408
409
410
411
412
413
414
415
416
417
418
419
420
421
422
423
424
425
426
427
428
429
430
431
432
433
434
435
436
437
438
439
440
441
442
443
444
445
446
447
448
449
450
451
452
453
454
455
456
457
458
459
460
461
462
463
464
465
466
467
468
469
470
471
472
473
474
475
476
477
478
479
480
481
482
483
484
485
486
487
488
489
490
491
492
493
494
495
496
497
498
499
500
501
502
503
504
505
506
507
508
509
510
511
512
513
514
515
516
517
518
519
520
521
522
523
524
525
526
527
528
529
530
531
532
533
534
535
536
537
538
539
540
541
542
543
544
545
546
547
548
549
550
551
552
553
554
555
556
557
558
559
560
561
562
563
564
565
566
567
568
569
570
571
572
573
574
575
576
577
578
579
580
581
582
583
584
585
586
587
588
589
590
591
592
593
594
595
596
597
598
599
600
601
602
603
604
605
606
607
608
609
610
611
612
613
614
615
616
617
618
619
620
621
622
623
624
625
626
627
628
629
630
631
632
633
634
635
636
637
638
639
640
641
642
643
644
645
646
647
648
649
650
651
652
653
654
655
656
657
658
659
660
661
662
663
664
665
666
667
668
669
670
671
672
673
674
675
676
677
678
679
680
681
682
683
684
685
686
687
688
689
690
691
692
693
694
695
696
697
698
699
700
701
702
703
704
705
706
707
708
709
710
711
712
713
714
715
716
717
718
719
720
721
722
723
724
725
726
727
728
729
730
731
732
733
734
735
736
737
738
739
740
741
742
743
744
745
746
747
748
749
750
751
752
753
754
755
756
757
758
759
760
761
762
763
764
765
766
767
768
769
770
771
772
773
774
775
776
777
778
779
780
781
782
783
784
785
786
787
788
789
790
791
792
793
794
795
796
797
798
799
800
801
802
803
804
805
806
807
808
809
810
811
812
813
814
815
816
817
818
819
820
821
822
823
824
825
826
827
828
829
830
831
832
833
834
835
836
837
838
839
840
841
842
843
844
845
846
847
848
849
850
851
852
853
854
855
856
857
858
859
860
861
862
863
864
865
866
867
868
869
870
871
872
873
874
875
876
877
878
879
880
881
882
883
884
885
886
887
888
889
890
891
892
893
894
895
896
897
898
899
900
901
902
903
904
905
906
907
908
909
910
911
912
913
914
915
916
917
918
919
920
921
922
923
924
925
926
927
928
929
930
931
932
933
934
935
936
937
938
939
940
941
942
943
944
945
946
947
948
949
950
951
952
953
954
955
956
957
958
959
960
961
962
963
964
965
966
967
968
969
970
971
972
973
974
975
976
977
978
979
980
981
982
983
984
985
986
987
988
989
990
991
992
993
994
995
996
997
998
999
1000
1001
1002
1003
1004
1005
1006
1007
1008
1009
1010
1011
1012
1013
1014
1015
1016
1017
1018
1019
1020
1021
1022
1023
1024
1025
1026
1027
1028
1029
1030
1031
1032
1033
1034
1035
1036
1037
1038
1039
1040
1041
1042
1043
1044
1045
1046
1047
1048
1049
1050
1051
1052
1053
1054
1055
1056
1057
1058
1059
1060
1061
1062
1063
1064
1065
1066
1067
1068
1069
1070
1071
1072
1073
1074
1075
1076
1077
1078
1079
1080
1081
1082
1083
1084
1085
1086
1087
1088
1089
1090
1091
1092
1093
1094
1095
1096
1097
1098
1099
1100
1101
1102
1103
1104
1105
1106
1107
1108
1109
1110
1111
1112
1113
1114
1115
1116
1117
1118
1119
1120
1121
1122
1123
1124
1125
1126
1127
1128
1129
1130
1131
1132
1133
1134
1135
1136
1137
1138
1139
1140
1141
1142
1143
1144
1145
1146
1147
1148
1149
1150
1151
1152
1153
1154
1155
1156
1157
1158
1159
1160
1161
1162
1163
1164
1165
1166
1167
1168
1169
1170
1171
1172
1173
1174
1175
1176
1177
1178
1179
1180
1181
1182
1183
1184
1185
1186
1187
1188
1189
1190
1191
1192
1193
1194
1195
1196
1197
1198
1199
1200
1201
1202
1203
1204
1205
1206
1207
1208
1209
1210
1211
1212
1213
1214
1215
1216
1217
1218
1219
1220
1221
1222
1223
1224
1225
1226
1227
1228
1229
1230
1231
1232
1233
1234
1235
1236
1237
1238
1239
1240
1241
1242
1243
1244
1245
1246
1247
1248
1249
1250
1251
1252
1253
1254
1255
1256
1257
1258
1259
1260
1261
1262
1263
1264
1265
1266
1267
1268
1269
1270
1271
1272
1273
1274
1275
1276
1277
1278
1279
1280
1281
1282
1283
1284
1285
1286
1287
1288
1289
1290
1291
1292
1293
1294
1295
1296
1297
1298
1299
1300
1301
1302
1303
1304
1305
1306
1307
1308
1309
1310
1311
1312
1313
1314
1315
1316
1317
1318
1319
1320
1321
1322
1323
1324
1325
1326
1327
1328
1329
1330
1331
1332
1333
1334
1335
1336
1337
1338
1339
1340
1341
1342
1343
1344
1345
1346
1347
1348
1349
1350
1351
1352
1353
1354
1355
1356
1357
1358
1359
1360
1361
1362
1363
1364
1365
1366
1367
1368
1369
1370
1371
1372
1373
1374
1375
1376
1377
1378
1379
1380
1381
1382
1383
1384
1385
1386
1387
1388
1389
1390
1391
1392
1393
1394
1395
1396
1397
1398
1399
1400
1401
1402
1403
1404
1405
1406
1407
1408
1409
1410
1411
1412
1413
1414
1415
1416
1417
1418
1419
1420
1421
1422
1423
1424
1425
1426
1427
1428
1429
1430
1431
1432
1433
1434
1435
1436
1437
1438
1439
1440
1441
1442
1443
1444
1445
1446
1447
1448
1449
1450
1451
1452
1453
1454
1455
1456
1457
1458
1459
1460
1461
1462
1463
1464
1465
1466
1467
1468
1469
1470
1471
1472
1473
1474
1475
1476
1477
1478
1479
1480
1481
1482
1483
1484
1485
1486
1487
1488
1489
1490
1491
1492
1493
1494
1495
1496
1497
1498
1499
1500
1501
1502
1503
1504
1505
1506
1507
1508
1509
1510
1511
1512
1513
1514
1515
1516
1517
1518
1519
1520
1521
1522
1523
1524
1525
1526
1527
1528
1529
1530
1531
1532
1533
1534
1535
1536
1537
1538
1539
1540
1541
1542
1543
1544
1545
1546
1547
1548
1549
1550
1551
1552
1553
1554
1555
1556
1557
1558
1559
1560
1561
1562
1563
1564
1565
1566
1567
1568
1569
1570
1571
1572
1573
1574
1575
1576
1577
1578
1579
1580
1581
1582
1583
1584
1585
1586
1587
1588
1589
1590
1591
1592
1593
1594
1595
1596
1597
1598
1599
1600
1601
1602
1603
1604
1605
1606
1607
1608
1609
1610
1611
1612
1613
1614
1615
1616
1617
1618
1619
1620
1621
1622
1623
1624
1625
1626
1627
1628
1629
1630
1631
1632
1633
1634
1635
1636
1637
1638
1639
1640
1641
1642
1643
1644
1645
1646
1647
1648
1649
1650
1651
1652
1653
1654
1655
1656
1657
1658
1659
1660
1661
1662
1663
1664
1665
1666
1667
1668
1669
1670
1671
1672
1673
1674
1675
1676
1677
1678
1679
1680
1681
1682
1683
1684
1685
1686
1687
1688
1689
1690
1691
1692
1693
1694
1695
1696
1697
1698
1699
1700
1701
1702
1703
1704
1705
1706
1707
1708
1709
1710
1711
1712
1713
1714
1715
1716
1717
1718
1719
1720
1721
1722
1723
1724
1725
1726
1727
1728
1729
1730
1731
1732
1733
1734
1735
1736
1737
1738
1739
1740
1741
1742
1743
1744
1745
1746
1747
1748
1749
1750
1751
1752
1753
1754
1755
1756
1757
1758
1759
1760
1761
1762
1763
1764
1765
1766
1767
1768
1769
1770
1771
1772
1773
1774
1775
1776
1777
1778
1779
1780
1781
1782
1783
1784
1785
1786
1787
1788
1789
1790
1791
1792
1793
1794
1795
1796
1797
1798
1799
1800
1801
1802
1803
1804
1805
1806
1807
1808
1809
1810
1811
1812
1813
1814
1815
1816
1817
1818
1819
1820
1821
1822
1823
1824
1825
1826
1827
1828
1829
1830
1831
1832
1833
1834
1835
1836
1837
1838
1839
1840
1841
1842
1843
1844
1845
1846
1847
1848
1849
1850
1851
1852
1853
1854
1855
1856
1857
1858
1859
1860
1861
1862
1863
1864
1865
1866
1867
1868
1869
1870
1871
1872
1873
1874
1875
1876
1877
1878
1879
1880
1881
1882
1883
1884
1885
1886
1887
{
 "cells": [
  {
   "cell_type": "markdown",
   "metadata": {
    "colab_type": "text",
    "id": "Igc5itf-xMGj"
   },
   "source": [
    "# Masakhane - Machine Translation for African Languages (Using JoeyNMT)"
   ]
  },
  {
   "cell_type": "markdown",
   "metadata": {
    "colab_type": "text",
    "id": "x4fXCKCf36IK"
   },
   "source": [
    "## Note before beginning:\n",
    "### - The idea is that you should be able to make minimal changes to this in order to get SOME result for your own translation corpus. \n",
    "\n",
    "### - The tl;dr: Go to the **\"TODO\"** comments which will tell you what to update to get up and running\n",
    "\n",
    "### - If you actually want to have a clue what you're doing, read the text and peek at the links\n",
    "\n",
    "### - With 100 epochs, it should take around 7 hours to run in Google Colab\n",
    "\n",
    "### - Once you've gotten a result for your language, please attach and email your notebook that generated it to [email protected]\n",
    "\n",
    "### - If you care enough and get a chance, doing a brief background on your language would be amazing. See examples in  [(Martinus, 2019)](https://arxiv.org/abs/1906.05685)"
   ]
  },
  {
   "cell_type": "markdown",
   "metadata": {
    "colab_type": "text",
    "id": "l929HimrxS0a"
   },
   "source": [
    "## Retrieve your data & make a parallel corpus\n",
    "\n",
    "If you are wanting to use the JW300 data referenced on the Masakhane website or in our GitHub repo, you can use `opus-tools` to convert the data into a convenient format. `opus_read` from that package provides a convenient tool for reading the native aligned XML files and to convert them to TMX format. The tool can also be used to fetch relevant files from OPUS on the fly and to filter the data as necessary. [Read the documentation](https://pypi.org/project/opustools-pkg/) for more details.\n",
    "\n",
    "Once you have your corpus files in TMX format (an xml structure which will include the sentences in your target language and your source language in a single file), we recommend reading them into a pandas dataframe. Thankfully, Jade wrote a silly `tmx2dataframe` package which converts your tmx file to a pandas dataframe. "
   ]
  },
  {
   "cell_type": "code",
   "execution_count": 0,
   "metadata": {
    "colab": {
     "base_uri": "https://localhost:8080/",
     "height": 34
    },
    "colab_type": "code",
    "id": "oGRmDELn7Az0",
    "outputId": "5dfcaf0a-4e8d-4f84-a1fa-42940b6f2252"
   },
   "outputs": [
    {
     "name": "stdout",
     "output_type": "stream",
     "text": [
      "Drive already mounted at /content/drive; to attempt to forcibly remount, call drive.mount(\"/content/drive\", force_remount=True).\n"
     ]
    }
   ],
   "source": [
    "from google.colab import drive\n",
    "drive.mount('/content/drive')"
   ]
  },
  {
   "cell_type": "code",
   "execution_count": 0,
   "metadata": {
    "colab": {},
    "colab_type": "code",
    "id": "Cn3tgQLzUxwn"
   },
   "outputs": [],
   "source": [
    "# TODO: Set your source and target languages. Keep in mind, these traditionally use language codes as found here:\n",
    "# These will also become the suffix's of all vocab and corpus files used throughout\n",
    "import os\n",
    "source_language = \"en\"\n",
    "target_language = \"fon\" \n",
    "lc = False  # If True, lowercase the data.\n",
    "seed = 42  # Random seed for shuffling.\n",
    "tag = \"baseline\" # Give a unique name to your folder - this is to ensure you don't rewrite any models you've already submitted\n",
    "\n",
    "os.environ[\"src\"] = source_language # Sets them in bash as well, since we often use bash scripts\n",
    "os.environ[\"tgt\"] = target_language\n",
    "os.environ[\"tag\"] = tag\n",
    "\n",
    "# This will save it to a folder in our gdrive instead!\n",
    "!mkdir -p \"/content/drive/My Drive/masakhane/$src-$tgt-$tag\"\n",
    "os.environ[\"gdrive_path\"] = \"/content/drive/My Drive/masakhane/%s-%s-%s\" % (source_language, target_language, tag)"
   ]
  },
  {
   "cell_type": "code",
   "execution_count": 0,
   "metadata": {
    "colab": {
     "base_uri": "https://localhost:8080/",
     "height": 34
    },
    "colab_type": "code",
    "id": "kBSgJHEw7Nvx",
    "outputId": "f006df06-8d99-432e-d9f5-1b2227b2d1f6"
   },
   "outputs": [
    {
     "name": "stdout",
     "output_type": "stream",
     "text": [
      "/content/drive/My Drive/masakhane/en-fon-baseline\n"
     ]
    }
   ],
   "source": [
    "!echo $gdrive_path"
   ]
  },
  {
   "cell_type": "code",
   "execution_count": 0,
   "metadata": {
    "colab": {
     "base_uri": "https://localhost:8080/",
     "height": 102
    },
    "colab_type": "code",
    "id": "gA75Fs9ys8Y9",
    "outputId": "93dc8f60-2de8-45ba-9bb5-0afd9cf3b358"
   },
   "outputs": [
    {
     "name": "stdout",
     "output_type": "stream",
     "text": [
      "Collecting opustools-pkg\n",
      "\u001b[?25l  Downloading https://files.pythonhosted.org/packages/6c/9f/e829a0cceccc603450cd18e1ff80807b6237a88d9a8df2c0bb320796e900/opustools_pkg-0.0.52-py3-none-any.whl (80kB)\n",
      "\r",
      "\u001b[K     |████                            | 10kB 25.2MB/s eta 0:00:01\r",
      "\u001b[K     |████████                        | 20kB 4.5MB/s eta 0:00:01\r",
      "\u001b[K     |████████████▏                   | 30kB 6.3MB/s eta 0:00:01\r",
      "\u001b[K     |████████████████▏               | 40kB 8.1MB/s eta 0:00:01\r",
      "\u001b[K     |████████████████████▎           | 51kB 5.2MB/s eta 0:00:01\r",
      "\u001b[K     |████████████████████████▎       | 61kB 6.1MB/s eta 0:00:01\r",
      "\u001b[K     |████████████████████████████▎   | 71kB 6.9MB/s eta 0:00:01\r",
      "\u001b[K     |████████████████████████████████| 81kB 4.8MB/s \n",
      "\u001b[?25hInstalling collected packages: opustools-pkg\n",
      "Successfully installed opustools-pkg-0.0.52\n"
     ]
    }
   ],
   "source": [
    "# Install opus-tools\n",
    "! pip install opustools-pkg"
   ]
  },
  {
   "cell_type": "code",
   "execution_count": 0,
   "metadata": {
    "colab": {
     "base_uri": "https://localhost:8080/",
     "height": 187
    },
    "colab_type": "code",
    "id": "xq-tDZVks7ZD",
    "outputId": "e7343c5b-3bc2-4979-8fb3-b75b5a025164"
   },
   "outputs": [
    {
     "name": "stdout",
     "output_type": "stream",
     "text": [
      "\n",
      "Alignment file /proj/nlpl/data/OPUS/JW300/latest/xml/en-fon.xml.gz not found. The following files are available for downloading:\n",
      "\n",
      "        ./JW300_latest_xml_fon.zip already exists\n",
      " 324 KB https://object.pouta.csc.fi/OPUS-JW300/v1/xml/en-fon.xml.gz\n",
      " 263 MB https://object.pouta.csc.fi/OPUS-JW300/v1/xml/en.zip\n",
      "\n",
      " 263 MB Total size\n",
      "./JW300_latest_xml_en-fon.xml.gz ... 100% of 324 KB\n",
      "./JW300_latest_xml_en.zip ... 100% of 263 MB\n"
     ]
    }
   ],
   "source": [
    "# Downloading our corpus\n",
    "! opus_read -d JW300 -s $src -t $tgt -wm moses -w jw300.$src jw300.$tgt -q\n",
    "\n",
    "# extract the corpus file\n",
    "! gunzip JW300_latest_xml_$src-$tgt.xml.gz"
   ]
  },
  {
   "cell_type": "code",
   "execution_count": 0,
   "metadata": {
    "colab": {
     "base_uri": "https://localhost:8080/",
     "height": 578
    },
    "colab_type": "code",
    "id": "n48GDRnP8y2G",
    "outputId": "ed67a5b7-a1db-4d8b-bb37-58111706be8a"
   },
   "outputs": [
    {
     "name": "stdout",
     "output_type": "stream",
     "text": [
      "--2019-11-26 13:32:06--  https://raw.githubusercontent.com/juliakreutzer/masakhane/master/jw300_utils/test/test.en-any.en\n",
      "Resolving raw.githubusercontent.com (raw.githubusercontent.com)... 151.101.0.133, 151.101.64.133, 151.101.128.133, ...\n",
      "Connecting to raw.githubusercontent.com (raw.githubusercontent.com)|151.101.0.133|:443... connected.\n",
      "HTTP request sent, awaiting response... 200 OK\n",
      "Length: 277791 (271K) [text/plain]\n",
      "Saving to: ‘test.en-any.en’\n",
      "\n",
      "\r",
      "test.en-any.en        0%[                    ]       0  --.-KB/s               \r",
      "test.en-any.en      100%[===================>] 271.28K  --.-KB/s    in 0.02s   \n",
      "\n",
      "2019-11-26 13:32:06 (12.5 MB/s) - ‘test.en-any.en’ saved [277791/277791]\n",
      "\n",
      "--2019-11-26 13:32:09--  https://raw.githubusercontent.com/juliakreutzer/masakhane/master/jw300_utils/test/test.en-fon.en\n",
      "Resolving raw.githubusercontent.com (raw.githubusercontent.com)... 151.101.0.133, 151.101.64.133, 151.101.128.133, ...\n",
      "Connecting to raw.githubusercontent.com (raw.githubusercontent.com)|151.101.0.133|:443... connected.\n",
      "HTTP request sent, awaiting response... 200 OK\n",
      "Length: 206191 (201K) [text/plain]\n",
      "Saving to: ‘test.en-fon.en’\n",
      "\n",
      "test.en-fon.en      100%[===================>] 201.36K  --.-KB/s    in 0.02s   \n",
      "\n",
      "2019-11-26 13:32:10 (11.5 MB/s) - ‘test.en-fon.en’ saved [206191/206191]\n",
      "\n",
      "--2019-11-26 13:32:16--  https://raw.githubusercontent.com/juliakreutzer/masakhane/master/jw300_utils/test/test.en-fon.fon\n",
      "Resolving raw.githubusercontent.com (raw.githubusercontent.com)... 151.101.0.133, 151.101.64.133, 151.101.128.133, ...\n",
      "Connecting to raw.githubusercontent.com (raw.githubusercontent.com)|151.101.0.133|:443... connected.\n",
      "HTTP request sent, awaiting response... 200 OK\n",
      "Length: 266332 (260K) [text/plain]\n",
      "Saving to: ‘test.en-fon.fon’\n",
      "\n",
      "test.en-fon.fon     100%[===================>] 260.09K  --.-KB/s    in 0.02s   \n",
      "\n",
      "2019-11-26 13:32:17 (11.2 MB/s) - ‘test.en-fon.fon’ saved [266332/266332]\n",
      "\n"
     ]
    }
   ],
   "source": [
    "# Download the global test set.\n",
    "! wget https://raw.githubusercontent.com/juliakreutzer/masakhane/master/jw300_utils/test/test.en-any.en\n",
    "  \n",
    "# And the specific test set for this language pair.\n",
    "os.environ[\"trg\"] = target_language \n",
    "os.environ[\"src\"] = source_language \n",
    "\n",
    "! wget https://raw.githubusercontent.com/juliakreutzer/masakhane/master/jw300_utils/test/test.en-$trg.en \n",
    "! mv test.en-$trg.en test.en\n",
    "! wget https://raw.githubusercontent.com/juliakreutzer/masakhane/master/jw300_utils/test/test.en-$trg.$trg \n",
    "! mv test.en-$trg.$trg test.$trg"
   ]
  },
  {
   "cell_type": "code",
   "execution_count": 0,
   "metadata": {
    "colab": {
     "base_uri": "https://localhost:8080/",
     "height": 34
    },
    "colab_type": "code",
    "id": "NqDG-CI28y2L",
    "outputId": "1cae02eb-e883-4be6-a4ae-a55de11f0b8a"
   },
   "outputs": [
    {
     "name": "stdout",
     "output_type": "stream",
     "text": [
      "Loaded 3571 global test sentences to filter from the training/dev data.\n"
     ]
    }
   ],
   "source": [
    "# Read the test data to filter from train and dev splits.\n",
    "# Store english portion in set for quick filtering checks.\n",
    "en_test_sents = set()\n",
    "filter_test_sents = \"test.en-any.en\"\n",
    "j = 0\n",
    "with open(filter_test_sents) as f:\n",
    "  for line in f:\n",
    "    en_test_sents.add(line.strip())\n",
    "    j += 1\n",
    "print('Loaded {} global test sentences to filter from the training/dev data.'.format(j))"
   ]
  },
  {
   "cell_type": "code",
   "execution_count": 0,
   "metadata": {
    "colab": {
     "base_uri": "https://localhost:8080/",
     "height": 159
    },
    "colab_type": "code",
    "id": "3CNdwLBCfSIl",
    "outputId": "a8139b78-0751-4893-91dc-306662889805"
   },
   "outputs": [
    {
     "name": "stdout",
     "output_type": "stream",
     "text": [
      "Loaded data and skipped 4199/34746 lines since contained in test set.\n"
     ]
    },
    {
     "data": {
      "text/html": [
       "<div>\n",
       "<style scoped>\n",
       "    .dataframe tbody tr th:only-of-type {\n",
       "        vertical-align: middle;\n",
       "    }\n",
       "\n",
       "    .dataframe tbody tr th {\n",
       "        vertical-align: top;\n",
       "    }\n",
       "\n",
       "    .dataframe thead th {\n",
       "        text-align: right;\n",
       "    }\n",
       "</style>\n",
       "<table border=\"1\" class=\"dataframe\">\n",
       "  <thead>\n",
       "    <tr style=\"text-align: right;\">\n",
       "      <th></th>\n",
       "      <th>source_sentence</th>\n",
       "      <th>target_sentence</th>\n",
       "    </tr>\n",
       "  </thead>\n",
       "  <tbody>\n",
       "    <tr>\n",
       "      <th>0</th>\n",
       "      <td>While reviewing a financial account with his s...</td>\n",
       "      <td>Hwenu e é ɖò akwɛzinzan ɖé lɛ́n xá gǎn tɔn wɛ ...</td>\n",
       "    </tr>\n",
       "    <tr>\n",
       "      <th>1</th>\n",
       "      <td>The interviewer responded , “ Your way of thin...</td>\n",
       "      <td>Mɛ e ɖò nǔ kanbyɔ ɛ wɛ é ɖɔ n’i ɖɔ : “ Linlin ...</td>\n",
       "    </tr>\n",
       "    <tr>\n",
       "      <th>2</th>\n",
       "      <td>One form of dishonesty that is particularly wi...</td>\n",
       "      <td>Nugbǒmaɖɔ sín alɔkpa e gbakpé tawun ɖò égbé lɛ...</td>\n",
       "    </tr>\n",
       "  </tbody>\n",
       "</table>\n",
       "</div>"
      ],
      "text/plain": [
       "                                     source_sentence                                    target_sentence\n",
       "0  While reviewing a financial account with his s...  Hwenu e é ɖò akwɛzinzan ɖé lɛ́n xá gǎn tɔn wɛ ...\n",
       "1  The interviewer responded , “ Your way of thin...  Mɛ e ɖò nǔ kanbyɔ ɛ wɛ é ɖɔ n’i ɖɔ : “ Linlin ...\n",
       "2  One form of dishonesty that is particularly wi...  Nugbǒmaɖɔ sín alɔkpa e gbakpé tawun ɖò égbé lɛ..."
      ]
     },
     "execution_count": 11,
     "metadata": {
      "tags": []
     },
     "output_type": "execute_result"
    }
   ],
   "source": [
    "import pandas as pd\n",
    "\n",
    "# TMX file to dataframe\n",
    "source_file = 'jw300.' + source_language\n",
    "target_file = 'jw300.' + target_language\n",
    "\n",
    "source = []\n",
    "target = []\n",
    "skip_lines = []  # Collect the line numbers of the source portion to skip the same lines for the target portion.\n",
    "with open(source_file) as f:\n",
    "    for i, line in enumerate(f):\n",
    "        # Skip sentences that are contained in the test set.\n",
    "        if line.strip() not in en_test_sents:\n",
    "            source.append(line.strip())\n",
    "        else:\n",
    "            skip_lines.append(i)             \n",
    "with open(target_file) as f:\n",
    "    for j, line in enumerate(f):\n",
    "        # Only add to corpus if corresponding source was not skipped.\n",
    "        if j not in skip_lines:\n",
    "            target.append(line.strip())\n",
    "    \n",
    "print('Loaded data and skipped {}/{} lines since contained in test set.'.format(len(skip_lines), i))\n",
    "    \n",
    "df = pd.DataFrame(zip(source, target), columns=['source_sentence', 'target_sentence'])\n",
    "# if you get TypeError: data argument can't be an iterator is because of your zip version run this below\n",
    "#df = pd.DataFrame(list(zip(source, target)), columns=['source_sentence', 'target_sentence'])\n",
    "df.head(3)"
   ]
  },
  {
   "cell_type": "code",
   "execution_count": 0,
   "metadata": {
    "colab": {
     "base_uri": "https://localhost:8080/",
     "height": 34
    },
    "colab_type": "code",
    "id": "hvgFJhMy6178",
    "outputId": "c6239ec1-8975-462f-d70a-aeb3af66cc03"
   },
   "outputs": [
    {
     "data": {
      "text/plain": [
       "'When two people trust each other , they feel safe and secure .'"
      ]
     },
     "execution_count": 15,
     "metadata": {
      "tags": []
     },
     "output_type": "execute_result"
    }
   ],
   "source": [
    "df.source_sentence[10]"
   ]
  },
  {
   "cell_type": "code",
   "execution_count": 0,
   "metadata": {
    "colab": {
     "base_uri": "https://localhost:8080/",
     "height": 34
    },
    "colab_type": "code",
    "id": "luzCebRY7FP0",
    "outputId": "1a013324-6412-4593-faf7-fff247d3bd86"
   },
   "outputs": [
    {
     "data": {
      "text/plain": [
       "'Hwenu e mɛ wè ɖeji dó yeɖée lɛ wu é ɔ , ayi yetɔn nɔ j’ayǐ dó yeɖée lɛ wu .'"
      ]
     },
     "execution_count": 16,
     "metadata": {
      "tags": []
     },
     "output_type": "execute_result"
    }
   ],
   "source": [
    "df.target_sentence[10]"
   ]
  },
  {
   "cell_type": "code",
   "execution_count": 0,
   "metadata": {
    "colab": {
     "base_uri": "https://localhost:8080/",
     "height": 34
    },
    "colab_type": "code",
    "id": "TM6Uy1-W7Pxw",
    "outputId": "7c13e867-5e88-419e-bbd4-ab5224a29e99"
   },
   "outputs": [
    {
     "data": {
      "text/plain": [
       "30548"
      ]
     },
     "execution_count": 14,
     "metadata": {
      "tags": []
     },
     "output_type": "execute_result"
    }
   ],
   "source": [
    "len(df)"
   ]
  },
  {
   "cell_type": "markdown",
   "metadata": {
    "colab_type": "text",
    "id": "YkuK3B4p2AkN"
   },
   "source": [
    "## Pre-processing and export\n",
    "\n",
    "It is generally a good idea to remove duplicate translations and conflicting translations from the corpus. In practice, these public corpora include some number of these that need to be cleaned.\n",
    "\n",
    "In addition we will split our data into dev/test/train and export to the filesystem."
   ]
  },
  {
   "cell_type": "code",
   "execution_count": 0,
   "metadata": {
    "colab": {
     "base_uri": "https://localhost:8080/",
     "height": 187
    },
    "colab_type": "code",
    "id": "M_2ouEOH1_1q",
    "outputId": "525b52d6-75d8-48ef-9d07-c169a071f614"
   },
   "outputs": [
    {
     "name": "stderr",
     "output_type": "stream",
     "text": [
      "/usr/local/lib/python3.6/dist-packages/ipykernel_launcher.py:6: SettingWithCopyWarning: \n",
      "A value is trying to be set on a copy of a slice from a DataFrame\n",
      "\n",
      "See the caveats in the documentation: http://pandas.pydata.org/pandas-docs/stable/user_guide/indexing.html#returning-a-view-versus-a-copy\n",
      "  \n",
      "/usr/local/lib/python3.6/dist-packages/ipykernel_launcher.py:7: SettingWithCopyWarning: \n",
      "A value is trying to be set on a copy of a slice from a DataFrame\n",
      "\n",
      "See the caveats in the documentation: http://pandas.pydata.org/pandas-docs/stable/user_guide/indexing.html#returning-a-view-versus-a-copy\n",
      "  import sys\n"
     ]
    }
   ],
   "source": [
    "# drop duplicate translations\n",
    "df_pp = df.drop_duplicates()\n",
    "\n",
    "# drop conflicting translations\n",
    "# (this is optional and something that you might want to comment out \n",
    "# depending on the size of your corpus)\n",
    "df_pp.drop_duplicates(subset='source_sentence', inplace=True)\n",
    "df_pp.drop_duplicates(subset='target_sentence', inplace=True)\n",
    "\n",
    "# Shuffle the data to remove bias in dev set selection.\n",
    "df_pp = df_pp.sample(frac=1, random_state=seed).reset_index(drop=True)"
   ]
  },
  {
   "cell_type": "code",
   "execution_count": 0,
   "metadata": {
    "colab": {
     "base_uri": "https://localhost:8080/",
     "height": 819
    },
    "colab_type": "code",
    "id": "Z_1BwAApEtMk",
    "outputId": "7a7e4433-fe37-4424-d6e9-c4b0b237f648"
   },
   "outputs": [
    {
     "name": "stdout",
     "output_type": "stream",
     "text": [
      "Collecting fuzzywuzzy\n",
      "  Downloading https://files.pythonhosted.org/packages/d8/f1/5a267addb30ab7eaa1beab2b9323073815da4551076554ecc890a3595ec9/fuzzywuzzy-0.17.0-py2.py3-none-any.whl\n",
      "Installing collected packages: fuzzywuzzy\n",
      "Successfully installed fuzzywuzzy-0.17.0\n",
      "Collecting python-Levenshtein\n",
      "\u001b[?25l  Downloading https://files.pythonhosted.org/packages/42/a9/d1785c85ebf9b7dfacd08938dd028209c34a0ea3b1bcdb895208bd40a67d/python-Levenshtein-0.12.0.tar.gz (48kB)\n",
      "\u001b[K     |████████████████████████████████| 51kB 3.0MB/s \n",
      "\u001b[?25hRequirement already satisfied: setuptools in /usr/local/lib/python3.6/dist-packages (from python-Levenshtein) (41.6.0)\n",
      "Building wheels for collected packages: python-Levenshtein\n",
      "  Building wheel for python-Levenshtein (setup.py) ... \u001b[?25l\u001b[?25hdone\n",
      "  Created wheel for python-Levenshtein: filename=python_Levenshtein-0.12.0-cp36-cp36m-linux_x86_64.whl size=144666 sha256=68318040f392110ed6edcb5d5e3370b72f980fb5d1e118d8b8fe41ad12d0eb72\n",
      "  Stored in directory: /root/.cache/pip/wheels/de/c2/93/660fd5f7559049268ad2dc6d81c4e39e9e36518766eaf7e342\n",
      "Successfully built python-Levenshtein\n",
      "Installing collected packages: python-Levenshtein\n",
      "Successfully installed python-Levenshtein-0.12.0\n",
      "00:00:00.02 0.00 percent complete\n",
      "00:00:24.63 3.49 percent complete\n",
      "00:00:49.66 6.99 percent complete\n"
     ]
    },
    {
     "name": "stderr",
     "output_type": "stream",
     "text": [
      "WARNING:root:Applied processor reduces input query to empty string, all comparisons will have score 0. [Query: '']\n"
     ]
    },
    {
     "name": "stdout",
     "output_type": "stream",
     "text": [
      "00:01:16.43 10.48 percent complete\n",
      "00:01:41.96 13.97 percent complete\n",
      "00:02:06.36 17.47 percent complete\n",
      "00:02:30.61 20.96 percent complete\n",
      "00:02:55.65 24.45 percent complete\n",
      "00:03:19.86 27.95 percent complete\n",
      "00:03:45.11 31.44 percent complete\n"
     ]
    },
    {
     "name": "stderr",
     "output_type": "stream",
     "text": [
      "WARNING:root:Applied processor reduces input query to empty string, all comparisons will have score 0. [Query: '*']\n"
     ]
    },
    {
     "name": "stdout",
     "output_type": "stream",
     "text": [
      "00:04:09.90 34.93 percent complete\n",
      "00:04:36.93 38.43 percent complete\n",
      "00:05:01.21 41.92 percent complete\n",
      "00:05:25.80 45.41 percent complete\n",
      "00:05:50.23 48.91 percent complete\n",
      "00:06:15.55 52.40 percent complete\n",
      "00:06:39.99 55.89 percent complete\n",
      "00:07:05.06 59.39 percent complete\n",
      "00:07:29.83 62.88 percent complete\n",
      "00:07:56.33 66.37 percent complete\n",
      "00:08:20.68 69.87 percent complete\n",
      "00:08:45.66 73.36 percent complete\n",
      "00:09:10.41 76.85 percent complete\n",
      "00:09:35.16 80.35 percent complete\n",
      "00:10:00.10 83.84 percent complete\n",
      "00:10:24.67 87.33 percent complete\n",
      "00:10:49.82 90.83 percent complete\n",
      "00:11:16.85 94.32 percent complete\n",
      "00:11:41.60 97.81 percent complete\n"
     ]
    }
   ],
   "source": [
    "# Install fuzzy wuzzy to remove \"almost duplicate\" sentences in the\n",
    "# test and training sets.\n",
    "! pip install fuzzywuzzy\n",
    "! pip install python-Levenshtein\n",
    "import time\n",
    "from fuzzywuzzy import process\n",
    "import numpy as np\n",
    "\n",
    "# reset the index of the training set after previous filtering\n",
    "df_pp.reset_index(drop=False, inplace=True)\n",
    "\n",
    "# Remove samples from the training data set if they \"almost overlap\" with the\n",
    "# samples in the test set.\n",
    "\n",
    "# Filtering function. Adjust pad to narrow down the candidate matches to\n",
    "# within a certain length of characters of the given sample.\n",
    "def fuzzfilter(sample, candidates, pad):\n",
    "  candidates = [x for x in candidates if len(x) <= len(sample)+pad and len(x) >= len(sample)-pad] \n",
    "  if len(candidates) > 0:\n",
    "    return process.extractOne(sample, candidates)[1]\n",
    "  else:\n",
    "    return np.nan\n",
    "\n",
    "# NOTE - This might run slow depending on the size of your training set. We are\n",
    "# printing some information to help you track how long it would take. \n",
    "scores = []\n",
    "start_time = time.time()\n",
    "for idx, row in df_pp.iterrows():\n",
    "  scores.append(fuzzfilter(row['source_sentence'], list(en_test_sents), 5))\n",
    "  if idx % 1000 == 0:\n",
    "    hours, rem = divmod(time.time() - start_time, 3600)\n",
    "    minutes, seconds = divmod(rem, 60)\n",
    "    print(\"{:0>2}:{:0>2}:{:05.2f}\".format(int(hours),int(minutes),seconds), \"%0.2f percent complete\" % (100.0*float(idx)/float(len(df_pp))))\n",
    "\n",
    "# Filter out \"almost overlapping samples\"\n",
    "df_pp['scores'] = scores\n",
    "df_pp = df_pp[df_pp['scores'] < 95]"
   ]
  },
  {
   "cell_type": "code",
   "execution_count": 0,
   "metadata": {
    "colab": {
     "base_uri": "https://localhost:8080/",
     "height": 819
    },
    "colab_type": "code",
    "id": "hxxBOCA-xXhy",
    "outputId": "26b4e463-6d02-4a78-8002-2b331efe21f6"
   },
   "outputs": [
    {
     "name": "stdout",
     "output_type": "stream",
     "text": [
      "==> train.en <==\n",
      "If we realize that our love for material things is eclipsing our love for the Christ , we should reflect on Jesus ’ words : “ Guard against every sort of greed . ”\n",
      "The result ?\n",
      "Then my grandmother’s sister , who was over 80 years of age , began to study and was baptized before she died .\n",
      "If black Witnesses preached from door to door in a white neighborhood , they would be arrested ​ — and likely beaten up .\n",
      "Soon afterward Daniel died .\n",
      "At a diplomatic function , Herod clothed himself “ with royal raiment . ”\n",
      "( b ) How can we become effective in the ministry ?\n",
      "Giving refugees practical help requires , not a lot of money , but mainly our time and concern .\n",
      "Jesus gave an illustration about a king who forgave his slave a huge debt of 60,000,000 denarii .\n",
      "Jesus explained a principle that helps us to know whom we should obey .\n",
      "\n",
      "==> train.fon <==\n",
      "Nú mǐ ɖó ayi wu ɖɔ wanyiyi e mǐ ɖó nú agbaza sín nǔ lɛ é jɛ ta yí sín wanyiyi e mǐ ɖó nú Klisu é sí jí ɔ , mǐ ɖó na lin nǔ kpɔ́n dó xó e Jezu ɖɔ é jí : “ Mi cɔ́ miɖée dó nukúnkɛ́ndídó wu . ” ( Luk .\n",
      "Etɛ ka jɛ túnú tɔn ?\n",
      "Gɔ́ na ɔ , mamáa ce sín nagán , ee ko ɖó xwè 80 jɛji é lɔmɔ̌ jɛ Biblu kplɔ́n jí lobo bló baptɛm cobo kú .\n",
      "Enyi kúnnuɖetɔ́ mɛwi ɖé ɖò wɛn jla wɛ sín hɔn ɖé kɔn jɛ hɔn ɖé kɔn ɖò yovó lɛ sín xá mɛ ɔ , ye na wlí i bo sixu xò è .\n",
      "Enɛ gudo zaan ɔ , Daniel kú .\n",
      "Ðó Elodu ɖò tɛn acɛkpikpa tɔn mɛ wutu ɔ , é dó “ axɔsuwu tɔn . ”\n",
      "( b ) Nɛ̌ mǐ ka sixu bló gbɔn bɔ sinsɛnzɔ́ mǐtɔn na na sínsɛ́n hugǎn ?\n",
      "Alɔ tawun tawun lɛ didó mɛ ɖěɖee hɔn sín tò yetɔn mɛ lɛ é byɔ ɖɔ è ni zán akwɛ gègě ǎ , loɔ , nǔ taji ɔ wɛ nyí ɖɔ mǐ na zán hwenu mǐtɔn bo lɛ́ xlɛ́ ɖɔ nǔ yetɔn nɔ ɖu ayi mɛ nú mǐ .\n",
      "Jezu dó lǒ ɖé dó axɔsu e sɔ́ sikágankwɛ 10 000 , alǒ gankwɛ 60 000 000 kɛ mɛsɛntɔ́ tɔn lɛ ɖokpo é wu .\n",
      "Jezu tinmɛ nugbodòdó e sixu d’alɔ mǐ bɔ mǐ na tuùn mɛ e mǐ ɖó na setónú na é .\n",
      "==> dev.en <==\n",
      "I love pioneering in this territory .\n",
      "“ Too numerous to recount ” are the “ wonderful works ” we can thank and praise Jehovah for daily !\n",
      "Some Christian parents serving in a foreign - language field have come to realize that their children’s interest in the truth has waned .\n",
      "You certainly recognize that Jewish man as the one who came to be known as the apostle Paul .\n",
      "Before accepting a new assignment , a modest person will first find out what will be required of him .\n",
      "Others who had admirable qualities failed to win God’s approval .\n",
      "His momentary exuberance was not true joy . ​ — Prov .\n",
      "We can see that from the resurrections Jesus performed when outside of Nain and when in the home of Jairus .\n",
      "According to Revelation 14 : 6 , 7 , how do angels assist God’s people today ?\n",
      "Why do I obey God’s commands rather than imitate the world’s moral standards ?\n",
      "\n",
      "==> dev.fon <==\n",
      "Un yí wǎn nú gbexosin - alijitɔ́zɔ́ wiwa ɖò fí enɛ .\n",
      "“ Nùjiwǔ ” e Jehovah bló bɔ mǐ sixu dokú tɔn n’i bo lɛ́ kpa susu n’i ayihɔngbe ayihɔngbe é “ sukpɔ́ ” tawun .\n",
      "Mɛjitɔ́ Klisanwun e ɖò sinsɛnzɔ́ wà wɛ ɖò ayǐ e jí è nɔ dó gbè ɖevo ɖè lɛ é ɖé lɛ wá ɖ’ayi wu ɖɔ jlǒ e vǐ emitɔn lɛ ɖó nú nugbǒ ɔ é ɖò ɖiɖekpo wɛ .\n",
      "1 : 14 ) É ɖò wɛn ɖɔ a tuùn nya Jwifu enɛ e è wá ylɔ ɖɔ mɛsɛ́dó Pɔlu é .\n",
      "Cobonu mɛ e nɔ nɔ jlɛ̌ jí é ɖé na yí gbè nú azɔ̌ yɔyɔ̌ ɖé ɔ , é nɔ gbéjé nǔ e azɔ̌ ɔ na byɔ ɖò así tɔn lɛ é kpɔ́n hwɛ̌ .\n",
      "Mɛ ɖevo lɛ ka tíìn bo ɖó jijɔ ɖagbe lɛ có , nǔ yetɔn ka nyɔ́ nukún tɔn mɛ ǎ .\n",
      "Jo e é ki nú táan kpɛɖé é nyí awǎjijɛ jɔ awǎjijɛ ǎ . ​ — Nùx .\n",
      "Mǐ mɔ ɖɔ Jezu fɔ́n mɛ sín kú hwenu e é tɔ́n sín Nayinu é kpo hwenu e é ɖò Jayilɔsi xwé é kpo .\n",
      "Sɔgbe xá nǔ e Nǔɖexlɛ́mɛ 14 : 6 , 7 ɖɔ é ɔ , nɛ̌ wɛnsagun lɛ ka nɔ d’alɔ togun Mawu tɔn gbɔn ɖò égbé ?\n",
      "Etɛwu un ka nɔ nyì sɛ́n Mawu tɔn lɛ , bo ma nɔ wà nǔ gbɛ̀ ɔ ɖɔhun ǎ ?\n"
     ]
    }
   ],
   "source": [
    "# This section does the split between train/dev for the parallel corpora then saves them as separate files\n",
    "# We use 1000 dev test and the given test set.\n",
    "import csv\n",
    "\n",
    "# Do the split between dev/train and create parallel corpora\n",
    "num_dev_patterns = 1000\n",
    "\n",
    "# Optional: lower case the corpora - this will make it easier to generalize, but without proper casing.\n",
    "if lc:  # Julia: making lowercasing optional\n",
    "    df_pp[\"source_sentence\"] = df_pp[\"source_sentence\"].str.lower()\n",
    "    df_pp[\"target_sentence\"] = df_pp[\"target_sentence\"].str.lower()\n",
    "\n",
    "# Julia: test sets are already generated\n",
    "dev = df_pp.tail(num_dev_patterns) # Herman: Error in original\n",
    "stripped = df_pp.drop(df_pp.tail(num_dev_patterns).index)\n",
    "\n",
    "with open(\"train.\"+source_language, \"w\") as src_file, open(\"train.\"+target_language, \"w\") as trg_file:\n",
    "  for index, row in stripped.iterrows():\n",
    "    src_file.write(row[\"source_sentence\"]+\"\\n\")\n",
    "    trg_file.write(row[\"target_sentence\"]+\"\\n\")\n",
    "    \n",
    "with open(\"dev.\"+source_language, \"w\") as src_file, open(\"dev.\"+target_language, \"w\") as trg_file:\n",
    "  for index, row in dev.iterrows():\n",
    "    src_file.write(row[\"source_sentence\"]+\"\\n\")\n",
    "    trg_file.write(row[\"target_sentence\"]+\"\\n\")\n",
    "\n",
    "#stripped[[\"source_sentence\"]].to_csv(\"train.\"+source_language, header=False, index=False)  # Herman: Added `header=False` everywhere\n",
    "#stripped[[\"target_sentence\"]].to_csv(\"train.\"+target_language, header=False, index=False)  # Julia: Problematic handling of quotation marks.\n",
    "\n",
    "#dev[[\"source_sentence\"]].to_csv(\"dev.\"+source_language, header=False, index=False)\n",
    "#dev[[\"target_sentence\"]].to_csv(\"dev.\"+target_language, header=False, index=False)\n",
    "\n",
    "# Doublecheck the format below. There should be no extra quotation marks or weird characters.\n",
    "! head train.*\n",
    "! head dev.*"
   ]
  },
  {
   "cell_type": "markdown",
   "metadata": {
    "colab_type": "text",
    "id": "epeCydmCyS8X"
   },
   "source": [
    "\n",
    "\n",
    "---\n",
    "\n",
    "\n",
    "## Installation of JoeyNMT\n",
    "\n",
    "JoeyNMT is a simple, minimalist NMT package which is useful for learning and teaching. Check out the documentation for JoeyNMT [here](https://joeynmt.readthedocs.io)  "
   ]
  },
  {
   "cell_type": "code",
   "execution_count": 0,
   "metadata": {
    "colab": {
     "base_uri": "https://localhost:8080/",
     "height": 1000
    },
    "colab_type": "code",
    "id": "iBRMm4kMxZ8L",
    "outputId": "71b591b8-0d99-43aa-f08a-4f3f6cd87998"
   },
   "outputs": [
    {
     "name": "stdout",
     "output_type": "stream",
     "text": [
      "Cloning into 'joeynmt'...\n",
      "remote: Enumerating objects: 15, done.\u001b[K\n",
      "remote: Counting objects:   6% (1/15)\u001b[K\r",
      "remote: Counting objects:  13% (2/15)\u001b[K\r",
      "remote: Counting objects:  20% (3/15)\u001b[K\r",
      "remote: Counting objects:  26% (4/15)\u001b[K\r",
      "remote: Counting objects:  33% (5/15)\u001b[K\r",
      "remote: Counting objects:  40% (6/15)\u001b[K\r",
      "remote: Counting objects:  46% (7/15)\u001b[K\r",
      "remote: Counting objects:  53% (8/15)\u001b[K\r",
      "remote: Counting objects:  60% (9/15)\u001b[K\r",
      "remote: Counting objects:  66% (10/15)\u001b[K\r",
      "remote: Counting objects:  73% (11/15)\u001b[K\r",
      "remote: Counting objects:  80% (12/15)\u001b[K\r",
      "remote: Counting objects:  86% (13/15)\u001b[K\r",
      "remote: Counting objects:  93% (14/15)\u001b[K\r",
      "remote: Counting objects: 100% (15/15)\u001b[K\r",
      "remote: Counting objects: 100% (15/15), done.\u001b[K\n",
      "remote: Compressing objects: 100% (12/12), done.\u001b[K\n",
      "remote: Total 2199 (delta 4), reused 5 (delta 3), pack-reused 2184\u001b[K\n",
      "Receiving objects: 100% (2199/2199), 2.60 MiB | 4.29 MiB/s, done.\n",
      "Resolving deltas: 100% (1525/1525), done.\n",
      "Processing /content/joeynmt\n",
      "Requirement already satisfied: future in /usr/local/lib/python3.6/dist-packages (from joeynmt==0.0.1) (0.16.0)\n",
      "Requirement already satisfied: pillow in /usr/local/lib/python3.6/dist-packages (from joeynmt==0.0.1) (4.3.0)\n",
      "Requirement already satisfied: numpy<2.0,>=1.14.5 in /usr/local/lib/python3.6/dist-packages (from joeynmt==0.0.1) (1.17.4)\n",
      "Requirement already satisfied: setuptools>=41.0.0 in /usr/local/lib/python3.6/dist-packages (from joeynmt==0.0.1) (41.6.0)\n",
      "Requirement already satisfied: torch>=1.1 in /usr/local/lib/python3.6/dist-packages (from joeynmt==0.0.1) (1.3.1)\n",
      "Requirement already satisfied: tensorflow>=1.14 in /usr/local/lib/python3.6/dist-packages (from joeynmt==0.0.1) (1.15.0)\n",
      "Requirement already satisfied: torchtext in /usr/local/lib/python3.6/dist-packages (from joeynmt==0.0.1) (0.3.1)\n",
      "Collecting sacrebleu>=1.3.6\n",
      "  Downloading https://files.pythonhosted.org/packages/0e/e5/93d252182f7cbd4b59bb3ec5797e2ce33cfd6f5aadaf327db170cf4b7887/sacrebleu-1.4.2-py3-none-any.whl\n",
      "Collecting subword-nmt\n",
      "  Downloading https://files.pythonhosted.org/packages/74/60/6600a7bc09e7ab38bc53a48a20d8cae49b837f93f5842a41fe513a694912/subword_nmt-0.3.7-py2.py3-none-any.whl\n",
      "Requirement already satisfied: matplotlib in /usr/local/lib/python3.6/dist-packages (from joeynmt==0.0.1) (3.1.1)\n",
      "Requirement already satisfied: seaborn in /usr/local/lib/python3.6/dist-packages (from joeynmt==0.0.1) (0.9.0)\n",
      "Collecting pyyaml>=5.1\n",
      "\u001b[?25l  Downloading https://files.pythonhosted.org/packages/e3/e8/b3212641ee2718d556df0f23f78de8303f068fe29cdaa7a91018849582fe/PyYAML-5.1.2.tar.gz (265kB)\n",
      "\u001b[K     |████████████████████████████████| 266kB 16.9MB/s \n",
      "\u001b[?25hCollecting pylint\n",
      "\u001b[?25l  Downloading https://files.pythonhosted.org/packages/e9/59/43fc36c5ee316bb9aeb7cf5329cdbdca89e5749c34d5602753827c0aa2dc/pylint-2.4.4-py3-none-any.whl (302kB)\n",
      "\u001b[K     |████████████████████████████████| 307kB 49.9MB/s \n",
      "\u001b[?25hRequirement already satisfied: six==1.12 in /usr/local/lib/python3.6/dist-packages (from joeynmt==0.0.1) (1.12.0)\n",
      "Requirement already satisfied: olefile in /usr/local/lib/python3.6/dist-packages (from pillow->joeynmt==0.0.1) (0.46)\n",
      "Requirement already satisfied: absl-py>=0.7.0 in /usr/local/lib/python3.6/dist-packages (from tensorflow>=1.14->joeynmt==0.0.1) (0.8.1)\n",
      "Requirement already satisfied: keras-preprocessing>=1.0.5 in /usr/local/lib/python3.6/dist-packages (from tensorflow>=1.14->joeynmt==0.0.1) (1.1.0)\n",
      "Requirement already satisfied: termcolor>=1.1.0 in /usr/local/lib/python3.6/dist-packages (from tensorflow>=1.14->joeynmt==0.0.1) (1.1.0)\n",
      "Requirement already satisfied: grpcio>=1.8.6 in /usr/local/lib/python3.6/dist-packages (from tensorflow>=1.14->joeynmt==0.0.1) (1.15.0)\n",
      "Requirement already satisfied: keras-applications>=1.0.8 in /usr/local/lib/python3.6/dist-packages (from tensorflow>=1.14->joeynmt==0.0.1) (1.0.8)\n",
      "Requirement already satisfied: tensorboard<1.16.0,>=1.15.0 in /usr/local/lib/python3.6/dist-packages (from tensorflow>=1.14->joeynmt==0.0.1) (1.15.0)\n",
      "Requirement already satisfied: opt-einsum>=2.3.2 in /usr/local/lib/python3.6/dist-packages (from tensorflow>=1.14->joeynmt==0.0.1) (3.1.0)\n",
      "Requirement already satisfied: astor>=0.6.0 in /usr/local/lib/python3.6/dist-packages (from tensorflow>=1.14->joeynmt==0.0.1) (0.8.0)\n",
      "Requirement already satisfied: google-pasta>=0.1.6 in /usr/local/lib/python3.6/dist-packages (from tensorflow>=1.14->joeynmt==0.0.1) (0.1.8)\n",
      "Requirement already satisfied: gast==0.2.2 in /usr/local/lib/python3.6/dist-packages (from tensorflow>=1.14->joeynmt==0.0.1) (0.2.2)\n",
      "Requirement already satisfied: wheel>=0.26 in /usr/local/lib/python3.6/dist-packages (from tensorflow>=1.14->joeynmt==0.0.1) (0.33.6)\n",
      "Requirement already satisfied: wrapt>=1.11.1 in /usr/local/lib/python3.6/dist-packages (from tensorflow>=1.14->joeynmt==0.0.1) (1.11.2)\n",
      "Requirement already satisfied: tensorflow-estimator==1.15.1 in /usr/local/lib/python3.6/dist-packages (from tensorflow>=1.14->joeynmt==0.0.1) (1.15.1)\n",
      "Requirement already satisfied: protobuf>=3.6.1 in /usr/local/lib/python3.6/dist-packages (from tensorflow>=1.14->joeynmt==0.0.1) (3.10.0)\n",
      "Requirement already satisfied: tqdm in /usr/local/lib/python3.6/dist-packages (from torchtext->joeynmt==0.0.1) (4.28.1)\n",
      "Requirement already satisfied: requests in /usr/local/lib/python3.6/dist-packages (from torchtext->joeynmt==0.0.1) (2.21.0)\n",
      "Collecting portalocker\n",
      "  Downloading https://files.pythonhosted.org/packages/91/db/7bc703c0760df726839e0699b7f78a4d8217fdc9c7fcb1b51b39c5a22a4e/portalocker-1.5.2-py2.py3-none-any.whl\n",
      "Requirement already satisfied: typing in /usr/local/lib/python3.6/dist-packages (from sacrebleu>=1.3.6->joeynmt==0.0.1) (3.6.6)\n",
      "Requirement already satisfied: kiwisolver>=1.0.1 in /usr/local/lib/python3.6/dist-packages (from matplotlib->joeynmt==0.0.1) (1.1.0)\n",
      "Requirement already satisfied: python-dateutil>=2.1 in /usr/local/lib/python3.6/dist-packages (from matplotlib->joeynmt==0.0.1) (2.6.1)\n",
      "Requirement already satisfied: cycler>=0.10 in /usr/local/lib/python3.6/dist-packages (from matplotlib->joeynmt==0.0.1) (0.10.0)\n",
      "Requirement already satisfied: pyparsing!=2.0.4,!=2.1.2,!=2.1.6,>=2.0.1 in /usr/local/lib/python3.6/dist-packages (from matplotlib->joeynmt==0.0.1) (2.4.5)\n",
      "Requirement already satisfied: scipy>=0.14.0 in /usr/local/lib/python3.6/dist-packages (from seaborn->joeynmt==0.0.1) (1.3.2)\n",
      "Requirement already satisfied: pandas>=0.15.2 in /usr/local/lib/python3.6/dist-packages (from seaborn->joeynmt==0.0.1) (0.25.3)\n",
      "Collecting astroid<2.4,>=2.3.0\n",
      "\u001b[?25l  Downloading https://files.pythonhosted.org/packages/ad/ae/86734823047962e7b8c8529186a1ac4a7ca19aaf1aa0c7713c022ef593fd/astroid-2.3.3-py3-none-any.whl (205kB)\n",
      "\u001b[K     |████████████████████████████████| 215kB 51.0MB/s \n",
      "\u001b[?25hCollecting isort<5,>=4.2.5\n",
      "\u001b[?25l  Downloading https://files.pythonhosted.org/packages/e5/b0/c121fd1fa3419ea9bfd55c7f9c4fedfec5143208d8c7ad3ce3db6c623c21/isort-4.3.21-py2.py3-none-any.whl (42kB)\n",
      "\u001b[K     |████████████████████████████████| 51kB 6.5MB/s \n",
      "\u001b[?25hCollecting mccabe<0.7,>=0.6\n",
      "  Downloading https://files.pythonhosted.org/packages/87/89/479dc97e18549e21354893e4ee4ef36db1d237534982482c3681ee6e7b57/mccabe-0.6.1-py2.py3-none-any.whl\n",
      "Requirement already satisfied: h5py in /usr/local/lib/python3.6/dist-packages (from keras-applications>=1.0.8->tensorflow>=1.14->joeynmt==0.0.1) (2.8.0)\n",
      "Requirement already satisfied: markdown>=2.6.8 in /usr/local/lib/python3.6/dist-packages (from tensorboard<1.16.0,>=1.15.0->tensorflow>=1.14->joeynmt==0.0.1) (3.1.1)\n",
      "Requirement already satisfied: werkzeug>=0.11.15 in /usr/local/lib/python3.6/dist-packages (from tensorboard<1.16.0,>=1.15.0->tensorflow>=1.14->joeynmt==0.0.1) (0.16.0)\n",
      "Requirement already satisfied: idna<2.9,>=2.5 in /usr/local/lib/python3.6/dist-packages (from requests->torchtext->joeynmt==0.0.1) (2.8)\n",
      "Requirement already satisfied: certifi>=2017.4.17 in /usr/local/lib/python3.6/dist-packages (from requests->torchtext->joeynmt==0.0.1) (2019.9.11)\n",
      "Requirement already satisfied: urllib3<1.25,>=1.21.1 in /usr/local/lib/python3.6/dist-packages (from requests->torchtext->joeynmt==0.0.1) (1.24.3)\n",
      "Requirement already satisfied: chardet<3.1.0,>=3.0.2 in /usr/local/lib/python3.6/dist-packages (from requests->torchtext->joeynmt==0.0.1) (3.0.4)\n",
      "Requirement already satisfied: pytz>=2017.2 in /usr/local/lib/python3.6/dist-packages (from pandas>=0.15.2->seaborn->joeynmt==0.0.1) (2018.9)\n",
      "Collecting typed-ast<1.5,>=1.4.0; implementation_name == \"cpython\" and python_version < \"3.8\"\n",
      "\u001b[?25l  Downloading https://files.pythonhosted.org/packages/31/d3/9d1802c161626d0278bafb1ffb32f76b9d01e123881bbf9d91e8ccf28e18/typed_ast-1.4.0-cp36-cp36m-manylinux1_x86_64.whl (736kB)\n",
      "\u001b[K     |████████████████████████████████| 737kB 45.8MB/s \n",
      "\u001b[?25hCollecting lazy-object-proxy==1.4.*\n",
      "\u001b[?25l  Downloading https://files.pythonhosted.org/packages/0b/dd/b1e3407e9e6913cf178e506cd0dee818e58694d9a5cd1984e3f6a8b9a10f/lazy_object_proxy-1.4.3-cp36-cp36m-manylinux1_x86_64.whl (55kB)\n",
      "\u001b[K     |████████████████████████████████| 61kB 7.8MB/s \n",
      "\u001b[?25hBuilding wheels for collected packages: joeynmt, pyyaml\n",
      "  Building wheel for joeynmt (setup.py) ... \u001b[?25l\u001b[?25hdone\n",
      "  Created wheel for joeynmt: filename=joeynmt-0.0.1-cp36-none-any.whl size=72136 sha256=d117593e05da9e532a469ebc2f269231fc80415f40bc9d316cda47919044b9b5\n",
      "  Stored in directory: /tmp/pip-ephem-wheel-cache-4hxgsvsh/wheels/db/01/db/751cc9f3e7f6faec127c43644ba250a3ea7ad200594aeda70a\n",
      "  Building wheel for pyyaml (setup.py) ... \u001b[?25l\u001b[?25hdone\n",
      "  Created wheel for pyyaml: filename=PyYAML-5.1.2-cp36-cp36m-linux_x86_64.whl size=44104 sha256=fb52239eedec1192734b9c05b0e67ddb748b25e86c2a5c09a444c72e1b0bf831\n",
      "  Stored in directory: /root/.cache/pip/wheels/d9/45/dd/65f0b38450c47cf7e5312883deb97d065e030c5cca0a365030\n",
      "Successfully built joeynmt pyyaml\n",
      "Installing collected packages: portalocker, sacrebleu, subword-nmt, pyyaml, typed-ast, lazy-object-proxy, astroid, isort, mccabe, pylint, joeynmt\n",
      "  Found existing installation: PyYAML 3.13\n",
      "    Uninstalling PyYAML-3.13:\n",
      "      Successfully uninstalled PyYAML-3.13\n",
      "Successfully installed astroid-2.3.3 isort-4.3.21 joeynmt-0.0.1 lazy-object-proxy-1.4.3 mccabe-0.6.1 portalocker-1.5.2 pylint-2.4.4 pyyaml-5.1.2 sacrebleu-1.4.2 subword-nmt-0.3.7 typed-ast-1.4.0\n"
     ]
    }
   ],
   "source": [
    "# Install JoeyNMT\n",
    "! git clone https://github.com/joeynmt/joeynmt.git\n",
    "! cd joeynmt; pip3 install ."
   ]
  },
  {
   "cell_type": "markdown",
   "metadata": {
    "colab_type": "text",
    "id": "AaE77Tcppex9"
   },
   "source": [
    "# Preprocessing the Data into Subword BPE Tokens\n",
    "\n",
    "- One of the most powerful improvements for agglutinative languages (a feature of most Bantu languages) is using BPE tokenization [ (Sennrich, 2015) ](https://arxiv.org/abs/1508.07909).\n",
    "\n",
    "- It was also shown that by optimizing the umber of BPE codes we significantly improve results for low-resourced languages [(Sennrich, 2019)](https://www.aclweb.org/anthology/P19-1021) [(Martinus, 2019)](https://arxiv.org/abs/1906.05685)\n",
    "\n",
    "- Below we have the scripts for doing BPE tokenization of our data. We use 4000 tokens as recommended by [(Sennrich, 2019)](https://www.aclweb.org/anthology/P19-1021). You do not need to change anything. Simply running the below will be suitable. "
   ]
  },
  {
   "cell_type": "code",
   "execution_count": 0,
   "metadata": {
    "colab": {
     "base_uri": "https://localhost:8080/",
     "height": 408
    },
    "colab_type": "code",
    "id": "H-TyjtmXB1mL",
    "outputId": "4f85916b-5a94-419d-94c7-296f3e65c729"
   },
   "outputs": [
    {
     "name": "stdout",
     "output_type": "stream",
     "text": [
      "bpe.codes.4000\tdev.en\t     test.bpe.fon    test.fon\t    train.en\n",
      "dev.bpe.en\tdev.fon      test.en\t     train.bpe.en   train.fon\n",
      "dev.bpe.fon\ttest.bpe.en  test.en-any.en  train.bpe.fon\n",
      "bpe.codes.4000\tdev.en\t     test.bpe.fon    test.fon\t    train.en\n",
      "dev.bpe.en\tdev.fon      test.en\t     train.bpe.en   train.fon\n",
      "dev.bpe.fon\ttest.bpe.en  test.en-any.en  train.bpe.fon\n",
      "BPE Xhosa Sentences\n",
      "Ðɛhan 6@@ 4 : 2 - 5 d’alɔ mì bɔ un mɔ ɖɔ un kún jló na nɔ mɛ ɖěɖee mɛ ɖevo lɛ nɔ xoɖɛ ɖɔ Mawu ni hwlɛn emi ɖò ye sí é mɛ ó !\n",
      "Un lɛ́vɔ wá mɔ nukúnnú jɛ wu ɖɔ enyi un kpò ɖò mɛ nú ɖɔ wɛ ɔ , un kún nyí kpɔ́ndéwú ɖagbe ɖé ó , b’ɛ na lɛ́ hɛn nyikɔ Jehovah tɔn k@@ wi@@ ji . ”\n",
      "Lin@@ da : “ Un xà t@@ l@@ ati mǐtɔn lɛ ganji bo na dó sixu sɔnǔ bá xwlé ye mɛ .\n",
      "Gbɛ@@ ̌@@ dido xá mɛ ɖěɖee nɔ ɖ’alɔ ɖò sinsɛnzɔ́ ɔ sín akpáxwé vovo lɛ mɛ é ko d’alɔ mì tawun .\n",
      "Un lɛ́ kpó ɖò ɖɛ xò sɛ́dó Jehovah wɛ bo ganjɛ wǔ tɔn . ”\n",
      "Combined BPE Vocab\n",
      "Tod@@\n",
      "righte@@\n",
      "xamu\n",
      "usal@@\n",
      "Mɔyiz@@\n",
      "ɔ́nd@@\n",
      "fín@@\n",
      "wɛli\n",
      "ɔlu\n",
      "mpli\n"
     ]
    }
   ],
   "source": [
    "# One of the huge boosts in NMT performance was to use a different method of tokenizing. \n",
    "# Usually, NMT would tokenize by words. However, using a method called BPE gave amazing boosts to performance\n",
    "\n",
    "# Do subword NMT\n",
    "from os import path\n",
    "os.environ[\"src\"] = source_language # Sets them in bash as well, since we often use bash scripts\n",
    "os.environ[\"tgt\"] = target_language\n",
    "\n",
    "# Learn BPEs on the training data.\n",
    "os.environ[\"data_path\"] = path.join(\"joeynmt\", \"data\", source_language + target_language) # Herman! \n",
    "! subword-nmt learn-joint-bpe-and-vocab --input train.$src train.$tgt -s 4000 -o bpe.codes.4000 --write-vocabulary vocab.$src vocab.$tgt\n",
    "\n",
    "# Apply BPE splits to the development and test data.\n",
    "! subword-nmt apply-bpe -c bpe.codes.4000 --vocabulary vocab.$src < train.$src > train.bpe.$src\n",
    "! subword-nmt apply-bpe -c bpe.codes.4000 --vocabulary vocab.$tgt < train.$tgt > train.bpe.$tgt\n",
    "\n",
    "! subword-nmt apply-bpe -c bpe.codes.4000 --vocabulary vocab.$src < dev.$src > dev.bpe.$src\n",
    "! subword-nmt apply-bpe -c bpe.codes.4000 --vocabulary vocab.$tgt < dev.$tgt > dev.bpe.$tgt\n",
    "! subword-nmt apply-bpe -c bpe.codes.4000 --vocabulary vocab.$src < test.$src > test.bpe.$src\n",
    "! subword-nmt apply-bpe -c bpe.codes.4000 --vocabulary vocab.$tgt < test.$tgt > test.bpe.$tgt\n",
    "\n",
    "# Create directory, move everyone we care about to the correct location\n",
    "! mkdir -p $data_path\n",
    "! cp train.* $data_path\n",
    "! cp test.* $data_path\n",
    "! cp dev.* $data_path\n",
    "! cp bpe.codes.4000 $data_path\n",
    "! ls $data_path\n",
    "\n",
    "# Also move everything we care about to a mounted location in google drive (relevant if running in colab) at gdrive_path\n",
    "! cp train.* \"$gdrive_path\"\n",
    "! cp test.* \"$gdrive_path\"\n",
    "! cp dev.* \"$gdrive_path\"\n",
    "! cp bpe.codes.4000 \"$gdrive_path\"\n",
    "! ls \"$gdrive_path\"\n",
    "\n",
    "# Create that vocab using build_vocab\n",
    "! sudo chmod 777 joeynmt/scripts/build_vocab.py\n",
    "! joeynmt/scripts/build_vocab.py joeynmt/data/$src$tgt/train.bpe.$src joeynmt/data/$src$tgt/train.bpe.$tgt --output_path joeynmt/data/$src$tgt/vocab.txt\n",
    "\n",
    "# Some output\n",
    "! echo \"BPE Xhosa Sentences\"\n",
    "! tail -n 5 test.bpe.$tgt\n",
    "! echo \"Combined BPE Vocab\"\n",
    "! tail -n 10 joeynmt/data/$src$tgt/vocab.txt  # Herman"
   ]
  },
  {
   "cell_type": "code",
   "execution_count": 0,
   "metadata": {
    "colab": {
     "base_uri": "https://localhost:8080/",
     "height": 68
    },
    "colab_type": "code",
    "id": "IlMitUHR8Qy-",
    "outputId": "9aa9345d-ad89-48ba-e9c6-03822b4d45e4"
   },
   "outputs": [
    {
     "name": "stdout",
     "output_type": "stream",
     "text": [
      "bpe.codes.4000\tdev.en\t     test.bpe.fon    test.fon\t    train.en\n",
      "dev.bpe.en\tdev.fon      test.en\t     train.bpe.en   train.fon\n",
      "dev.bpe.fon\ttest.bpe.en  test.en-any.en  train.bpe.fon\n"
     ]
    }
   ],
   "source": [
    "# Also move everything we care about to a mounted location in google drive (relevant if running in colab) at gdrive_path\n",
    "! cp train.* \"$gdrive_path\"\n",
    "! cp test.* \"$gdrive_path\"\n",
    "! cp dev.* \"$gdrive_path\"\n",
    "! cp bpe.codes.4000 \"$gdrive_path\"\n",
    "! ls \"$gdrive_path\""
   ]
  },
  {
   "cell_type": "markdown",
   "metadata": {
    "colab_type": "text",
    "id": "Ixmzi60WsUZ8"
   },
   "source": [
    "# Creating the JoeyNMT Config\n",
    "\n",
    "JoeyNMT requires a yaml config. We provide a template below. We've also set a number of defaults with it, that you may play with!\n",
    "\n",
    "- We used Transformer architecture \n",
    "- We set our dropout to reasonably high: 0.3 (recommended in  [(Sennrich, 2019)](https://www.aclweb.org/anthology/P19-1021))\n",
    "\n",
    "Things worth playing with:\n",
    "- The batch size (also recommended to change for low-resourced languages)\n",
    "- The number of epochs (we've set it at 30 just so it runs in about an hour, for testing purposes)\n",
    "- The decoder options (beam_size, alpha)\n",
    "- Evaluation metrics (BLEU versus Crhf4)"
   ]
  },
  {
   "cell_type": "code",
   "execution_count": 0,
   "metadata": {
    "colab": {},
    "colab_type": "code",
    "id": "PIs1lY2hxMsl"
   },
   "outputs": [],
   "source": [
    "# This creates the config file for our JoeyNMT system. It might seem overwhelming so we've provided a couple of useful parameters you'll need to update\n",
    "# (You can of course play with all the parameters if you'd like!)\n",
    "\n",
    "name = '%s%s' % (source_language, target_language)\n",
    "gdrive_path = os.environ[\"gdrive_path\"]\n",
    "\n",
    "# Create the config\n",
    "config = \"\"\"\n",
    "name: \"{name}_transformer\"\n",
    "\n",
    "data:\n",
    "    src: \"{source_language}\"\n",
    "    trg: \"{target_language}\"\n",
    "    train: \"data/{name}/train.bpe\"\n",
    "    dev:   \"data/{name}/dev.bpe\"\n",
    "    test:  \"data/{name}/test.bpe\"\n",
    "    level: \"bpe\"\n",
    "    lowercase: False\n",
    "    max_sent_length: 100\n",
    "    src_vocab: \"data/{name}/vocab.txt\"\n",
    "    trg_vocab: \"data/{name}/vocab.txt\"\n",
    "\n",
    "testing:\n",
    "    beam_size: 5\n",
    "    alpha: 1.0\n",
    "\n",
    "training:\n",
    "    #load_model: \"{gdrive_path}/models/{name}_transformer/1.ckpt\" # if uncommented, load a pre-trained model from this checkpoint\n",
    "    random_seed: 42\n",
    "    optimizer: \"adam\"\n",
    "    normalization: \"tokens\"\n",
    "    adam_betas: [0.9, 0.999] \n",
    "    scheduling: \"plateau\"           # TODO: try switching from plateau to Noam scheduling\n",
    "    patience: 5                     # For plateau: decrease learning rate by decrease_factor if validation score has not improved for this many validation rounds.\n",
    "    learning_rate_factor: 0.5       # factor for Noam scheduler (used with Transformer)\n",
    "    learning_rate_warmup: 1000      # warmup steps for Noam scheduler (used with Transformer)\n",
    "    decrease_factor: 0.7\n",
    "    loss: \"crossentropy\"\n",
    "    learning_rate: 0.0003\n",
    "    learning_rate_min: 0.00000001\n",
    "    weight_decay: 0.0\n",
    "    label_smoothing: 0.1\n",
    "    batch_size: 4096\n",
    "    batch_type: \"token\"\n",
    "    eval_batch_size: 3600\n",
    "    eval_batch_type: \"token\"\n",
    "    batch_multiplier: 1\n",
    "    early_stopping_metric: \"ppl\"\n",
    "    epochs: 30                     # TODO: Decrease for when playing around and checking of working. Around 30 is sufficient to check if its working at all\n",
    "    validation_freq: 1000          # TODO: Set to at least once per epoch.\n",
    "    logging_freq: 100\n",
    "    eval_metric: \"bleu\"\n",
    "    model_dir: \"models/{name}_transformer\"\n",
    "    overwrite: False               # TODO: Set to True if you want to overwrite possibly existing models. \n",
    "    shuffle: True\n",
    "    use_cuda: True\n",
    "    max_output_length: 100\n",
    "    print_valid_sents: [0, 1, 2, 3]\n",
    "    keep_last_ckpts: 3\n",
    "\n",
    "model:\n",
    "    initializer: \"xavier\"\n",
    "    bias_initializer: \"zeros\"\n",
    "    init_gain: 1.0\n",
    "    embed_initializer: \"xavier\"\n",
    "    embed_init_gain: 1.0\n",
    "    tied_embeddings: True\n",
    "    tied_softmax: True\n",
    "    encoder:\n",
    "        type: \"transformer\"\n",
    "        num_layers: 6\n",
    "        num_heads: 4             # TODO: Increase to 8 for larger data.\n",
    "        embeddings:\n",
    "            embedding_dim: 256   # TODO: Increase to 512 for larger data.\n",
    "            scale: True\n",
    "            dropout: 0.2\n",
    "        # typically ff_size = 4 x hidden_size\n",
    "        hidden_size: 256         # TODO: Increase to 512 for larger data.\n",
    "        ff_size: 1024            # TODO: Increase to 2048 for larger data.\n",
    "        dropout: 0.3\n",
    "    decoder:\n",
    "        type: \"transformer\"\n",
    "        num_layers: 6\n",
    "        num_heads: 4              # TODO: Increase to 8 for larger data.\n",
    "        embeddings:\n",
    "            embedding_dim: 256    # TODO: Increase to 512 for larger data.\n",
    "            scale: True\n",
    "            dropout: 0.2\n",
    "        # typically ff_size = 4 x hidden_size\n",
    "        hidden_size: 256         # TODO: Increase to 512 for larger data.\n",
    "        ff_size: 1024            # TODO: Increase to 2048 for larger data.\n",
    "        dropout: 0.3\n",
    "\"\"\".format(name=name, gdrive_path=os.environ[\"gdrive_path\"], source_language=source_language, target_language=target_language)\n",
    "with open(\"joeynmt/configs/transformer_{name}.yaml\".format(name=name),'w') as f:\n",
    "    f.write(config)"
   ]
  },
  {
   "cell_type": "markdown",
   "metadata": {
    "colab_type": "text",
    "id": "pIifxE3Qzuvs"
   },
   "source": [
    "# Train the Model\n",
    "\n",
    "This single line of joeynmt runs the training using the config we made above"
   ]
  },
  {
   "cell_type": "code",
   "execution_count": 0,
   "metadata": {
    "colab": {
     "base_uri": "https://localhost:8080/",
     "height": 1000
    },
    "colab_type": "code",
    "id": "6ZBPFwT94WpI",
    "outputId": "9d1ffcd3-3a70-45da-f734-0f532d14cb30"
   },
   "outputs": [
    {
     "name": "stdout",
     "output_type": "stream",
     "text": [
      "2019-11-26 14:00:30,601 Hello! This is Joey-NMT.\n",
      "2019-11-26 14:00:32,457 Total params: 12131328\n",
      "2019-11-26 14:00:32,459 Trainable parameters: ['decoder.layer_norm.bias', 'decoder.layer_norm.weight', 'decoder.layers.0.dec_layer_norm.bias', 'decoder.layers.0.dec_layer_norm.weight', 'decoder.layers.0.feed_forward.layer_norm.bias', 'decoder.layers.0.feed_forward.layer_norm.weight', 'decoder.layers.0.feed_forward.pwff_layer.0.bias', 'decoder.layers.0.feed_forward.pwff_layer.0.weight', 'decoder.layers.0.feed_forward.pwff_layer.3.bias', 'decoder.layers.0.feed_forward.pwff_layer.3.weight', 'decoder.layers.0.src_trg_att.k_layer.bias', 'decoder.layers.0.src_trg_att.k_layer.weight', 'decoder.layers.0.src_trg_att.output_layer.bias', 'decoder.layers.0.src_trg_att.output_layer.weight', 'decoder.layers.0.src_trg_att.q_layer.bias', 'decoder.layers.0.src_trg_att.q_layer.weight', 'decoder.layers.0.src_trg_att.v_layer.bias', 'decoder.layers.0.src_trg_att.v_layer.weight', 'decoder.layers.0.trg_trg_att.k_layer.bias', 'decoder.layers.0.trg_trg_att.k_layer.weight', 'decoder.layers.0.trg_trg_att.output_layer.bias', 'decoder.layers.0.trg_trg_att.output_layer.weight', 'decoder.layers.0.trg_trg_att.q_layer.bias', 'decoder.layers.0.trg_trg_att.q_layer.weight', 'decoder.layers.0.trg_trg_att.v_layer.bias', 'decoder.layers.0.trg_trg_att.v_layer.weight', 'decoder.layers.0.x_layer_norm.bias', 'decoder.layers.0.x_layer_norm.weight', 'decoder.layers.1.dec_layer_norm.bias', 'decoder.layers.1.dec_layer_norm.weight', 'decoder.layers.1.feed_forward.layer_norm.bias', 'decoder.layers.1.feed_forward.layer_norm.weight', 'decoder.layers.1.feed_forward.pwff_layer.0.bias', 'decoder.layers.1.feed_forward.pwff_layer.0.weight', 'decoder.layers.1.feed_forward.pwff_layer.3.bias', 'decoder.layers.1.feed_forward.pwff_layer.3.weight', 'decoder.layers.1.src_trg_att.k_layer.bias', 'decoder.layers.1.src_trg_att.k_layer.weight', 'decoder.layers.1.src_trg_att.output_layer.bias', 'decoder.layers.1.src_trg_att.output_layer.weight', 'decoder.layers.1.src_trg_att.q_layer.bias', 'decoder.layers.1.src_trg_att.q_layer.weight', 'decoder.layers.1.src_trg_att.v_layer.bias', 'decoder.layers.1.src_trg_att.v_layer.weight', 'decoder.layers.1.trg_trg_att.k_layer.bias', 'decoder.layers.1.trg_trg_att.k_layer.weight', 'decoder.layers.1.trg_trg_att.output_layer.bias', 'decoder.layers.1.trg_trg_att.output_layer.weight', 'decoder.layers.1.trg_trg_att.q_layer.bias', 'decoder.layers.1.trg_trg_att.q_layer.weight', 'decoder.layers.1.trg_trg_att.v_layer.bias', 'decoder.layers.1.trg_trg_att.v_layer.weight', 'decoder.layers.1.x_layer_norm.bias', 'decoder.layers.1.x_layer_norm.weight', 'decoder.layers.2.dec_layer_norm.bias', 'decoder.layers.2.dec_layer_norm.weight', 'decoder.layers.2.feed_forward.layer_norm.bias', 'decoder.layers.2.feed_forward.layer_norm.weight', 'decoder.layers.2.feed_forward.pwff_layer.0.bias', 'decoder.layers.2.feed_forward.pwff_layer.0.weight', 'decoder.layers.2.feed_forward.pwff_layer.3.bias', 'decoder.layers.2.feed_forward.pwff_layer.3.weight', 'decoder.layers.2.src_trg_att.k_layer.bias', 'decoder.layers.2.src_trg_att.k_layer.weight', 'decoder.layers.2.src_trg_att.output_layer.bias', 'decoder.layers.2.src_trg_att.output_layer.weight', 'decoder.layers.2.src_trg_att.q_layer.bias', 'decoder.layers.2.src_trg_att.q_layer.weight', 'decoder.layers.2.src_trg_att.v_layer.bias', 'decoder.layers.2.src_trg_att.v_layer.weight', 'decoder.layers.2.trg_trg_att.k_layer.bias', 'decoder.layers.2.trg_trg_att.k_layer.weight', 'decoder.layers.2.trg_trg_att.output_layer.bias', 'decoder.layers.2.trg_trg_att.output_layer.weight', 'decoder.layers.2.trg_trg_att.q_layer.bias', 'decoder.layers.2.trg_trg_att.q_layer.weight', 'decoder.layers.2.trg_trg_att.v_layer.bias', 'decoder.layers.2.trg_trg_att.v_layer.weight', 'decoder.layers.2.x_layer_norm.bias', 'decoder.layers.2.x_layer_norm.weight', 'decoder.layers.3.dec_layer_norm.bias', 'decoder.layers.3.dec_layer_norm.weight', 'decoder.layers.3.feed_forward.layer_norm.bias', 'decoder.layers.3.feed_forward.layer_norm.weight', 'decoder.layers.3.feed_forward.pwff_layer.0.bias', 'decoder.layers.3.feed_forward.pwff_layer.0.weight', 'decoder.layers.3.feed_forward.pwff_layer.3.bias', 'decoder.layers.3.feed_forward.pwff_layer.3.weight', 'decoder.layers.3.src_trg_att.k_layer.bias', 'decoder.layers.3.src_trg_att.k_layer.weight', 'decoder.layers.3.src_trg_att.output_layer.bias', 'decoder.layers.3.src_trg_att.output_layer.weight', 'decoder.layers.3.src_trg_att.q_layer.bias', 'decoder.layers.3.src_trg_att.q_layer.weight', 'decoder.layers.3.src_trg_att.v_layer.bias', 'decoder.layers.3.src_trg_att.v_layer.weight', 'decoder.layers.3.trg_trg_att.k_layer.bias', 'decoder.layers.3.trg_trg_att.k_layer.weight', 'decoder.layers.3.trg_trg_att.output_layer.bias', 'decoder.layers.3.trg_trg_att.output_layer.weight', 'decoder.layers.3.trg_trg_att.q_layer.bias', 'decoder.layers.3.trg_trg_att.q_layer.weight', 'decoder.layers.3.trg_trg_att.v_layer.bias', 'decoder.layers.3.trg_trg_att.v_layer.weight', 'decoder.layers.3.x_layer_norm.bias', 'decoder.layers.3.x_layer_norm.weight', 'decoder.layers.4.dec_layer_norm.bias', 'decoder.layers.4.dec_layer_norm.weight', 'decoder.layers.4.feed_forward.layer_norm.bias', 'decoder.layers.4.feed_forward.layer_norm.weight', 'decoder.layers.4.feed_forward.pwff_layer.0.bias', 'decoder.layers.4.feed_forward.pwff_layer.0.weight', 'decoder.layers.4.feed_forward.pwff_layer.3.bias', 'decoder.layers.4.feed_forward.pwff_layer.3.weight', 'decoder.layers.4.src_trg_att.k_layer.bias', 'decoder.layers.4.src_trg_att.k_layer.weight', 'decoder.layers.4.src_trg_att.output_layer.bias', 'decoder.layers.4.src_trg_att.output_layer.weight', 'decoder.layers.4.src_trg_att.q_layer.bias', 'decoder.layers.4.src_trg_att.q_layer.weight', 'decoder.layers.4.src_trg_att.v_layer.bias', 'decoder.layers.4.src_trg_att.v_layer.weight', 'decoder.layers.4.trg_trg_att.k_layer.bias', 'decoder.layers.4.trg_trg_att.k_layer.weight', 'decoder.layers.4.trg_trg_att.output_layer.bias', 'decoder.layers.4.trg_trg_att.output_layer.weight', 'decoder.layers.4.trg_trg_att.q_layer.bias', 'decoder.layers.4.trg_trg_att.q_layer.weight', 'decoder.layers.4.trg_trg_att.v_layer.bias', 'decoder.layers.4.trg_trg_att.v_layer.weight', 'decoder.layers.4.x_layer_norm.bias', 'decoder.layers.4.x_layer_norm.weight', 'decoder.layers.5.dec_layer_norm.bias', 'decoder.layers.5.dec_layer_norm.weight', 'decoder.layers.5.feed_forward.layer_norm.bias', 'decoder.layers.5.feed_forward.layer_norm.weight', 'decoder.layers.5.feed_forward.pwff_layer.0.bias', 'decoder.layers.5.feed_forward.pwff_layer.0.weight', 'decoder.layers.5.feed_forward.pwff_layer.3.bias', 'decoder.layers.5.feed_forward.pwff_layer.3.weight', 'decoder.layers.5.src_trg_att.k_layer.bias', 'decoder.layers.5.src_trg_att.k_layer.weight', 'decoder.layers.5.src_trg_att.output_layer.bias', 'decoder.layers.5.src_trg_att.output_layer.weight', 'decoder.layers.5.src_trg_att.q_layer.bias', 'decoder.layers.5.src_trg_att.q_layer.weight', 'decoder.layers.5.src_trg_att.v_layer.bias', 'decoder.layers.5.src_trg_att.v_layer.weight', 'decoder.layers.5.trg_trg_att.k_layer.bias', 'decoder.layers.5.trg_trg_att.k_layer.weight', 'decoder.layers.5.trg_trg_att.output_layer.bias', 'decoder.layers.5.trg_trg_att.output_layer.weight', 'decoder.layers.5.trg_trg_att.q_layer.bias', 'decoder.layers.5.trg_trg_att.q_layer.weight', 'decoder.layers.5.trg_trg_att.v_layer.bias', 'decoder.layers.5.trg_trg_att.v_layer.weight', 'decoder.layers.5.x_layer_norm.bias', 'decoder.layers.5.x_layer_norm.weight', 'encoder.layer_norm.bias', 'encoder.layer_norm.weight', 'encoder.layers.0.feed_forward.layer_norm.bias', 'encoder.layers.0.feed_forward.layer_norm.weight', 'encoder.layers.0.feed_forward.pwff_layer.0.bias', 'encoder.layers.0.feed_forward.pwff_layer.0.weight', 'encoder.layers.0.feed_forward.pwff_layer.3.bias', 'encoder.layers.0.feed_forward.pwff_layer.3.weight', 'encoder.layers.0.layer_norm.bias', 'encoder.layers.0.layer_norm.weight', 'encoder.layers.0.src_src_att.k_layer.bias', 'encoder.layers.0.src_src_att.k_layer.weight', 'encoder.layers.0.src_src_att.output_layer.bias', 'encoder.layers.0.src_src_att.output_layer.weight', 'encoder.layers.0.src_src_att.q_layer.bias', 'encoder.layers.0.src_src_att.q_layer.weight', 'encoder.layers.0.src_src_att.v_layer.bias', 'encoder.layers.0.src_src_att.v_layer.weight', 'encoder.layers.1.feed_forward.layer_norm.bias', 'encoder.layers.1.feed_forward.layer_norm.weight', 'encoder.layers.1.feed_forward.pwff_layer.0.bias', 'encoder.layers.1.feed_forward.pwff_layer.0.weight', 'encoder.layers.1.feed_forward.pwff_layer.3.bias', 'encoder.layers.1.feed_forward.pwff_layer.3.weight', 'encoder.layers.1.layer_norm.bias', 'encoder.layers.1.layer_norm.weight', 'encoder.layers.1.src_src_att.k_layer.bias', 'encoder.layers.1.src_src_att.k_layer.weight', 'encoder.layers.1.src_src_att.output_layer.bias', 'encoder.layers.1.src_src_att.output_layer.weight', 'encoder.layers.1.src_src_att.q_layer.bias', 'encoder.layers.1.src_src_att.q_layer.weight', 'encoder.layers.1.src_src_att.v_layer.bias', 'encoder.layers.1.src_src_att.v_layer.weight', 'encoder.layers.2.feed_forward.layer_norm.bias', 'encoder.layers.2.feed_forward.layer_norm.weight', 'encoder.layers.2.feed_forward.pwff_layer.0.bias', 'encoder.layers.2.feed_forward.pwff_layer.0.weight', 'encoder.layers.2.feed_forward.pwff_layer.3.bias', 'encoder.layers.2.feed_forward.pwff_layer.3.weight', 'encoder.layers.2.layer_norm.bias', 'encoder.layers.2.layer_norm.weight', 'encoder.layers.2.src_src_att.k_layer.bias', 'encoder.layers.2.src_src_att.k_layer.weight', 'encoder.layers.2.src_src_att.output_layer.bias', 'encoder.layers.2.src_src_att.output_layer.weight', 'encoder.layers.2.src_src_att.q_layer.bias', 'encoder.layers.2.src_src_att.q_layer.weight', 'encoder.layers.2.src_src_att.v_layer.bias', 'encoder.layers.2.src_src_att.v_layer.weight', 'encoder.layers.3.feed_forward.layer_norm.bias', 'encoder.layers.3.feed_forward.layer_norm.weight', 'encoder.layers.3.feed_forward.pwff_layer.0.bias', 'encoder.layers.3.feed_forward.pwff_layer.0.weight', 'encoder.layers.3.feed_forward.pwff_layer.3.bias', 'encoder.layers.3.feed_forward.pwff_layer.3.weight', 'encoder.layers.3.layer_norm.bias', 'encoder.layers.3.layer_norm.weight', 'encoder.layers.3.src_src_att.k_layer.bias', 'encoder.layers.3.src_src_att.k_layer.weight', 'encoder.layers.3.src_src_att.output_layer.bias', 'encoder.layers.3.src_src_att.output_layer.weight', 'encoder.layers.3.src_src_att.q_layer.bias', 'encoder.layers.3.src_src_att.q_layer.weight', 'encoder.layers.3.src_src_att.v_layer.bias', 'encoder.layers.3.src_src_att.v_layer.weight', 'encoder.layers.4.feed_forward.layer_norm.bias', 'encoder.layers.4.feed_forward.layer_norm.weight', 'encoder.layers.4.feed_forward.pwff_layer.0.bias', 'encoder.layers.4.feed_forward.pwff_layer.0.weight', 'encoder.layers.4.feed_forward.pwff_layer.3.bias', 'encoder.layers.4.feed_forward.pwff_layer.3.weight', 'encoder.layers.4.layer_norm.bias', 'encoder.layers.4.layer_norm.weight', 'encoder.layers.4.src_src_att.k_layer.bias', 'encoder.layers.4.src_src_att.k_layer.weight', 'encoder.layers.4.src_src_att.output_layer.bias', 'encoder.layers.4.src_src_att.output_layer.weight', 'encoder.layers.4.src_src_att.q_layer.bias', 'encoder.layers.4.src_src_att.q_layer.weight', 'encoder.layers.4.src_src_att.v_layer.bias', 'encoder.layers.4.src_src_att.v_layer.weight', 'encoder.layers.5.feed_forward.layer_norm.bias', 'encoder.layers.5.feed_forward.layer_norm.weight', 'encoder.layers.5.feed_forward.pwff_layer.0.bias', 'encoder.layers.5.feed_forward.pwff_layer.0.weight', 'encoder.layers.5.feed_forward.pwff_layer.3.bias', 'encoder.layers.5.feed_forward.pwff_layer.3.weight', 'encoder.layers.5.layer_norm.bias', 'encoder.layers.5.layer_norm.weight', 'encoder.layers.5.src_src_att.k_layer.bias', 'encoder.layers.5.src_src_att.k_layer.weight', 'encoder.layers.5.src_src_att.output_layer.bias', 'encoder.layers.5.src_src_att.output_layer.weight', 'encoder.layers.5.src_src_att.q_layer.bias', 'encoder.layers.5.src_src_att.q_layer.weight', 'encoder.layers.5.src_src_att.v_layer.bias', 'encoder.layers.5.src_src_att.v_layer.weight', 'src_embed.lut.weight']\n",
      "2019-11-26 14:00:38,324 cfg.name                           : enfon_transformer\n",
      "2019-11-26 14:00:38,324 cfg.data.src                       : en\n",
      "2019-11-26 14:00:38,324 cfg.data.trg                       : fon\n",
      "2019-11-26 14:00:38,324 cfg.data.train                     : data/enfon/train.bpe\n",
      "2019-11-26 14:00:38,325 cfg.data.dev                       : data/enfon/dev.bpe\n",
      "2019-11-26 14:00:38,325 cfg.data.test                      : data/enfon/test.bpe\n",
      "2019-11-26 14:00:38,325 cfg.data.level                     : bpe\n",
      "2019-11-26 14:00:38,325 cfg.data.lowercase                 : False\n",
      "2019-11-26 14:00:38,325 cfg.data.max_sent_length           : 100\n",
      "2019-11-26 14:00:38,325 cfg.data.src_vocab                 : data/enfon/vocab.txt\n",
      "2019-11-26 14:00:38,325 cfg.data.trg_vocab                 : data/enfon/vocab.txt\n",
      "2019-11-26 14:00:38,325 cfg.testing.beam_size              : 5\n",
      "2019-11-26 14:00:38,325 cfg.testing.alpha                  : 1.0\n",
      "2019-11-26 14:00:38,325 cfg.training.random_seed           : 42\n",
      "2019-11-26 14:00:38,326 cfg.training.optimizer             : adam\n",
      "2019-11-26 14:00:38,326 cfg.training.normalization         : tokens\n",
      "2019-11-26 14:00:38,326 cfg.training.adam_betas            : [0.9, 0.999]\n",
      "2019-11-26 14:00:38,326 cfg.training.scheduling            : plateau\n",
      "2019-11-26 14:00:38,326 cfg.training.patience              : 5\n",
      "2019-11-26 14:00:38,326 cfg.training.learning_rate_factor  : 0.5\n",
      "2019-11-26 14:00:38,326 cfg.training.learning_rate_warmup  : 1000\n",
      "2019-11-26 14:00:38,326 cfg.training.decrease_factor       : 0.7\n",
      "2019-11-26 14:00:38,326 cfg.training.loss                  : crossentropy\n",
      "2019-11-26 14:00:38,326 cfg.training.learning_rate         : 0.0003\n",
      "2019-11-26 14:00:38,327 cfg.training.learning_rate_min     : 1e-08\n",
      "2019-11-26 14:00:38,327 cfg.training.weight_decay          : 0.0\n",
      "2019-11-26 14:00:38,327 cfg.training.label_smoothing       : 0.1\n",
      "2019-11-26 14:00:38,327 cfg.training.batch_size            : 4096\n",
      "2019-11-26 14:00:38,327 cfg.training.batch_type            : token\n",
      "2019-11-26 14:00:38,327 cfg.training.eval_batch_size       : 3600\n",
      "2019-11-26 14:00:38,327 cfg.training.eval_batch_type       : token\n",
      "2019-11-26 14:00:38,327 cfg.training.batch_multiplier      : 1\n",
      "2019-11-26 14:00:38,327 cfg.training.early_stopping_metric : ppl\n",
      "2019-11-26 14:00:38,327 cfg.training.epochs                : 30\n",
      "2019-11-26 14:00:38,328 cfg.training.validation_freq       : 1000\n",
      "2019-11-26 14:00:38,328 cfg.training.logging_freq          : 100\n",
      "2019-11-26 14:00:38,328 cfg.training.eval_metric           : bleu\n",
      "2019-11-26 14:00:38,328 cfg.training.model_dir             : models/enfon_transformer\n",
      "2019-11-26 14:00:38,328 cfg.training.overwrite             : False\n",
      "2019-11-26 14:00:38,328 cfg.training.shuffle               : True\n",
      "2019-11-26 14:00:38,328 cfg.training.use_cuda              : True\n",
      "2019-11-26 14:00:38,328 cfg.training.max_output_length     : 100\n",
      "2019-11-26 14:00:38,328 cfg.training.print_valid_sents     : [0, 1, 2, 3]\n",
      "2019-11-26 14:00:38,328 cfg.training.keep_last_ckpts       : 3\n",
      "2019-11-26 14:00:38,329 cfg.model.initializer              : xavier\n",
      "2019-11-26 14:00:38,329 cfg.model.bias_initializer         : zeros\n",
      "2019-11-26 14:00:38,329 cfg.model.init_gain                : 1.0\n",
      "2019-11-26 14:00:38,329 cfg.model.embed_initializer        : xavier\n",
      "2019-11-26 14:00:38,329 cfg.model.embed_init_gain          : 1.0\n",
      "2019-11-26 14:00:38,329 cfg.model.tied_embeddings          : True\n",
      "2019-11-26 14:00:38,329 cfg.model.tied_softmax             : True\n",
      "2019-11-26 14:00:38,329 cfg.model.encoder.type             : transformer\n",
      "2019-11-26 14:00:38,329 cfg.model.encoder.num_layers       : 6\n",
      "2019-11-26 14:00:38,329 cfg.model.encoder.num_heads        : 4\n",
      "2019-11-26 14:00:38,330 cfg.model.encoder.embeddings.embedding_dim : 256\n",
      "2019-11-26 14:00:38,330 cfg.model.encoder.embeddings.scale : True\n",
      "2019-11-26 14:00:38,330 cfg.model.encoder.embeddings.dropout : 0.2\n",
      "2019-11-26 14:00:38,330 cfg.model.encoder.hidden_size      : 256\n",
      "2019-11-26 14:00:38,330 cfg.model.encoder.ff_size          : 1024\n",
      "2019-11-26 14:00:38,330 cfg.model.encoder.dropout          : 0.3\n",
      "2019-11-26 14:00:38,330 cfg.model.decoder.type             : transformer\n",
      "2019-11-26 14:00:38,330 cfg.model.decoder.num_layers       : 6\n",
      "2019-11-26 14:00:38,330 cfg.model.decoder.num_heads        : 4\n",
      "2019-11-26 14:00:38,330 cfg.model.decoder.embeddings.embedding_dim : 256\n",
      "2019-11-26 14:00:38,331 cfg.model.decoder.embeddings.scale : True\n",
      "2019-11-26 14:00:38,331 cfg.model.decoder.embeddings.dropout : 0.2\n",
      "2019-11-26 14:00:38,331 cfg.model.decoder.hidden_size      : 256\n",
      "2019-11-26 14:00:38,331 cfg.model.decoder.ff_size          : 1024\n",
      "2019-11-26 14:00:38,331 cfg.model.decoder.dropout          : 0.3\n",
      "2019-11-26 14:00:38,331 Data set sizes: \n",
      "\ttrain 27510,\n",
      "\tvalid 1000,\n",
      "\ttest 2713\n",
      "2019-11-26 14:00:38,331 First training example:\n",
      "\t[SRC] If we reali@@ ze that our love for material things is ec@@ li@@ p@@ sing our love for the Christ , we should reflect on Jesus ’ words : “ Gu@@ ard against every sor@@ t of gre@@ ed . ”\n",
      "\t[TRG] Nú mǐ ɖó ayi wu ɖɔ wanyiyi e mǐ ɖó nú agbaza sín nǔ lɛ é jɛ ta yí sín wanyiyi e mǐ ɖó nú Klisu é sí jí ɔ , mǐ ɖó na lin nǔ kpɔ́n dó xó e Jezu ɖɔ é jí : “ Mi cɔ́ miɖée dó nukún@@ k@@ ɛ́n@@ dí@@ dó wu . ” ( Luk .\n",
      "2019-11-26 14:00:38,331 First 10 words (src): (0) <unk> (1) <pad> (2) <s> (3) </s> (4) . (5) , (6) é (7) lɛ (8) ɔ (9) the\n",
      "2019-11-26 14:00:38,332 First 10 words (trg): (0) <unk> (1) <pad> (2) <s> (3) </s> (4) . (5) , (6) é (7) lɛ (8) ɔ (9) the\n",
      "2019-11-26 14:00:38,332 Number of Src words (types): 4184\n",
      "2019-11-26 14:00:38,333 Number of Trg words (types): 4184\n",
      "2019-11-26 14:00:38,333 Model(\n",
      "\tencoder=TransformerEncoder(num_layers=6, num_heads=4),\n",
      "\tdecoder=TransformerDecoder(num_layers=6, num_heads=4),\n",
      "\tsrc_embed=Embeddings(embedding_dim=256, vocab_size=4184),\n",
      "\ttrg_embed=Embeddings(embedding_dim=256, vocab_size=4184))\n",
      "2019-11-26 14:00:38,337 EPOCH 1\n",
      "2019-11-26 14:01:08,765 Epoch   1 Step:      100 Batch Loss:     5.094642 Tokens per Sec:     7341, Lr: 0.000300\n",
      "2019-11-26 14:01:39,090 Epoch   1 Step:      200 Batch Loss:     4.815321 Tokens per Sec:     7525, Lr: 0.000300\n",
      "2019-11-26 14:02:09,438 Epoch   1 Step:      300 Batch Loss:     4.436522 Tokens per Sec:     7544, Lr: 0.000300\n",
      "2019-11-26 14:02:26,611 Epoch   1: total training loss 1742.23\n",
      "2019-11-26 14:02:26,612 EPOCH 2\n",
      "2019-11-26 14:02:39,620 Epoch   2 Step:      400 Batch Loss:     4.331379 Tokens per Sec:     7479, Lr: 0.000300\n",
      "2019-11-26 14:03:09,957 Epoch   2 Step:      500 Batch Loss:     4.236403 Tokens per Sec:     7448, Lr: 0.000300\n",
      "2019-11-26 14:03:40,305 Epoch   2 Step:      600 Batch Loss:     3.822441 Tokens per Sec:     7380, Lr: 0.000300\n",
      "2019-11-26 14:04:10,836 Epoch   2 Step:      700 Batch Loss:     3.890893 Tokens per Sec:     7423, Lr: 0.000300\n",
      "2019-11-26 14:04:14,880 Epoch   2: total training loss 1396.25\n",
      "2019-11-26 14:04:14,880 EPOCH 3\n",
      "2019-11-26 14:04:41,409 Epoch   3 Step:      800 Batch Loss:     3.255218 Tokens per Sec:     7376, Lr: 0.000300\n",
      "2019-11-26 14:05:11,843 Epoch   3 Step:      900 Batch Loss:     3.479604 Tokens per Sec:     7369, Lr: 0.000300\n",
      "2019-11-26 14:05:42,564 Epoch   3 Step:     1000 Batch Loss:     3.530126 Tokens per Sec:     7480, Lr: 0.000300\n",
      "2019-11-26 14:07:15,329 Hooray! New best validation result [ppl]!\n",
      "2019-11-26 14:07:15,329 Saving new checkpoint.\n",
      "2019-11-26 14:07:15,584 Example #0\n",
      "2019-11-26 14:07:15,585 \tSource:     I love pioneering in this territory .\n",
      "2019-11-26 14:07:15,585 \tReference:  Un yí wǎn nú gbexosin - alijitɔ́zɔ́ wiwa ɖò fí enɛ .\n",
      "2019-11-26 14:07:15,585 \tHypothesis: É ɖò wɛn ɖɔ é ni mɔ nǔ e ɖò sinsɛnzɔ́ ɔ mɛ é .\n",
      "2019-11-26 14:07:15,585 Example #1\n",
      "2019-11-26 14:07:15,586 \tSource:     “ Too numerous to recount ” are the “ wonderful works ” we can thank and praise Jehovah for daily !\n",
      "2019-11-26 14:07:15,586 \tReference:  “ Nùjiwǔ ” e Jehovah bló bɔ mǐ sixu dokú tɔn n’i bo lɛ́ kpa susu n’i ayihɔngbe ayihɔngbe é “ sukpɔ́ ” tawun .\n",
      "2019-11-26 14:07:15,586 \tHypothesis: “ Un nɔ wà nǔ e ɖò sinsɛnzɔ́ ɔ mɛ lɛ é , bo nɔ nɔ wà nǔ e ɖò gbɛ̀ ɔ mɛ lɛ é .\n",
      "2019-11-26 14:07:15,586 Example #2\n",
      "2019-11-26 14:07:15,586 \tSource:     Some Christian parents serving in a foreign - language field have come to realize that their children’s interest in the truth has waned .\n",
      "2019-11-26 14:07:15,586 \tReference:  Mɛjitɔ́ Klisanwun e ɖò sinsɛnzɔ́ wà wɛ ɖò ayǐ e jí è nɔ dó gbè ɖevo ɖè lɛ é ɖé lɛ wá ɖ’ayi wu ɖɔ jlǒ e vǐ emitɔn lɛ ɖó nú nugbǒ ɔ é ɖò ɖiɖekpo wɛ .\n",
      "2019-11-26 14:07:15,587 \tHypothesis: É ɖò wɛn ɖɔ xó dó wusyɛn lanmɛ nú mɛ e ɖò agun tɔn mɛ lɛ é jí , bɔ ye na nɔ wà nǔ e ɖò sinsɛnzɔ́ ɔ mɛ lɛ é .\n",
      "2019-11-26 14:07:15,587 Example #3\n",
      "2019-11-26 14:07:15,587 \tSource:     You certainly recognize that Jewish man as the one who came to be known as the apostle Paul .\n",
      "2019-11-26 14:07:15,587 \tReference:  1 : 14 ) É ɖò wɛn ɖɔ a tuùn nya Jwifu enɛ e è wá ylɔ ɖɔ mɛsɛ́dó Pɔlu é .\n",
      "2019-11-26 14:07:15,587 \tHypothesis: É ɖò wɛn ɖɔ xó dó wusyɛn lanmɛ nú mɛ e ɖò sinsɛnzɔ́ ɔ mɛ é .\n",
      "2019-11-26 14:07:15,587 Validation result (greedy) at epoch   3, step     1000: bleu:   2.72, loss: 99911.8359, ppl:  29.0535, duration: 93.0228s\n",
      "2019-11-26 14:07:36,428 Epoch   3: total training loss 1254.81\n",
      "2019-11-26 14:07:36,429 EPOCH 4\n",
      "2019-11-26 14:07:45,842 Epoch   4 Step:     1100 Batch Loss:     3.662204 Tokens per Sec:     7252, Lr: 0.000300\n",
      "2019-11-26 14:08:16,145 Epoch   4 Step:     1200 Batch Loss:     3.202804 Tokens per Sec:     7434, Lr: 0.000300\n",
      "2019-11-26 14:08:46,301 Epoch   4 Step:     1300 Batch Loss:     3.270840 Tokens per Sec:     7407, Lr: 0.000300\n",
      "2019-11-26 14:09:16,542 Epoch   4 Step:     1400 Batch Loss:     3.876655 Tokens per Sec:     7399, Lr: 0.000300\n",
      "2019-11-26 14:09:25,135 Epoch   4: total training loss 1181.73\n",
      "2019-11-26 14:09:25,135 EPOCH 5\n",
      "2019-11-26 14:09:47,196 Epoch   5 Step:     1500 Batch Loss:     3.134502 Tokens per Sec:     7454, Lr: 0.000300\n",
      "2019-11-26 14:10:17,600 Epoch   5 Step:     1600 Batch Loss:     3.284228 Tokens per Sec:     7403, Lr: 0.000300\n",
      "2019-11-26 14:10:48,127 Epoch   5 Step:     1700 Batch Loss:     2.819642 Tokens per Sec:     7404, Lr: 0.000300\n",
      "2019-11-26 14:11:13,530 Epoch   5: total training loss 1100.60\n",
      "2019-11-26 14:11:13,530 EPOCH 6\n",
      "2019-11-26 14:11:18,464 Epoch   6 Step:     1800 Batch Loss:     3.228624 Tokens per Sec:     7396, Lr: 0.000300\n",
      "2019-11-26 14:11:48,768 Epoch   6 Step:     1900 Batch Loss:     2.696800 Tokens per Sec:     7410, Lr: 0.000300\n",
      "2019-11-26 14:12:19,085 Epoch   6 Step:     2000 Batch Loss:     2.260545 Tokens per Sec:     7352, Lr: 0.000300\n",
      "2019-11-26 14:13:52,290 Hooray! New best validation result [ppl]!\n",
      "2019-11-26 14:13:52,291 Saving new checkpoint.\n",
      "2019-11-26 14:13:52,551 Example #0\n",
      "2019-11-26 14:13:52,551 \tSource:     I love pioneering in this territory .\n",
      "2019-11-26 14:13:52,551 \tReference:  Un yí wǎn nú gbexosin - alijitɔ́zɔ́ wiwa ɖò fí enɛ .\n",
      "2019-11-26 14:13:52,552 \tHypothesis: Un nɔ mɔ ɖɔ emi kún nɔ wà mɔ̌ ó .\n",
      "2019-11-26 14:13:52,552 Example #1\n",
      "2019-11-26 14:13:52,552 \tSource:     “ Too numerous to recount ” are the “ wonderful works ” we can thank and praise Jehovah for daily !\n",
      "2019-11-26 14:13:52,552 \tReference:  “ Nùjiwǔ ” e Jehovah bló bɔ mǐ sixu dokú tɔn n’i bo lɛ́ kpa susu n’i ayihɔngbe ayihɔngbe é “ sukpɔ́ ” tawun .\n",
      "2019-11-26 14:13:52,552 \tHypothesis: “ Mi nú mǐ ni kpɔ́n nǔ e mǐ nɔ wà nú mɛ e ɖò nǔ e ɖò nukún wɛ lɛ é jí , bo ɖɔ : “ Mi nú mǐ ni nɔ gbeji nú Jehovah , bo nɔ lɛ́ mɔ nǔ e mǐ nɔ wà é . ”\n",
      "2019-11-26 14:13:52,552 Example #2\n",
      "2019-11-26 14:13:52,553 \tSource:     Some Christian parents serving in a foreign - language field have come to realize that their children’s interest in the truth has waned .\n",
      "2019-11-26 14:13:52,553 \tReference:  Mɛjitɔ́ Klisanwun e ɖò sinsɛnzɔ́ wà wɛ ɖò ayǐ e jí è nɔ dó gbè ɖevo ɖè lɛ é ɖé lɛ wá ɖ’ayi wu ɖɔ jlǒ e vǐ emitɔn lɛ ɖó nú nugbǒ ɔ é ɖò ɖiɖekpo wɛ .\n",
      "2019-11-26 14:13:52,553 \tHypothesis: Hwenu e è nɔ dó wusyɛn lanmɛ nú mɛ ɖevo lɛ é ɔ , ye nɔ mɔ ɖɔ emi kún nɔ mɔ ɖɔ emi kún nɔ wà nǔ xá emi ó .\n",
      "2019-11-26 14:13:52,553 Example #3\n",
      "2019-11-26 14:13:52,553 \tSource:     You certainly recognize that Jewish man as the one who came to be known as the apostle Paul .\n",
      "2019-11-26 14:13:52,553 \tReference:  1 : 14 ) É ɖò wɛn ɖɔ a tuùn nya Jwifu enɛ e è wá ylɔ ɖɔ mɛsɛ́dó Pɔlu é .\n",
      "2019-11-26 14:13:52,553 \tHypothesis: A na ɖɔ xó dó nǔ e wu è na dó é wu ɖɔ xó dó é wu .\n",
      "2019-11-26 14:13:52,554 Validation result (greedy) at epoch   6, step     2000: bleu:   5.03, loss: 83836.4688, ppl:  16.8957, duration: 93.4679s\n",
      "2019-11-26 14:14:23,173 Epoch   6 Step:     2100 Batch Loss:     2.636636 Tokens per Sec:     7366, Lr: 0.000300\n",
      "2019-11-26 14:14:36,074 Epoch   6: total training loss 1045.85\n",
      "2019-11-26 14:14:36,074 EPOCH 7\n",
      "2019-11-26 14:14:53,904 Epoch   7 Step:     2200 Batch Loss:     3.124637 Tokens per Sec:     7297, Lr: 0.000300\n",
      "2019-11-26 14:15:24,789 Epoch   7 Step:     2300 Batch Loss:     2.172596 Tokens per Sec:     7446, Lr: 0.000300\n",
      "2019-11-26 14:15:55,324 Epoch   7 Step:     2400 Batch Loss:     2.914614 Tokens per Sec:     7257, Lr: 0.000300\n",
      "2019-11-26 14:16:25,749 Epoch   7: total training loss 990.90\n",
      "2019-11-26 14:16:25,749 EPOCH 8\n",
      "2019-11-26 14:16:26,109 Epoch   8 Step:     2500 Batch Loss:     2.662452 Tokens per Sec:     6874, Lr: 0.000300\n",
      "2019-11-26 14:16:56,653 Epoch   8 Step:     2600 Batch Loss:     2.515854 Tokens per Sec:     7351, Lr: 0.000300\n",
      "2019-11-26 14:17:27,406 Epoch   8 Step:     2700 Batch Loss:     2.303658 Tokens per Sec:     7268, Lr: 0.000300\n",
      "2019-11-26 14:17:58,354 Epoch   8 Step:     2800 Batch Loss:     2.409138 Tokens per Sec:     7174, Lr: 0.000300\n",
      "2019-11-26 14:18:16,437 Epoch   8: total training loss 958.06\n",
      "2019-11-26 14:18:16,438 EPOCH 9\n",
      "2019-11-26 14:18:29,356 Epoch   9 Step:     2900 Batch Loss:     2.426154 Tokens per Sec:     7355, Lr: 0.000300\n",
      "2019-11-26 14:18:59,974 Epoch   9 Step:     3000 Batch Loss:     2.670738 Tokens per Sec:     7273, Lr: 0.000300\n",
      "2019-11-26 14:20:33,350 Hooray! New best validation result [ppl]!\n",
      "2019-11-26 14:20:33,351 Saving new checkpoint.\n",
      "2019-11-26 14:20:33,598 Example #0\n",
      "2019-11-26 14:20:33,598 \tSource:     I love pioneering in this territory .\n",
      "2019-11-26 14:20:33,599 \tReference:  Un yí wǎn nú gbexosin - alijitɔ́zɔ́ wiwa ɖò fí enɛ .\n",
      "2019-11-26 14:20:33,599 \tHypothesis: Un nɔ wà sinsɛnzɔ́ ɖò sinsɛnzɔ́ ɔ mɛ ɖò sinsɛnzɔ́ ɔ mɛ .\n",
      "2019-11-26 14:20:33,599 Example #1\n",
      "2019-11-26 14:20:33,600 \tSource:     “ Too numerous to recount ” are the “ wonderful works ” we can thank and praise Jehovah for daily !\n",
      "2019-11-26 14:20:33,600 \tReference:  “ Nùjiwǔ ” e Jehovah bló bɔ mǐ sixu dokú tɔn n’i bo lɛ́ kpa susu n’i ayihɔngbe ayihɔngbe é “ sukpɔ́ ” tawun .\n",
      "2019-11-26 14:20:33,600 \tHypothesis: “ Ahwanvu ” wɛ nyí ɖɔ è ni “ nɔ “ nɔ ” bo nɔ “ nɔ dó gbɔ nú Jehovah , bo nɔ lɛ́ nɔ gbeji nú Jehovah .\n",
      "2019-11-26 14:20:33,600 Example #2\n",
      "2019-11-26 14:20:33,600 \tSource:     Some Christian parents serving in a foreign - language field have come to realize that their children’s interest in the truth has waned .\n",
      "2019-11-26 14:20:33,601 \tReference:  Mɛjitɔ́ Klisanwun e ɖò sinsɛnzɔ́ wà wɛ ɖò ayǐ e jí è nɔ dó gbè ɖevo ɖè lɛ é ɖé lɛ wá ɖ’ayi wu ɖɔ jlǒ e vǐ emitɔn lɛ ɖó nú nugbǒ ɔ é ɖò ɖiɖekpo wɛ .\n",
      "2019-11-26 14:20:33,601 \tHypothesis: Mɛjitɔ́ Klisanwun lɛ nɔ ɖó nukún ɖɔ mɛ winnyawinnya lɛ ni nɔ mɔ ɖɔ emi kún nɔ mɔ ɖɔ emi kún na wà nǔ e ye ɖó é ó .\n",
      "2019-11-26 14:20:33,601 Example #3\n",
      "2019-11-26 14:20:33,602 \tSource:     You certainly recognize that Jewish man as the one who came to be known as the apostle Paul .\n",
      "2019-11-26 14:20:33,602 \tReference:  1 : 14 ) É ɖò wɛn ɖɔ a tuùn nya Jwifu enɛ e è wá ylɔ ɖɔ mɛsɛ́dó Pɔlu é .\n",
      "2019-11-26 14:20:33,602 \tHypothesis: ( Jaan 3 : 1 - 14 ) É ɖò wɛn ɖɔ è na ko ɖɔ xó dó mɛsɛ́dó Pɔlu wu ɖɔ : “ Mɛ e ɖò kú wɛ lɛ é .\n",
      "2019-11-26 14:20:33,602 Validation result (greedy) at epoch   9, step     3000: bleu:   8.59, loss: 74603.6562, ppl:  12.3755, duration: 93.6282s\n",
      "2019-11-26 14:21:04,261 Epoch   9 Step:     3100 Batch Loss:     2.652828 Tokens per Sec:     7283, Lr: 0.000300\n",
      "2019-11-26 14:21:34,968 Epoch   9 Step:     3200 Batch Loss:     2.133620 Tokens per Sec:     7516, Lr: 0.000300\n",
      "2019-11-26 14:21:39,535 Epoch   9: total training loss 911.46\n",
      "2019-11-26 14:21:39,536 EPOCH 10\n",
      "2019-11-26 14:22:05,404 Epoch  10 Step:     3300 Batch Loss:     2.298213 Tokens per Sec:     7238, Lr: 0.000300\n",
      "2019-11-26 14:22:35,769 Epoch  10 Step:     3400 Batch Loss:     2.885549 Tokens per Sec:     7437, Lr: 0.000300\n",
      "2019-11-26 14:23:06,231 Epoch  10 Step:     3500 Batch Loss:     2.850529 Tokens per Sec:     7403, Lr: 0.000300\n",
      "2019-11-26 14:23:28,448 Epoch  10: total training loss 885.28\n",
      "2019-11-26 14:23:28,448 EPOCH 11\n",
      "2019-11-26 14:23:36,374 Epoch  11 Step:     3600 Batch Loss:     2.306839 Tokens per Sec:     7311, Lr: 0.000300\n",
      "2019-11-26 14:24:06,560 Epoch  11 Step:     3700 Batch Loss:     2.788274 Tokens per Sec:     7385, Lr: 0.000300\n",
      "2019-11-26 14:24:37,391 Epoch  11 Step:     3800 Batch Loss:     2.138618 Tokens per Sec:     7420, Lr: 0.000300\n",
      "2019-11-26 14:25:07,753 Epoch  11 Step:     3900 Batch Loss:     2.272465 Tokens per Sec:     7262, Lr: 0.000300\n",
      "2019-11-26 14:25:17,967 Epoch  11: total training loss 853.94\n",
      "2019-11-26 14:25:17,968 EPOCH 12\n",
      "2019-11-26 14:25:38,922 Epoch  12 Step:     4000 Batch Loss:     2.089157 Tokens per Sec:     7291, Lr: 0.000300\n",
      "2019-11-26 14:27:12,572 Hooray! New best validation result [ppl]!\n",
      "2019-11-26 14:27:12,572 Saving new checkpoint.\n",
      "2019-11-26 14:27:12,857 Example #0\n",
      "2019-11-26 14:27:12,857 \tSource:     I love pioneering in this territory .\n",
      "2019-11-26 14:27:12,858 \tReference:  Un yí wǎn nú gbexosin - alijitɔ́zɔ́ wiwa ɖò fí enɛ .\n",
      "2019-11-26 14:27:12,858 \tHypothesis: Un yí wǎn nú sinsɛnzɔ́ ɔ ɖò fí e un nɔ wà ɖò tò enɛ mɛ é .\n",
      "2019-11-26 14:27:12,858 Example #1\n",
      "2019-11-26 14:27:12,858 \tSource:     “ Too numerous to recount ” are the “ wonderful works ” we can thank and praise Jehovah for daily !\n",
      "2019-11-26 14:27:12,858 \tReference:  “ Nùjiwǔ ” e Jehovah bló bɔ mǐ sixu dokú tɔn n’i bo lɛ́ kpa susu n’i ayihɔngbe ayihɔngbe é “ sukpɔ́ ” tawun .\n",
      "2019-11-26 14:27:12,858 \tHypothesis: “ Akpá e è wlan dó “ mɛ e ɖò nǔ kplɔ́n wɛ ” é ” ɔ , mǐ sixu mɔ ɖɔ Jehovah na “ nɔ gbeji nú Jehovah .\n",
      "2019-11-26 14:27:12,858 Example #2\n",
      "2019-11-26 14:27:12,859 \tSource:     Some Christian parents serving in a foreign - language field have come to realize that their children’s interest in the truth has waned .\n",
      "2019-11-26 14:27:12,859 \tReference:  Mɛjitɔ́ Klisanwun e ɖò sinsɛnzɔ́ wà wɛ ɖò ayǐ e jí è nɔ dó gbè ɖevo ɖè lɛ é ɖé lɛ wá ɖ’ayi wu ɖɔ jlǒ e vǐ emitɔn lɛ ɖó nú nugbǒ ɔ é ɖò ɖiɖekpo wɛ .\n",
      "2019-11-26 14:27:12,859 \tHypothesis: Mɛjitɔ́ Klisanwun ɖé lɛ nɔ ɖó nukún ɖɔ vǐ yetɔn lɛ nɔ mɔ nukúnnú jɛ nugbǒ ɔ mɛ , bo nɔ mɔ ɖɔ emi ɖó na mɔ nugbǒ nugbǒ ɔ .\n",
      "2019-11-26 14:27:12,859 Example #3\n",
      "2019-11-26 14:27:12,860 \tSource:     You certainly recognize that Jewish man as the one who came to be known as the apostle Paul .\n",
      "2019-11-26 14:27:12,860 \tReference:  1 : 14 ) É ɖò wɛn ɖɔ a tuùn nya Jwifu enɛ e è wá ylɔ ɖɔ mɛsɛ́dó Pɔlu é .\n",
      "2019-11-26 14:27:12,860 \tHypothesis: É ɖò wɛn ɖɔ a tuùn Jwifu Jwifu lɛ tɔn e ko tuùn Timɔtée é ɖé .\n",
      "2019-11-26 14:27:12,860 Validation result (greedy) at epoch  12, step     4000: bleu:  12.24, loss: 68261.9844, ppl:   9.9929, duration: 93.9380s\n",
      "2019-11-26 14:27:43,810 Epoch  12 Step:     4100 Batch Loss:     1.972761 Tokens per Sec:     7340, Lr: 0.000300\n",
      "2019-11-26 14:28:14,582 Epoch  12 Step:     4200 Batch Loss:     2.161382 Tokens per Sec:     7339, Lr: 0.000300\n",
      "2019-11-26 14:28:41,368 Epoch  12: total training loss 826.62\n",
      "2019-11-26 14:28:41,368 EPOCH 13\n",
      "2019-11-26 14:28:45,448 Epoch  13 Step:     4300 Batch Loss:     2.056029 Tokens per Sec:     6982, Lr: 0.000300\n",
      "2019-11-26 14:29:16,288 Epoch  13 Step:     4400 Batch Loss:     2.623316 Tokens per Sec:     7358, Lr: 0.000300\n",
      "2019-11-26 14:29:47,095 Epoch  13 Step:     4500 Batch Loss:     2.337763 Tokens per Sec:     7360, Lr: 0.000300\n",
      "2019-11-26 14:30:18,009 Epoch  13 Step:     4600 Batch Loss:     2.540540 Tokens per Sec:     7315, Lr: 0.000300\n",
      "2019-11-26 14:30:30,997 Epoch  13: total training loss 803.65\n",
      "2019-11-26 14:30:30,997 EPOCH 14\n",
      "2019-11-26 14:30:48,852 Epoch  14 Step:     4700 Batch Loss:     2.418147 Tokens per Sec:     7226, Lr: 0.000300\n",
      "2019-11-26 14:31:19,645 Epoch  14 Step:     4800 Batch Loss:     2.683759 Tokens per Sec:     7344, Lr: 0.000300\n",
      "2019-11-26 14:31:50,235 Epoch  14 Step:     4900 Batch Loss:     1.871324 Tokens per Sec:     7352, Lr: 0.000300\n",
      "2019-11-26 14:32:20,471 Epoch  14: total training loss 781.40\n",
      "2019-11-26 14:32:20,471 EPOCH 15\n",
      "2019-11-26 14:32:21,448 Epoch  15 Step:     5000 Batch Loss:     2.396113 Tokens per Sec:     7021, Lr: 0.000300\n",
      "2019-11-26 14:33:54,721 Hooray! New best validation result [ppl]!\n",
      "2019-11-26 14:33:54,721 Saving new checkpoint.\n",
      "2019-11-26 14:33:55,037 Example #0\n",
      "2019-11-26 14:33:55,037 \tSource:     I love pioneering in this territory .\n",
      "2019-11-26 14:33:55,037 \tReference:  Un yí wǎn nú gbexosin - alijitɔ́zɔ́ wiwa ɖò fí enɛ .\n",
      "2019-11-26 14:33:55,037 \tHypothesis: Un yí wǎn nú sinsɛnzɔ́ ɔ ɖò fí e un nɔ wà ɖò fí é .\n",
      "2019-11-26 14:33:55,037 Example #1\n",
      "2019-11-26 14:33:55,037 \tSource:     “ Too numerous to recount ” are the “ wonderful works ” we can thank and praise Jehovah for daily !\n",
      "2019-11-26 14:33:55,038 \tReference:  “ Nùjiwǔ ” e Jehovah bló bɔ mǐ sixu dokú tɔn n’i bo lɛ́ kpa susu n’i ayihɔngbe ayihɔngbe é “ sukpɔ́ ” tawun .\n",
      "2019-11-26 14:33:55,038 \tHypothesis: “ Mi kpɔ́n lee nǔ cí nú mǐ é , bo na dó wusyɛn lanmɛ nú mǐ ɖɔ mǐ ni nɔ gbeji nú Jehovah , bo na dó wusyɛn lanmɛ nú mǐ , bo na dó wusyɛn lanmɛ nú mǐ ɖɔ mǐ ni nɔ gbeji nú Jehovah !\n",
      "2019-11-26 14:33:55,038 Example #2\n",
      "2019-11-26 14:33:55,038 \tSource:     Some Christian parents serving in a foreign - language field have come to realize that their children’s interest in the truth has waned .\n",
      "2019-11-26 14:33:55,038 \tReference:  Mɛjitɔ́ Klisanwun e ɖò sinsɛnzɔ́ wà wɛ ɖò ayǐ e jí è nɔ dó gbè ɖevo ɖè lɛ é ɖé lɛ wá ɖ’ayi wu ɖɔ jlǒ e vǐ emitɔn lɛ ɖó nú nugbǒ ɔ é ɖò ɖiɖekpo wɛ .\n",
      "2019-11-26 14:33:55,038 \tHypothesis: Mɛjitɔ́ Klisanwun ɖé lɛ nɔ sɛ̀n ɖò xá e mɛ winnyawinnya lɛ nɔ mɔ ɖɔ emi kún ɖó na mɔ nugbǒ ɔ ó é ɖé lɛ ó .\n",
      "2019-11-26 14:33:55,038 Example #3\n",
      "2019-11-26 14:33:55,038 \tSource:     You certainly recognize that Jewish man as the one who came to be known as the apostle Paul .\n",
      "2019-11-26 14:33:55,038 \tReference:  1 : 14 ) É ɖò wɛn ɖɔ a tuùn nya Jwifu enɛ e è wá ylɔ ɖɔ mɛsɛ́dó Pɔlu é .\n",
      "2019-11-26 14:33:55,039 \tHypothesis: É ɖò wɛn ɖɔ a tuùn ɖɔ Jwifu lɛ ko tuùn ye .\n",
      "2019-11-26 14:33:55,039 Validation result (greedy) at epoch  15, step     5000: bleu:  14.34, loss: 64531.0781, ppl:   8.8115, duration: 93.5903s\n",
      "2019-11-26 14:34:25,789 Epoch  15 Step:     5100 Batch Loss:     2.222859 Tokens per Sec:     7383, Lr: 0.000300\n",
      "2019-11-26 14:34:56,436 Epoch  15 Step:     5200 Batch Loss:     2.189746 Tokens per Sec:     7351, Lr: 0.000300\n",
      "2019-11-26 14:35:27,218 Epoch  15 Step:     5300 Batch Loss:     2.335963 Tokens per Sec:     7297, Lr: 0.000300\n",
      "2019-11-26 14:35:43,859 Epoch  15: total training loss 767.66\n",
      "2019-11-26 14:35:43,860 EPOCH 16\n",
      "2019-11-26 14:35:57,639 Epoch  16 Step:     5400 Batch Loss:     2.270057 Tokens per Sec:     7111, Lr: 0.000300\n",
      "2019-11-26 14:36:28,032 Epoch  16 Step:     5500 Batch Loss:     2.056870 Tokens per Sec:     7154, Lr: 0.000300\n",
      "2019-11-26 14:36:58,671 Epoch  16 Step:     5600 Batch Loss:     1.063942 Tokens per Sec:     7178, Lr: 0.000300\n",
      "2019-11-26 14:37:29,562 Epoch  16 Step:     5700 Batch Loss:     2.415873 Tokens per Sec:     7487, Lr: 0.000300\n",
      "2019-11-26 14:37:34,438 Epoch  16: total training loss 759.58\n",
      "2019-11-26 14:37:34,439 EPOCH 17\n",
      "2019-11-26 14:38:00,049 Epoch  17 Step:     5800 Batch Loss:     2.065362 Tokens per Sec:     7273, Lr: 0.000300\n",
      "2019-11-26 14:38:30,954 Epoch  17 Step:     5900 Batch Loss:     2.120649 Tokens per Sec:     7279, Lr: 0.000300\n",
      "2019-11-26 14:39:01,390 Epoch  17 Step:     6000 Batch Loss:     2.329014 Tokens per Sec:     7347, Lr: 0.000300\n",
      "2019-11-26 14:40:34,786 Hooray! New best validation result [ppl]!\n",
      "2019-11-26 14:40:34,787 Saving new checkpoint.\n",
      "2019-11-26 14:40:35,087 Example #0\n",
      "2019-11-26 14:40:35,088 \tSource:     I love pioneering in this territory .\n",
      "2019-11-26 14:40:35,088 \tReference:  Un yí wǎn nú gbexosin - alijitɔ́zɔ́ wiwa ɖò fí enɛ .\n",
      "2019-11-26 14:40:35,088 \tHypothesis: Un yí wǎn nú sinsɛnzɔ́ ɔ ɖò fí enɛ .\n",
      "2019-11-26 14:40:35,088 Example #1\n",
      "2019-11-26 14:40:35,088 \tSource:     “ Too numerous to recount ” are the “ wonderful works ” we can thank and praise Jehovah for daily !\n",
      "2019-11-26 14:40:35,088 \tReference:  “ Nùjiwǔ ” e Jehovah bló bɔ mǐ sixu dokú tɔn n’i bo lɛ́ kpa susu n’i ayihɔngbe ayihɔngbe é “ sukpɔ́ ” tawun .\n",
      "2019-11-26 14:40:35,088 \tHypothesis: “ È flín nǔ e mǐ sixu mɔ ɖò “ Aklunɔ sín akpá ” é , bo na dó wusyɛn lanmɛ nú mǐ , bo na dó wusyɛn lanmɛ nú Jehovah , bo lɛ́ dokú n’i .\n",
      "2019-11-26 14:40:35,090 Example #2\n",
      "2019-11-26 14:40:35,090 \tSource:     Some Christian parents serving in a foreign - language field have come to realize that their children’s interest in the truth has waned .\n",
      "2019-11-26 14:40:35,090 \tReference:  Mɛjitɔ́ Klisanwun e ɖò sinsɛnzɔ́ wà wɛ ɖò ayǐ e jí è nɔ dó gbè ɖevo ɖè lɛ é ɖé lɛ wá ɖ’ayi wu ɖɔ jlǒ e vǐ emitɔn lɛ ɖó nú nugbǒ ɔ é ɖò ɖiɖekpo wɛ .\n",
      "2019-11-26 14:40:35,090 \tHypothesis: Mɛjitɔ́ Klisanwun ɖé lɛ nɔ sɛ̀n ɖò xá e mɛ winnyawinnya lɛ nɔ mɔ kpɔ́n ɖò wemaxɔmɛ é mɛ , bo nɔ mɔ ɖɔ nugbǒ ɔ ɖó na ɖó awǎjijɛ ɖò nugbǒ ɔ mɛ .\n",
      "2019-11-26 14:40:35,090 Example #3\n",
      "2019-11-26 14:40:35,091 \tSource:     You certainly recognize that Jewish man as the one who came to be known as the apostle Paul .\n",
      "2019-11-26 14:40:35,091 \tReference:  1 : 14 ) É ɖò wɛn ɖɔ a tuùn nya Jwifu enɛ e è wá ylɔ ɖɔ mɛsɛ́dó Pɔlu é .\n",
      "2019-11-26 14:40:35,091 \tHypothesis: É ɖò wɛn ɖɔ a tuùn ɖɔ Jwifu lɛ kún tuùn ɖɔ emi kún nyí mɛsɛ́dó ó .\n",
      "2019-11-26 14:40:35,091 Validation result (greedy) at epoch  17, step     6000: bleu:  16.15, loss: 61767.5156, ppl:   8.0275, duration: 93.7005s\n",
      "2019-11-26 14:40:58,239 Epoch  17: total training loss 738.82\n",
      "2019-11-26 14:40:58,239 EPOCH 18\n",
      "2019-11-26 14:41:05,759 Epoch  18 Step:     6100 Batch Loss:     2.057728 Tokens per Sec:     7376, Lr: 0.000300\n",
      "2019-11-26 14:41:36,034 Epoch  18 Step:     6200 Batch Loss:     1.926301 Tokens per Sec:     7317, Lr: 0.000300\n",
      "2019-11-26 14:42:07,031 Epoch  18 Step:     6300 Batch Loss:     2.024534 Tokens per Sec:     7422, Lr: 0.000300\n",
      "2019-11-26 14:42:37,848 Epoch  18 Step:     6400 Batch Loss:     2.170782 Tokens per Sec:     7388, Lr: 0.000300\n",
      "2019-11-26 14:42:47,674 Epoch  18: total training loss 723.88\n",
      "2019-11-26 14:42:47,674 EPOCH 19\n",
      "2019-11-26 14:43:08,864 Epoch  19 Step:     6500 Batch Loss:     2.022346 Tokens per Sec:     7366, Lr: 0.000300\n",
      "2019-11-26 14:43:39,532 Epoch  19 Step:     6600 Batch Loss:     1.915361 Tokens per Sec:     7285, Lr: 0.000300\n",
      "2019-11-26 14:44:10,213 Epoch  19 Step:     6700 Batch Loss:     1.691444 Tokens per Sec:     7363, Lr: 0.000300\n",
      "2019-11-26 14:44:37,292 Epoch  19: total training loss 708.88\n",
      "2019-11-26 14:44:37,292 EPOCH 20\n",
      "2019-11-26 14:44:40,694 Epoch  20 Step:     6800 Batch Loss:     1.902304 Tokens per Sec:     7373, Lr: 0.000300\n",
      "2019-11-26 14:45:11,502 Epoch  20 Step:     6900 Batch Loss:     2.074996 Tokens per Sec:     7406, Lr: 0.000300\n",
      "2019-11-26 14:45:42,154 Epoch  20 Step:     7000 Batch Loss:     2.250434 Tokens per Sec:     7260, Lr: 0.000300\n",
      "2019-11-26 14:47:15,549 Hooray! New best validation result [ppl]!\n",
      "2019-11-26 14:47:15,550 Saving new checkpoint.\n",
      "2019-11-26 14:47:15,863 Example #0\n",
      "2019-11-26 14:47:15,863 \tSource:     I love pioneering in this territory .\n",
      "2019-11-26 14:47:15,864 \tReference:  Un yí wǎn nú gbexosin - alijitɔ́zɔ́ wiwa ɖò fí enɛ .\n",
      "2019-11-26 14:47:15,864 \tHypothesis: Un yí wǎn nú gbexosin - alijitɔ́zɔ́ ɖò fí enɛ .\n",
      "2019-11-26 14:47:15,864 Example #1\n",
      "2019-11-26 14:47:15,864 \tSource:     “ Too numerous to recount ” are the “ wonderful works ” we can thank and praise Jehovah for daily !\n",
      "2019-11-26 14:47:15,864 \tReference:  “ Nùjiwǔ ” e Jehovah bló bɔ mǐ sixu dokú tɔn n’i bo lɛ́ kpa susu n’i ayihɔngbe ayihɔngbe é “ sukpɔ́ ” tawun .\n",
      "2019-11-26 14:47:15,864 \tHypothesis: “ Togun ɔ ” ɔ , mǐ sixu mɔ ɖɔ ‘ Jehovah na kpa susu nú Jehovah , bo na kpa susu n’i .\n",
      "2019-11-26 14:47:15,864 Example #2\n",
      "2019-11-26 14:47:15,865 \tSource:     Some Christian parents serving in a foreign - language field have come to realize that their children’s interest in the truth has waned .\n",
      "2019-11-26 14:47:15,865 \tReference:  Mɛjitɔ́ Klisanwun e ɖò sinsɛnzɔ́ wà wɛ ɖò ayǐ e jí è nɔ dó gbè ɖevo ɖè lɛ é ɖé lɛ wá ɖ’ayi wu ɖɔ jlǒ e vǐ emitɔn lɛ ɖó nú nugbǒ ɔ é ɖò ɖiɖekpo wɛ .\n",
      "2019-11-26 14:47:15,865 \tHypothesis: Mɛjitɔ́ Klisanwun ɖé lɛ nɔ sɛ̀n ɖò xá e mɛ vǐ yetɔn lɛ nɔ mɔ ɖɔ nugbǒ ɔ kún ɖó ayi wu ó lɛ é mɛ .\n",
      "2019-11-26 14:47:15,865 Example #3\n",
      "2019-11-26 14:47:15,866 \tSource:     You certainly recognize that Jewish man as the one who came to be known as the apostle Paul .\n",
      "2019-11-26 14:47:15,866 \tReference:  1 : 14 ) É ɖò wɛn ɖɔ a tuùn nya Jwifu enɛ e è wá ylɔ ɖɔ mɛsɛ́dó Pɔlu é .\n",
      "2019-11-26 14:47:15,866 \tHypothesis: É ɖò wɛn ɖɔ a tuùn ɖɔ Jwifu e ko tuùn ɖɔ Jwifu lɛ wɛ nyí mɛsɛ́dó Pɔlu é ɔ , é wá tuùn i .\n",
      "2019-11-26 14:47:15,866 Validation result (greedy) at epoch  20, step     7000: bleu:  17.57, loss: 59520.3320, ppl:   7.4417, duration: 93.7114s\n",
      "2019-11-26 14:47:46,653 Epoch  20 Step:     7100 Batch Loss:     1.648879 Tokens per Sec:     7420, Lr: 0.000300\n",
      "2019-11-26 14:48:00,386 Epoch  20: total training loss 693.25\n",
      "2019-11-26 14:48:00,386 EPOCH 21\n",
      "2019-11-26 14:48:17,234 Epoch  21 Step:     7200 Batch Loss:     1.636328 Tokens per Sec:     7419, Lr: 0.000300\n",
      "2019-11-26 14:48:48,219 Epoch  21 Step:     7300 Batch Loss:     1.877475 Tokens per Sec:     7234, Lr: 0.000300\n",
      "2019-11-26 14:49:18,934 Epoch  21 Step:     7400 Batch Loss:     1.953899 Tokens per Sec:     7246, Lr: 0.000300\n",
      "2019-11-26 14:49:49,633 Epoch  21 Step:     7500 Batch Loss:     2.067929 Tokens per Sec:     7261, Lr: 0.000300\n",
      "2019-11-26 14:49:50,886 Epoch  21: total training loss 690.18\n",
      "2019-11-26 14:49:50,886 EPOCH 22\n",
      "2019-11-26 14:50:20,324 Epoch  22 Step:     7600 Batch Loss:     2.043521 Tokens per Sec:     7264, Lr: 0.000300\n",
      "2019-11-26 14:50:50,987 Epoch  22 Step:     7700 Batch Loss:     2.141779 Tokens per Sec:     7378, Lr: 0.000300\n",
      "2019-11-26 14:51:21,543 Epoch  22 Step:     7800 Batch Loss:     2.099143 Tokens per Sec:     7436, Lr: 0.000300\n",
      "2019-11-26 14:51:40,395 Epoch  22: total training loss 674.03\n",
      "2019-11-26 14:51:40,395 EPOCH 23\n",
      "2019-11-26 14:51:52,543 Epoch  23 Step:     7900 Batch Loss:     2.173620 Tokens per Sec:     7561, Lr: 0.000300\n",
      "2019-11-26 14:52:23,387 Epoch  23 Step:     8000 Batch Loss:     2.227573 Tokens per Sec:     7290, Lr: 0.000300\n",
      "2019-11-26 14:53:56,766 Hooray! New best validation result [ppl]!\n",
      "2019-11-26 14:53:56,766 Saving new checkpoint.\n",
      "2019-11-26 14:53:57,064 Example #0\n",
      "2019-11-26 14:53:57,065 \tSource:     I love pioneering in this territory .\n",
      "2019-11-26 14:53:57,065 \tReference:  Un yí wǎn nú gbexosin - alijitɔ́zɔ́ wiwa ɖò fí enɛ .\n",
      "2019-11-26 14:53:57,065 \tHypothesis: Un yí wǎn nú gbexosin - alijitɔ́zɔ́ ɔ ɖò fí enɛ .\n",
      "2019-11-26 14:53:57,065 Example #1\n",
      "2019-11-26 14:53:57,065 \tSource:     “ Too numerous to recount ” are the “ wonderful works ” we can thank and praise Jehovah for daily !\n",
      "2019-11-26 14:53:57,066 \tReference:  “ Nùjiwǔ ” e Jehovah bló bɔ mǐ sixu dokú tɔn n’i bo lɛ́ kpa susu n’i ayihɔngbe ayihɔngbe é “ sukpɔ́ ” tawun .\n",
      "2019-11-26 14:53:57,066 \tHypothesis: “ Togun ɔ ” jiwǔ tawun ɖɔ mǐ ni kpa susu nú Jehovah , bo lɛ́ dokú n’i n’i .\n",
      "2019-11-26 14:53:57,066 Example #2\n",
      "2019-11-26 14:53:57,067 \tSource:     Some Christian parents serving in a foreign - language field have come to realize that their children’s interest in the truth has waned .\n",
      "2019-11-26 14:53:57,067 \tReference:  Mɛjitɔ́ Klisanwun e ɖò sinsɛnzɔ́ wà wɛ ɖò ayǐ e jí è nɔ dó gbè ɖevo ɖè lɛ é ɖé lɛ wá ɖ’ayi wu ɖɔ jlǒ e vǐ emitɔn lɛ ɖó nú nugbǒ ɔ é ɖò ɖiɖekpo wɛ .\n",
      "2019-11-26 14:53:57,067 \tHypothesis: Mɛjitɔ́ ɖé lɛ nɔ sɛ̀n ɖò xá e mɛ vǐ yetɔn lɛ nɔ dó gbè ɖevo mɛ é ɖé lɛ mɔ ɖɔ nugbǒ ɔ kún ɖó awǎjijɛ ó .\n",
      "2019-11-26 14:53:57,067 Example #3\n",
      "2019-11-26 14:53:57,067 \tSource:     You certainly recognize that Jewish man as the one who came to be known as the apostle Paul .\n",
      "2019-11-26 14:53:57,067 \tReference:  1 : 14 ) É ɖò wɛn ɖɔ a tuùn nya Jwifu enɛ e è wá ylɔ ɖɔ mɛsɛ́dó Pɔlu é .\n",
      "2019-11-26 14:53:57,067 \tHypothesis: É ɖò wɛn ɖɔ a tuùn ɖɔ Jwifu e ko tuùn nǔ e ye tuùn lɛ é wɛ nyí mɛsɛ́dó Pɔlu .\n",
      "2019-11-26 14:53:57,067 Validation result (greedy) at epoch  23, step     8000: bleu:  18.66, loss: 57724.9688, ppl:   7.0045, duration: 93.6799s\n",
      "2019-11-26 14:54:27,396 Epoch  23 Step:     8100 Batch Loss:     1.993855 Tokens per Sec:     7262, Lr: 0.000300\n",
      "2019-11-26 14:54:58,225 Epoch  23 Step:     8200 Batch Loss:     1.721530 Tokens per Sec:     7242, Lr: 0.000300\n",
      "2019-11-26 14:55:03,931 Epoch  23: total training loss 664.34\n",
      "2019-11-26 14:55:03,931 EPOCH 24\n",
      "2019-11-26 14:55:28,869 Epoch  24 Step:     8300 Batch Loss:     1.609951 Tokens per Sec:     7309, Lr: 0.000300\n",
      "2019-11-26 14:55:59,418 Epoch  24 Step:     8400 Batch Loss:     1.596233 Tokens per Sec:     7278, Lr: 0.000300\n",
      "2019-11-26 14:56:30,194 Epoch  24 Step:     8500 Batch Loss:     0.993275 Tokens per Sec:     7256, Lr: 0.000300\n",
      "2019-11-26 14:56:54,172 Epoch  24: total training loss 659.35\n",
      "2019-11-26 14:56:54,173 EPOCH 25\n",
      "2019-11-26 14:57:00,783 Epoch  25 Step:     8600 Batch Loss:     1.881945 Tokens per Sec:     7052, Lr: 0.000300\n",
      "2019-11-26 14:57:31,541 Epoch  25 Step:     8700 Batch Loss:     1.651695 Tokens per Sec:     7310, Lr: 0.000300\n",
      "2019-11-26 14:58:02,219 Epoch  25 Step:     8800 Batch Loss:     1.661671 Tokens per Sec:     7294, Lr: 0.000300\n",
      "2019-11-26 14:58:33,202 Epoch  25 Step:     8900 Batch Loss:     2.083404 Tokens per Sec:     7341, Lr: 0.000300\n",
      "2019-11-26 14:58:44,241 Epoch  25: total training loss 641.46\n",
      "2019-11-26 14:58:44,241 EPOCH 26\n",
      "2019-11-26 14:59:04,129 Epoch  26 Step:     9000 Batch Loss:     2.332623 Tokens per Sec:     7369, Lr: 0.000300\n",
      "2019-11-26 15:00:36,933 Hooray! New best validation result [ppl]!\n",
      "2019-11-26 15:00:36,933 Saving new checkpoint.\n",
      "2019-11-26 15:00:37,275 Example #0\n",
      "2019-11-26 15:00:37,276 \tSource:     I love pioneering in this territory .\n",
      "2019-11-26 15:00:37,276 \tReference:  Un yí wǎn nú gbexosin - alijitɔ́zɔ́ wiwa ɖò fí enɛ .\n",
      "2019-11-26 15:00:37,276 \tHypothesis: Un yí wǎn nú gbexosin - alijitɔ́zɔ́ wiwa ɖò fí enɛ .\n",
      "2019-11-26 15:00:37,276 Example #1\n",
      "2019-11-26 15:00:37,276 \tSource:     “ Too numerous to recount ” are the “ wonderful works ” we can thank and praise Jehovah for daily !\n",
      "2019-11-26 15:00:37,276 \tReference:  “ Nùjiwǔ ” e Jehovah bló bɔ mǐ sixu dokú tɔn n’i bo lɛ́ kpa susu n’i ayihɔngbe ayihɔngbe é “ sukpɔ́ ” tawun .\n",
      "2019-11-26 15:00:37,276 \tHypothesis: “ Togun ” ɔ , è nɔ mɔ nǔ jɛ wu ɖɔ mǐ sixu kpa susu nú Jehovah , bo dokú nú Jehovah .\n",
      "2019-11-26 15:00:37,276 Example #2\n",
      "2019-11-26 15:00:37,276 \tSource:     Some Christian parents serving in a foreign - language field have come to realize that their children’s interest in the truth has waned .\n",
      "2019-11-26 15:00:37,277 \tReference:  Mɛjitɔ́ Klisanwun e ɖò sinsɛnzɔ́ wà wɛ ɖò ayǐ e jí è nɔ dó gbè ɖevo ɖè lɛ é ɖé lɛ wá ɖ’ayi wu ɖɔ jlǒ e vǐ emitɔn lɛ ɖó nú nugbǒ ɔ é ɖò ɖiɖekpo wɛ .\n",
      "2019-11-26 15:00:37,277 \tHypothesis: Mɛjitɔ́ Klisanwun ɖé lɛ nɔ sɛ̀n sinsɛnzɔ́ ɖò xá e mɛ vǐ yetɔn lɛ nɔ dó gbè ɖevo ɖè é ɖé lɛ mɔ ɖɔ emi ɖó ayi wu ɖɔ nugbǒ ɔ tɔn lɛ ɖó ayi wu .\n",
      "2019-11-26 15:00:37,277 Example #3\n",
      "2019-11-26 15:00:37,277 \tSource:     You certainly recognize that Jewish man as the one who came to be known as the apostle Paul .\n",
      "2019-11-26 15:00:37,277 \tReference:  1 : 14 ) É ɖò wɛn ɖɔ a tuùn nya Jwifu enɛ e è wá ylɔ ɖɔ mɛsɛ́dó Pɔlu é .\n",
      "2019-11-26 15:00:37,277 \tHypothesis: É ɖò wɛn ɖɔ a tuùn ɖɔ Jwifu e nyí Jwifu lɛ é ɖokpo wɛ nyí mɛsɛ́dó Pɔlu .\n",
      "2019-11-26 15:00:37,277 Validation result (greedy) at epoch  26, step     9000: bleu:  19.42, loss: 56730.3633, ppl:   6.7735, duration: 93.1475s\n",
      "2019-11-26 15:01:07,938 Epoch  26 Step:     9100 Batch Loss:     1.694081 Tokens per Sec:     7233, Lr: 0.000300\n",
      "2019-11-26 15:01:38,622 Epoch  26 Step:     9200 Batch Loss:     1.467636 Tokens per Sec:     7367, Lr: 0.000300\n",
      "2019-11-26 15:02:07,152 Epoch  26: total training loss 629.64\n",
      "2019-11-26 15:02:07,152 EPOCH 27\n",
      "2019-11-26 15:02:09,702 Epoch  27 Step:     9300 Batch Loss:     1.865959 Tokens per Sec:     7843, Lr: 0.000300\n",
      "2019-11-26 15:02:40,799 Epoch  27 Step:     9400 Batch Loss:     1.647859 Tokens per Sec:     7249, Lr: 0.000300\n",
      "2019-11-26 15:03:11,592 Epoch  27 Step:     9500 Batch Loss:     1.956773 Tokens per Sec:     7326, Lr: 0.000300\n",
      "2019-11-26 15:03:42,463 Epoch  27 Step:     9600 Batch Loss:     1.818972 Tokens per Sec:     7349, Lr: 0.000300\n",
      "2019-11-26 15:03:56,874 Epoch  27: total training loss 617.07\n",
      "2019-11-26 15:03:56,875 EPOCH 28\n",
      "2019-11-26 15:04:13,630 Epoch  28 Step:     9700 Batch Loss:     1.014780 Tokens per Sec:     7280, Lr: 0.000300\n",
      "2019-11-26 15:04:44,556 Epoch  28 Step:     9800 Batch Loss:     1.767276 Tokens per Sec:     7404, Lr: 0.000300\n",
      "2019-11-26 15:05:15,211 Epoch  28 Step:     9900 Batch Loss:     2.007863 Tokens per Sec:     7223, Lr: 0.000300\n",
      "2019-11-26 15:05:45,999 Epoch  28 Step:    10000 Batch Loss:     1.755681 Tokens per Sec:     7373, Lr: 0.000300\n",
      "2019-11-26 15:07:19,565 Hooray! New best validation result [ppl]!\n",
      "2019-11-26 15:07:19,565 Saving new checkpoint.\n",
      "2019-11-26 15:07:19,864 Example #0\n",
      "2019-11-26 15:07:19,864 \tSource:     I love pioneering in this territory .\n",
      "2019-11-26 15:07:19,865 \tReference:  Un yí wǎn nú gbexosin - alijitɔ́zɔ́ wiwa ɖò fí enɛ .\n",
      "2019-11-26 15:07:19,865 \tHypothesis: Un yí wǎn nú gbexosin - alijitɔ́zɔ́ ɖò fí e un ɖè é .\n",
      "2019-11-26 15:07:19,865 Example #1\n",
      "2019-11-26 15:07:19,865 \tSource:     “ Too numerous to recount ” are the “ wonderful works ” we can thank and praise Jehovah for daily !\n",
      "2019-11-26 15:07:19,865 \tReference:  “ Nùjiwǔ ” e Jehovah bló bɔ mǐ sixu dokú tɔn n’i bo lɛ́ kpa susu n’i ayihɔngbe ayihɔngbe é “ sukpɔ́ ” tawun .\n",
      "2019-11-26 15:07:19,865 \tHypothesis: “ Togun Mawu tɔn ” jiwǔ tawun , bɔ mǐ sixu dokú nú Jehovah , bo dokú n’i .\n",
      "2019-11-26 15:07:19,866 Example #2\n",
      "2019-11-26 15:07:19,866 \tSource:     Some Christian parents serving in a foreign - language field have come to realize that their children’s interest in the truth has waned .\n",
      "2019-11-26 15:07:19,866 \tReference:  Mɛjitɔ́ Klisanwun e ɖò sinsɛnzɔ́ wà wɛ ɖò ayǐ e jí è nɔ dó gbè ɖevo ɖè lɛ é ɖé lɛ wá ɖ’ayi wu ɖɔ jlǒ e vǐ emitɔn lɛ ɖó nú nugbǒ ɔ é ɖò ɖiɖekpo wɛ .\n",
      "2019-11-26 15:07:19,866 \tHypothesis: Mɛjitɔ́ Klisanwun ɖé lɛ nɔ sɛ̀n sinsɛnzɔ́ ɖò xá e mɛ vǐ yetɔn lɛ nɔ dó gbè ɖevo mɛ é ɖé lɛ mɔ ɖɔ nugbǒ ɔ ɖó kpɔ́ .\n",
      "2019-11-26 15:07:19,866 Example #3\n",
      "2019-11-26 15:07:19,867 \tSource:     You certainly recognize that Jewish man as the one who came to be known as the apostle Paul .\n",
      "2019-11-26 15:07:19,867 \tReference:  1 : 14 ) É ɖò wɛn ɖɔ a tuùn nya Jwifu enɛ e è wá ylɔ ɖɔ mɛsɛ́dó Pɔlu é .\n",
      "2019-11-26 15:07:19,867 \tHypothesis: É ɖò wɛn ɖɔ a tuùn ɖɔ Jwifu e wá tuùn mɛsɛ́dó Pɔlu é wɛ nyí mɛsɛ́dó Pɔlu .\n",
      "2019-11-26 15:07:19,867 Validation result (greedy) at epoch  28, step    10000: bleu:  20.28, loss: 54994.6992, ppl:   6.3884, duration: 93.8673s\n",
      "2019-11-26 15:07:20,499 Epoch  28: total training loss 611.54\n",
      "2019-11-26 15:07:20,500 EPOCH 29\n",
      "2019-11-26 15:07:50,840 Epoch  29 Step:    10100 Batch Loss:     1.650072 Tokens per Sec:     7307, Lr: 0.000300\n",
      "2019-11-26 15:08:21,642 Epoch  29 Step:    10200 Batch Loss:     1.353416 Tokens per Sec:     7449, Lr: 0.000300\n",
      "2019-11-26 15:08:52,008 Epoch  29 Step:    10300 Batch Loss:     1.798775 Tokens per Sec:     7367, Lr: 0.000300\n",
      "2019-11-26 15:09:09,910 Epoch  29: total training loss 604.65\n",
      "2019-11-26 15:09:09,911 EPOCH 30\n",
      "2019-11-26 15:09:22,935 Epoch  30 Step:    10400 Batch Loss:     1.441740 Tokens per Sec:     7415, Lr: 0.000300\n",
      "2019-11-26 15:09:53,582 Epoch  30 Step:    10500 Batch Loss:     2.227500 Tokens per Sec:     7292, Lr: 0.000300\n",
      "2019-11-26 15:10:24,477 Epoch  30 Step:    10600 Batch Loss:     2.074497 Tokens per Sec:     7352, Lr: 0.000300\n",
      "2019-11-26 15:10:55,341 Epoch  30 Step:    10700 Batch Loss:     2.114685 Tokens per Sec:     7480, Lr: 0.000300\n",
      "2019-11-26 15:10:59,098 Epoch  30: total training loss 591.97\n",
      "2019-11-26 15:10:59,098 Training ended after  30 epochs.\n",
      "2019-11-26 15:10:59,098 Best validation result (greedy) at step    10000:   6.39 ppl.\n",
      "2019-11-26 15:11:51,463  dev bleu:  21.61 [Beam search decoding with beam size = 5 and alpha = 1.0]\n",
      "2019-11-26 15:11:51,464 Translations saved to: models/enfon_transformer/00010000.hyps.dev\n",
      "2019-11-26 15:13:36,964 test bleu:  31.07 [Beam search decoding with beam size = 5 and alpha = 1.0]\n",
      "2019-11-26 15:13:36,967 Translations saved to: models/enfon_transformer/00010000.hyps.test\n"
     ]
    }
   ],
   "source": [
    "# Train the model\n",
    "# You can press Ctrl-C to stop. And then run the next cell to save your checkpoints! \n",
    "!cd joeynmt; python3 -m joeynmt train configs/transformer_$src$tgt.yaml"
   ]
  },
  {
   "cell_type": "code",
   "execution_count": 0,
   "metadata": {
    "colab": {
     "base_uri": "https://localhost:8080/",
     "height": 34
    },
    "colab_type": "code",
    "id": "MBoDS09JM807",
    "outputId": "6cf7a2ff-fba7-4dd8-beb8-127ab80a5fe3"
   },
   "outputs": [
    {
     "name": "stdout",
     "output_type": "stream",
     "text": [
      "cp: cannot create symbolic link '/content/drive/My Drive/masakhane/en-fon-baseline/models/enfon_transformer/best.ckpt': Function not implemented\n"
     ]
    }
   ],
   "source": [
    "# Copy the created models from the notebook storage to google drive for persistant storage \n",
    "!cp -r joeynmt/models/${src}${tgt}_transformer/* \"$gdrive_path/models/${src}${tgt}_transformer/\""
   ]
  },
  {
   "cell_type": "code",
   "execution_count": 0,
   "metadata": {
    "colab": {},
    "colab_type": "code",
    "id": "AYCOImAVVCFJ"
   },
   "outputs": [],
   "source": [
    "# Copy the created models from the notebook storage to google drive for persistant storage \n",
    "!cp joeynmt/models/${src}${tgt}_transformer/best.ckpt \"$gdrive_path/models/${src}${tgt}_transformer/\""
   ]
  },
  {
   "cell_type": "code",
   "execution_count": 0,
   "metadata": {
    "colab": {
     "base_uri": "https://localhost:8080/",
     "height": 102
    },
    "colab_type": "code",
    "id": "cSoGZWeeUFob",
    "outputId": "0f33d9fc-7df4-4593-96b0-860099939aba"
   },
   "outputs": [
    {
     "name": "stdout",
     "output_type": "stream",
     "text": [
      "00010000.hyps.dev   2000.hyps  7000.hyps  best.ckpt\t trg_vocab.txt\n",
      "00010000.hyps.test  3000.hyps  8000.ckpt  config.yaml\t validations.txt\n",
      "10000.ckpt\t    4000.hyps  8000.hyps  src_vocab.txt\n",
      "10000.hyps\t    5000.hyps  9000.ckpt  tensorboard\n",
      "1000.hyps\t    6000.hyps  9000.hyps  train.log\n"
     ]
    }
   ],
   "source": [
    "!ls joeynmt/models/${src}${tgt}_transformer"
   ]
  },
  {
   "cell_type": "code",
   "execution_count": 0,
   "metadata": {
    "colab": {
     "base_uri": "https://localhost:8080/",
     "height": 187
    },
    "colab_type": "code",
    "id": "n94wlrCjVc17",
    "outputId": "30c9c4b5-a0e3-4291-ae0c-92d4ad75765b"
   },
   "outputs": [
    {
     "name": "stdout",
     "output_type": "stream",
     "text": [
      "Steps: 1000\tLoss: 99911.83594\tPPL: 29.05352\tbleu: 2.72236\tLR: 0.00030000\t*\n",
      "Steps: 2000\tLoss: 83836.46875\tPPL: 16.89572\tbleu: 5.02770\tLR: 0.00030000\t*\n",
      "Steps: 3000\tLoss: 74603.65625\tPPL: 12.37551\tbleu: 8.58942\tLR: 0.00030000\t*\n",
      "Steps: 4000\tLoss: 68261.98438\tPPL: 9.99286\tbleu: 12.24441\tLR: 0.00030000\t*\n",
      "Steps: 5000\tLoss: 64531.07812\tPPL: 8.81153\tbleu: 14.33851\tLR: 0.00030000\t*\n",
      "Steps: 6000\tLoss: 61767.51562\tPPL: 8.02748\tbleu: 16.15283\tLR: 0.00030000\t*\n",
      "Steps: 7000\tLoss: 59520.33203\tPPL: 7.44165\tbleu: 17.57435\tLR: 0.00030000\t*\n",
      "Steps: 8000\tLoss: 57724.96875\tPPL: 7.00449\tbleu: 18.66193\tLR: 0.00030000\t*\n",
      "Steps: 9000\tLoss: 56730.36328\tPPL: 6.77346\tbleu: 19.42256\tLR: 0.00030000\t*\n",
      "Steps: 10000\tLoss: 54994.69922\tPPL: 6.38840\tbleu: 20.28424\tLR: 0.00030000\t*\n"
     ]
    }
   ],
   "source": [
    "# Output our validation accuracy\n",
    "! cat \"$gdrive_path/models/${src}${tgt}_transformer/validations.txt\""
   ]
  },
  {
   "cell_type": "code",
   "execution_count": 0,
   "metadata": {
    "colab": {
     "base_uri": "https://localhost:8080/",
     "height": 68
    },
    "colab_type": "code",
    "id": "66WhRE9lIhoD",
    "outputId": "61637247-fd6b-41f5-b4a0-5d0a024af6d1"
   },
   "outputs": [
    {
     "name": "stdout",
     "output_type": "stream",
     "text": [
      "2019-11-26 15:25:20,452 Hello! This is Joey-NMT.\n",
      "2019-11-26 15:26:14,929  dev bleu:  21.61 [Beam search decoding with beam size = 5 and alpha = 1.0]\n",
      "2019-11-26 15:28:00,670 test bleu:  31.07 [Beam search decoding with beam size = 5 and alpha = 1.0]\n"
     ]
    }
   ],
   "source": [
    "# Test our model\n",
    "! cd joeynmt; python3 -m joeynmt test \"$gdrive_path/models/${src}${tgt}_transformer/config.yaml\""
   ]
  },
  {
   "cell_type": "code",
   "execution_count": 0,
   "metadata": {
    "colab": {},
    "colab_type": "code",
    "id": "r54BFMrWURq5"
   },
   "outputs": [],
   "source": []
  }
 ],
 "metadata": {
  "accelerator": "GPU",
  "colab": {
   "collapsed_sections": [],
   "name": "Copie de starter_notebook.ipynb",
   "provenance": [],
   "toc_visible": true
  },
  "kernelspec": {
   "display_name": "Python 3",
   "language": "python",
   "name": "python3"
  },
  "language_info": {
   "codemirror_mode": {
    "name": "ipython",
    "version": 3
   },
   "file_extension": ".py",
   "mimetype": "text/x-python",
   "name": "python",
   "nbconvert_exporter": "python",
   "pygments_lexer": "ipython3",
   "version": "3.7.1"
  },
  "toc": {
   "base_numbering": 1,
   "nav_menu": {},
   "number_sections": true,
   "sideBar": true,
   "skip_h1_title": false,
   "title_cell": "Table of Contents",
   "title_sidebar": "Contents",
   "toc_cell": false,
   "toc_position": {},
   "toc_section_display": true,
   "toc_window_display": false
  }
 },
 "nbformat": 4,
 "nbformat_minor": 1
}