File size: 198,529 Bytes
78aa4ee |
1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27 28 29 30 31 32 33 34 35 36 37 38 39 40 41 42 43 44 45 46 47 48 49 50 51 52 53 54 55 56 57 58 59 60 61 62 63 64 65 66 67 68 69 70 71 72 73 74 75 76 77 78 79 80 81 82 83 84 85 86 87 88 89 90 91 92 93 94 95 96 97 98 99 100 101 102 103 104 105 106 107 108 109 110 111 112 113 114 115 116 117 118 119 120 121 122 123 124 125 126 127 128 129 130 131 132 133 134 135 136 137 138 139 140 141 142 143 144 145 146 147 148 149 150 151 152 153 154 155 156 157 158 159 160 161 162 163 164 165 166 167 168 169 170 171 172 173 174 175 176 177 178 179 180 181 182 183 184 185 186 187 188 189 190 191 192 193 194 195 196 197 198 199 200 201 202 203 204 205 206 207 208 209 210 211 212 213 214 215 216 217 218 219 220 221 222 223 224 225 226 227 228 229 230 231 232 233 234 235 236 237 238 239 240 241 242 243 244 245 246 247 248 249 250 251 252 253 254 255 256 257 258 259 260 261 262 263 264 265 266 267 268 269 270 271 272 273 274 275 276 277 278 279 280 281 282 283 284 285 286 287 288 289 290 291 292 293 294 295 296 297 298 299 300 301 302 303 304 305 306 307 308 309 310 311 312 313 314 315 316 317 318 319 320 321 322 323 324 325 326 327 328 329 330 331 332 333 334 335 336 337 338 339 340 341 342 343 344 345 346 347 348 349 350 351 352 353 354 355 356 357 358 359 360 361 362 363 364 365 366 367 368 369 370 371 372 373 374 375 376 377 378 379 380 381 382 383 384 385 386 387 388 389 390 391 392 393 394 395 396 397 398 399 400 401 402 403 404 405 406 407 408 409 410 411 412 413 414 415 416 417 418 419 420 421 422 423 424 425 426 427 428 429 430 431 432 433 434 435 436 437 438 439 440 441 442 443 444 445 446 447 448 449 450 451 452 453 454 455 456 457 458 459 460 461 462 463 464 465 466 467 468 469 470 471 472 473 474 475 476 477 478 479 480 481 482 483 484 485 486 487 488 489 490 491 492 493 494 495 496 497 498 499 500 501 502 503 504 505 506 507 508 509 510 511 512 513 514 515 516 517 518 519 520 521 522 523 524 525 526 527 528 529 530 531 532 533 534 535 536 537 538 539 540 541 542 543 544 545 546 547 548 549 550 551 552 553 554 555 556 557 558 559 560 561 562 563 564 565 566 567 568 569 570 571 572 573 574 575 576 577 578 579 580 581 582 583 584 585 586 587 588 589 590 591 592 593 594 595 596 597 598 599 600 601 602 603 604 605 606 607 608 609 610 611 612 613 614 615 616 617 618 619 620 621 622 623 624 625 626 627 628 629 630 631 632 633 634 635 636 637 638 639 640 641 642 643 644 645 646 647 648 649 650 651 652 653 654 655 656 657 658 659 660 661 662 663 664 665 666 667 668 669 670 671 672 673 674 675 676 677 678 679 680 681 682 683 684 685 686 687 688 689 690 691 692 693 694 695 696 697 698 699 700 701 702 703 704 705 706 707 708 709 710 711 712 713 714 715 716 717 718 719 720 721 722 723 724 725 726 727 728 729 730 731 732 733 734 735 736 737 738 739 740 741 742 743 744 745 746 747 748 749 750 751 752 753 754 755 756 757 758 759 760 761 762 763 764 765 766 767 768 769 770 771 772 773 774 775 776 777 778 779 780 781 782 783 784 785 786 787 788 789 790 791 792 793 794 795 796 797 798 799 800 801 802 803 804 805 806 807 808 809 810 811 812 813 814 815 816 817 818 819 820 821 822 823 824 825 826 827 828 829 830 831 832 833 834 835 836 837 838 839 840 841 842 843 844 845 846 847 848 849 850 851 852 853 854 855 856 857 858 859 860 861 862 863 864 865 866 867 868 869 870 871 872 873 874 875 876 877 878 879 880 881 882 883 884 885 886 887 888 889 890 891 892 893 894 895 896 897 898 899 900 901 902 903 904 905 906 907 908 909 910 911 912 913 914 915 916 917 918 919 920 921 922 923 924 925 926 927 928 929 930 931 932 933 934 935 936 937 938 939 940 941 942 943 944 945 946 947 948 949 950 951 952 953 954 955 956 957 958 959 960 961 962 963 964 965 966 967 968 969 970 971 972 973 974 975 976 977 978 979 980 981 982 983 984 985 986 987 988 989 990 991 992 993 994 995 996 997 998 999 1000 1001 1002 1003 1004 1005 1006 1007 1008 1009 1010 1011 1012 1013 1014 1015 1016 1017 1018 1019 1020 1021 1022 1023 1024 1025 1026 1027 1028 1029 1030 1031 1032 1033 1034 1035 1036 1037 1038 1039 1040 1041 1042 1043 1044 1045 1046 1047 1048 1049 1050 1051 1052 1053 1054 1055 1056 1057 1058 1059 1060 1061 1062 1063 1064 1065 1066 1067 1068 1069 1070 1071 1072 1073 1074 1075 1076 1077 1078 1079 1080 1081 1082 1083 1084 1085 1086 1087 1088 1089 1090 1091 1092 1093 1094 1095 1096 1097 1098 1099 1100 1101 1102 1103 1104 1105 1106 1107 1108 1109 1110 1111 1112 1113 1114 1115 1116 1117 1118 1119 1120 1121 1122 1123 1124 1125 1126 1127 1128 1129 1130 1131 1132 1133 1134 1135 1136 1137 1138 1139 1140 1141 1142 1143 1144 1145 1146 1147 1148 1149 1150 1151 1152 1153 1154 1155 1156 1157 1158 1159 1160 1161 1162 1163 1164 1165 1166 1167 1168 1169 1170 1171 1172 1173 1174 1175 1176 1177 1178 1179 1180 1181 1182 1183 1184 1185 1186 1187 1188 1189 1190 1191 1192 1193 1194 1195 1196 1197 1198 1199 1200 1201 1202 1203 1204 1205 1206 1207 1208 1209 1210 1211 1212 1213 1214 1215 1216 1217 1218 1219 1220 1221 1222 1223 1224 1225 1226 1227 1228 1229 1230 1231 1232 1233 1234 1235 1236 1237 1238 1239 1240 1241 1242 1243 1244 1245 1246 1247 1248 1249 1250 1251 1252 1253 1254 1255 1256 1257 1258 1259 1260 1261 1262 1263 1264 1265 1266 1267 1268 1269 1270 1271 1272 1273 1274 1275 1276 1277 1278 1279 1280 1281 1282 1283 1284 1285 1286 1287 1288 1289 1290 1291 1292 1293 1294 1295 1296 1297 1298 1299 1300 1301 1302 1303 1304 1305 1306 1307 1308 1309 1310 1311 1312 1313 1314 1315 1316 1317 1318 1319 1320 1321 1322 1323 1324 1325 1326 1327 1328 1329 1330 1331 1332 1333 1334 1335 1336 1337 1338 1339 1340 1341 1342 1343 1344 1345 1346 1347 1348 1349 1350 1351 1352 1353 1354 1355 1356 1357 1358 1359 1360 1361 1362 1363 1364 1365 1366 1367 1368 1369 1370 1371 1372 1373 1374 1375 1376 1377 1378 1379 1380 1381 1382 1383 1384 1385 1386 1387 1388 1389 1390 1391 1392 1393 1394 1395 1396 1397 1398 1399 1400 1401 1402 1403 1404 1405 1406 1407 1408 1409 1410 1411 1412 1413 1414 1415 1416 1417 1418 1419 1420 1421 1422 1423 1424 1425 1426 1427 1428 1429 1430 1431 1432 1433 1434 1435 1436 1437 1438 1439 1440 1441 1442 1443 1444 1445 1446 1447 1448 1449 1450 1451 1452 1453 1454 1455 1456 1457 1458 1459 1460 1461 1462 1463 1464 1465 1466 1467 1468 1469 1470 1471 1472 1473 1474 1475 1476 1477 1478 1479 1480 1481 1482 1483 1484 1485 1486 1487 1488 1489 1490 1491 1492 1493 1494 1495 1496 1497 1498 1499 1500 1501 1502 1503 1504 1505 1506 1507 1508 1509 1510 1511 1512 1513 1514 1515 1516 1517 1518 1519 1520 1521 1522 1523 1524 1525 1526 1527 1528 1529 1530 1531 1532 1533 1534 1535 1536 1537 1538 1539 1540 1541 1542 1543 1544 1545 1546 1547 1548 1549 1550 1551 1552 1553 1554 1555 1556 1557 1558 1559 1560 1561 1562 1563 1564 1565 1566 1567 1568 1569 1570 1571 1572 1573 1574 1575 1576 1577 1578 1579 1580 1581 1582 1583 1584 1585 1586 1587 1588 1589 1590 1591 1592 1593 1594 1595 1596 1597 1598 1599 1600 1601 1602 1603 1604 1605 1606 1607 1608 1609 1610 1611 1612 1613 1614 1615 1616 1617 1618 1619 1620 1621 1622 1623 1624 1625 1626 1627 1628 1629 1630 1631 1632 1633 1634 1635 1636 1637 1638 1639 1640 1641 1642 1643 1644 1645 1646 1647 1648 1649 1650 1651 1652 1653 1654 1655 1656 1657 1658 1659 1660 1661 1662 1663 1664 1665 1666 1667 1668 1669 1670 1671 1672 1673 1674 1675 1676 1677 1678 1679 1680 1681 1682 1683 1684 1685 1686 1687 1688 1689 1690 1691 1692 1693 1694 1695 1696 1697 1698 1699 1700 1701 1702 1703 1704 1705 1706 1707 1708 1709 1710 1711 1712 1713 1714 1715 1716 1717 1718 1719 1720 1721 1722 1723 1724 1725 1726 1727 1728 1729 1730 1731 1732 1733 1734 1735 1736 1737 1738 1739 1740 1741 1742 1743 1744 1745 1746 1747 1748 1749 1750 1751 1752 1753 1754 1755 1756 1757 1758 1759 1760 1761 1762 1763 1764 1765 1766 1767 1768 1769 1770 1771 1772 1773 1774 1775 1776 1777 1778 1779 1780 1781 1782 1783 1784 1785 1786 1787 1788 1789 1790 1791 1792 1793 1794 1795 1796 1797 1798 1799 1800 1801 1802 1803 1804 1805 1806 1807 1808 1809 1810 1811 1812 1813 1814 1815 1816 1817 1818 1819 1820 1821 1822 1823 1824 1825 1826 1827 1828 1829 1830 1831 1832 1833 1834 1835 1836 1837 1838 1839 1840 1841 1842 1843 1844 1845 1846 1847 1848 1849 1850 1851 1852 1853 1854 1855 1856 1857 1858 1859 1860 1861 1862 1863 1864 1865 1866 1867 1868 1869 1870 1871 1872 1873 1874 1875 1876 1877 1878 1879 1880 1881 1882 1883 1884 1885 1886 1887 1888 1889 1890 1891 1892 1893 1894 1895 1896 1897 1898 1899 1900 1901 1902 1903 1904 1905 1906 1907 1908 1909 1910 1911 1912 1913 1914 1915 1916 1917 1918 1919 1920 1921 1922 1923 1924 1925 1926 1927 1928 1929 1930 1931 1932 1933 1934 1935 1936 1937 1938 1939 1940 1941 1942 1943 1944 1945 1946 1947 1948 1949 1950 1951 1952 1953 1954 1955 1956 1957 1958 1959 1960 1961 1962 1963 1964 1965 1966 1967 1968 1969 1970 1971 1972 1973 1974 1975 1976 1977 1978 1979 1980 1981 1982 1983 1984 1985 1986 1987 1988 1989 1990 1991 1992 1993 1994 1995 1996 1997 1998 1999 2000 2001 2002 2003 2004 2005 2006 2007 2008 2009 2010 2011 2012 2013 2014 2015 2016 2017 2018 2019 2020 2021 2022 2023 2024 2025 2026 2027 2028 2029 2030 2031 2032 2033 2034 2035 2036 2037 2038 2039 2040 2041 2042 2043 2044 2045 2046 2047 2048 2049 2050 2051 2052 2053 2054 2055 2056 2057 2058 2059 2060 2061 2062 2063 2064 2065 2066 2067 2068 2069 2070 2071 2072 2073 2074 2075 2076 2077 2078 2079 2080 2081 2082 2083 2084 2085 2086 2087 2088 2089 2090 2091 2092 2093 2094 2095 2096 2097 2098 2099 2100 2101 2102 2103 2104 2105 2106 2107 2108 2109 2110 2111 2112 2113 2114 2115 2116 2117 2118 2119 2120 2121 2122 2123 2124 2125 2126 2127 2128 2129 2130 2131 2132 2133 2134 2135 2136 2137 2138 2139 2140 2141 2142 2143 2144 2145 2146 2147 2148 2149 2150 2151 2152 2153 2154 2155 2156 2157 2158 2159 2160 2161 2162 2163 2164 2165 2166 2167 2168 2169 2170 2171 2172 2173 2174 2175 2176 2177 2178 2179 2180 2181 2182 2183 2184 2185 2186 2187 2188 2189 2190 2191 2192 2193 2194 2195 2196 2197 2198 2199 2200 2201 2202 2203 2204 2205 2206 2207 2208 2209 2210 2211 2212 2213 2214 2215 2216 2217 2218 2219 2220 2221 2222 2223 2224 2225 2226 2227 2228 2229 2230 2231 2232 2233 2234 2235 2236 2237 2238 2239 2240 2241 2242 2243 2244 2245 2246 2247 2248 2249 2250 2251 2252 2253 2254 2255 2256 2257 2258 2259 2260 2261 2262 2263 2264 2265 2266 2267 2268 2269 2270 2271 2272 2273 2274 2275 2276 2277 2278 2279 2280 2281 2282 2283 2284 2285 2286 2287 2288 2289 2290 2291 2292 2293 2294 2295 2296 2297 2298 2299 2300 2301 2302 2303 2304 2305 2306 2307 2308 2309 2310 2311 2312 2313 2314 2315 2316 2317 2318 2319 2320 2321 2322 2323 2324 2325 2326 2327 2328 2329 2330 2331 2332 2333 2334 2335 2336 2337 2338 2339 2340 2341 2342 2343 2344 2345 2346 2347 2348 2349 2350 2351 2352 2353 2354 2355 2356 2357 2358 2359 2360 2361 2362 2363 2364 2365 2366 2367 2368 2369 2370 2371 2372 2373 2374 2375 2376 2377 2378 2379 2380 2381 2382 2383 2384 2385 2386 2387 2388 2389 2390 2391 2392 2393 2394 2395 2396 2397 2398 2399 2400 2401 2402 2403 2404 2405 2406 2407 2408 2409 2410 2411 2412 2413 2414 2415 2416 2417 2418 2419 |
{
"nbformat": 4,
"nbformat_minor": 0,
"metadata": {
"accelerator": "GPU",
"colab": {
"name": "enaf.ipynb",
"provenance": [],
"collapsed_sections": [],
"toc_visible": true
},
"kernelspec": {
"display_name": "Python 3",
"language": "python",
"name": "python3"
},
"language_info": {
"codemirror_mode": {
"name": "ipython",
"version": 3
},
"file_extension": ".py",
"mimetype": "text/x-python",
"name": "python",
"nbconvert_exporter": "python",
"pygments_lexer": "ipython3",
"version": "3.5.6"
}
},
"cells": [
{
"cell_type": "markdown",
"metadata": {
"colab_type": "text",
"id": "Igc5itf-xMGj"
},
"source": [
"# Masakhane - Machine Translation for African Languages (Using JoeyNMT)"
]
},
{
"cell_type": "markdown",
"metadata": {
"colab_type": "text",
"id": "x4fXCKCf36IK"
},
"source": [
"## Note before beginning:\n",
"### - The idea is that you should be able to make minimal changes to this in order to get SOME result for your own translation corpus. \n",
"\n",
"### - The tl;dr: Go to the **\"TODO\"** comments which will tell you what to update to get up and running\n",
"\n",
"### - If you actually want to have a clue what you're doing, read the text and peek at the links\n",
"\n",
"### - With 100 epochs, it should take around 7 hours to run in Google Colab\n",
"\n",
"### - Once you've gotten a result for your language, please attach and email your notebook that generated it to [email protected]\n",
"\n",
"### - If you care enough and get a chance, doing a brief background on your language would be amazing. See examples in [(Martinus, 2019)](https://arxiv.org/abs/1906.05685)"
]
},
{
"cell_type": "markdown",
"metadata": {
"colab_type": "text",
"id": "l929HimrxS0a"
},
"source": [
"## Retrieve your data & make a parallel corpus\n",
"\n",
"If you are wanting to use the JW300 data referenced on the Masakhane website or in our GitHub repo, you can use `opus-tools` to convert the data into a convenient format. `opus_read` from that package provides a convenient tool for reading the native aligned XML files and to convert them to TMX format. The tool can also be used to fetch relevant files from OPUS on the fly and to filter the data as necessary. [Read the documentation](https://pypi.org/project/opustools-pkg/) for more details.\n",
"\n",
"Once you have your corpus files in TMX format (an xml structure which will include the sentences in your target language and your source language in a single file), we recommend reading them into a pandas dataframe. Thankfully, Jade wrote a silly `tmx2dataframe` package which converts your tmx file to a pandas dataframe. "
]
},
{
"cell_type": "code",
"metadata": {
"colab_type": "code",
"id": "oGRmDELn7Az0",
"outputId": "b1921b80-ca0f-4d61-d1b1-dd6f488877e5",
"colab": {
"base_uri": "https://localhost:8080/",
"height": 121
}
},
"source": [
"from google.colab import drive\n",
"drive.mount('/content/drive')"
],
"execution_count": 1,
"outputs": [
{
"output_type": "stream",
"text": [
"Go to this URL in a browser: https://accounts.google.com/o/oauth2/auth?client_id=947318989803-6bn6qk8qdgf4n4g3pfee6491hc0brc4i.apps.googleusercontent.com&redirect_uri=urn%3aietf%3awg%3aoauth%3a2.0%3aoob&response_type=code&scope=email%20https%3a%2f%2fwww.googleapis.com%2fauth%2fdocs.test%20https%3a%2f%2fwww.googleapis.com%2fauth%2fdrive%20https%3a%2f%2fwww.googleapis.com%2fauth%2fdrive.photos.readonly%20https%3a%2f%2fwww.googleapis.com%2fauth%2fpeopleapi.readonly\n",
"\n",
"Enter your authorization code:\n",
"··········\n",
"Mounted at /content/drive\n"
],
"name": "stdout"
}
]
},
{
"cell_type": "code",
"metadata": {
"colab_type": "code",
"id": "Cn3tgQLzUxwn",
"colab": {}
},
"source": [
"# TODO: Set your source and target languages. Keep in mind, these traditionally use language codes as found here:\n",
"# These will also become the suffix's of all vocab and corpus files used throughout\n",
"import os\n",
"source_language = \"en\"\n",
"target_language = \"af\" \n",
"lc = False # If True, lowercase the data.\n",
"seed = 42 # Random seed for shuffling.\n",
"tag = \"baseline\" # Give a unique name to your folder - this is to ensure you don't rewrite any models you've already submitted\n",
"\n",
"os.environ[\"src\"] = source_language # Sets them in bash as well, since we often use bash scripts\n",
"os.environ[\"tgt\"] = target_language\n",
"os.environ[\"tag\"] = tag\n",
"\n",
"# This will save it to a folder in our gdrive instead!\n",
"!mkdir -p \"/content/drive/My Drive/masakhane/$src-$tgt-$tag\"\n",
"os.environ[\"gdrive_path\"] = \"/content/drive/My Drive/masakhane/%s-%s-%s\" % (source_language, target_language, tag)"
],
"execution_count": 0,
"outputs": []
},
{
"cell_type": "code",
"metadata": {
"colab_type": "code",
"id": "kBSgJHEw7Nvx",
"outputId": "8ab7ecfd-cbc3-4cae-ca91-aff9991f9bd8",
"colab": {
"base_uri": "https://localhost:8080/",
"height": 34
}
},
"source": [
"!echo $gdrive_path"
],
"execution_count": 3,
"outputs": [
{
"output_type": "stream",
"text": [
"/content/drive/My Drive/masakhane/en-af-baseline\n"
],
"name": "stdout"
}
]
},
{
"cell_type": "code",
"metadata": {
"colab_type": "code",
"id": "gA75Fs9ys8Y9",
"outputId": "ebf2668b-ac76-4753-fd01-87d0bac351c0",
"colab": {
"base_uri": "https://localhost:8080/",
"height": 121
}
},
"source": [
"# Install opus-tools\n",
"! pip install opustools-pkg"
],
"execution_count": 4,
"outputs": [
{
"output_type": "stream",
"text": [
"Collecting opustools-pkg\n",
"\u001b[?25l Downloading https://files.pythonhosted.org/packages/6c/9f/e829a0cceccc603450cd18e1ff80807b6237a88d9a8df2c0bb320796e900/opustools_pkg-0.0.52-py3-none-any.whl (80kB)\n",
"\r\u001b[K |████ | 10kB 25.8MB/s eta 0:00:01\r\u001b[K |████████ | 20kB 27.1MB/s eta 0:00:01\r\u001b[K |████████████▏ | 30kB 31.8MB/s eta 0:00:01\r\u001b[K |████████████████▏ | 40kB 34.7MB/s eta 0:00:01\r\u001b[K |████████████████████▎ | 51kB 37.1MB/s eta 0:00:01\r\u001b[K |████████████████████████▎ | 61kB 39.3MB/s eta 0:00:01\r\u001b[K |████████████████████████████▎ | 71kB 40.1MB/s eta 0:00:01\r\u001b[K |████████████████████████████████| 81kB 9.3MB/s \n",
"\u001b[?25hInstalling collected packages: opustools-pkg\n",
"Successfully installed opustools-pkg-0.0.52\n"
],
"name": "stdout"
}
]
},
{
"cell_type": "code",
"metadata": {
"colab_type": "code",
"id": "xq-tDZVks7ZD",
"colab": {}
},
"source": [
"# Downloading our corpus\n",
"! opus_read -d JW300 -s $src -t $tgt -wm moses -w jw300.$src jw300.$tgt -q\n",
"\n",
"# extract the corpus file\n",
"! gunzip JW300_latest_xml_$src-$tgt.xml.gz"
],
"execution_count": 0,
"outputs": []
},
{
"cell_type": "code",
"metadata": {
"id": "n48GDRnP8y2G",
"colab_type": "code",
"outputId": "ba03d09d-43bb-466e-9e26-c9149b89d1b0",
"colab": {
"base_uri": "https://localhost:8080/",
"height": 571
}
},
"source": [
"# Download the global test set.\n",
"! wget https://raw.githubusercontent.com/juliakreutzer/masakhane/master/jw300_utils/test/test.en-any.en\n",
" \n",
"# And the specific test set for this language pair.\n",
"os.environ[\"trg\"] = target_language \n",
"os.environ[\"src\"] = source_language \n",
"\n",
"! wget https://raw.githubusercontent.com/juliakreutzer/masakhane/master/jw300_utils/test/test.en-$trg.en \n",
"! mv test.en-$trg.en test.en\n",
"! wget https://raw.githubusercontent.com/juliakreutzer/masakhane/master/jw300_utils/test/test.en-$trg.$trg \n",
"! mv test.en-$trg.$trg test.$trg"
],
"execution_count": 5,
"outputs": [
{
"output_type": "stream",
"text": [
"--2019-11-26 11:15:28-- https://raw.githubusercontent.com/juliakreutzer/masakhane/master/jw300_utils/test/test.en-any.en\n",
"Resolving raw.githubusercontent.com (raw.githubusercontent.com)... 151.101.0.133, 151.101.64.133, 151.101.128.133, ...\n",
"Connecting to raw.githubusercontent.com (raw.githubusercontent.com)|151.101.0.133|:443... connected.\n",
"HTTP request sent, awaiting response... 200 OK\n",
"Length: 277791 (271K) [text/plain]\n",
"Saving to: ‘test.en-any.en’\n",
"\n",
"\rtest.en-any.en 0%[ ] 0 --.-KB/s \rtest.en-any.en 100%[===================>] 271.28K --.-KB/s in 0.005s \n",
"\n",
"2019-11-26 11:15:29 (52.1 MB/s) - ‘test.en-any.en’ saved [277791/277791]\n",
"\n",
"--2019-11-26 11:15:31-- https://raw.githubusercontent.com/juliakreutzer/masakhane/master/jw300_utils/test/test.en-af.en\n",
"Resolving raw.githubusercontent.com (raw.githubusercontent.com)... 151.101.0.133, 151.101.64.133, 151.101.128.133, ...\n",
"Connecting to raw.githubusercontent.com (raw.githubusercontent.com)|151.101.0.133|:443... connected.\n",
"HTTP request sent, awaiting response... 200 OK\n",
"Length: 203446 (199K) [text/plain]\n",
"Saving to: ‘test.en-af.en’\n",
"\n",
"test.en-af.en 100%[===================>] 198.68K --.-KB/s in 0.004s \n",
"\n",
"2019-11-26 11:15:31 (53.0 MB/s) - ‘test.en-af.en’ saved [203446/203446]\n",
"\n",
"--2019-11-26 11:15:39-- https://raw.githubusercontent.com/juliakreutzer/masakhane/master/jw300_utils/test/test.en-af.af\n",
"Resolving raw.githubusercontent.com (raw.githubusercontent.com)... 151.101.0.133, 151.101.64.133, 151.101.128.133, ...\n",
"Connecting to raw.githubusercontent.com (raw.githubusercontent.com)|151.101.0.133|:443... connected.\n",
"HTTP request sent, awaiting response... 200 OK\n",
"Length: 212484 (208K) [text/plain]\n",
"Saving to: ‘test.en-af.af’\n",
"\n",
"test.en-af.af 100%[===================>] 207.50K --.-KB/s in 0.003s \n",
"\n",
"2019-11-26 11:15:39 (65.1 MB/s) - ‘test.en-af.af’ saved [212484/212484]\n",
"\n"
],
"name": "stdout"
}
]
},
{
"cell_type": "code",
"metadata": {
"id": "NqDG-CI28y2L",
"colab_type": "code",
"outputId": "0d978a04-cf67-494a-f582-28e365f6d3aa",
"colab": {
"base_uri": "https://localhost:8080/",
"height": 34
}
},
"source": [
"# Read the test data to filter from train and dev splits.\n",
"# Store english portion in set for quick filtering checks.\n",
"en_test_sents = set()\n",
"filter_test_sents = \"test.en-any.en\"\n",
"j = 0\n",
"with open(filter_test_sents) as f:\n",
" for line in f:\n",
" en_test_sents.add(line.strip())\n",
" j += 1\n",
"print('Loaded {} global test sentences to filter from the training/dev data.'.format(j))"
],
"execution_count": 6,
"outputs": [
{
"output_type": "stream",
"text": [
"Loaded 3571 global test sentences to filter from the training/dev data.\n"
],
"name": "stdout"
}
]
},
{
"cell_type": "code",
"metadata": {
"colab_type": "code",
"id": "3CNdwLBCfSIl",
"outputId": "8e58933f-2bfa-4417-d29f-0a70da4486ba",
"colab": {
"base_uri": "https://localhost:8080/",
"height": 153
}
},
"source": [
"import pandas as pd\n",
"\n",
"# TMX file to dataframe\n",
"source_file = 'enaf_parallel.train.' + source_language\n",
"target_file = 'enaf_parallel.train.' + target_language\n",
"\n",
"source = []\n",
"target = []\n",
"skip_lines = [] # Collect the line numbers of the source portion to skip the same lines for the target portion.\n",
"with open(source_file) as f:\n",
" for i, line in enumerate(f):\n",
" # Skip sentences that are contained in the test set.\n",
" if line.strip() not in en_test_sents:\n",
" source.append(line.strip())\n",
" else:\n",
" skip_lines.append(i) \n",
"with open(target_file) as f:\n",
" for j, line in enumerate(f):\n",
" # Only add to corpus if corresponding source was not skipped.\n",
" if j not in skip_lines:\n",
" target.append(line.strip())\n",
" \n",
"print('Loaded data and skipped {}/{} lines since contained in test set.'.format(len(skip_lines), i))\n",
" \n",
"df = pd.DataFrame(zip(source, target), columns=['source_sentence', 'target_sentence'])\n",
"# if you get TypeError: data argument can't be an iterator is because of your zip version run this below\n",
"#df = pd.DataFrame(list(zip(source, target)), columns=['source_sentence', 'target_sentence'])\n",
"df.head(3)"
],
"execution_count": 7,
"outputs": [
{
"output_type": "stream",
"text": [
"Loaded data and skipped 1/50171 lines since contained in test set.\n"
],
"name": "stdout"
},
{
"output_type": "execute_result",
"data": {
"text/html": [
"<div>\n",
"<style scoped>\n",
" .dataframe tbody tr th:only-of-type {\n",
" vertical-align: middle;\n",
" }\n",
"\n",
" .dataframe tbody tr th {\n",
" vertical-align: top;\n",
" }\n",
"\n",
" .dataframe thead th {\n",
" text-align: right;\n",
" }\n",
"</style>\n",
"<table border=\"1\" class=\"dataframe\">\n",
" <thead>\n",
" <tr style=\"text-align: right;\">\n",
" <th></th>\n",
" <th>source_sentence</th>\n",
" <th>target_sentence</th>\n",
" </tr>\n",
" </thead>\n",
" <tbody>\n",
" <tr>\n",
" <th>0</th>\n",
" <td>( 3 ) if material transfer agreements or benef...</td>\n",
" <td>( 3 ) indien materiaaloordragooreenkomste of v...</td>\n",
" </tr>\n",
" <tr>\n",
" <th>1</th>\n",
" <td>( a ) signed material transfer agreements or b...</td>\n",
" <td>( a ) getekende materiaaloordragooreenkomste o...</td>\n",
" </tr>\n",
" <tr>\n",
" <th>2</th>\n",
" <td>( b ) if it has not been possible to conclude ...</td>\n",
" <td>( b ) indien dit nie moontlik was om sodanige ...</td>\n",
" </tr>\n",
" </tbody>\n",
"</table>\n",
"</div>"
],
"text/plain": [
" source_sentence target_sentence\n",
"0 ( 3 ) if material transfer agreements or benef... ( 3 ) indien materiaaloordragooreenkomste of v...\n",
"1 ( a ) signed material transfer agreements or b... ( a ) getekende materiaaloordragooreenkomste o...\n",
"2 ( b ) if it has not been possible to conclude ... ( b ) indien dit nie moontlik was om sodanige ..."
]
},
"metadata": {
"tags": []
},
"execution_count": 7
}
]
},
{
"cell_type": "markdown",
"metadata": {
"colab_type": "text",
"id": "YkuK3B4p2AkN"
},
"source": [
"## Pre-processing and export\n",
"\n",
"It is generally a good idea to remove duplicate translations and conflicting translations from the corpus. In practice, these public corpora include some number of these that need to be cleaned.\n",
"\n",
"In addition we will split our data into dev/test/train and export to the filesystem."
]
},
{
"cell_type": "code",
"metadata": {
"colab_type": "code",
"id": "M_2ouEOH1_1q",
"outputId": "c43fbf86-b2e6-4136-f206-d57519166978",
"colab": {
"base_uri": "https://localhost:8080/",
"height": 185
}
},
"source": [
"# drop duplicate translations\n",
"df_pp = df.drop_duplicates()\n",
"\n",
"# drop conflicting translations\n",
"# (this is optional and something that you might want to comment out \n",
"# depending on the size of your corpus)\n",
"df_pp.drop_duplicates(subset='source_sentence', inplace=True)\n",
"df_pp.drop_duplicates(subset='target_sentence', inplace=True)\n",
"\n",
"# Shuffle the data to remove bias in dev set selection.\n",
"df_pp = df_pp.sample(frac=1, random_state=seed).reset_index(drop=True)"
],
"execution_count": 8,
"outputs": [
{
"output_type": "stream",
"text": [
"/usr/local/lib/python3.6/dist-packages/ipykernel_launcher.py:6: SettingWithCopyWarning: \n",
"A value is trying to be set on a copy of a slice from a DataFrame\n",
"\n",
"See the caveats in the documentation: http://pandas.pydata.org/pandas-docs/stable/user_guide/indexing.html#returning-a-view-versus-a-copy\n",
" \n",
"/usr/local/lib/python3.6/dist-packages/ipykernel_launcher.py:7: SettingWithCopyWarning: \n",
"A value is trying to be set on a copy of a slice from a DataFrame\n",
"\n",
"See the caveats in the documentation: http://pandas.pydata.org/pandas-docs/stable/user_guide/indexing.html#returning-a-view-versus-a-copy\n",
" import sys\n"
],
"name": "stderr"
}
]
},
{
"cell_type": "code",
"metadata": {
"id": "Z_1BwAApEtMk",
"colab_type": "code",
"outputId": "7aeda118-931b-40d6-d0d9-9eb21236b4bd",
"colab": {
"base_uri": "https://localhost:8080/",
"height": 1000
}
},
"source": [
"# Install fuzzy wuzzy to remove \"almost duplicate\" sentences in the\n",
"# test and training sets.\n",
"! pip install fuzzywuzzy\n",
"! pip install python-Levenshtein\n",
"import time\n",
"from fuzzywuzzy import process\n",
"import numpy as np\n",
"\n",
"# reset the index of the training set after previous filtering\n",
"df_pp.reset_index(drop=False, inplace=True)\n",
"\n",
"# Remove samples from the training data set if they \"almost overlap\" with the\n",
"# samples in the test set.\n",
"\n",
"# Filtering function. Adjust pad to narrow down the candidate matches to\n",
"# within a certain length of characters of the given sample.\n",
"def fuzzfilter(sample, candidates, pad):\n",
" candidates = [x for x in candidates if len(x) <= len(sample)+pad and len(x) >= len(sample)-pad] \n",
" if len(candidates) > 0:\n",
" return process.extractOne(sample, candidates)[1]\n",
" else:\n",
" return np.nan\n",
"\n",
"# NOTE - This might run slow depending on the size of your training set. We are\n",
"# printing some information to help you track how long it would take. \n",
"scores = []\n",
"start_time = time.time()\n",
"for idx, row in df_pp.iterrows():\n",
" scores.append(fuzzfilter(row['source_sentence'], list(en_test_sents), 5))\n",
" if idx % 1000 == 0:\n",
" hours, rem = divmod(time.time() - start_time, 3600)\n",
" minutes, seconds = divmod(rem, 60)\n",
" print(\"{:0>2}:{:0>2}:{:05.2f}\".format(int(hours),int(minutes),seconds), \"%0.2f percent complete\" % (100.0*float(idx)/float(len(df_pp))))\n",
"\n",
"# Filter out \"almost overlapping samples\"\n",
"df_pp['scores'] = scores\n",
"df_pp = df_pp[df_pp['scores'] < 95]"
],
"execution_count": 9,
"outputs": [
{
"output_type": "stream",
"text": [
"Collecting fuzzywuzzy\n",
" Downloading https://files.pythonhosted.org/packages/d8/f1/5a267addb30ab7eaa1beab2b9323073815da4551076554ecc890a3595ec9/fuzzywuzzy-0.17.0-py2.py3-none-any.whl\n",
"Installing collected packages: fuzzywuzzy\n",
"Successfully installed fuzzywuzzy-0.17.0\n",
"Collecting python-Levenshtein\n",
"\u001b[?25l Downloading https://files.pythonhosted.org/packages/42/a9/d1785c85ebf9b7dfacd08938dd028209c34a0ea3b1bcdb895208bd40a67d/python-Levenshtein-0.12.0.tar.gz (48kB)\n",
"\u001b[K |████████████████████████████████| 51kB 8.2MB/s \n",
"\u001b[?25hRequirement already satisfied: setuptools in /usr/local/lib/python3.6/dist-packages (from python-Levenshtein) (41.6.0)\n",
"Building wheels for collected packages: python-Levenshtein\n",
" Building wheel for python-Levenshtein (setup.py) ... \u001b[?25l\u001b[?25hdone\n",
" Created wheel for python-Levenshtein: filename=python_Levenshtein-0.12.0-cp36-cp36m-linux_x86_64.whl size=144662 sha256=839189df0920c81aeedf1e6572a35a13de649e40fcf0d61080db2673c1e227b1\n",
" Stored in directory: /root/.cache/pip/wheels/de/c2/93/660fd5f7559049268ad2dc6d81c4e39e9e36518766eaf7e342\n",
"Successfully built python-Levenshtein\n",
"Installing collected packages: python-Levenshtein\n",
"Successfully installed python-Levenshtein-0.12.0\n",
"00:00:00.02 0.00 percent complete\n",
"00:00:14.44 2.08 percent complete\n",
"00:00:28.83 4.17 percent complete\n",
"00:00:43.76 6.25 percent complete\n",
"00:00:58.65 8.34 percent complete\n",
"00:01:13.09 10.42 percent complete\n",
"00:01:27.06 12.50 percent complete\n",
"00:01:40.52 14.59 percent complete\n"
],
"name": "stdout"
},
{
"output_type": "stream",
"text": [
"WARNING:root:Applied processor reduces input query to empty string, all comparisons will have score 0. [Query: ':']\n"
],
"name": "stderr"
},
{
"output_type": "stream",
"text": [
"00:01:54.51 16.67 percent complete\n",
"00:02:08.22 18.75 percent complete\n",
"00:02:21.96 20.84 percent complete\n",
"00:02:36.32 22.92 percent complete\n",
"00:02:50.34 25.01 percent complete\n",
"00:03:04.63 27.09 percent complete\n",
"00:03:18.58 29.17 percent complete\n",
"00:03:32.73 31.26 percent complete\n"
],
"name": "stdout"
},
{
"output_type": "stream",
"text": [
"WARNING:root:Applied processor reduces input query to empty string, all comparisons will have score 0. [Query: '|']\n"
],
"name": "stderr"
},
{
"output_type": "stream",
"text": [
"00:03:46.90 33.34 percent complete\n",
"00:04:01.33 35.42 percent complete\n",
"00:04:15.57 37.51 percent complete\n",
"00:04:29.17 39.59 percent complete\n",
"00:04:42.97 41.68 percent complete\n",
"00:04:57.24 43.76 percent complete\n",
"00:05:11.76 45.84 percent complete\n",
"00:05:25.78 47.93 percent complete\n",
"00:05:39.29 50.01 percent complete\n",
"00:05:53.25 52.09 percent complete\n",
"00:06:07.30 54.18 percent complete\n",
"00:06:21.92 56.26 percent complete\n",
"00:06:35.96 58.35 percent complete\n",
"00:06:50.12 60.43 percent complete\n",
"00:07:04.53 62.51 percent complete\n",
"00:07:18.47 64.60 percent complete\n"
],
"name": "stdout"
},
{
"output_type": "stream",
"text": [
"WARNING:root:Applied processor reduces input query to empty string, all comparisons will have score 0. [Query: '/']\n"
],
"name": "stderr"
},
{
"output_type": "stream",
"text": [
"00:07:32.24 66.68 percent complete\n",
"00:07:46.07 68.76 percent complete\n",
"00:07:59.82 70.85 percent complete\n",
"00:08:13.33 72.93 percent complete\n",
"00:08:26.94 75.02 percent complete\n",
"00:08:41.12 77.10 percent complete\n",
"00:08:55.04 79.18 percent complete\n",
"00:09:09.58 81.27 percent complete\n",
"00:09:23.75 83.35 percent complete\n",
"00:09:37.88 85.43 percent complete\n",
"00:09:52.05 87.52 percent complete\n",
"00:10:06.92 89.60 percent complete\n",
"00:10:21.68 91.69 percent complete\n",
"00:10:35.72 93.77 percent complete\n",
"00:10:50.09 95.85 percent complete\n",
"00:11:04.32 97.94 percent complete\n"
],
"name": "stdout"
}
]
},
{
"cell_type": "code",
"metadata": {
"colab_type": "code",
"id": "hxxBOCA-xXhy",
"outputId": "844bdd09-19b3-4e63-ccee-3c87644a2597",
"colab": {
"base_uri": "https://localhost:8080/",
"height": 810
}
},
"source": [
"# This section does the split between train/dev for the parallel corpora then saves them as separate files\n",
"# We use 1000 dev test and the given test set.\n",
"import csv\n",
"\n",
"# Do the split between dev/train and create parallel corpora\n",
"num_dev_patterns = 1000\n",
"\n",
"# Optional: lower case the corpora - this will make it easier to generalize, but without proper casing.\n",
"if lc: # Julia: making lowercasing optional\n",
" df_pp[\"source_sentence\"] = df_pp[\"source_sentence\"].str.lower()\n",
" df_pp[\"target_sentence\"] = df_pp[\"target_sentence\"].str.lower()\n",
"\n",
"# Julia: test sets are already generated\n",
"dev = df_pp.tail(num_dev_patterns) # Herman: Error in original\n",
"stripped = df_pp.drop(df_pp.tail(num_dev_patterns).index)\n",
"\n",
"with open(\"train.\"+source_language, \"w\") as src_file, open(\"train.\"+target_language, \"w\") as trg_file:\n",
" for index, row in stripped.iterrows():\n",
" src_file.write(row[\"source_sentence\"]+\"\\n\")\n",
" trg_file.write(row[\"target_sentence\"]+\"\\n\")\n",
" \n",
"with open(\"dev.\"+source_language, \"w\") as src_file, open(\"dev.\"+target_language, \"w\") as trg_file:\n",
" for index, row in dev.iterrows():\n",
" src_file.write(row[\"source_sentence\"]+\"\\n\")\n",
" trg_file.write(row[\"target_sentence\"]+\"\\n\")\n",
"\n",
"#stripped[[\"source_sentence\"]].to_csv(\"train.\"+source_language, header=False, index=False) # Herman: Added `header=False` everywhere\n",
"#stripped[[\"target_sentence\"]].to_csv(\"train.\"+target_language, header=False, index=False) # Julia: Problematic handling of quotation marks.\n",
"\n",
"#dev[[\"source_sentence\"]].to_csv(\"dev.\"+source_language, header=False, index=False)\n",
"#dev[[\"target_sentence\"]].to_csv(\"dev.\"+target_language, header=False, index=False)\n",
"\n",
"# Doublecheck the format below. There should be no extra quotation marks or weird characters.\n",
"! head train.*\n",
"! head dev.*"
],
"execution_count": 10,
"outputs": [
{
"output_type": "stream",
"text": [
"==> train.af <==\n",
"as persone aan ' n oortreding ingevolge dié verordening skuldig bevind word , welke oortreding skade aan of verlies van eiendom veroorsaak het en / of ' n nadelige uitwerking op die omgewing gehad het , kan die hof dan , benewens enige ander vonnis wat opgelê is , die volgende doen :\n",
"* Small Claims Courts Act (Wet) (File type: pdf; size: 487 KB) (net in Engels beskikbaar)\n",
"* Kinders wat min urineer\n",
"Is Berading Nodig Voordat Mens 'n Vigstoets Ondergaan?\n",
"* Mei/Junie 2006, Vol. 2, Issue 9\n",
"Die regering moet seker maak dat mense toegang het tot behoorlike behuising.\n",
"Dit is balju's se plig om alle mense, ryk en arm, te alle tye met empatie en waardigheid te behandel.\n",
"Tuisblad > Jou Regering > Wes-Kaapse Provinsiale Regering > Wes-Kaap Onderwysdepartement > Fasiliteite > Sentrums vir Basiese Onderwys en Opleiding vir Volwassenes (BOOV), en Gemeenskapsleersentrums > Siyafuna Ukufunda Adult Learning Centre\n",
"* Hoe om Aansoek te Doen om 'n Lisensie\n",
"Vir gereelde ondersoeke en medikasie moet kliënte die kliniek besoek.\n",
"\n",
"==> train.en <==\n",
"persons convicted of an offence under this bylaw which caused damage to or loss of property and / or which has had an adverse impact on the environment then , in addition to any other sentence imposed , the court may :\n",
"* Small Claims Courts Act (Act) (File type: pdf; size: 487 KB)\n",
"* Passing of a little urine\n",
"Is Counselling Necessary before Having an Aids Test?\n",
"* May/June 2006, Vol. 2, Issue 9\n",
"The government must make sure people get access to proper housing.\n",
"It is the duty of sheriffs to serve all people, rich and poor, with empathy and dignity at all times.\n",
"Home > Your Government > Provincial Government of the Western Cape > Western Cape Education Department > Facilities > ABET & Community Learning Centres > Siyafuna Ukufunda Adult Learning Centre\n",
"* How to Apply for a Licence\n",
"Clients must return to the clinic for regular check-ups and medication.\n",
"==> dev.af <==\n",
"GEORGE PLAASLIKE MUNISIPALITEIT: KONTAK\n",
"Die Drostdy\n",
"die doel van die tweede kategorie van komitees is om ook die kundigheid van persone buite die kommissie vir die kommissie se werksaamhede te benut en om direkte gemeenskapsbetrokkenheid te verseker .\n",
"* indiwidue se private optrede\n",
"en die bepaling van enige diens deur die Raad ;\n",
"Hulle het egter dieselfde magte en pligte as enige polisielid terwyl hulle aan diens is.\n",
"Wanneer mens hoes of nies, moet enige mens, veral dié met TB of MMW TB hulle neus en mond met 'n snesie bedek om die verspreiding van basille deur die lug te keer.\n",
"Approval for a boar for artificial insemination\n",
"ek voel ontsaglik trots dat demokratiese suid-afrika verstanding en fyngevoelig genoeg was om erkenning te gee aan wat albert luthuli en oliver tambo vir ons volk beteken deur twee van ons nasionale ordes na hulle te vernoem : die orde van luthuli , en die orde van die metgeselle van or tambo .\n",
"Indien u bestuurslisensie verlore raak, of gesteel of vernietig word, kan u om vervanging daarvan aansoek doen.\n",
"\n",
"==> dev.en <==\n",
"GEORGE LOCAL MUNICIPALITY: CONTACT\n",
"The Drostdy\n",
"the object of the second category of committees is to utilise the expertise of persons outside the commission and to ensure direct community involvement in the activities of the commission .\n",
"* private acts by individuals\n",
"and the provision of any service by the Council ;\n",
"However, they have the same powers and duties as any police officer while they are on duty.\n",
"When coughing or sneezing, any person and especially those with TB or MDR TB should cover the nose and mouth with a tissue to prevent air-borne spread of the bacilli.\n",
"Approval for a boar for artificial insemination\n",
"i feel immensely proud that democratic south africa has had the sense and sensitivity to acknowledge what albert luthuli and oliver tambo mean to our nation by naming two of our national orders after them - the order of luthuli , and the order of the companions of o.r .\n",
"If your driving licence is lost, stolen or destroyed, you can apply for a replacement licence.\n"
],
"name": "stdout"
}
]
},
{
"cell_type": "markdown",
"metadata": {
"colab_type": "text",
"id": "epeCydmCyS8X"
},
"source": [
"\n",
"\n",
"---\n",
"\n",
"\n",
"## Installation of JoeyNMT\n",
"\n",
"JoeyNMT is a simple, minimalist NMT package which is useful for learning and teaching. Check out the documentation for JoeyNMT [here](https://joeynmt.readthedocs.io) "
]
},
{
"cell_type": "code",
"metadata": {
"colab_type": "code",
"id": "iBRMm4kMxZ8L",
"outputId": "17c99725-9750-46ca-9b40-f39142d2abbc",
"colab": {
"base_uri": "https://localhost:8080/",
"height": 1000
}
},
"source": [
"# Install JoeyNMT\n",
"! git clone https://github.com/joeynmt/joeynmt.git\n",
"! cd joeynmt; pip3 install ."
],
"execution_count": 11,
"outputs": [
{
"output_type": "stream",
"text": [
"Cloning into 'joeynmt'...\n",
"remote: Enumerating objects: 15, done.\u001b[K\n",
"remote: Counting objects: 100% (15/15), done.\u001b[K\n",
"remote: Compressing objects: 100% (12/12), done.\u001b[K\n",
"remote: Total 2199 (delta 4), reused 5 (delta 3), pack-reused 2184\u001b[K\n",
"Receiving objects: 100% (2199/2199), 2.60 MiB | 963.00 KiB/s, done.\n",
"Resolving deltas: 100% (1525/1525), done.\n",
"Processing /content/joeynmt\n",
"Requirement already satisfied: future in /usr/local/lib/python3.6/dist-packages (from joeynmt==0.0.1) (0.16.0)\n",
"Requirement already satisfied: pillow in /usr/local/lib/python3.6/dist-packages (from joeynmt==0.0.1) (4.3.0)\n",
"Requirement already satisfied: numpy<2.0,>=1.14.5 in /usr/local/lib/python3.6/dist-packages (from joeynmt==0.0.1) (1.17.4)\n",
"Requirement already satisfied: setuptools>=41.0.0 in /usr/local/lib/python3.6/dist-packages (from joeynmt==0.0.1) (41.6.0)\n",
"Requirement already satisfied: torch>=1.1 in /usr/local/lib/python3.6/dist-packages (from joeynmt==0.0.1) (1.3.1)\n",
"Requirement already satisfied: tensorflow>=1.14 in /usr/local/lib/python3.6/dist-packages (from joeynmt==0.0.1) (1.15.0)\n",
"Requirement already satisfied: torchtext in /usr/local/lib/python3.6/dist-packages (from joeynmt==0.0.1) (0.3.1)\n",
"Collecting sacrebleu>=1.3.6\n",
" Downloading https://files.pythonhosted.org/packages/0e/e5/93d252182f7cbd4b59bb3ec5797e2ce33cfd6f5aadaf327db170cf4b7887/sacrebleu-1.4.2-py3-none-any.whl\n",
"Collecting subword-nmt\n",
" Downloading https://files.pythonhosted.org/packages/74/60/6600a7bc09e7ab38bc53a48a20d8cae49b837f93f5842a41fe513a694912/subword_nmt-0.3.7-py2.py3-none-any.whl\n",
"Requirement already satisfied: matplotlib in /usr/local/lib/python3.6/dist-packages (from joeynmt==0.0.1) (3.1.1)\n",
"Requirement already satisfied: seaborn in /usr/local/lib/python3.6/dist-packages (from joeynmt==0.0.1) (0.9.0)\n",
"Collecting pyyaml>=5.1\n",
"\u001b[?25l Downloading https://files.pythonhosted.org/packages/e3/e8/b3212641ee2718d556df0f23f78de8303f068fe29cdaa7a91018849582fe/PyYAML-5.1.2.tar.gz (265kB)\n",
"\u001b[K |████████████████████████████████| 266kB 39.2MB/s \n",
"\u001b[?25hCollecting pylint\n",
"\u001b[?25l Downloading https://files.pythonhosted.org/packages/e9/59/43fc36c5ee316bb9aeb7cf5329cdbdca89e5749c34d5602753827c0aa2dc/pylint-2.4.4-py3-none-any.whl (302kB)\n",
"\u001b[K |████████████████████████████████| 307kB 52.2MB/s \n",
"\u001b[?25hRequirement already satisfied: six==1.12 in /usr/local/lib/python3.6/dist-packages (from joeynmt==0.0.1) (1.12.0)\n",
"Requirement already satisfied: olefile in /usr/local/lib/python3.6/dist-packages (from pillow->joeynmt==0.0.1) (0.46)\n",
"Requirement already satisfied: protobuf>=3.6.1 in /usr/local/lib/python3.6/dist-packages (from tensorflow>=1.14->joeynmt==0.0.1) (3.10.0)\n",
"Requirement already satisfied: termcolor>=1.1.0 in /usr/local/lib/python3.6/dist-packages (from tensorflow>=1.14->joeynmt==0.0.1) (1.1.0)\n",
"Requirement already satisfied: gast==0.2.2 in /usr/local/lib/python3.6/dist-packages (from tensorflow>=1.14->joeynmt==0.0.1) (0.2.2)\n",
"Requirement already satisfied: google-pasta>=0.1.6 in /usr/local/lib/python3.6/dist-packages (from tensorflow>=1.14->joeynmt==0.0.1) (0.1.8)\n",
"Requirement already satisfied: keras-applications>=1.0.8 in /usr/local/lib/python3.6/dist-packages (from tensorflow>=1.14->joeynmt==0.0.1) (1.0.8)\n",
"Requirement already satisfied: keras-preprocessing>=1.0.5 in /usr/local/lib/python3.6/dist-packages (from tensorflow>=1.14->joeynmt==0.0.1) (1.1.0)\n",
"Requirement already satisfied: astor>=0.6.0 in /usr/local/lib/python3.6/dist-packages (from tensorflow>=1.14->joeynmt==0.0.1) (0.8.0)\n",
"Requirement already satisfied: tensorflow-estimator==1.15.1 in /usr/local/lib/python3.6/dist-packages (from tensorflow>=1.14->joeynmt==0.0.1) (1.15.1)\n",
"Requirement already satisfied: absl-py>=0.7.0 in /usr/local/lib/python3.6/dist-packages (from tensorflow>=1.14->joeynmt==0.0.1) (0.8.1)\n",
"Requirement already satisfied: wrapt>=1.11.1 in /usr/local/lib/python3.6/dist-packages (from tensorflow>=1.14->joeynmt==0.0.1) (1.11.2)\n",
"Requirement already satisfied: wheel>=0.26 in /usr/local/lib/python3.6/dist-packages (from tensorflow>=1.14->joeynmt==0.0.1) (0.33.6)\n",
"Requirement already satisfied: grpcio>=1.8.6 in /usr/local/lib/python3.6/dist-packages (from tensorflow>=1.14->joeynmt==0.0.1) (1.15.0)\n",
"Requirement already satisfied: opt-einsum>=2.3.2 in /usr/local/lib/python3.6/dist-packages (from tensorflow>=1.14->joeynmt==0.0.1) (3.1.0)\n",
"Requirement already satisfied: tensorboard<1.16.0,>=1.15.0 in /usr/local/lib/python3.6/dist-packages (from tensorflow>=1.14->joeynmt==0.0.1) (1.15.0)\n",
"Requirement already satisfied: tqdm in /usr/local/lib/python3.6/dist-packages (from torchtext->joeynmt==0.0.1) (4.28.1)\n",
"Requirement already satisfied: requests in /usr/local/lib/python3.6/dist-packages (from torchtext->joeynmt==0.0.1) (2.21.0)\n",
"Requirement already satisfied: typing in /usr/local/lib/python3.6/dist-packages (from sacrebleu>=1.3.6->joeynmt==0.0.1) (3.6.6)\n",
"Collecting portalocker\n",
" Downloading https://files.pythonhosted.org/packages/91/db/7bc703c0760df726839e0699b7f78a4d8217fdc9c7fcb1b51b39c5a22a4e/portalocker-1.5.2-py2.py3-none-any.whl\n",
"Requirement already satisfied: kiwisolver>=1.0.1 in /usr/local/lib/python3.6/dist-packages (from matplotlib->joeynmt==0.0.1) (1.1.0)\n",
"Requirement already satisfied: cycler>=0.10 in /usr/local/lib/python3.6/dist-packages (from matplotlib->joeynmt==0.0.1) (0.10.0)\n",
"Requirement already satisfied: pyparsing!=2.0.4,!=2.1.2,!=2.1.6,>=2.0.1 in /usr/local/lib/python3.6/dist-packages (from matplotlib->joeynmt==0.0.1) (2.4.5)\n",
"Requirement already satisfied: python-dateutil>=2.1 in /usr/local/lib/python3.6/dist-packages (from matplotlib->joeynmt==0.0.1) (2.6.1)\n",
"Requirement already satisfied: pandas>=0.15.2 in /usr/local/lib/python3.6/dist-packages (from seaborn->joeynmt==0.0.1) (0.25.3)\n",
"Requirement already satisfied: scipy>=0.14.0 in /usr/local/lib/python3.6/dist-packages (from seaborn->joeynmt==0.0.1) (1.3.2)\n",
"Collecting isort<5,>=4.2.5\n",
"\u001b[?25l Downloading https://files.pythonhosted.org/packages/e5/b0/c121fd1fa3419ea9bfd55c7f9c4fedfec5143208d8c7ad3ce3db6c623c21/isort-4.3.21-py2.py3-none-any.whl (42kB)\n",
"\u001b[K |████████████████████████████████| 51kB 9.7MB/s \n",
"\u001b[?25hCollecting mccabe<0.7,>=0.6\n",
" Downloading https://files.pythonhosted.org/packages/87/89/479dc97e18549e21354893e4ee4ef36db1d237534982482c3681ee6e7b57/mccabe-0.6.1-py2.py3-none-any.whl\n",
"Collecting astroid<2.4,>=2.3.0\n",
"\u001b[?25l Downloading https://files.pythonhosted.org/packages/ad/ae/86734823047962e7b8c8529186a1ac4a7ca19aaf1aa0c7713c022ef593fd/astroid-2.3.3-py3-none-any.whl (205kB)\n",
"\u001b[K |████████████████████████████████| 215kB 47.0MB/s \n",
"\u001b[?25hRequirement already satisfied: h5py in /usr/local/lib/python3.6/dist-packages (from keras-applications>=1.0.8->tensorflow>=1.14->joeynmt==0.0.1) (2.8.0)\n",
"Requirement already satisfied: werkzeug>=0.11.15 in /usr/local/lib/python3.6/dist-packages (from tensorboard<1.16.0,>=1.15.0->tensorflow>=1.14->joeynmt==0.0.1) (0.16.0)\n",
"Requirement already satisfied: markdown>=2.6.8 in /usr/local/lib/python3.6/dist-packages (from tensorboard<1.16.0,>=1.15.0->tensorflow>=1.14->joeynmt==0.0.1) (3.1.1)\n",
"Requirement already satisfied: chardet<3.1.0,>=3.0.2 in /usr/local/lib/python3.6/dist-packages (from requests->torchtext->joeynmt==0.0.1) (3.0.4)\n",
"Requirement already satisfied: idna<2.9,>=2.5 in /usr/local/lib/python3.6/dist-packages (from requests->torchtext->joeynmt==0.0.1) (2.8)\n",
"Requirement already satisfied: urllib3<1.25,>=1.21.1 in /usr/local/lib/python3.6/dist-packages (from requests->torchtext->joeynmt==0.0.1) (1.24.3)\n",
"Requirement already satisfied: certifi>=2017.4.17 in /usr/local/lib/python3.6/dist-packages (from requests->torchtext->joeynmt==0.0.1) (2019.9.11)\n",
"Requirement already satisfied: pytz>=2017.2 in /usr/local/lib/python3.6/dist-packages (from pandas>=0.15.2->seaborn->joeynmt==0.0.1) (2018.9)\n",
"Collecting typed-ast<1.5,>=1.4.0; implementation_name == \"cpython\" and python_version < \"3.8\"\n",
"\u001b[?25l Downloading https://files.pythonhosted.org/packages/31/d3/9d1802c161626d0278bafb1ffb32f76b9d01e123881bbf9d91e8ccf28e18/typed_ast-1.4.0-cp36-cp36m-manylinux1_x86_64.whl (736kB)\n",
"\u001b[K |████████████████████████████████| 737kB 52.4MB/s \n",
"\u001b[?25hCollecting lazy-object-proxy==1.4.*\n",
"\u001b[?25l Downloading https://files.pythonhosted.org/packages/0b/dd/b1e3407e9e6913cf178e506cd0dee818e58694d9a5cd1984e3f6a8b9a10f/lazy_object_proxy-1.4.3-cp36-cp36m-manylinux1_x86_64.whl (55kB)\n",
"\u001b[K |████████████████████████████████| 61kB 9.4MB/s \n",
"\u001b[?25hBuilding wheels for collected packages: joeynmt, pyyaml\n",
" Building wheel for joeynmt (setup.py) ... \u001b[?25l\u001b[?25hdone\n",
" Created wheel for joeynmt: filename=joeynmt-0.0.1-cp36-none-any.whl size=72136 sha256=724dda0553f12fc3e25ad81a5090e464a3502c77c6529930463c0eba6d4f5066\n",
" Stored in directory: /tmp/pip-ephem-wheel-cache-ipbh1mlc/wheels/db/01/db/751cc9f3e7f6faec127c43644ba250a3ea7ad200594aeda70a\n",
" Building wheel for pyyaml (setup.py) ... \u001b[?25l\u001b[?25hdone\n",
" Created wheel for pyyaml: filename=PyYAML-5.1.2-cp36-cp36m-linux_x86_64.whl size=44104 sha256=1db864996a0509685026d3509c0b3476b62cdc0bd8ce97860fc2c6e1d06661f9\n",
" Stored in directory: /root/.cache/pip/wheels/d9/45/dd/65f0b38450c47cf7e5312883deb97d065e030c5cca0a365030\n",
"Successfully built joeynmt pyyaml\n",
"Installing collected packages: portalocker, sacrebleu, subword-nmt, pyyaml, isort, mccabe, typed-ast, lazy-object-proxy, astroid, pylint, joeynmt\n",
" Found existing installation: PyYAML 3.13\n",
" Uninstalling PyYAML-3.13:\n",
" Successfully uninstalled PyYAML-3.13\n",
"Successfully installed astroid-2.3.3 isort-4.3.21 joeynmt-0.0.1 lazy-object-proxy-1.4.3 mccabe-0.6.1 portalocker-1.5.2 pylint-2.4.4 pyyaml-5.1.2 sacrebleu-1.4.2 subword-nmt-0.3.7 typed-ast-1.4.0\n"
],
"name": "stdout"
}
]
},
{
"cell_type": "markdown",
"metadata": {
"colab_type": "text",
"id": "AaE77Tcppex9"
},
"source": [
"# Preprocessing the Data into Subword BPE Tokens\n",
"\n",
"- One of the most powerful improvements for agglutinative languages (a feature of most Bantu languages) is using BPE tokenization [ (Sennrich, 2015) ](https://arxiv.org/abs/1508.07909).\n",
"\n",
"- It was also shown that by optimizing the umber of BPE codes we significantly improve results for low-resourced languages [(Sennrich, 2019)](https://www.aclweb.org/anthology/P19-1021) [(Martinus, 2019)](https://arxiv.org/abs/1906.05685)\n",
"\n",
"- Below we have the scripts for doing BPE tokenization of our data. We use 4000 tokens as recommended by [(Sennrich, 2019)](https://www.aclweb.org/anthology/P19-1021). You do not need to change anything. Simply running the below will be suitable. "
]
},
{
"cell_type": "code",
"metadata": {
"colab_type": "code",
"id": "H-TyjtmXB1mL",
"outputId": "b9f3ebf3-3345-44e9-853c-9e0fc9aa8cec",
"colab": {
"base_uri": "https://localhost:8080/",
"height": 423
}
},
"source": [
"# One of the huge boosts in NMT performance was to use a different method of tokenizing. \n",
"# Usually, NMT would tokenize by words. However, using a method called BPE gave amazing boosts to performance\n",
"\n",
"# Do subword NMT\n",
"from os import path\n",
"os.environ[\"src\"] = source_language # Sets them in bash as well, since we often use bash scripts\n",
"os.environ[\"tgt\"] = target_language\n",
"\n",
"# Learn BPEs on the training data.\n",
"os.environ[\"data_path\"] = path.join(\"joeynmt\", \"data\", source_language + target_language) # Herman! \n",
"! subword-nmt learn-joint-bpe-and-vocab --input train.$src train.$tgt -s 4000 -o bpe.codes.4000 --write-vocabulary vocab.$src vocab.$tgt\n",
"\n",
"# Apply BPE splits to the development and test data.\n",
"! subword-nmt apply-bpe -c bpe.codes.4000 --vocabulary vocab.$src < train.$src > train.bpe.$src\n",
"! subword-nmt apply-bpe -c bpe.codes.4000 --vocabulary vocab.$tgt < train.$tgt > train.bpe.$tgt\n",
"\n",
"! subword-nmt apply-bpe -c bpe.codes.4000 --vocabulary vocab.$src < dev.$src > dev.bpe.$src\n",
"! subword-nmt apply-bpe -c bpe.codes.4000 --vocabulary vocab.$tgt < dev.$tgt > dev.bpe.$tgt\n",
"! subword-nmt apply-bpe -c bpe.codes.4000 --vocabulary vocab.$src < test.$src > test.bpe.$src\n",
"! subword-nmt apply-bpe -c bpe.codes.4000 --vocabulary vocab.$tgt < test.$tgt > test.bpe.$tgt\n",
"\n",
"# Create directory, move everyone we care about to the correct location\n",
"! mkdir -p $data_path\n",
"! cp train.* $data_path\n",
"! cp test.* $data_path\n",
"! cp dev.* $data_path\n",
"! cp bpe.codes.4000 $data_path\n",
"! ls $data_path\n",
"\n",
"# Also move everything we care about to a mounted location in google drive (relevant if running in colab) at gdrive_path\n",
"! cp train.* \"$gdrive_path\"\n",
"! cp test.* \"$gdrive_path\"\n",
"! cp dev.* \"$gdrive_path\"\n",
"! cp bpe.codes.4000 \"$gdrive_path\"\n",
"! ls \"$gdrive_path\"\n",
"\n",
"# Create that vocab using build_vocab\n",
"! sudo chmod 777 joeynmt/scripts/build_vocab.py\n",
"! joeynmt/scripts/build_vocab.py joeynmt/data/$src$tgt/train.bpe.$src joeynmt/data/$src$tgt/train.bpe.$tgt --output_path joeynmt/data/$src$tgt/vocab.txt\n",
"\n",
"# Some output\n",
"! echo \"BPE Afrikaans Sentences\"\n",
"! tail -n 5 test.bpe.$tgt\n",
"! echo \"Combined BPE Vocab\"\n",
"! tail -n 10 joeynmt/data/$src$tgt/vocab.txt # Herman"
],
"execution_count": 12,
"outputs": [
{
"output_type": "stream",
"text": [
"bpe.codes.4000\tdev.bpe.en test.bpe.af test.en-any.en train.bpe.en\n",
"dev.af\t\tdev.en\t test.bpe.en train.af\t train.en\n",
"dev.bpe.af\ttest.af test.en\t train.bpe.af\n",
"bpe.codes.4000\tdev.bpe.en test.bpe.af test.en-any.en train.bpe.en\n",
"dev.af\t\tdev.en\t test.bpe.en train.af\t train.en\n",
"dev.bpe.af\ttest.af test.en\t train.bpe.af\n",
"BPE Afrikaans Sentences\n",
"E@@ k mo@@ es h@@ om om@@ k@@ oop sodat hy sy o@@ ë s@@ ou sluit vir die maatskappy se on@@ eer@@ likheid .\n",
"Ge@@ vol@@ g@@ lik was ek beken@@ d as ’ n on@@ eer@@ like man . To@@ e ek in die waar@@ heid kom , het ek gew@@ ei@@ er om daar@@ me@@ e voor@@ t te gaan , al het ek ’ n go@@ eie sal@@ aris ver@@ dien .\n",
"E@@ k stel ’ n go@@ eie voorbe@@ eld vir my twee se@@ un@@ s , en ek het voor@@ regte in die gemeen@@ te ge@@ kry .\n",
"Bel@@ ast@@ ing@@ ou@@ di@@ te@@ urs en ander met wie ek besi@@ gheid doen , we@@ et n@@ ou dat ek ’ n eer@@ like man is . ”\n",
"R@@ ut het na I@@ s@@ ra@@ el ge@@ trek , waar sy die w@@ are G@@ o@@ d k@@ on aan@@ bi@@ d .\n",
"Combined BPE Vocab\n",
"Ö@@\n",
"«@@\n",
"(Servic@@\n",
"Ô@@\n",
"onomiese\n",
"GOVER@@\n",
" \n",
"softw@@\n",
"Ã@@\n",
"―@@\n"
],
"name": "stdout"
}
]
},
{
"cell_type": "code",
"metadata": {
"colab_type": "code",
"id": "IlMitUHR8Qy-",
"outputId": "6ab7079a-c488-4e18-a2ab-8f91792f0bc3",
"colab": {
"base_uri": "https://localhost:8080/",
"height": 67
}
},
"source": [
"# Also move everything we care about to a mounted location in google drive (relevant if running in colab) at gdrive_path\n",
"! cp train.* \"$gdrive_path\"\n",
"! cp test.* \"$gdrive_path\"\n",
"! cp dev.* \"$gdrive_path\"\n",
"! cp bpe.codes.4000 \"$gdrive_path\"\n",
"! ls \"$gdrive_path\""
],
"execution_count": 13,
"outputs": [
{
"output_type": "stream",
"text": [
"bpe.codes.4000\tdev.bpe.en test.bpe.af test.en-any.en train.bpe.en\n",
"dev.af\t\tdev.en\t test.bpe.en train.af\t train.en\n",
"dev.bpe.af\ttest.af test.en\t train.bpe.af\n"
],
"name": "stdout"
}
]
},
{
"cell_type": "markdown",
"metadata": {
"colab_type": "text",
"id": "Ixmzi60WsUZ8"
},
"source": [
"# Creating the JoeyNMT Config\n",
"\n",
"JoeyNMT requires a yaml config. We provide a template below. We've also set a number of defaults with it, that you may play with!\n",
"\n",
"- We used Transformer architecture \n",
"- We set our dropout to reasonably high: 0.3 (recommended in [(Sennrich, 2019)](https://www.aclweb.org/anthology/P19-1021))\n",
"\n",
"Things worth playing with:\n",
"- The batch size (also recommended to change for low-resourced languages)\n",
"- The number of epochs (we've set it at 30 just so it runs in about an hour, for testing purposes)\n",
"- The decoder options (beam_size, alpha)\n",
"- Evaluation metrics (BLEU versus Crhf4)"
]
},
{
"cell_type": "code",
"metadata": {
"colab_type": "code",
"id": "PIs1lY2hxMsl",
"colab": {}
},
"source": [
"# This creates the config file for our JoeyNMT system. It might seem overwhelming so we've provided a couple of useful parameters you'll need to update\n",
"# (You can of course play with all the parameters if you'd like!)\n",
"\n",
"name = '%s%s' % (source_language, target_language)\n",
"gdrive_path = os.environ[\"gdrive_path\"]\n",
"\n",
"# Create the config\n",
"config = \"\"\"\n",
"name: \"{name}_transformer\"\n",
"\n",
"data:\n",
" src: \"{source_language}\"\n",
" trg: \"{target_language}\"\n",
" train: \"data/{name}/train.bpe\"\n",
" dev: \"data/{name}/dev.bpe\"\n",
" test: \"data/{name}/test.bpe\"\n",
" level: \"bpe\"\n",
" lowercase: False\n",
" max_sent_length: 100\n",
" src_vocab: \"data/{name}/vocab.txt\"\n",
" trg_vocab: \"data/{name}/vocab.txt\"\n",
"\n",
"testing:\n",
" beam_size: 5\n",
" alpha: 1.0\n",
"\n",
"training:\n",
" #load_model: \"{gdrive_path}/models/{name}_transformer/1.ckpt\" # if uncommented, load a pre-trained model from this checkpoint\n",
" random_seed: 42\n",
" optimizer: \"adam\"\n",
" normalization: \"tokens\"\n",
" adam_betas: [0.9, 0.999] \n",
" scheduling: \"plateau\" # TODO: try switching from plateau to Noam scheduling\n",
" patience: 5 # For plateau: decrease learning rate by decrease_factor if validation score has not improved for this many validation rounds.\n",
" learning_rate_factor: 0.5 # factor for Noam scheduler (used with Transformer)\n",
" learning_rate_warmup: 1000 # warmup steps for Noam scheduler (used with Transformer)\n",
" decrease_factor: 0.7\n",
" loss: \"crossentropy\"\n",
" learning_rate: 0.0003\n",
" learning_rate_min: 0.00000001\n",
" weight_decay: 0.0\n",
" label_smoothing: 0.1\n",
" batch_size: 4096\n",
" batch_type: \"token\"\n",
" eval_batch_size: 3600\n",
" eval_batch_type: \"token\"\n",
" batch_multiplier: 1\n",
" early_stopping_metric: \"ppl\"\n",
" epochs: 100 # TODO: Decrease for when playing around and checking of working. Around 30 is sufficient to check if its working at all\n",
" validation_freq: 2000 # TODO: Set to at least once per epoch.\n",
" logging_freq: 100\n",
" eval_metric: \"bleu\"\n",
" model_dir: \"models/{name}_transformer\"\n",
" overwrite: False # TODO: Set to True if you want to overwrite possibly existing models. \n",
" shuffle: True\n",
" use_cuda: True\n",
" max_output_length: 100\n",
" print_valid_sents: [0, 1, 2, 3]\n",
" keep_last_ckpts: 3\n",
"\n",
"model:\n",
" initializer: \"xavier\"\n",
" bias_initializer: \"zeros\"\n",
" init_gain: 1.0\n",
" embed_initializer: \"xavier\"\n",
" embed_init_gain: 1.0\n",
" tied_embeddings: True\n",
" tied_softmax: True\n",
" encoder:\n",
" type: \"transformer\"\n",
" num_layers: 6\n",
" num_heads: 4 # TODO: Increase to 8 for larger data.\n",
" embeddings:\n",
" embedding_dim: 256 # TODO: Increase to 512 for larger data.\n",
" scale: True\n",
" dropout: 0.2\n",
" # typically ff_size = 4 x hidden_size\n",
" hidden_size: 256 # TODO: Increase to 512 for larger data.\n",
" ff_size: 1024 # TODO: Increase to 2048 for larger data.\n",
" dropout: 0.3\n",
" decoder:\n",
" type: \"transformer\"\n",
" num_layers: 6\n",
" num_heads: 4 # TODO: Increase to 8 for larger data.\n",
" embeddings:\n",
" embedding_dim: 256 # TODO: Increase to 512 for larger data.\n",
" scale: True\n",
" dropout: 0.2\n",
" # typically ff_size = 4 x hidden_size\n",
" hidden_size: 256 # TODO: Increase to 512 for larger data.\n",
" ff_size: 1024 # TODO: Increase to 2048 for larger data.\n",
" dropout: 0.3\n",
"\"\"\".format(name=name, gdrive_path=os.environ[\"gdrive_path\"], source_language=source_language, target_language=target_language)\n",
"with open(\"joeynmt/configs/transformer_{name}.yaml\".format(name=name),'w') as f:\n",
" f.write(config)"
],
"execution_count": 0,
"outputs": []
},
{
"cell_type": "markdown",
"metadata": {
"colab_type": "text",
"id": "pIifxE3Qzuvs"
},
"source": [
"# Train the Model\n",
"\n",
"This single line of joeynmt runs the training using the config we made above"
]
},
{
"cell_type": "code",
"metadata": {
"colab_type": "code",
"id": "6ZBPFwT94WpI",
"outputId": "dfc0c383-dc2b-4389-c33d-36863014b6ae",
"colab": {
"base_uri": "https://localhost:8080/",
"height": 1000
}
},
"source": [
"# Train the model\n",
"# You can press Ctrl-C to stop. And then run the next cell to save your checkpoints! \n",
"!cd joeynmt; python3 -m joeynmt train configs/transformer_$src$tgt.yaml"
],
"execution_count": 15,
"outputs": [
{
"output_type": "stream",
"text": [
"2019-11-26 11:31:47,451 Hello! This is Joey-NMT.\n",
"2019-11-26 11:31:49,152 Total params: 12138240\n",
"2019-11-26 11:31:49,154 Trainable parameters: ['decoder.layer_norm.bias', 'decoder.layer_norm.weight', 'decoder.layers.0.dec_layer_norm.bias', 'decoder.layers.0.dec_layer_norm.weight', 'decoder.layers.0.feed_forward.layer_norm.bias', 'decoder.layers.0.feed_forward.layer_norm.weight', 'decoder.layers.0.feed_forward.pwff_layer.0.bias', 'decoder.layers.0.feed_forward.pwff_layer.0.weight', 'decoder.layers.0.feed_forward.pwff_layer.3.bias', 'decoder.layers.0.feed_forward.pwff_layer.3.weight', 'decoder.layers.0.src_trg_att.k_layer.bias', 'decoder.layers.0.src_trg_att.k_layer.weight', 'decoder.layers.0.src_trg_att.output_layer.bias', 'decoder.layers.0.src_trg_att.output_layer.weight', 'decoder.layers.0.src_trg_att.q_layer.bias', 'decoder.layers.0.src_trg_att.q_layer.weight', 'decoder.layers.0.src_trg_att.v_layer.bias', 'decoder.layers.0.src_trg_att.v_layer.weight', 'decoder.layers.0.trg_trg_att.k_layer.bias', 'decoder.layers.0.trg_trg_att.k_layer.weight', 'decoder.layers.0.trg_trg_att.output_layer.bias', 'decoder.layers.0.trg_trg_att.output_layer.weight', 'decoder.layers.0.trg_trg_att.q_layer.bias', 'decoder.layers.0.trg_trg_att.q_layer.weight', 'decoder.layers.0.trg_trg_att.v_layer.bias', 'decoder.layers.0.trg_trg_att.v_layer.weight', 'decoder.layers.0.x_layer_norm.bias', 'decoder.layers.0.x_layer_norm.weight', 'decoder.layers.1.dec_layer_norm.bias', 'decoder.layers.1.dec_layer_norm.weight', 'decoder.layers.1.feed_forward.layer_norm.bias', 'decoder.layers.1.feed_forward.layer_norm.weight', 'decoder.layers.1.feed_forward.pwff_layer.0.bias', 'decoder.layers.1.feed_forward.pwff_layer.0.weight', 'decoder.layers.1.feed_forward.pwff_layer.3.bias', 'decoder.layers.1.feed_forward.pwff_layer.3.weight', 'decoder.layers.1.src_trg_att.k_layer.bias', 'decoder.layers.1.src_trg_att.k_layer.weight', 'decoder.layers.1.src_trg_att.output_layer.bias', 'decoder.layers.1.src_trg_att.output_layer.weight', 'decoder.layers.1.src_trg_att.q_layer.bias', 'decoder.layers.1.src_trg_att.q_layer.weight', 'decoder.layers.1.src_trg_att.v_layer.bias', 'decoder.layers.1.src_trg_att.v_layer.weight', 'decoder.layers.1.trg_trg_att.k_layer.bias', 'decoder.layers.1.trg_trg_att.k_layer.weight', 'decoder.layers.1.trg_trg_att.output_layer.bias', 'decoder.layers.1.trg_trg_att.output_layer.weight', 'decoder.layers.1.trg_trg_att.q_layer.bias', 'decoder.layers.1.trg_trg_att.q_layer.weight', 'decoder.layers.1.trg_trg_att.v_layer.bias', 'decoder.layers.1.trg_trg_att.v_layer.weight', 'decoder.layers.1.x_layer_norm.bias', 'decoder.layers.1.x_layer_norm.weight', 'decoder.layers.2.dec_layer_norm.bias', 'decoder.layers.2.dec_layer_norm.weight', 'decoder.layers.2.feed_forward.layer_norm.bias', 'decoder.layers.2.feed_forward.layer_norm.weight', 'decoder.layers.2.feed_forward.pwff_layer.0.bias', 'decoder.layers.2.feed_forward.pwff_layer.0.weight', 'decoder.layers.2.feed_forward.pwff_layer.3.bias', 'decoder.layers.2.feed_forward.pwff_layer.3.weight', 'decoder.layers.2.src_trg_att.k_layer.bias', 'decoder.layers.2.src_trg_att.k_layer.weight', 'decoder.layers.2.src_trg_att.output_layer.bias', 'decoder.layers.2.src_trg_att.output_layer.weight', 'decoder.layers.2.src_trg_att.q_layer.bias', 'decoder.layers.2.src_trg_att.q_layer.weight', 'decoder.layers.2.src_trg_att.v_layer.bias', 'decoder.layers.2.src_trg_att.v_layer.weight', 'decoder.layers.2.trg_trg_att.k_layer.bias', 'decoder.layers.2.trg_trg_att.k_layer.weight', 'decoder.layers.2.trg_trg_att.output_layer.bias', 'decoder.layers.2.trg_trg_att.output_layer.weight', 'decoder.layers.2.trg_trg_att.q_layer.bias', 'decoder.layers.2.trg_trg_att.q_layer.weight', 'decoder.layers.2.trg_trg_att.v_layer.bias', 'decoder.layers.2.trg_trg_att.v_layer.weight', 'decoder.layers.2.x_layer_norm.bias', 'decoder.layers.2.x_layer_norm.weight', 'decoder.layers.3.dec_layer_norm.bias', 'decoder.layers.3.dec_layer_norm.weight', 'decoder.layers.3.feed_forward.layer_norm.bias', 'decoder.layers.3.feed_forward.layer_norm.weight', 'decoder.layers.3.feed_forward.pwff_layer.0.bias', 'decoder.layers.3.feed_forward.pwff_layer.0.weight', 'decoder.layers.3.feed_forward.pwff_layer.3.bias', 'decoder.layers.3.feed_forward.pwff_layer.3.weight', 'decoder.layers.3.src_trg_att.k_layer.bias', 'decoder.layers.3.src_trg_att.k_layer.weight', 'decoder.layers.3.src_trg_att.output_layer.bias', 'decoder.layers.3.src_trg_att.output_layer.weight', 'decoder.layers.3.src_trg_att.q_layer.bias', 'decoder.layers.3.src_trg_att.q_layer.weight', 'decoder.layers.3.src_trg_att.v_layer.bias', 'decoder.layers.3.src_trg_att.v_layer.weight', 'decoder.layers.3.trg_trg_att.k_layer.bias', 'decoder.layers.3.trg_trg_att.k_layer.weight', 'decoder.layers.3.trg_trg_att.output_layer.bias', 'decoder.layers.3.trg_trg_att.output_layer.weight', 'decoder.layers.3.trg_trg_att.q_layer.bias', 'decoder.layers.3.trg_trg_att.q_layer.weight', 'decoder.layers.3.trg_trg_att.v_layer.bias', 'decoder.layers.3.trg_trg_att.v_layer.weight', 'decoder.layers.3.x_layer_norm.bias', 'decoder.layers.3.x_layer_norm.weight', 'decoder.layers.4.dec_layer_norm.bias', 'decoder.layers.4.dec_layer_norm.weight', 'decoder.layers.4.feed_forward.layer_norm.bias', 'decoder.layers.4.feed_forward.layer_norm.weight', 'decoder.layers.4.feed_forward.pwff_layer.0.bias', 'decoder.layers.4.feed_forward.pwff_layer.0.weight', 'decoder.layers.4.feed_forward.pwff_layer.3.bias', 'decoder.layers.4.feed_forward.pwff_layer.3.weight', 'decoder.layers.4.src_trg_att.k_layer.bias', 'decoder.layers.4.src_trg_att.k_layer.weight', 'decoder.layers.4.src_trg_att.output_layer.bias', 'decoder.layers.4.src_trg_att.output_layer.weight', 'decoder.layers.4.src_trg_att.q_layer.bias', 'decoder.layers.4.src_trg_att.q_layer.weight', 'decoder.layers.4.src_trg_att.v_layer.bias', 'decoder.layers.4.src_trg_att.v_layer.weight', 'decoder.layers.4.trg_trg_att.k_layer.bias', 'decoder.layers.4.trg_trg_att.k_layer.weight', 'decoder.layers.4.trg_trg_att.output_layer.bias', 'decoder.layers.4.trg_trg_att.output_layer.weight', 'decoder.layers.4.trg_trg_att.q_layer.bias', 'decoder.layers.4.trg_trg_att.q_layer.weight', 'decoder.layers.4.trg_trg_att.v_layer.bias', 'decoder.layers.4.trg_trg_att.v_layer.weight', 'decoder.layers.4.x_layer_norm.bias', 'decoder.layers.4.x_layer_norm.weight', 'decoder.layers.5.dec_layer_norm.bias', 'decoder.layers.5.dec_layer_norm.weight', 'decoder.layers.5.feed_forward.layer_norm.bias', 'decoder.layers.5.feed_forward.layer_norm.weight', 'decoder.layers.5.feed_forward.pwff_layer.0.bias', 'decoder.layers.5.feed_forward.pwff_layer.0.weight', 'decoder.layers.5.feed_forward.pwff_layer.3.bias', 'decoder.layers.5.feed_forward.pwff_layer.3.weight', 'decoder.layers.5.src_trg_att.k_layer.bias', 'decoder.layers.5.src_trg_att.k_layer.weight', 'decoder.layers.5.src_trg_att.output_layer.bias', 'decoder.layers.5.src_trg_att.output_layer.weight', 'decoder.layers.5.src_trg_att.q_layer.bias', 'decoder.layers.5.src_trg_att.q_layer.weight', 'decoder.layers.5.src_trg_att.v_layer.bias', 'decoder.layers.5.src_trg_att.v_layer.weight', 'decoder.layers.5.trg_trg_att.k_layer.bias', 'decoder.layers.5.trg_trg_att.k_layer.weight', 'decoder.layers.5.trg_trg_att.output_layer.bias', 'decoder.layers.5.trg_trg_att.output_layer.weight', 'decoder.layers.5.trg_trg_att.q_layer.bias', 'decoder.layers.5.trg_trg_att.q_layer.weight', 'decoder.layers.5.trg_trg_att.v_layer.bias', 'decoder.layers.5.trg_trg_att.v_layer.weight', 'decoder.layers.5.x_layer_norm.bias', 'decoder.layers.5.x_layer_norm.weight', 'encoder.layer_norm.bias', 'encoder.layer_norm.weight', 'encoder.layers.0.feed_forward.layer_norm.bias', 'encoder.layers.0.feed_forward.layer_norm.weight', 'encoder.layers.0.feed_forward.pwff_layer.0.bias', 'encoder.layers.0.feed_forward.pwff_layer.0.weight', 'encoder.layers.0.feed_forward.pwff_layer.3.bias', 'encoder.layers.0.feed_forward.pwff_layer.3.weight', 'encoder.layers.0.layer_norm.bias', 'encoder.layers.0.layer_norm.weight', 'encoder.layers.0.src_src_att.k_layer.bias', 'encoder.layers.0.src_src_att.k_layer.weight', 'encoder.layers.0.src_src_att.output_layer.bias', 'encoder.layers.0.src_src_att.output_layer.weight', 'encoder.layers.0.src_src_att.q_layer.bias', 'encoder.layers.0.src_src_att.q_layer.weight', 'encoder.layers.0.src_src_att.v_layer.bias', 'encoder.layers.0.src_src_att.v_layer.weight', 'encoder.layers.1.feed_forward.layer_norm.bias', 'encoder.layers.1.feed_forward.layer_norm.weight', 'encoder.layers.1.feed_forward.pwff_layer.0.bias', 'encoder.layers.1.feed_forward.pwff_layer.0.weight', 'encoder.layers.1.feed_forward.pwff_layer.3.bias', 'encoder.layers.1.feed_forward.pwff_layer.3.weight', 'encoder.layers.1.layer_norm.bias', 'encoder.layers.1.layer_norm.weight', 'encoder.layers.1.src_src_att.k_layer.bias', 'encoder.layers.1.src_src_att.k_layer.weight', 'encoder.layers.1.src_src_att.output_layer.bias', 'encoder.layers.1.src_src_att.output_layer.weight', 'encoder.layers.1.src_src_att.q_layer.bias', 'encoder.layers.1.src_src_att.q_layer.weight', 'encoder.layers.1.src_src_att.v_layer.bias', 'encoder.layers.1.src_src_att.v_layer.weight', 'encoder.layers.2.feed_forward.layer_norm.bias', 'encoder.layers.2.feed_forward.layer_norm.weight', 'encoder.layers.2.feed_forward.pwff_layer.0.bias', 'encoder.layers.2.feed_forward.pwff_layer.0.weight', 'encoder.layers.2.feed_forward.pwff_layer.3.bias', 'encoder.layers.2.feed_forward.pwff_layer.3.weight', 'encoder.layers.2.layer_norm.bias', 'encoder.layers.2.layer_norm.weight', 'encoder.layers.2.src_src_att.k_layer.bias', 'encoder.layers.2.src_src_att.k_layer.weight', 'encoder.layers.2.src_src_att.output_layer.bias', 'encoder.layers.2.src_src_att.output_layer.weight', 'encoder.layers.2.src_src_att.q_layer.bias', 'encoder.layers.2.src_src_att.q_layer.weight', 'encoder.layers.2.src_src_att.v_layer.bias', 'encoder.layers.2.src_src_att.v_layer.weight', 'encoder.layers.3.feed_forward.layer_norm.bias', 'encoder.layers.3.feed_forward.layer_norm.weight', 'encoder.layers.3.feed_forward.pwff_layer.0.bias', 'encoder.layers.3.feed_forward.pwff_layer.0.weight', 'encoder.layers.3.feed_forward.pwff_layer.3.bias', 'encoder.layers.3.feed_forward.pwff_layer.3.weight', 'encoder.layers.3.layer_norm.bias', 'encoder.layers.3.layer_norm.weight', 'encoder.layers.3.src_src_att.k_layer.bias', 'encoder.layers.3.src_src_att.k_layer.weight', 'encoder.layers.3.src_src_att.output_layer.bias', 'encoder.layers.3.src_src_att.output_layer.weight', 'encoder.layers.3.src_src_att.q_layer.bias', 'encoder.layers.3.src_src_att.q_layer.weight', 'encoder.layers.3.src_src_att.v_layer.bias', 'encoder.layers.3.src_src_att.v_layer.weight', 'encoder.layers.4.feed_forward.layer_norm.bias', 'encoder.layers.4.feed_forward.layer_norm.weight', 'encoder.layers.4.feed_forward.pwff_layer.0.bias', 'encoder.layers.4.feed_forward.pwff_layer.0.weight', 'encoder.layers.4.feed_forward.pwff_layer.3.bias', 'encoder.layers.4.feed_forward.pwff_layer.3.weight', 'encoder.layers.4.layer_norm.bias', 'encoder.layers.4.layer_norm.weight', 'encoder.layers.4.src_src_att.k_layer.bias', 'encoder.layers.4.src_src_att.k_layer.weight', 'encoder.layers.4.src_src_att.output_layer.bias', 'encoder.layers.4.src_src_att.output_layer.weight', 'encoder.layers.4.src_src_att.q_layer.bias', 'encoder.layers.4.src_src_att.q_layer.weight', 'encoder.layers.4.src_src_att.v_layer.bias', 'encoder.layers.4.src_src_att.v_layer.weight', 'encoder.layers.5.feed_forward.layer_norm.bias', 'encoder.layers.5.feed_forward.layer_norm.weight', 'encoder.layers.5.feed_forward.pwff_layer.0.bias', 'encoder.layers.5.feed_forward.pwff_layer.0.weight', 'encoder.layers.5.feed_forward.pwff_layer.3.bias', 'encoder.layers.5.feed_forward.pwff_layer.3.weight', 'encoder.layers.5.layer_norm.bias', 'encoder.layers.5.layer_norm.weight', 'encoder.layers.5.src_src_att.k_layer.bias', 'encoder.layers.5.src_src_att.k_layer.weight', 'encoder.layers.5.src_src_att.output_layer.bias', 'encoder.layers.5.src_src_att.output_layer.weight', 'encoder.layers.5.src_src_att.q_layer.bias', 'encoder.layers.5.src_src_att.q_layer.weight', 'encoder.layers.5.src_src_att.v_layer.bias', 'encoder.layers.5.src_src_att.v_layer.weight', 'src_embed.lut.weight']\n",
"2019-11-26 11:31:56,433 cfg.name : enaf_transformer\n",
"2019-11-26 11:31:56,433 cfg.data.src : en\n",
"2019-11-26 11:31:56,434 cfg.data.trg : af\n",
"2019-11-26 11:31:56,434 cfg.data.train : data/enaf/train.bpe\n",
"2019-11-26 11:31:56,434 cfg.data.dev : data/enaf/dev.bpe\n",
"2019-11-26 11:31:56,434 cfg.data.test : data/enaf/test.bpe\n",
"2019-11-26 11:31:56,434 cfg.data.level : bpe\n",
"2019-11-26 11:31:56,434 cfg.data.lowercase : False\n",
"2019-11-26 11:31:56,434 cfg.data.max_sent_length : 100\n",
"2019-11-26 11:31:56,434 cfg.data.src_vocab : data/enaf/vocab.txt\n",
"2019-11-26 11:31:56,434 cfg.data.trg_vocab : data/enaf/vocab.txt\n",
"2019-11-26 11:31:56,434 cfg.testing.beam_size : 5\n",
"2019-11-26 11:31:56,434 cfg.testing.alpha : 1.0\n",
"2019-11-26 11:31:56,434 cfg.training.random_seed : 42\n",
"2019-11-26 11:31:56,434 cfg.training.optimizer : adam\n",
"2019-11-26 11:31:56,434 cfg.training.normalization : tokens\n",
"2019-11-26 11:31:56,434 cfg.training.adam_betas : [0.9, 0.999]\n",
"2019-11-26 11:31:56,434 cfg.training.scheduling : plateau\n",
"2019-11-26 11:31:56,434 cfg.training.patience : 5\n",
"2019-11-26 11:31:56,434 cfg.training.learning_rate_factor : 0.5\n",
"2019-11-26 11:31:56,434 cfg.training.learning_rate_warmup : 1000\n",
"2019-11-26 11:31:56,434 cfg.training.decrease_factor : 0.7\n",
"2019-11-26 11:31:56,434 cfg.training.loss : crossentropy\n",
"2019-11-26 11:31:56,434 cfg.training.learning_rate : 0.0003\n",
"2019-11-26 11:31:56,434 cfg.training.learning_rate_min : 1e-08\n",
"2019-11-26 11:31:56,434 cfg.training.weight_decay : 0.0\n",
"2019-11-26 11:31:56,434 cfg.training.label_smoothing : 0.1\n",
"2019-11-26 11:31:56,435 cfg.training.batch_size : 4096\n",
"2019-11-26 11:31:56,435 cfg.training.batch_type : token\n",
"2019-11-26 11:31:56,435 cfg.training.eval_batch_size : 3600\n",
"2019-11-26 11:31:56,435 cfg.training.eval_batch_type : token\n",
"2019-11-26 11:31:56,435 cfg.training.batch_multiplier : 1\n",
"2019-11-26 11:31:56,435 cfg.training.early_stopping_metric : ppl\n",
"2019-11-26 11:31:56,435 cfg.training.epochs : 100\n",
"2019-11-26 11:31:56,435 cfg.training.validation_freq : 2000\n",
"2019-11-26 11:31:56,435 cfg.training.logging_freq : 100\n",
"2019-11-26 11:31:56,435 cfg.training.eval_metric : bleu\n",
"2019-11-26 11:31:56,435 cfg.training.model_dir : models/enaf_transformer\n",
"2019-11-26 11:31:56,435 cfg.training.overwrite : False\n",
"2019-11-26 11:31:56,435 cfg.training.shuffle : True\n",
"2019-11-26 11:31:56,435 cfg.training.use_cuda : True\n",
"2019-11-26 11:31:56,435 cfg.training.max_output_length : 100\n",
"2019-11-26 11:31:56,435 cfg.training.print_valid_sents : [0, 1, 2, 3]\n",
"2019-11-26 11:31:56,435 cfg.training.keep_last_ckpts : 3\n",
"2019-11-26 11:31:56,435 cfg.model.initializer : xavier\n",
"2019-11-26 11:31:56,435 cfg.model.bias_initializer : zeros\n",
"2019-11-26 11:31:56,435 cfg.model.init_gain : 1.0\n",
"2019-11-26 11:31:56,435 cfg.model.embed_initializer : xavier\n",
"2019-11-26 11:31:56,435 cfg.model.embed_init_gain : 1.0\n",
"2019-11-26 11:31:56,435 cfg.model.tied_embeddings : True\n",
"2019-11-26 11:31:56,435 cfg.model.tied_softmax : True\n",
"2019-11-26 11:31:56,435 cfg.model.encoder.type : transformer\n",
"2019-11-26 11:31:56,435 cfg.model.encoder.num_layers : 6\n",
"2019-11-26 11:31:56,435 cfg.model.encoder.num_heads : 4\n",
"2019-11-26 11:31:56,436 cfg.model.encoder.embeddings.embedding_dim : 256\n",
"2019-11-26 11:31:56,436 cfg.model.encoder.embeddings.scale : True\n",
"2019-11-26 11:31:56,436 cfg.model.encoder.embeddings.dropout : 0.2\n",
"2019-11-26 11:31:56,436 cfg.model.encoder.hidden_size : 256\n",
"2019-11-26 11:31:56,436 cfg.model.encoder.ff_size : 1024\n",
"2019-11-26 11:31:56,436 cfg.model.encoder.dropout : 0.3\n",
"2019-11-26 11:31:56,436 cfg.model.decoder.type : transformer\n",
"2019-11-26 11:31:56,436 cfg.model.decoder.num_layers : 6\n",
"2019-11-26 11:31:56,436 cfg.model.decoder.num_heads : 4\n",
"2019-11-26 11:31:56,436 cfg.model.decoder.embeddings.embedding_dim : 256\n",
"2019-11-26 11:31:56,436 cfg.model.decoder.embeddings.scale : True\n",
"2019-11-26 11:31:56,436 cfg.model.decoder.embeddings.dropout : 0.2\n",
"2019-11-26 11:31:56,436 cfg.model.decoder.hidden_size : 256\n",
"2019-11-26 11:31:56,436 cfg.model.decoder.ff_size : 1024\n",
"2019-11-26 11:31:56,436 cfg.model.decoder.dropout : 0.3\n",
"2019-11-26 11:31:56,436 Data set sizes: \n",
"\ttrain 46442,\n",
"\tvalid 1000,\n",
"\ttest 2682\n",
"2019-11-26 11:31:56,436 First training example:\n",
"\t[SRC] persons con@@ vic@@ ted of an off@@ ence under this by@@ law which ca@@ used da@@ ma@@ ge to or lo@@ ss of property and / or which has had an ad@@ ver@@ se imp@@ act on the environ@@ ment then , in addi@@ tion to any other s@@ ent@@ ence im@@ posed , the court may :\n",
"\t[TRG] as persone aan ' n oortre@@ ding ingevolge dié ver@@ or@@ den@@ ing sk@@ ul@@ dig be@@ vind word , wel@@ ke oortre@@ ding ska@@ de aan of ver@@ lies van eiendom veroor@@ saak het en / of ' n n@@ ad@@ el@@ ige uit@@ werking op die omgewing ge@@ had het , kan die hof dan , bene@@ w@@ ens enige ander v@@ on@@ n@@ is wat op@@ gelê is , die volgende doen :\n",
"2019-11-26 11:31:56,436 First 10 words (src): (0) <unk> (1) <pad> (2) <s> (3) </s> (4) > (5) die (6) the (7) of (8) , (9) van\n",
"2019-11-26 11:31:56,437 First 10 words (trg): (0) <unk> (1) <pad> (2) <s> (3) </s> (4) > (5) die (6) the (7) of (8) , (9) van\n",
"2019-11-26 11:31:56,437 Number of Src words (types): 4211\n",
"2019-11-26 11:31:56,438 Number of Trg words (types): 4211\n",
"2019-11-26 11:31:56,438 Model(\n",
"\tencoder=TransformerEncoder(num_layers=6, num_heads=4),\n",
"\tdecoder=TransformerDecoder(num_layers=6, num_heads=4),\n",
"\tsrc_embed=Embeddings(embedding_dim=256, vocab_size=4211),\n",
"\ttrg_embed=Embeddings(embedding_dim=256, vocab_size=4211))\n",
"2019-11-26 11:31:56,442 EPOCH 1\n",
"2019-11-26 11:32:11,765 Epoch 1 Step: 100 Batch Loss: 5.608022 Tokens per Sec: 15825, Lr: 0.000300\n",
"2019-11-26 11:32:27,294 Epoch 1 Step: 200 Batch Loss: 5.463318 Tokens per Sec: 16006, Lr: 0.000300\n",
"2019-11-26 11:32:42,783 Epoch 1 Step: 300 Batch Loss: 5.370947 Tokens per Sec: 15892, Lr: 0.000300\n",
"2019-11-26 11:32:58,332 Epoch 1 Step: 400 Batch Loss: 4.917095 Tokens per Sec: 15679, Lr: 0.000300\n",
"2019-11-26 11:33:04,100 Epoch 1: total training loss 2422.10\n",
"2019-11-26 11:33:04,101 EPOCH 2\n",
"2019-11-26 11:33:14,286 Epoch 2 Step: 500 Batch Loss: 4.905149 Tokens per Sec: 15494, Lr: 0.000300\n",
"2019-11-26 11:33:30,507 Epoch 2 Step: 600 Batch Loss: 4.610600 Tokens per Sec: 15285, Lr: 0.000300\n",
"2019-11-26 11:33:46,814 Epoch 2 Step: 700 Batch Loss: 4.996385 Tokens per Sec: 15002, Lr: 0.000300\n",
"2019-11-26 11:34:03,302 Epoch 2 Step: 800 Batch Loss: 4.187446 Tokens per Sec: 14752, Lr: 0.000300\n",
"2019-11-26 11:34:14,964 Epoch 2: total training loss 2021.33\n",
"2019-11-26 11:34:14,965 EPOCH 3\n",
"2019-11-26 11:34:19,537 Epoch 3 Step: 900 Batch Loss: 3.939539 Tokens per Sec: 14351, Lr: 0.000300\n",
"2019-11-26 11:34:35,657 Epoch 3 Step: 1000 Batch Loss: 3.818528 Tokens per Sec: 15270, Lr: 0.000300\n",
"2019-11-26 11:34:51,732 Epoch 3 Step: 1100 Batch Loss: 3.625695 Tokens per Sec: 15168, Lr: 0.000300\n",
"2019-11-26 11:35:07,852 Epoch 3 Step: 1200 Batch Loss: 3.946392 Tokens per Sec: 14928, Lr: 0.000300\n",
"2019-11-26 11:35:24,259 Epoch 3 Step: 1300 Batch Loss: 3.731726 Tokens per Sec: 15277, Lr: 0.000300\n",
"2019-11-26 11:35:25,934 Epoch 3: total training loss 1791.17\n",
"2019-11-26 11:35:25,934 EPOCH 4\n",
"2019-11-26 11:35:40,879 Epoch 4 Step: 1400 Batch Loss: 3.751532 Tokens per Sec: 15160, Lr: 0.000300\n",
"2019-11-26 11:35:57,097 Epoch 4 Step: 1500 Batch Loss: 3.689330 Tokens per Sec: 15015, Lr: 0.000300\n",
"2019-11-26 11:36:13,120 Epoch 4 Step: 1600 Batch Loss: 3.929770 Tokens per Sec: 14982, Lr: 0.000300\n",
"2019-11-26 11:36:29,465 Epoch 4 Step: 1700 Batch Loss: 3.113327 Tokens per Sec: 15081, Lr: 0.000300\n",
"2019-11-26 11:36:36,897 Epoch 4: total training loss 1576.17\n",
"2019-11-26 11:36:36,898 EPOCH 5\n",
"2019-11-26 11:36:45,780 Epoch 5 Step: 1800 Batch Loss: 3.865883 Tokens per Sec: 14533, Lr: 0.000300\n",
"2019-11-26 11:37:02,071 Epoch 5 Step: 1900 Batch Loss: 4.273342 Tokens per Sec: 15221, Lr: 0.000300\n",
"2019-11-26 11:37:18,372 Epoch 5 Step: 2000 Batch Loss: 3.196836 Tokens per Sec: 15284, Lr: 0.000300\n",
"2019-11-26 11:38:07,776 Hooray! New best validation result [ppl]!\n",
"2019-11-26 11:38:07,776 Saving new checkpoint.\n",
"2019-11-26 11:38:08,090 Example #0\n",
"2019-11-26 11:38:08,090 \tSource: GEORGE LOCAL MUNICIPALITY: CONTACT\n",
"2019-11-26 11:38:08,090 \tReference: GEORGE PLAASLIKE MUNISIPALITEIT: KONTAK\n",
"2019-11-26 11:38:08,090 \tHypothesis: GEWINGMUNISIPALITEIT: KONTAK\n",
"2019-11-26 11:38:08,091 Example #1\n",
"2019-11-26 11:38:08,091 \tSource: The Drostdy\n",
"2019-11-26 11:38:08,091 \tReference: Die Drostdy\n",
"2019-11-26 11:38:08,091 \tHypothesis: Die Drotale\n",
"2019-11-26 11:38:08,091 Example #2\n",
"2019-11-26 11:38:08,091 \tSource: the object of the second category of committees is to utilise the expertise of persons outside the commission and to ensure direct community involvement in the activities of the commission .\n",
"2019-11-26 11:38:08,091 \tReference: die doel van die tweede kategorie van komitees is om ook die kundigheid van persone buite die kommissie vir die kommissie se werksaamhede te benut en om direkte gemeenskapsbetrokkenheid te verseker .\n",
"2019-11-26 11:38:08,092 \tHypothesis: die raad van die verrigtinge van die verrigting van die verrigtinge van die verwante stel om die staatsdiensdiensneming van die ontwikkeling van die provinsie te verseker dat die provinsie en die ontwikkeling van die provinsie .\n",
"2019-11-26 11:38:08,092 Example #3\n",
"2019-11-26 11:38:08,092 \tSource: * private acts by individuals\n",
"2019-11-26 11:38:08,092 \tReference: * indiwidue se private optrede\n",
"2019-11-26 11:38:08,092 \tHypothesis: * openbare liggaam deur die uitbreiding\n",
"2019-11-26 11:38:08,092 Validation result (greedy) at epoch 5, step 2000: bleu: 12.36, loss: 74854.2578, ppl: 24.7317, duration: 49.7199s\n",
"2019-11-26 11:38:24,497 Epoch 5 Step: 2100 Batch Loss: 3.192021 Tokens per Sec: 15186, Lr: 0.000300\n",
"2019-11-26 11:38:37,659 Epoch 5: total training loss 1406.83\n",
"2019-11-26 11:38:37,659 EPOCH 6\n",
"2019-11-26 11:38:40,691 Epoch 6 Step: 2200 Batch Loss: 2.781468 Tokens per Sec: 14106, Lr: 0.000300\n",
"2019-11-26 11:38:56,794 Epoch 6 Step: 2300 Batch Loss: 3.204317 Tokens per Sec: 14912, Lr: 0.000300\n",
"2019-11-26 11:39:13,039 Epoch 6 Step: 2400 Batch Loss: 3.285748 Tokens per Sec: 14922, Lr: 0.000300\n",
"2019-11-26 11:39:29,271 Epoch 6 Step: 2500 Batch Loss: 2.839251 Tokens per Sec: 15336, Lr: 0.000300\n",
"2019-11-26 11:39:45,650 Epoch 6 Step: 2600 Batch Loss: 3.585898 Tokens per Sec: 15151, Lr: 0.000300\n",
"2019-11-26 11:39:49,013 Epoch 6: total training loss 1272.56\n",
"2019-11-26 11:39:49,013 EPOCH 7\n",
"2019-11-26 11:40:01,996 Epoch 7 Step: 2700 Batch Loss: 2.570757 Tokens per Sec: 15140, Lr: 0.000300\n",
"2019-11-26 11:40:18,041 Epoch 7 Step: 2800 Batch Loss: 2.637045 Tokens per Sec: 15093, Lr: 0.000300\n",
"2019-11-26 11:40:34,218 Epoch 7 Step: 2900 Batch Loss: 3.006508 Tokens per Sec: 15137, Lr: 0.000300\n",
"2019-11-26 11:40:50,598 Epoch 7 Step: 3000 Batch Loss: 2.436803 Tokens per Sec: 15142, Lr: 0.000300\n",
"2019-11-26 11:41:00,100 Epoch 7: total training loss 1166.51\n",
"2019-11-26 11:41:00,100 EPOCH 8\n",
"2019-11-26 11:41:06,840 Epoch 8 Step: 3100 Batch Loss: 2.900514 Tokens per Sec: 14948, Lr: 0.000300\n",
"2019-11-26 11:41:22,984 Epoch 8 Step: 3200 Batch Loss: 2.230870 Tokens per Sec: 15114, Lr: 0.000300\n",
"2019-11-26 11:41:39,189 Epoch 8 Step: 3300 Batch Loss: 2.176509 Tokens per Sec: 15150, Lr: 0.000300\n",
"2019-11-26 11:41:55,429 Epoch 8 Step: 3400 Batch Loss: 2.247450 Tokens per Sec: 15147, Lr: 0.000300\n",
"2019-11-26 11:42:10,746 Epoch 8: total training loss 1078.80\n",
"2019-11-26 11:42:10,746 EPOCH 9\n",
"2019-11-26 11:42:11,815 Epoch 9 Step: 3500 Batch Loss: 1.725628 Tokens per Sec: 14151, Lr: 0.000300\n",
"2019-11-26 11:42:27,897 Epoch 9 Step: 3600 Batch Loss: 1.688234 Tokens per Sec: 15190, Lr: 0.000300\n",
"2019-11-26 11:42:44,198 Epoch 9 Step: 3700 Batch Loss: 2.664847 Tokens per Sec: 15236, Lr: 0.000300\n",
"2019-11-26 11:43:00,309 Epoch 9 Step: 3800 Batch Loss: 1.284317 Tokens per Sec: 14963, Lr: 0.000300\n",
"2019-11-26 11:43:16,551 Epoch 9 Step: 3900 Batch Loss: 2.050797 Tokens per Sec: 15223, Lr: 0.000300\n",
"2019-11-26 11:43:21,720 Epoch 9: total training loss 1023.69\n",
"2019-11-26 11:43:21,720 EPOCH 10\n",
"2019-11-26 11:43:32,900 Epoch 10 Step: 4000 Batch Loss: 3.058451 Tokens per Sec: 15199, Lr: 0.000300\n",
"2019-11-26 11:44:22,239 Hooray! New best validation result [ppl]!\n",
"2019-11-26 11:44:22,240 Saving new checkpoint.\n",
"2019-11-26 11:44:22,499 Example #0\n",
"2019-11-26 11:44:22,500 \tSource: GEORGE LOCAL MUNICIPALITY: CONTACT\n",
"2019-11-26 11:44:22,500 \tReference: GEORGE PLAASLIKE MUNISIPALITEIT: KONTAK\n",
"2019-11-26 11:44:22,500 \tHypothesis: GEORGE PLAASLIKE MUNISIPALITEIT: KONTAK\n",
"2019-11-26 11:44:22,500 Example #1\n",
"2019-11-26 11:44:22,500 \tSource: The Drostdy\n",
"2019-11-26 11:44:22,500 \tReference: Die Drostdy\n",
"2019-11-26 11:44:22,500 \tHypothesis: Die Drostdy\n",
"2019-11-26 11:44:22,500 Example #2\n",
"2019-11-26 11:44:22,501 \tSource: the object of the second category of committees is to utilise the expertise of persons outside the commission and to ensure direct community involvement in the activities of the commission .\n",
"2019-11-26 11:44:22,501 \tReference: die doel van die tweede kategorie van komitees is om ook die kundigheid van persone buite die kommissie vir die kommissie se werksaamhede te benut en om direkte gemeenskapsbetrokkenheid te verseker .\n",
"2019-11-26 11:44:22,501 \tHypothesis: die voorwerp van die seksuele kategorie van komitees is om die uitvoer van persone te verander , en om die kommissie te verseker dat die kommissie se aktiwiteite in die kommissie se aktiwiteite .\n",
"2019-11-26 11:44:22,501 Example #3\n",
"2019-11-26 11:44:22,501 \tSource: * private acts by individuals\n",
"2019-11-26 11:44:22,501 \tReference: * indiwidue se private optrede\n",
"2019-11-26 11:44:22,501 \tHypothesis: * privaatliggame deur individuele\n",
"2019-11-26 11:44:22,501 Validation result (greedy) at epoch 10, step 4000: bleu: 26.51, loss: 52469.3672, ppl: 9.4756, duration: 49.6011s\n",
"2019-11-26 11:44:38,865 Epoch 10 Step: 4100 Batch Loss: 2.862207 Tokens per Sec: 15103, Lr: 0.000300\n",
"2019-11-26 11:44:55,167 Epoch 10 Step: 4200 Batch Loss: 1.729798 Tokens per Sec: 15214, Lr: 0.000300\n",
"2019-11-26 11:45:11,422 Epoch 10 Step: 4300 Batch Loss: 2.381748 Tokens per Sec: 15342, Lr: 0.000300\n",
"2019-11-26 11:45:22,012 Epoch 10: total training loss 949.79\n",
"2019-11-26 11:45:22,013 EPOCH 11\n",
"2019-11-26 11:45:27,711 Epoch 11 Step: 4400 Batch Loss: 2.298461 Tokens per Sec: 14736, Lr: 0.000300\n",
"2019-11-26 11:45:43,984 Epoch 11 Step: 4500 Batch Loss: 3.077555 Tokens per Sec: 14930, Lr: 0.000300\n",
"2019-11-26 11:46:00,210 Epoch 11 Step: 4600 Batch Loss: 2.786949 Tokens per Sec: 14965, Lr: 0.000300\n",
"2019-11-26 11:46:16,368 Epoch 11 Step: 4700 Batch Loss: 2.088893 Tokens per Sec: 15158, Lr: 0.000300\n",
"2019-11-26 11:46:32,480 Epoch 11 Step: 4800 Batch Loss: 2.518680 Tokens per Sec: 15061, Lr: 0.000300\n",
"2019-11-26 11:46:33,345 Epoch 11: total training loss 920.89\n",
"2019-11-26 11:46:33,345 EPOCH 12\n",
"2019-11-26 11:46:49,062 Epoch 12 Step: 4900 Batch Loss: 1.790246 Tokens per Sec: 15327, Lr: 0.000300\n",
"2019-11-26 11:47:05,025 Epoch 12 Step: 5000 Batch Loss: 2.516450 Tokens per Sec: 14710, Lr: 0.000300\n",
"2019-11-26 11:47:21,147 Epoch 12 Step: 5100 Batch Loss: 0.975306 Tokens per Sec: 15034, Lr: 0.000300\n",
"2019-11-26 11:47:37,640 Epoch 12 Step: 5200 Batch Loss: 1.202131 Tokens per Sec: 15535, Lr: 0.000300\n",
"2019-11-26 11:47:44,228 Epoch 12: total training loss 867.65\n",
"2019-11-26 11:47:44,228 EPOCH 13\n",
"2019-11-26 11:47:53,959 Epoch 13 Step: 5300 Batch Loss: 1.634143 Tokens per Sec: 15130, Lr: 0.000300\n",
"2019-11-26 11:48:10,070 Epoch 13 Step: 5400 Batch Loss: 2.598377 Tokens per Sec: 15112, Lr: 0.000300\n",
"2019-11-26 11:48:26,292 Epoch 13 Step: 5500 Batch Loss: 1.726901 Tokens per Sec: 14871, Lr: 0.000300\n",
"2019-11-26 11:48:42,694 Epoch 13 Step: 5600 Batch Loss: 1.384664 Tokens per Sec: 15168, Lr: 0.000300\n",
"2019-11-26 11:48:55,197 Epoch 13: total training loss 825.53\n",
"2019-11-26 11:48:55,197 EPOCH 14\n",
"2019-11-26 11:48:59,179 Epoch 14 Step: 5700 Batch Loss: 2.271524 Tokens per Sec: 15404, Lr: 0.000300\n",
"2019-11-26 11:49:15,473 Epoch 14 Step: 5800 Batch Loss: 2.350677 Tokens per Sec: 14999, Lr: 0.000300\n",
"2019-11-26 11:49:31,751 Epoch 14 Step: 5900 Batch Loss: 1.843396 Tokens per Sec: 15136, Lr: 0.000300\n",
"2019-11-26 11:49:48,095 Epoch 14 Step: 6000 Batch Loss: 1.916567 Tokens per Sec: 15303, Lr: 0.000300\n",
"2019-11-26 11:50:37,391 Hooray! New best validation result [ppl]!\n",
"2019-11-26 11:50:37,391 Saving new checkpoint.\n",
"2019-11-26 11:50:37,650 Example #0\n",
"2019-11-26 11:50:37,650 \tSource: GEORGE LOCAL MUNICIPALITY: CONTACT\n",
"2019-11-26 11:50:37,650 \tReference: GEORGE PLAASLIKE MUNISIPALITEIT: KONTAK\n",
"2019-11-26 11:50:37,650 \tHypothesis: GEORGE PLAASLIKE MUNISIPALITEIT: KONTAK\n",
"2019-11-26 11:50:37,650 Example #1\n",
"2019-11-26 11:50:37,651 \tSource: The Drostdy\n",
"2019-11-26 11:50:37,651 \tReference: Die Drostdy\n",
"2019-11-26 11:50:37,651 \tHypothesis: Die Drostdy\n",
"2019-11-26 11:50:37,651 Example #2\n",
"2019-11-26 11:50:37,651 \tSource: the object of the second category of committees is to utilise the expertise of persons outside the commission and to ensure direct community involvement in the activities of the commission .\n",
"2019-11-26 11:50:37,651 \tReference: die doel van die tweede kategorie van komitees is om ook die kundigheid van persone buite die kommissie vir die kommissie se werksaamhede te benut en om direkte gemeenskapsbetrokkenheid te verseker .\n",
"2019-11-26 11:50:37,651 \tHypothesis: die voorwerp van die tweede kategorie van komitees is om die uitoefening van persone te maak van die kommissie en te verseker dat die kommissie en betrokkenheid in die kommissie van die kommissie van die kommissie .\n",
"2019-11-26 11:50:37,651 Example #3\n",
"2019-11-26 11:50:37,652 \tSource: * private acts by individuals\n",
"2019-11-26 11:50:37,652 \tReference: * indiwidue se private optrede\n",
"2019-11-26 11:50:37,652 \tHypothesis: * private aksies deur individue\n",
"2019-11-26 11:50:37,652 Validation result (greedy) at epoch 14, step 6000: bleu: 33.56, loss: 42362.4609, ppl: 6.1445, duration: 49.5567s\n",
"2019-11-26 11:50:53,800 Epoch 14 Step: 6100 Batch Loss: 1.992535 Tokens per Sec: 15073, Lr: 0.000300\n",
"2019-11-26 11:50:55,479 Epoch 14: total training loss 788.52\n",
"2019-11-26 11:50:55,479 EPOCH 15\n",
"2019-11-26 11:51:10,277 Epoch 15 Step: 6200 Batch Loss: 2.023537 Tokens per Sec: 15114, Lr: 0.000300\n",
"2019-11-26 11:51:26,329 Epoch 15 Step: 6300 Batch Loss: 2.314336 Tokens per Sec: 15020, Lr: 0.000300\n",
"2019-11-26 11:51:42,486 Epoch 15 Step: 6400 Batch Loss: 1.569038 Tokens per Sec: 15108, Lr: 0.000300\n",
"2019-11-26 11:51:58,661 Epoch 15 Step: 6500 Batch Loss: 2.190273 Tokens per Sec: 15237, Lr: 0.000300\n",
"2019-11-26 11:52:06,500 Epoch 15: total training loss 768.51\n",
"2019-11-26 11:52:06,500 EPOCH 16\n",
"2019-11-26 11:52:14,939 Epoch 16 Step: 6600 Batch Loss: 1.241720 Tokens per Sec: 15387, Lr: 0.000300\n",
"2019-11-26 11:52:30,968 Epoch 16 Step: 6700 Batch Loss: 1.467147 Tokens per Sec: 14874, Lr: 0.000300\n",
"2019-11-26 11:52:47,070 Epoch 16 Step: 6800 Batch Loss: 1.967465 Tokens per Sec: 15264, Lr: 0.000300\n",
"2019-11-26 11:53:03,349 Epoch 16 Step: 6900 Batch Loss: 1.676328 Tokens per Sec: 15298, Lr: 0.000300\n",
"2019-11-26 11:53:17,223 Epoch 16: total training loss 738.36\n",
"2019-11-26 11:53:17,224 EPOCH 17\n",
"2019-11-26 11:53:19,437 Epoch 17 Step: 7000 Batch Loss: 0.934059 Tokens per Sec: 13372, Lr: 0.000300\n",
"2019-11-26 11:53:35,536 Epoch 17 Step: 7100 Batch Loss: 1.657806 Tokens per Sec: 14943, Lr: 0.000300\n",
"2019-11-26 11:53:51,669 Epoch 17 Step: 7200 Batch Loss: 1.226249 Tokens per Sec: 15264, Lr: 0.000300\n",
"2019-11-26 11:54:07,998 Epoch 17 Step: 7300 Batch Loss: 2.209456 Tokens per Sec: 15441, Lr: 0.000300\n",
"2019-11-26 11:54:24,231 Epoch 17 Step: 7400 Batch Loss: 1.720668 Tokens per Sec: 15393, Lr: 0.000300\n",
"2019-11-26 11:54:27,792 Epoch 17: total training loss 714.93\n",
"2019-11-26 11:54:27,792 EPOCH 18\n",
"2019-11-26 11:54:40,204 Epoch 18 Step: 7500 Batch Loss: 1.135857 Tokens per Sec: 14700, Lr: 0.000300\n",
"2019-11-26 11:54:56,583 Epoch 18 Step: 7600 Batch Loss: 2.273018 Tokens per Sec: 15302, Lr: 0.000300\n",
"2019-11-26 11:55:12,880 Epoch 18 Step: 7700 Batch Loss: 1.397834 Tokens per Sec: 15419, Lr: 0.000300\n",
"2019-11-26 11:55:28,941 Epoch 18 Step: 7800 Batch Loss: 2.175472 Tokens per Sec: 15108, Lr: 0.000300\n",
"2019-11-26 11:55:38,522 Epoch 18: total training loss 692.67\n",
"2019-11-26 11:55:38,522 EPOCH 19\n",
"2019-11-26 11:55:45,111 Epoch 19 Step: 7900 Batch Loss: 1.137055 Tokens per Sec: 14630, Lr: 0.000300\n",
"2019-11-26 11:56:01,315 Epoch 19 Step: 8000 Batch Loss: 0.744475 Tokens per Sec: 15410, Lr: 0.000300\n",
"2019-11-26 11:56:50,686 Hooray! New best validation result [ppl]!\n",
"2019-11-26 11:56:50,686 Saving new checkpoint.\n",
"2019-11-26 11:56:50,965 Example #0\n",
"2019-11-26 11:56:50,965 \tSource: GEORGE LOCAL MUNICIPALITY: CONTACT\n",
"2019-11-26 11:56:50,965 \tReference: GEORGE PLAASLIKE MUNISIPALITEIT: KONTAK\n",
"2019-11-26 11:56:50,965 \tHypothesis: GEORGE PLAASLIKE MUNISIPALITEIT: KONTAK\n",
"2019-11-26 11:56:50,965 Example #1\n",
"2019-11-26 11:56:50,966 \tSource: The Drostdy\n",
"2019-11-26 11:56:50,966 \tReference: Die Drostdy\n",
"2019-11-26 11:56:50,966 \tHypothesis: Die Drostdy\n",
"2019-11-26 11:56:50,966 Example #2\n",
"2019-11-26 11:56:50,966 \tSource: the object of the second category of committees is to utilise the expertise of persons outside the commission and to ensure direct community involvement in the activities of the commission .\n",
"2019-11-26 11:56:50,966 \tReference: die doel van die tweede kategorie van komitees is om ook die kundigheid van persone buite die kommissie vir die kommissie se werksaamhede te benut en om direkte gemeenskapsbetrokkenheid te verseker .\n",
"2019-11-26 11:56:50,966 \tHypothesis: die voorwerp van die tweede kategorie van komitees is om die uitoefening van persone buite die kommissie en om gemeenskapsbetrokkenheid te verseker dat die aktiwiteite van die kommissie .\n",
"2019-11-26 11:56:50,966 Example #3\n",
"2019-11-26 11:56:50,966 \tSource: * private acts by individuals\n",
"2019-11-26 11:56:50,966 \tReference: * indiwidue se private optrede\n",
"2019-11-26 11:56:50,966 \tHypothesis: * private aktiwiteite\n",
"2019-11-26 11:56:50,967 Validation result (greedy) at epoch 19, step 8000: bleu: 37.38, loss: 37101.5312, ppl: 4.9042, duration: 49.6516s\n",
"2019-11-26 11:57:07,168 Epoch 19 Step: 8100 Batch Loss: 1.343613 Tokens per Sec: 15250, Lr: 0.000300\n",
"2019-11-26 11:57:23,183 Epoch 19 Step: 8200 Batch Loss: 1.560163 Tokens per Sec: 15112, Lr: 0.000300\n",
"2019-11-26 11:57:38,611 Epoch 19: total training loss 668.08\n",
"2019-11-26 11:57:38,611 EPOCH 20\n",
"2019-11-26 11:57:39,619 Epoch 20 Step: 8300 Batch Loss: 1.303026 Tokens per Sec: 14111, Lr: 0.000300\n",
"2019-11-26 11:57:55,953 Epoch 20 Step: 8400 Batch Loss: 2.189736 Tokens per Sec: 15124, Lr: 0.000300\n",
"2019-11-26 11:58:12,254 Epoch 20 Step: 8500 Batch Loss: 2.371931 Tokens per Sec: 15080, Lr: 0.000300\n",
"2019-11-26 11:58:28,533 Epoch 20 Step: 8600 Batch Loss: 1.199755 Tokens per Sec: 15320, Lr: 0.000300\n",
"2019-11-26 11:58:44,679 Epoch 20 Step: 8700 Batch Loss: 1.696189 Tokens per Sec: 15200, Lr: 0.000300\n",
"2019-11-26 11:58:49,286 Epoch 20: total training loss 658.15\n",
"2019-11-26 11:58:49,286 EPOCH 21\n",
"2019-11-26 11:59:01,062 Epoch 21 Step: 8800 Batch Loss: 1.814345 Tokens per Sec: 15202, Lr: 0.000300\n",
"2019-11-26 11:59:17,383 Epoch 21 Step: 8900 Batch Loss: 1.208518 Tokens per Sec: 15373, Lr: 0.000300\n",
"2019-11-26 11:59:33,675 Epoch 21 Step: 9000 Batch Loss: 1.584646 Tokens per Sec: 15159, Lr: 0.000300\n",
"2019-11-26 11:59:49,908 Epoch 21 Step: 9100 Batch Loss: 1.363551 Tokens per Sec: 15324, Lr: 0.000300\n",
"2019-11-26 11:59:59,784 Epoch 21: total training loss 634.78\n",
"2019-11-26 11:59:59,785 EPOCH 22\n",
"2019-11-26 12:00:05,863 Epoch 22 Step: 9200 Batch Loss: 1.234421 Tokens per Sec: 14720, Lr: 0.000300\n",
"2019-11-26 12:00:22,161 Epoch 22 Step: 9300 Batch Loss: 1.366633 Tokens per Sec: 15356, Lr: 0.000300\n",
"2019-11-26 12:00:38,320 Epoch 22 Step: 9400 Batch Loss: 0.922922 Tokens per Sec: 15111, Lr: 0.000300\n",
"2019-11-26 12:00:54,446 Epoch 22 Step: 9500 Batch Loss: 1.129673 Tokens per Sec: 15157, Lr: 0.000300\n",
"2019-11-26 12:01:10,329 Epoch 22: total training loss 620.19\n",
"2019-11-26 12:01:10,330 EPOCH 23\n",
"2019-11-26 12:01:10,872 Epoch 23 Step: 9600 Batch Loss: 0.834196 Tokens per Sec: 11898, Lr: 0.000300\n",
"2019-11-26 12:01:27,012 Epoch 23 Step: 9700 Batch Loss: 1.974342 Tokens per Sec: 14733, Lr: 0.000300\n",
"2019-11-26 12:01:43,280 Epoch 23 Step: 9800 Batch Loss: 1.712468 Tokens per Sec: 15026, Lr: 0.000300\n",
"2019-11-26 12:01:59,561 Epoch 23 Step: 9900 Batch Loss: 1.192902 Tokens per Sec: 15332, Lr: 0.000300\n",
"2019-11-26 12:02:15,717 Epoch 23 Step: 10000 Batch Loss: 1.113884 Tokens per Sec: 15262, Lr: 0.000300\n",
"2019-11-26 12:03:05,106 Hooray! New best validation result [ppl]!\n",
"2019-11-26 12:03:05,107 Saving new checkpoint.\n",
"2019-11-26 12:03:05,427 Example #0\n",
"2019-11-26 12:03:05,428 \tSource: GEORGE LOCAL MUNICIPALITY: CONTACT\n",
"2019-11-26 12:03:05,428 \tReference: GEORGE PLAASLIKE MUNISIPALITEIT: KONTAK\n",
"2019-11-26 12:03:05,428 \tHypothesis: GEORGE PLAASLIKE MUNISIPALITEIT: KONTAK\n",
"2019-11-26 12:03:05,428 Example #1\n",
"2019-11-26 12:03:05,428 \tSource: The Drostdy\n",
"2019-11-26 12:03:05,428 \tReference: Die Drostdy\n",
"2019-11-26 12:03:05,428 \tHypothesis: Die Drostdy\n",
"2019-11-26 12:03:05,428 Example #2\n",
"2019-11-26 12:03:05,428 \tSource: the object of the second category of committees is to utilise the expertise of persons outside the commission and to ensure direct community involvement in the activities of the commission .\n",
"2019-11-26 12:03:05,428 \tReference: die doel van die tweede kategorie van komitees is om ook die kundigheid van persone buite die kommissie vir die kommissie se werksaamhede te benut en om direkte gemeenskapsbetrokkenheid te verseker .\n",
"2019-11-26 12:03:05,429 \tHypothesis: die voorwerp van die tweede kategorie van komitees is om die uitoefening van persone buite die kommissie en om gemeenskapsbetrokkenheid te verseker in die aktiwiteite van die kommissie .\n",
"2019-11-26 12:03:05,429 Example #3\n",
"2019-11-26 12:03:05,429 \tSource: * private acts by individuals\n",
"2019-11-26 12:03:05,429 \tReference: * indiwidue se private optrede\n",
"2019-11-26 12:03:05,429 \tHypothesis: * private aktiwiteite\n",
"2019-11-26 12:03:05,429 Validation result (greedy) at epoch 23, step 10000: bleu: 39.24, loss: 34156.6953, ppl: 4.3227, duration: 49.7111s\n",
"2019-11-26 12:03:11,229 Epoch 23: total training loss 615.70\n",
"2019-11-26 12:03:11,229 EPOCH 24\n",
"2019-11-26 12:03:21,789 Epoch 24 Step: 10100 Batch Loss: 1.073194 Tokens per Sec: 15289, Lr: 0.000300\n",
"2019-11-26 12:03:37,939 Epoch 24 Step: 10200 Batch Loss: 0.900523 Tokens per Sec: 15149, Lr: 0.000300\n",
"2019-11-26 12:03:53,980 Epoch 24 Step: 10300 Batch Loss: 0.963902 Tokens per Sec: 14954, Lr: 0.000300\n",
"2019-11-26 12:04:09,997 Epoch 24 Step: 10400 Batch Loss: 2.269618 Tokens per Sec: 15070, Lr: 0.000300\n",
"2019-11-26 12:04:21,952 Epoch 24: total training loss 601.49\n",
"2019-11-26 12:04:21,953 EPOCH 25\n",
"2019-11-26 12:04:26,251 Epoch 25 Step: 10500 Batch Loss: 0.856459 Tokens per Sec: 15093, Lr: 0.000300\n",
"2019-11-26 12:04:42,325 Epoch 25 Step: 10600 Batch Loss: 1.371791 Tokens per Sec: 14951, Lr: 0.000300\n",
"2019-11-26 12:04:58,329 Epoch 25 Step: 10700 Batch Loss: 2.013452 Tokens per Sec: 15087, Lr: 0.000300\n",
"2019-11-26 12:05:14,811 Epoch 25 Step: 10800 Batch Loss: 1.043119 Tokens per Sec: 15628, Lr: 0.000300\n",
"2019-11-26 12:05:30,824 Epoch 25 Step: 10900 Batch Loss: 1.488485 Tokens per Sec: 15095, Lr: 0.000300\n",
"2019-11-26 12:05:32,691 Epoch 25: total training loss 585.86\n",
"2019-11-26 12:05:32,691 EPOCH 26\n",
"2019-11-26 12:05:46,973 Epoch 26 Step: 11000 Batch Loss: 1.354562 Tokens per Sec: 14988, Lr: 0.000300\n",
"2019-11-26 12:06:03,166 Epoch 26 Step: 11100 Batch Loss: 1.148171 Tokens per Sec: 15192, Lr: 0.000300\n",
"2019-11-26 12:06:19,367 Epoch 26 Step: 11200 Batch Loss: 1.528958 Tokens per Sec: 15187, Lr: 0.000300\n",
"2019-11-26 12:06:35,624 Epoch 26 Step: 11300 Batch Loss: 1.651470 Tokens per Sec: 15094, Lr: 0.000300\n",
"2019-11-26 12:06:43,633 Epoch 26: total training loss 572.71\n",
"2019-11-26 12:06:43,634 EPOCH 27\n",
"2019-11-26 12:06:51,731 Epoch 27 Step: 11400 Batch Loss: 0.593972 Tokens per Sec: 14497, Lr: 0.000300\n",
"2019-11-26 12:07:07,731 Epoch 27 Step: 11500 Batch Loss: 1.662266 Tokens per Sec: 15226, Lr: 0.000300\n",
"2019-11-26 12:07:24,086 Epoch 27 Step: 11600 Batch Loss: 1.297733 Tokens per Sec: 15404, Lr: 0.000300\n",
"2019-11-26 12:07:40,217 Epoch 27 Step: 11700 Batch Loss: 2.105778 Tokens per Sec: 15112, Lr: 0.000300\n",
"2019-11-26 12:07:54,329 Epoch 27: total training loss 564.17\n",
"2019-11-26 12:07:54,329 EPOCH 28\n",
"2019-11-26 12:07:56,491 Epoch 28 Step: 11800 Batch Loss: 0.865440 Tokens per Sec: 14615, Lr: 0.000300\n",
"2019-11-26 12:08:12,484 Epoch 28 Step: 11900 Batch Loss: 1.723002 Tokens per Sec: 15050, Lr: 0.000300\n",
"2019-11-26 12:08:28,696 Epoch 28 Step: 12000 Batch Loss: 1.384915 Tokens per Sec: 15254, Lr: 0.000300\n",
"2019-11-26 12:09:17,865 Hooray! New best validation result [ppl]!\n",
"2019-11-26 12:09:17,866 Saving new checkpoint.\n",
"2019-11-26 12:09:18,163 Example #0\n",
"2019-11-26 12:09:18,164 \tSource: GEORGE LOCAL MUNICIPALITY: CONTACT\n",
"2019-11-26 12:09:18,164 \tReference: GEORGE PLAASLIKE MUNISIPALITEIT: KONTAK\n",
"2019-11-26 12:09:18,164 \tHypothesis: GEORGE PLAASLIKE MUNISIPALITEIT: KONTAK\n",
"2019-11-26 12:09:18,164 Example #1\n",
"2019-11-26 12:09:18,165 \tSource: The Drostdy\n",
"2019-11-26 12:09:18,165 \tReference: Die Drostdy\n",
"2019-11-26 12:09:18,165 \tHypothesis: Die Drostdy\n",
"2019-11-26 12:09:18,165 Example #2\n",
"2019-11-26 12:09:18,165 \tSource: the object of the second category of committees is to utilise the expertise of persons outside the commission and to ensure direct community involvement in the activities of the commission .\n",
"2019-11-26 12:09:18,165 \tReference: die doel van die tweede kategorie van komitees is om ook die kundigheid van persone buite die kommissie vir die kommissie se werksaamhede te benut en om direkte gemeenskapsbetrokkenheid te verseker .\n",
"2019-11-26 12:09:18,165 \tHypothesis: die voorwerp van die tweede kategorie van komitees is om die uitoefening van persone buite die kommissie en om gemeenskapsbetrokkenheid by die aktiwiteite van die kommissie te verseker .\n",
"2019-11-26 12:09:18,165 Example #3\n",
"2019-11-26 12:09:18,166 \tSource: * private acts by individuals\n",
"2019-11-26 12:09:18,166 \tReference: * indiwidue se private optrede\n",
"2019-11-26 12:09:18,166 \tHypothesis: * private aktiwitte deur individue\n",
"2019-11-26 12:09:18,166 Validation result (greedy) at epoch 28, step 12000: bleu: 40.75, loss: 32103.4766, ppl: 3.9586, duration: 49.4692s\n",
"2019-11-26 12:09:34,605 Epoch 28 Step: 12100 Batch Loss: 0.898625 Tokens per Sec: 15389, Lr: 0.000300\n",
"2019-11-26 12:09:50,813 Epoch 28 Step: 12200 Batch Loss: 0.866637 Tokens per Sec: 15133, Lr: 0.000300\n",
"2019-11-26 12:09:54,228 Epoch 28: total training loss 545.53\n",
"2019-11-26 12:09:54,228 EPOCH 29\n",
"2019-11-26 12:10:07,395 Epoch 29 Step: 12300 Batch Loss: 0.867669 Tokens per Sec: 15033, Lr: 0.000300\n",
"2019-11-26 12:10:23,427 Epoch 29 Step: 12400 Batch Loss: 1.148031 Tokens per Sec: 15062, Lr: 0.000300\n",
"2019-11-26 12:10:39,675 Epoch 29 Step: 12500 Batch Loss: 0.895892 Tokens per Sec: 15196, Lr: 0.000300\n",
"2019-11-26 12:10:56,010 Epoch 29 Step: 12600 Batch Loss: 1.510698 Tokens per Sec: 15395, Lr: 0.000300\n",
"2019-11-26 12:11:04,947 Epoch 29: total training loss 541.54\n",
"2019-11-26 12:11:04,947 EPOCH 30\n",
"2019-11-26 12:11:12,165 Epoch 30 Step: 12700 Batch Loss: 0.837670 Tokens per Sec: 15142, Lr: 0.000300\n",
"2019-11-26 12:11:28,433 Epoch 30 Step: 12800 Batch Loss: 1.230110 Tokens per Sec: 15259, Lr: 0.000300\n",
"2019-11-26 12:11:44,668 Epoch 30 Step: 12900 Batch Loss: 1.488923 Tokens per Sec: 15090, Lr: 0.000300\n",
"2019-11-26 12:12:00,827 Epoch 30 Step: 13000 Batch Loss: 1.608192 Tokens per Sec: 15088, Lr: 0.000300\n",
"2019-11-26 12:12:15,873 Epoch 30: total training loss 536.01\n",
"2019-11-26 12:12:15,873 EPOCH 31\n",
"2019-11-26 12:12:17,066 Epoch 31 Step: 13100 Batch Loss: 0.685046 Tokens per Sec: 13524, Lr: 0.000300\n",
"2019-11-26 12:12:33,255 Epoch 31 Step: 13200 Batch Loss: 1.043526 Tokens per Sec: 15304, Lr: 0.000300\n",
"2019-11-26 12:12:49,554 Epoch 31 Step: 13300 Batch Loss: 1.331799 Tokens per Sec: 15257, Lr: 0.000300\n",
"2019-11-26 12:13:05,761 Epoch 31 Step: 13400 Batch Loss: 0.562917 Tokens per Sec: 15260, Lr: 0.000300\n",
"2019-11-26 12:13:21,805 Epoch 31 Step: 13500 Batch Loss: 0.871661 Tokens per Sec: 15070, Lr: 0.000300\n",
"2019-11-26 12:13:26,400 Epoch 31: total training loss 522.61\n",
"2019-11-26 12:13:26,400 EPOCH 32\n",
"2019-11-26 12:13:38,142 Epoch 32 Step: 13600 Batch Loss: 1.529986 Tokens per Sec: 15354, Lr: 0.000300\n",
"2019-11-26 12:13:54,424 Epoch 32 Step: 13700 Batch Loss: 0.749274 Tokens per Sec: 15151, Lr: 0.000300\n",
"2019-11-26 12:14:10,606 Epoch 32 Step: 13800 Batch Loss: 1.366758 Tokens per Sec: 15268, Lr: 0.000300\n",
"2019-11-26 12:14:26,717 Epoch 32 Step: 13900 Batch Loss: 0.794766 Tokens per Sec: 15063, Lr: 0.000300\n",
"2019-11-26 12:14:36,969 Epoch 32: total training loss 515.14\n",
"2019-11-26 12:14:36,970 EPOCH 33\n",
"2019-11-26 12:14:43,040 Epoch 33 Step: 14000 Batch Loss: 1.347236 Tokens per Sec: 15130, Lr: 0.000300\n",
"2019-11-26 12:15:32,235 Hooray! New best validation result [ppl]!\n",
"2019-11-26 12:15:32,235 Saving new checkpoint.\n",
"2019-11-26 12:15:32,529 Example #0\n",
"2019-11-26 12:15:32,530 \tSource: GEORGE LOCAL MUNICIPALITY: CONTACT\n",
"2019-11-26 12:15:32,530 \tReference: GEORGE PLAASLIKE MUNISIPALITEIT: KONTAK\n",
"2019-11-26 12:15:32,530 \tHypothesis: GEORGE PLAASLIKE MUNISIPALITEIT: KONTAK\n",
"2019-11-26 12:15:32,530 Example #1\n",
"2019-11-26 12:15:32,530 \tSource: The Drostdy\n",
"2019-11-26 12:15:32,530 \tReference: Die Drostdy\n",
"2019-11-26 12:15:32,530 \tHypothesis: Die Drostdy\n",
"2019-11-26 12:15:32,531 Example #2\n",
"2019-11-26 12:15:32,531 \tSource: the object of the second category of committees is to utilise the expertise of persons outside the commission and to ensure direct community involvement in the activities of the commission .\n",
"2019-11-26 12:15:32,531 \tReference: die doel van die tweede kategorie van komitees is om ook die kundigheid van persone buite die kommissie vir die kommissie se werksaamhede te benut en om direkte gemeenskapsbetrokkenheid te verseker .\n",
"2019-11-26 12:15:32,531 \tHypothesis: die voorwerp van die tweede kategorie van komitees is om die uitoefening van persone buite die kommissie te verrig en om gemeenskapsbetrokkenheid by die aktiwiteite van die kommissie te verseker .\n",
"2019-11-26 12:15:32,531 Example #3\n",
"2019-11-26 12:15:32,531 \tSource: * private acts by individuals\n",
"2019-11-26 12:15:32,531 \tReference: * indiwidue se private optrede\n",
"2019-11-26 12:15:32,531 \tHypothesis: * private akte deur individue\n",
"2019-11-26 12:15:32,531 Validation result (greedy) at epoch 33, step 14000: bleu: 42.70, loss: 30750.4551, ppl: 3.7356, duration: 49.4913s\n",
"2019-11-26 12:15:48,801 Epoch 33 Step: 14100 Batch Loss: 1.323262 Tokens per Sec: 15296, Lr: 0.000300\n",
"2019-11-26 12:16:04,902 Epoch 33 Step: 14200 Batch Loss: 0.639752 Tokens per Sec: 15164, Lr: 0.000300\n",
"2019-11-26 12:16:20,847 Epoch 33 Step: 14300 Batch Loss: 1.079608 Tokens per Sec: 15209, Lr: 0.000300\n",
"2019-11-26 12:16:37,000 Epoch 33 Step: 14400 Batch Loss: 1.483253 Tokens per Sec: 15126, Lr: 0.000300\n",
"2019-11-26 12:16:37,002 Epoch 33: total training loss 507.69\n",
"2019-11-26 12:16:37,002 EPOCH 34\n",
"2019-11-26 12:16:53,186 Epoch 34 Step: 14500 Batch Loss: 1.170611 Tokens per Sec: 14936, Lr: 0.000300\n",
"2019-11-26 12:17:09,308 Epoch 34 Step: 14600 Batch Loss: 0.669251 Tokens per Sec: 15056, Lr: 0.000300\n",
"2019-11-26 12:17:25,362 Epoch 34 Step: 14700 Batch Loss: 1.111993 Tokens per Sec: 15259, Lr: 0.000300\n",
"2019-11-26 12:17:41,577 Epoch 34 Step: 14800 Batch Loss: 1.475204 Tokens per Sec: 15252, Lr: 0.000300\n",
"2019-11-26 12:17:47,862 Epoch 34: total training loss 503.21\n",
"2019-11-26 12:17:47,863 EPOCH 35\n",
"2019-11-26 12:17:57,760 Epoch 35 Step: 14900 Batch Loss: 0.921647 Tokens per Sec: 15098, Lr: 0.000300\n",
"2019-11-26 12:18:13,861 Epoch 35 Step: 15000 Batch Loss: 1.141478 Tokens per Sec: 15162, Lr: 0.000300\n",
"2019-11-26 12:18:30,162 Epoch 35 Step: 15100 Batch Loss: 0.792189 Tokens per Sec: 15325, Lr: 0.000300\n",
"2019-11-26 12:18:46,250 Epoch 35 Step: 15200 Batch Loss: 0.894321 Tokens per Sec: 15142, Lr: 0.000300\n",
"2019-11-26 12:18:58,375 Epoch 35: total training loss 491.17\n",
"2019-11-26 12:18:58,375 EPOCH 36\n",
"2019-11-26 12:19:02,451 Epoch 36 Step: 15300 Batch Loss: 1.113939 Tokens per Sec: 15135, Lr: 0.000300\n",
"2019-11-26 12:19:18,516 Epoch 36 Step: 15400 Batch Loss: 0.942997 Tokens per Sec: 15060, Lr: 0.000300\n",
"2019-11-26 12:19:34,748 Epoch 36 Step: 15500 Batch Loss: 1.089445 Tokens per Sec: 15092, Lr: 0.000300\n",
"2019-11-26 12:19:50,960 Epoch 36 Step: 15600 Batch Loss: 0.848535 Tokens per Sec: 15393, Lr: 0.000300\n",
"2019-11-26 12:20:07,044 Epoch 36 Step: 15700 Batch Loss: 0.793746 Tokens per Sec: 15296, Lr: 0.000300\n",
"2019-11-26 12:20:08,866 Epoch 36: total training loss 485.58\n",
"2019-11-26 12:20:08,866 EPOCH 37\n",
"2019-11-26 12:20:23,278 Epoch 37 Step: 15800 Batch Loss: 1.291795 Tokens per Sec: 15147, Lr: 0.000300\n",
"2019-11-26 12:20:39,626 Epoch 37 Step: 15900 Batch Loss: 0.503743 Tokens per Sec: 15214, Lr: 0.000300\n",
"2019-11-26 12:20:55,779 Epoch 37 Step: 16000 Batch Loss: 1.535897 Tokens per Sec: 15183, Lr: 0.000300\n",
"2019-11-26 12:21:44,969 Hooray! New best validation result [ppl]!\n",
"2019-11-26 12:21:44,969 Saving new checkpoint.\n",
"2019-11-26 12:21:45,283 Example #0\n",
"2019-11-26 12:21:45,283 \tSource: GEORGE LOCAL MUNICIPALITY: CONTACT\n",
"2019-11-26 12:21:45,283 \tReference: GEORGE PLAASLIKE MUNISIPALITEIT: KONTAK\n",
"2019-11-26 12:21:45,283 \tHypothesis: GEORGE PLAASLIKE MUNISIPALITEIT: KONTAK\n",
"2019-11-26 12:21:45,284 Example #1\n",
"2019-11-26 12:21:45,284 \tSource: The Drostdy\n",
"2019-11-26 12:21:45,284 \tReference: Die Drostdy\n",
"2019-11-26 12:21:45,284 \tHypothesis: Die Drostdy\n",
"2019-11-26 12:21:45,284 Example #2\n",
"2019-11-26 12:21:45,284 \tSource: the object of the second category of committees is to utilise the expertise of persons outside the commission and to ensure direct community involvement in the activities of the commission .\n",
"2019-11-26 12:21:45,284 \tReference: die doel van die tweede kategorie van komitees is om ook die kundigheid van persone buite die kommissie vir die kommissie se werksaamhede te benut en om direkte gemeenskapsbetrokkenheid te verseker .\n",
"2019-11-26 12:21:45,285 \tHypothesis: die voorwerp van die tweede kategorie van komitees is om die uitvoering van persone buite die kommissie en om gemeenskapsbetrokkenheid by die aktiwiteite van die kommissie te verseker .\n",
"2019-11-26 12:21:45,285 Example #3\n",
"2019-11-26 12:21:45,285 \tSource: * private acts by individuals\n",
"2019-11-26 12:21:45,285 \tReference: * indiwidue se private optrede\n",
"2019-11-26 12:21:45,285 \tHypothesis: * private akte deur individue\n",
"2019-11-26 12:21:45,286 Validation result (greedy) at epoch 37, step 16000: bleu: 43.53, loss: 29685.3848, ppl: 3.5689, duration: 49.5060s\n",
"2019-11-26 12:22:01,514 Epoch 37 Step: 16100 Batch Loss: 0.977506 Tokens per Sec: 15133, Lr: 0.000300\n",
"2019-11-26 12:22:09,019 Epoch 37: total training loss 477.42\n",
"2019-11-26 12:22:09,019 EPOCH 38\n",
"2019-11-26 12:22:17,862 Epoch 38 Step: 16200 Batch Loss: 0.912274 Tokens per Sec: 15267, Lr: 0.000300\n",
"2019-11-26 12:22:33,879 Epoch 38 Step: 16300 Batch Loss: 0.727981 Tokens per Sec: 15001, Lr: 0.000300\n",
"2019-11-26 12:22:49,879 Epoch 38 Step: 16400 Batch Loss: 1.225804 Tokens per Sec: 15153, Lr: 0.000300\n",
"2019-11-26 12:23:06,183 Epoch 38 Step: 16500 Batch Loss: 1.238150 Tokens per Sec: 15327, Lr: 0.000300\n",
"2019-11-26 12:23:19,612 Epoch 38: total training loss 473.37\n",
"2019-11-26 12:23:19,612 EPOCH 39\n",
"2019-11-26 12:23:22,509 Epoch 39 Step: 16600 Batch Loss: 1.538846 Tokens per Sec: 15618, Lr: 0.000300\n",
"2019-11-26 12:23:38,561 Epoch 39 Step: 16700 Batch Loss: 1.262424 Tokens per Sec: 15037, Lr: 0.000300\n",
"2019-11-26 12:23:54,833 Epoch 39 Step: 16800 Batch Loss: 0.833469 Tokens per Sec: 15480, Lr: 0.000300\n",
"2019-11-26 12:24:10,897 Epoch 39 Step: 16900 Batch Loss: 1.285361 Tokens per Sec: 15151, Lr: 0.000300\n",
"2019-11-26 12:24:27,113 Epoch 39 Step: 17000 Batch Loss: 1.659389 Tokens per Sec: 15363, Lr: 0.000300\n",
"2019-11-26 12:24:29,950 Epoch 39: total training loss 466.35\n",
"2019-11-26 12:24:29,950 EPOCH 40\n",
"2019-11-26 12:24:43,272 Epoch 40 Step: 17100 Batch Loss: 1.011768 Tokens per Sec: 15085, Lr: 0.000300\n",
"2019-11-26 12:24:59,561 Epoch 40 Step: 17200 Batch Loss: 0.899179 Tokens per Sec: 15377, Lr: 0.000300\n",
"2019-11-26 12:25:15,546 Epoch 40 Step: 17300 Batch Loss: 1.233902 Tokens per Sec: 15265, Lr: 0.000300\n",
"2019-11-26 12:25:31,671 Epoch 40 Step: 17400 Batch Loss: 0.851410 Tokens per Sec: 15242, Lr: 0.000300\n",
"2019-11-26 12:25:40,139 Epoch 40: total training loss 457.48\n",
"2019-11-26 12:25:40,139 EPOCH 41\n",
"2019-11-26 12:25:47,817 Epoch 41 Step: 17500 Batch Loss: 0.938755 Tokens per Sec: 15240, Lr: 0.000300\n",
"2019-11-26 12:26:04,211 Epoch 41 Step: 17600 Batch Loss: 0.670900 Tokens per Sec: 15533, Lr: 0.000300\n",
"2019-11-26 12:26:20,520 Epoch 41 Step: 17700 Batch Loss: 1.540982 Tokens per Sec: 15310, Lr: 0.000300\n",
"2019-11-26 12:26:36,599 Epoch 41 Step: 17800 Batch Loss: 0.465548 Tokens per Sec: 15153, Lr: 0.000300\n",
"2019-11-26 12:26:50,603 Epoch 41: total training loss 456.14\n",
"2019-11-26 12:26:50,603 EPOCH 42\n",
"2019-11-26 12:26:52,389 Epoch 42 Step: 17900 Batch Loss: 1.453590 Tokens per Sec: 14513, Lr: 0.000300\n",
"2019-11-26 12:27:08,452 Epoch 42 Step: 18000 Batch Loss: 0.585894 Tokens per Sec: 15103, Lr: 0.000300\n",
"2019-11-26 12:27:57,678 Hooray! New best validation result [ppl]!\n",
"2019-11-26 12:27:57,678 Saving new checkpoint.\n",
"2019-11-26 12:27:57,986 Example #0\n",
"2019-11-26 12:27:57,987 \tSource: GEORGE LOCAL MUNICIPALITY: CONTACT\n",
"2019-11-26 12:27:57,987 \tReference: GEORGE PLAASLIKE MUNISIPALITEIT: KONTAK\n",
"2019-11-26 12:27:57,987 \tHypothesis: GEORGE PLAASLIKE MUNISIPALITEIT: KONTAK\n",
"2019-11-26 12:27:57,987 Example #1\n",
"2019-11-26 12:27:57,987 \tSource: The Drostdy\n",
"2019-11-26 12:27:57,987 \tReference: Die Drostdy\n",
"2019-11-26 12:27:57,987 \tHypothesis: Die Drostdy\n",
"2019-11-26 12:27:57,987 Example #2\n",
"2019-11-26 12:27:57,987 \tSource: the object of the second category of committees is to utilise the expertise of persons outside the commission and to ensure direct community involvement in the activities of the commission .\n",
"2019-11-26 12:27:57,987 \tReference: die doel van die tweede kategorie van komitees is om ook die kundigheid van persone buite die kommissie vir die kommissie se werksaamhede te benut en om direkte gemeenskapsbetrokkenheid te verseker .\n",
"2019-11-26 12:27:57,988 \tHypothesis: die voorwerp van die tweede kategorie van komitees is om die prestasie van mense buite die kommissie te verrig en om gemeenskapsbetrokkenheid by die aktiwiteite van die kommissie te verseker .\n",
"2019-11-26 12:27:57,988 Example #3\n",
"2019-11-26 12:27:57,988 \tSource: * private acts by individuals\n",
"2019-11-26 12:27:57,988 \tReference: * indiwidue se private optrede\n",
"2019-11-26 12:27:57,988 \tHypothesis: * private akte deur individue\n",
"2019-11-26 12:27:57,988 Validation result (greedy) at epoch 42, step 18000: bleu: 44.48, loss: 28864.5508, ppl: 3.4455, duration: 49.5352s\n",
"2019-11-26 12:28:14,099 Epoch 42 Step: 18100 Batch Loss: 1.758319 Tokens per Sec: 15362, Lr: 0.000300\n",
"2019-11-26 12:28:30,021 Epoch 42 Step: 18200 Batch Loss: 1.352633 Tokens per Sec: 15264, Lr: 0.000300\n",
"2019-11-26 12:28:46,132 Epoch 42 Step: 18300 Batch Loss: 0.403492 Tokens per Sec: 15227, Lr: 0.000300\n",
"2019-11-26 12:28:50,681 Epoch 42: total training loss 454.43\n",
"2019-11-26 12:28:50,681 EPOCH 43\n",
"2019-11-26 12:29:02,410 Epoch 43 Step: 18400 Batch Loss: 1.042653 Tokens per Sec: 15309, Lr: 0.000300\n",
"2019-11-26 12:29:18,434 Epoch 43 Step: 18500 Batch Loss: 1.022686 Tokens per Sec: 15217, Lr: 0.000300\n",
"2019-11-26 12:29:34,598 Epoch 43 Step: 18600 Batch Loss: 1.028972 Tokens per Sec: 15289, Lr: 0.000300\n",
"2019-11-26 12:29:50,739 Epoch 43 Step: 18700 Batch Loss: 0.827851 Tokens per Sec: 15141, Lr: 0.000300\n",
"2019-11-26 12:30:01,134 Epoch 43: total training loss 446.05\n",
"2019-11-26 12:30:01,134 EPOCH 44\n",
"2019-11-26 12:30:06,654 Epoch 44 Step: 18800 Batch Loss: 1.084404 Tokens per Sec: 15116, Lr: 0.000300\n",
"2019-11-26 12:30:22,742 Epoch 44 Step: 18900 Batch Loss: 1.109812 Tokens per Sec: 15308, Lr: 0.000300\n",
"2019-11-26 12:30:38,770 Epoch 44 Step: 19000 Batch Loss: 1.085626 Tokens per Sec: 15304, Lr: 0.000300\n",
"2019-11-26 12:30:54,953 Epoch 44 Step: 19100 Batch Loss: 1.026974 Tokens per Sec: 15263, Lr: 0.000300\n",
"2019-11-26 12:31:10,750 Epoch 44 Step: 19200 Batch Loss: 1.237570 Tokens per Sec: 14984, Lr: 0.000300\n",
"2019-11-26 12:31:11,552 Epoch 44: total training loss 440.61\n",
"2019-11-26 12:31:11,553 EPOCH 45\n",
"2019-11-26 12:31:26,641 Epoch 45 Step: 19300 Batch Loss: 1.067398 Tokens per Sec: 14833, Lr: 0.000300\n",
"2019-11-26 12:31:42,861 Epoch 45 Step: 19400 Batch Loss: 1.251102 Tokens per Sec: 15620, Lr: 0.000300\n",
"2019-11-26 12:31:58,694 Epoch 45 Step: 19500 Batch Loss: 1.193938 Tokens per Sec: 15227, Lr: 0.000300\n",
"2019-11-26 12:32:14,845 Epoch 45 Step: 19600 Batch Loss: 0.696879 Tokens per Sec: 15173, Lr: 0.000300\n",
"2019-11-26 12:32:21,965 Epoch 45: total training loss 436.23\n",
"2019-11-26 12:32:21,966 EPOCH 46\n",
"2019-11-26 12:32:31,142 Epoch 46 Step: 19700 Batch Loss: 1.393640 Tokens per Sec: 15139, Lr: 0.000300\n",
"2019-11-26 12:32:47,113 Epoch 46 Step: 19800 Batch Loss: 0.759225 Tokens per Sec: 15201, Lr: 0.000300\n",
"2019-11-26 12:33:03,042 Epoch 46 Step: 19900 Batch Loss: 1.119920 Tokens per Sec: 15071, Lr: 0.000300\n",
"2019-11-26 12:33:19,344 Epoch 46 Step: 20000 Batch Loss: 1.032209 Tokens per Sec: 15495, Lr: 0.000300\n",
"2019-11-26 12:34:08,487 Hooray! New best validation result [ppl]!\n",
"2019-11-26 12:34:08,488 Saving new checkpoint.\n",
"2019-11-26 12:34:08,793 Example #0\n",
"2019-11-26 12:34:08,793 \tSource: GEORGE LOCAL MUNICIPALITY: CONTACT\n",
"2019-11-26 12:34:08,793 \tReference: GEORGE PLAASLIKE MUNISIPALITEIT: KONTAK\n",
"2019-11-26 12:34:08,793 \tHypothesis: GEORGE PLAASLIKE MUNISIPALITEIT: KONTAK\n",
"2019-11-26 12:34:08,793 Example #1\n",
"2019-11-26 12:34:08,793 \tSource: The Drostdy\n",
"2019-11-26 12:34:08,793 \tReference: Die Drostdy\n",
"2019-11-26 12:34:08,794 \tHypothesis: Die Drostdy\n",
"2019-11-26 12:34:08,794 Example #2\n",
"2019-11-26 12:34:08,794 \tSource: the object of the second category of committees is to utilise the expertise of persons outside the commission and to ensure direct community involvement in the activities of the commission .\n",
"2019-11-26 12:34:08,794 \tReference: die doel van die tweede kategorie van komitees is om ook die kundigheid van persone buite die kommissie vir die kommissie se werksaamhede te benut en om direkte gemeenskapsbetrokkenheid te verseker .\n",
"2019-11-26 12:34:08,794 \tHypothesis: die voorwerp van die tweede kategorie van komitees is om die prestasie van persone buite die kommissie te verrig en om gemeenskapsbetrokkenheid te verseker in die aktiwiteite van die kommissie .\n",
"2019-11-26 12:34:08,794 Example #3\n",
"2019-11-26 12:34:08,794 \tSource: * private acts by individuals\n",
"2019-11-26 12:34:08,794 \tReference: * indiwidue se private optrede\n",
"2019-11-26 12:34:08,794 \tHypothesis: * private akte deur individue\n",
"2019-11-26 12:34:08,794 Validation result (greedy) at epoch 46, step 20000: bleu: 45.29, loss: 28165.5215, ppl: 3.3438, duration: 49.4499s\n",
"2019-11-26 12:34:21,853 Epoch 46: total training loss 433.22\n",
"2019-11-26 12:34:21,853 EPOCH 47\n",
"2019-11-26 12:34:24,766 Epoch 47 Step: 20100 Batch Loss: 0.468254 Tokens per Sec: 14227, Lr: 0.000300\n",
"2019-11-26 12:34:40,873 Epoch 47 Step: 20200 Batch Loss: 1.215164 Tokens per Sec: 15341, Lr: 0.000300\n",
"2019-11-26 12:34:56,979 Epoch 47 Step: 20300 Batch Loss: 0.461400 Tokens per Sec: 15495, Lr: 0.000300\n",
"2019-11-26 12:35:13,060 Epoch 47 Step: 20400 Batch Loss: 0.578643 Tokens per Sec: 15084, Lr: 0.000300\n",
"2019-11-26 12:35:29,084 Epoch 47 Step: 20500 Batch Loss: 1.248637 Tokens per Sec: 15181, Lr: 0.000300\n",
"2019-11-26 12:35:32,298 Epoch 47: total training loss 425.75\n",
"2019-11-26 12:35:32,298 EPOCH 48\n",
"2019-11-26 12:35:45,305 Epoch 48 Step: 20600 Batch Loss: 0.957772 Tokens per Sec: 15184, Lr: 0.000300\n",
"2019-11-26 12:36:01,312 Epoch 48 Step: 20700 Batch Loss: 1.181914 Tokens per Sec: 15048, Lr: 0.000300\n",
"2019-11-26 12:36:17,330 Epoch 48 Step: 20800 Batch Loss: 0.418090 Tokens per Sec: 15133, Lr: 0.000300\n",
"2019-11-26 12:36:33,632 Epoch 48 Step: 20900 Batch Loss: 1.357821 Tokens per Sec: 15282, Lr: 0.000300\n",
"2019-11-26 12:36:42,844 Epoch 48: total training loss 421.14\n",
"2019-11-26 12:36:42,844 EPOCH 49\n",
"2019-11-26 12:36:49,969 Epoch 49 Step: 21000 Batch Loss: 1.088681 Tokens per Sec: 15064, Lr: 0.000300\n",
"2019-11-26 12:37:05,778 Epoch 49 Step: 21100 Batch Loss: 0.738177 Tokens per Sec: 15012, Lr: 0.000300\n",
"2019-11-26 12:37:21,886 Epoch 49 Step: 21200 Batch Loss: 0.707294 Tokens per Sec: 15294, Lr: 0.000300\n",
"2019-11-26 12:37:38,156 Epoch 49 Step: 21300 Batch Loss: 1.099869 Tokens per Sec: 15548, Lr: 0.000300\n",
"2019-11-26 12:37:53,316 Epoch 49: total training loss 424.99\n",
"2019-11-26 12:37:53,316 EPOCH 50\n",
"2019-11-26 12:37:54,338 Epoch 50 Step: 21400 Batch Loss: 1.343167 Tokens per Sec: 13686, Lr: 0.000300\n",
"2019-11-26 12:38:10,322 Epoch 50 Step: 21500 Batch Loss: 1.236026 Tokens per Sec: 15273, Lr: 0.000300\n",
"2019-11-26 12:38:26,352 Epoch 50 Step: 21600 Batch Loss: 0.770427 Tokens per Sec: 15153, Lr: 0.000300\n",
"2019-11-26 12:38:42,469 Epoch 50 Step: 21700 Batch Loss: 0.912537 Tokens per Sec: 15479, Lr: 0.000300\n",
"2019-11-26 12:38:58,545 Epoch 50 Step: 21800 Batch Loss: 0.712236 Tokens per Sec: 15273, Lr: 0.000300\n",
"2019-11-26 12:39:03,509 Epoch 50: total training loss 415.63\n",
"2019-11-26 12:39:03,510 EPOCH 51\n",
"2019-11-26 12:39:14,675 Epoch 51 Step: 21900 Batch Loss: 0.610291 Tokens per Sec: 15019, Lr: 0.000300\n",
"2019-11-26 12:39:30,690 Epoch 51 Step: 22000 Batch Loss: 1.360288 Tokens per Sec: 15119, Lr: 0.000300\n",
"2019-11-26 12:40:19,739 Hooray! New best validation result [ppl]!\n",
"2019-11-26 12:40:19,740 Saving new checkpoint.\n",
"2019-11-26 12:40:20,033 Example #0\n",
"2019-11-26 12:40:20,034 \tSource: GEORGE LOCAL MUNICIPALITY: CONTACT\n",
"2019-11-26 12:40:20,034 \tReference: GEORGE PLAASLIKE MUNISIPALITEIT: KONTAK\n",
"2019-11-26 12:40:20,034 \tHypothesis: GEORGE PLAASLIKE MUNISIPALITEIT: KONTAK\n",
"2019-11-26 12:40:20,034 Example #1\n",
"2019-11-26 12:40:20,034 \tSource: The Drostdy\n",
"2019-11-26 12:40:20,034 \tReference: Die Drostdy\n",
"2019-11-26 12:40:20,034 \tHypothesis: Die Drostdy\n",
"2019-11-26 12:40:20,034 Example #2\n",
"2019-11-26 12:40:20,034 \tSource: the object of the second category of committees is to utilise the expertise of persons outside the commission and to ensure direct community involvement in the activities of the commission .\n",
"2019-11-26 12:40:20,034 \tReference: die doel van die tweede kategorie van komitees is om ook die kundigheid van persone buite die kommissie vir die kommissie se werksaamhede te benut en om direkte gemeenskapsbetrokkenheid te verseker .\n",
"2019-11-26 12:40:20,034 \tHypothesis: die voorwerp van die tweede kategorie van komitees is om die uitvoer van persone buite die kommissie te verrig en om gemeenskapsbetrokkenheid by die aktiwiteite van die kommissie te verseker .\n",
"2019-11-26 12:40:20,034 Example #3\n",
"2019-11-26 12:40:20,034 \tSource: * private acts by individuals\n",
"2019-11-26 12:40:20,035 \tReference: * indiwidue se private optrede\n",
"2019-11-26 12:40:20,035 \tHypothesis: * private aktiwiteite deur individue\n",
"2019-11-26 12:40:20,035 Validation result (greedy) at epoch 51, step 22000: bleu: 45.67, loss: 27861.9648, ppl: 3.3006, duration: 49.3443s\n",
"2019-11-26 12:40:35,990 Epoch 51 Step: 22100 Batch Loss: 0.817147 Tokens per Sec: 15144, Lr: 0.000300\n",
"2019-11-26 12:40:52,247 Epoch 51 Step: 22200 Batch Loss: 0.663797 Tokens per Sec: 15307, Lr: 0.000300\n",
"2019-11-26 12:41:03,320 Epoch 51: total training loss 408.61\n",
"2019-11-26 12:41:03,320 EPOCH 52\n",
"2019-11-26 12:41:08,379 Epoch 52 Step: 22300 Batch Loss: 0.925180 Tokens per Sec: 15338, Lr: 0.000300\n",
"2019-11-26 12:41:24,295 Epoch 52 Step: 22400 Batch Loss: 1.305108 Tokens per Sec: 15390, Lr: 0.000300\n",
"2019-11-26 12:41:40,358 Epoch 52 Step: 22500 Batch Loss: 0.610038 Tokens per Sec: 15234, Lr: 0.000300\n",
"2019-11-26 12:41:56,407 Epoch 52 Step: 22600 Batch Loss: 0.951900 Tokens per Sec: 15227, Lr: 0.000300\n",
"2019-11-26 12:42:12,500 Epoch 52 Step: 22700 Batch Loss: 1.455232 Tokens per Sec: 15229, Lr: 0.000300\n",
"2019-11-26 12:42:13,615 Epoch 52: total training loss 408.93\n",
"2019-11-26 12:42:13,616 EPOCH 53\n",
"2019-11-26 12:42:28,584 Epoch 53 Step: 22800 Batch Loss: 0.811055 Tokens per Sec: 15221, Lr: 0.000300\n",
"2019-11-26 12:42:44,659 Epoch 53 Step: 22900 Batch Loss: 0.992817 Tokens per Sec: 15176, Lr: 0.000300\n",
"2019-11-26 12:43:00,892 Epoch 53 Step: 23000 Batch Loss: 1.011394 Tokens per Sec: 15145, Lr: 0.000300\n",
"2019-11-26 12:43:16,895 Epoch 53 Step: 23100 Batch Loss: 0.627608 Tokens per Sec: 15258, Lr: 0.000300\n",
"2019-11-26 12:43:23,899 Epoch 53: total training loss 399.86\n",
"2019-11-26 12:43:23,900 EPOCH 54\n",
"2019-11-26 12:43:33,224 Epoch 54 Step: 23200 Batch Loss: 0.776448 Tokens per Sec: 15413, Lr: 0.000300\n",
"2019-11-26 12:43:49,284 Epoch 54 Step: 23300 Batch Loss: 0.541824 Tokens per Sec: 15024, Lr: 0.000300\n",
"2019-11-26 12:44:05,413 Epoch 54 Step: 23400 Batch Loss: 1.097711 Tokens per Sec: 15589, Lr: 0.000300\n",
"2019-11-26 12:44:21,358 Epoch 54 Step: 23500 Batch Loss: 0.652817 Tokens per Sec: 14880, Lr: 0.000300\n",
"2019-11-26 12:44:34,162 Epoch 54: total training loss 395.18\n",
"2019-11-26 12:44:34,162 EPOCH 55\n",
"2019-11-26 12:44:37,631 Epoch 55 Step: 23600 Batch Loss: 0.653211 Tokens per Sec: 14899, Lr: 0.000300\n",
"2019-11-26 12:44:53,779 Epoch 55 Step: 23700 Batch Loss: 0.817440 Tokens per Sec: 15327, Lr: 0.000300\n",
"2019-11-26 12:45:09,858 Epoch 55 Step: 23800 Batch Loss: 1.058987 Tokens per Sec: 15085, Lr: 0.000300\n",
"2019-11-26 12:45:26,080 Epoch 55 Step: 23900 Batch Loss: 1.008387 Tokens per Sec: 15448, Lr: 0.000300\n",
"2019-11-26 12:45:42,389 Epoch 55 Step: 24000 Batch Loss: 0.760989 Tokens per Sec: 15439, Lr: 0.000300\n",
"2019-11-26 12:46:31,554 Hooray! New best validation result [ppl]!\n",
"2019-11-26 12:46:31,554 Saving new checkpoint.\n",
"2019-11-26 12:46:31,862 Example #0\n",
"2019-11-26 12:46:31,862 \tSource: GEORGE LOCAL MUNICIPALITY: CONTACT\n",
"2019-11-26 12:46:31,862 \tReference: GEORGE PLAASLIKE MUNISIPALITEIT: KONTAK\n",
"2019-11-26 12:46:31,862 \tHypothesis: GEORGE PLAASLIKE MUNISIPALITEIT: KONTAK\n",
"2019-11-26 12:46:31,862 Example #1\n",
"2019-11-26 12:46:31,862 \tSource: The Drostdy\n",
"2019-11-26 12:46:31,862 \tReference: Die Drostdy\n",
"2019-11-26 12:46:31,862 \tHypothesis: Die Drostdy\n",
"2019-11-26 12:46:31,862 Example #2\n",
"2019-11-26 12:46:31,862 \tSource: the object of the second category of committees is to utilise the expertise of persons outside the commission and to ensure direct community involvement in the activities of the commission .\n",
"2019-11-26 12:46:31,862 \tReference: die doel van die tweede kategorie van komitees is om ook die kundigheid van persone buite die kommissie vir die kommissie se werksaamhede te benut en om direkte gemeenskapsbetrokkenheid te verseker .\n",
"2019-11-26 12:46:31,863 \tHypothesis: die voorwerp van die tweede kategorie van komitees is om die uitvoering van persone buite die kommissie te verrig en om gemeenskapsbetrokkenheid by die aktiwiteite van die kommissie te verseker .\n",
"2019-11-26 12:46:31,863 Example #3\n",
"2019-11-26 12:46:31,863 \tSource: * private acts by individuals\n",
"2019-11-26 12:46:31,863 \tReference: * indiwidue se private optrede\n",
"2019-11-26 12:46:31,863 \tHypothesis: * private akte deur individue\n",
"2019-11-26 12:46:31,863 Validation result (greedy) at epoch 55, step 24000: bleu: 47.06, loss: 27393.8047, ppl: 3.2350, duration: 49.4739s\n",
"2019-11-26 12:46:33,675 Epoch 55: total training loss 388.99\n",
"2019-11-26 12:46:33,676 EPOCH 56\n",
"2019-11-26 12:46:47,830 Epoch 56 Step: 24100 Batch Loss: 0.435184 Tokens per Sec: 14840, Lr: 0.000300\n",
"2019-11-26 12:47:03,916 Epoch 56 Step: 24200 Batch Loss: 0.777254 Tokens per Sec: 15185, Lr: 0.000300\n",
"2019-11-26 12:47:20,008 Epoch 56 Step: 24300 Batch Loss: 1.170903 Tokens per Sec: 15558, Lr: 0.000300\n",
"2019-11-26 12:47:36,393 Epoch 56 Step: 24400 Batch Loss: 0.976754 Tokens per Sec: 15367, Lr: 0.000300\n",
"2019-11-26 12:47:44,006 Epoch 56: total training loss 388.88\n",
"2019-11-26 12:47:44,006 EPOCH 57\n",
"2019-11-26 12:47:52,646 Epoch 57 Step: 24500 Batch Loss: 0.735243 Tokens per Sec: 15321, Lr: 0.000300\n",
"2019-11-26 12:48:08,770 Epoch 57 Step: 24600 Batch Loss: 1.187664 Tokens per Sec: 15045, Lr: 0.000300\n",
"2019-11-26 12:48:24,897 Epoch 57 Step: 24700 Batch Loss: 1.073763 Tokens per Sec: 15125, Lr: 0.000300\n",
"2019-11-26 12:48:41,008 Epoch 57 Step: 24800 Batch Loss: 0.665125 Tokens per Sec: 15157, Lr: 0.000300\n",
"2019-11-26 12:48:54,409 Epoch 57: total training loss 384.62\n",
"2019-11-26 12:48:54,409 EPOCH 58\n",
"2019-11-26 12:48:57,382 Epoch 58 Step: 24900 Batch Loss: 0.701790 Tokens per Sec: 15188, Lr: 0.000300\n",
"2019-11-26 12:49:13,541 Epoch 58 Step: 25000 Batch Loss: 1.179395 Tokens per Sec: 15134, Lr: 0.000300\n",
"2019-11-26 12:49:29,471 Epoch 58 Step: 25100 Batch Loss: 0.944794 Tokens per Sec: 14946, Lr: 0.000300\n",
"2019-11-26 12:49:45,669 Epoch 58 Step: 25200 Batch Loss: 0.907928 Tokens per Sec: 15309, Lr: 0.000300\n",
"2019-11-26 12:50:01,698 Epoch 58 Step: 25300 Batch Loss: 1.173214 Tokens per Sec: 15466, Lr: 0.000300\n",
"2019-11-26 12:50:04,882 Epoch 58: total training loss 384.27\n",
"2019-11-26 12:50:04,882 EPOCH 59\n",
"2019-11-26 12:50:17,875 Epoch 59 Step: 25400 Batch Loss: 0.998782 Tokens per Sec: 15550, Lr: 0.000300\n",
"2019-11-26 12:50:33,865 Epoch 59 Step: 25500 Batch Loss: 1.223902 Tokens per Sec: 15178, Lr: 0.000300\n",
"2019-11-26 12:50:49,993 Epoch 59 Step: 25600 Batch Loss: 1.320425 Tokens per Sec: 15353, Lr: 0.000300\n",
"2019-11-26 12:51:06,125 Epoch 59 Step: 25700 Batch Loss: 0.623917 Tokens per Sec: 15074, Lr: 0.000300\n",
"2019-11-26 12:51:15,376 Epoch 59: total training loss 380.87\n",
"2019-11-26 12:51:15,376 EPOCH 60\n",
"2019-11-26 12:51:22,285 Epoch 60 Step: 25800 Batch Loss: 1.006226 Tokens per Sec: 15034, Lr: 0.000300\n",
"2019-11-26 12:51:38,694 Epoch 60 Step: 25900 Batch Loss: 0.843723 Tokens per Sec: 14957, Lr: 0.000300\n",
"2019-11-26 12:51:54,693 Epoch 60 Step: 26000 Batch Loss: 0.444974 Tokens per Sec: 15440, Lr: 0.000300\n",
"2019-11-26 12:52:43,820 Hooray! New best validation result [ppl]!\n",
"2019-11-26 12:52:43,820 Saving new checkpoint.\n",
"2019-11-26 12:52:44,111 Example #0\n",
"2019-11-26 12:52:44,112 \tSource: GEORGE LOCAL MUNICIPALITY: CONTACT\n",
"2019-11-26 12:52:44,112 \tReference: GEORGE PLAASLIKE MUNISIPALITEIT: KONTAK\n",
"2019-11-26 12:52:44,112 \tHypothesis: GEORGE PLAASLIKE MUNISIPALITEIT: KONTAK\n",
"2019-11-26 12:52:44,112 Example #1\n",
"2019-11-26 12:52:44,112 \tSource: The Drostdy\n",
"2019-11-26 12:52:44,112 \tReference: Die Drostdy\n",
"2019-11-26 12:52:44,112 \tHypothesis: Die Drostdy\n",
"2019-11-26 12:52:44,113 Example #2\n",
"2019-11-26 12:52:44,113 \tSource: the object of the second category of committees is to utilise the expertise of persons outside the commission and to ensure direct community involvement in the activities of the commission .\n",
"2019-11-26 12:52:44,113 \tReference: die doel van die tweede kategorie van komitees is om ook die kundigheid van persone buite die kommissie vir die kommissie se werksaamhede te benut en om direkte gemeenskapsbetrokkenheid te verseker .\n",
"2019-11-26 12:52:44,113 \tHypothesis: die voorwerp van die tweede kategorie van komitees is om die uitvoering van persone buite die kommissie te verplig en om gemeenskapsbetrokkenheid by die aktiwiteite van die kommissie te verseker .\n",
"2019-11-26 12:52:44,113 Example #3\n",
"2019-11-26 12:52:44,113 \tSource: * private acts by individuals\n",
"2019-11-26 12:52:44,113 \tReference: * indiwidue se private optrede\n",
"2019-11-26 12:52:44,114 \tHypothesis: * private aktiwiteite deur individue\n",
"2019-11-26 12:52:44,114 Validation result (greedy) at epoch 60, step 26000: bleu: 47.45, loss: 26914.4805, ppl: 3.1692, duration: 49.4213s\n",
"2019-11-26 12:53:00,273 Epoch 60 Step: 26100 Batch Loss: 0.989446 Tokens per Sec: 15227, Lr: 0.000300\n",
"2019-11-26 12:53:15,584 Epoch 60: total training loss 376.27\n",
"2019-11-26 12:53:15,585 EPOCH 61\n",
"2019-11-26 12:53:16,397 Epoch 61 Step: 26200 Batch Loss: 0.575541 Tokens per Sec: 12867, Lr: 0.000300\n",
"2019-11-26 12:53:32,510 Epoch 61 Step: 26300 Batch Loss: 0.673162 Tokens per Sec: 15553, Lr: 0.000300\n",
"2019-11-26 12:53:48,457 Epoch 61 Step: 26400 Batch Loss: 0.687498 Tokens per Sec: 15051, Lr: 0.000300\n",
"2019-11-26 12:54:04,736 Epoch 61 Step: 26500 Batch Loss: 1.163097 Tokens per Sec: 15211, Lr: 0.000300\n",
"2019-11-26 12:54:20,588 Epoch 61 Step: 26600 Batch Loss: 0.736466 Tokens per Sec: 14963, Lr: 0.000300\n",
"2019-11-26 12:54:26,167 Epoch 61: total training loss 376.97\n",
"2019-11-26 12:54:26,167 EPOCH 62\n",
"2019-11-26 12:54:36,973 Epoch 62 Step: 26700 Batch Loss: 0.550314 Tokens per Sec: 15221, Lr: 0.000300\n",
"2019-11-26 12:54:52,867 Epoch 62 Step: 26800 Batch Loss: 1.064360 Tokens per Sec: 15105, Lr: 0.000300\n",
"2019-11-26 12:55:08,788 Epoch 62 Step: 26900 Batch Loss: 1.218435 Tokens per Sec: 15168, Lr: 0.000300\n",
"2019-11-26 12:55:24,851 Epoch 62 Step: 27000 Batch Loss: 1.178409 Tokens per Sec: 15256, Lr: 0.000300\n",
"2019-11-26 12:55:36,683 Epoch 62: total training loss 373.81\n",
"2019-11-26 12:55:36,683 EPOCH 63\n",
"2019-11-26 12:55:41,018 Epoch 63 Step: 27100 Batch Loss: 0.433264 Tokens per Sec: 14612, Lr: 0.000300\n",
"2019-11-26 12:55:57,274 Epoch 63 Step: 27200 Batch Loss: 0.690832 Tokens per Sec: 15475, Lr: 0.000300\n",
"2019-11-26 12:56:13,298 Epoch 63 Step: 27300 Batch Loss: 1.054951 Tokens per Sec: 15144, Lr: 0.000300\n",
"2019-11-26 12:56:29,503 Epoch 63 Step: 27400 Batch Loss: 0.663507 Tokens per Sec: 15662, Lr: 0.000300\n",
"2019-11-26 12:56:45,325 Epoch 63 Step: 27500 Batch Loss: 0.971017 Tokens per Sec: 14988, Lr: 0.000300\n",
"2019-11-26 12:56:46,909 Epoch 63: total training loss 367.83\n",
"2019-11-26 12:56:46,909 EPOCH 64\n",
"2019-11-26 12:57:01,375 Epoch 64 Step: 27600 Batch Loss: 1.309990 Tokens per Sec: 15379, Lr: 0.000300\n",
"2019-11-26 12:57:17,300 Epoch 64 Step: 27700 Batch Loss: 0.708928 Tokens per Sec: 15200, Lr: 0.000300\n",
"2019-11-26 12:57:33,597 Epoch 64 Step: 27800 Batch Loss: 0.759926 Tokens per Sec: 15742, Lr: 0.000300\n",
"2019-11-26 12:57:49,383 Epoch 64 Step: 27900 Batch Loss: 0.767020 Tokens per Sec: 15023, Lr: 0.000300\n",
"2019-11-26 12:57:56,928 Epoch 64: total training loss 365.45\n",
"2019-11-26 12:57:56,928 EPOCH 65\n",
"2019-11-26 12:58:05,349 Epoch 65 Step: 28000 Batch Loss: 1.017252 Tokens per Sec: 15326, Lr: 0.000300\n",
"2019-11-26 12:58:54,663 Hooray! New best validation result [ppl]!\n",
"2019-11-26 12:58:54,663 Saving new checkpoint.\n",
"2019-11-26 12:58:54,962 Example #0\n",
"2019-11-26 12:58:54,962 \tSource: GEORGE LOCAL MUNICIPALITY: CONTACT\n",
"2019-11-26 12:58:54,962 \tReference: GEORGE PLAASLIKE MUNISIPALITEIT: KONTAK\n",
"2019-11-26 12:58:54,962 \tHypothesis: GEORGE PLAASLIKE MUNISIPALITEIT: KONTAK\n",
"2019-11-26 12:58:54,962 Example #1\n",
"2019-11-26 12:58:54,962 \tSource: The Drostdy\n",
"2019-11-26 12:58:54,962 \tReference: Die Drostdy\n",
"2019-11-26 12:58:54,962 \tHypothesis: Die Drostdy\n",
"2019-11-26 12:58:54,962 Example #2\n",
"2019-11-26 12:58:54,963 \tSource: the object of the second category of committees is to utilise the expertise of persons outside the commission and to ensure direct community involvement in the activities of the commission .\n",
"2019-11-26 12:58:54,963 \tReference: die doel van die tweede kategorie van komitees is om ook die kundigheid van persone buite die kommissie vir die kommissie se werksaamhede te benut en om direkte gemeenskapsbetrokkenheid te verseker .\n",
"2019-11-26 12:58:54,963 \tHypothesis: die voorwerp van die tweede kategorie van komitees is om die uitvoering van persone buite die kommissie te verplig en om gemeenskapsbetrokkenheid by die aktiwiteite van die kommissie te verseker .\n",
"2019-11-26 12:58:54,963 Example #3\n",
"2019-11-26 12:58:54,963 \tSource: * private acts by individuals\n",
"2019-11-26 12:58:54,963 \tReference: * indiwidue se private optrede\n",
"2019-11-26 12:58:54,963 \tHypothesis: * private aktiwiteite deur individue\n",
"2019-11-26 12:58:54,963 Validation result (greedy) at epoch 65, step 28000: bleu: 47.00, loss: 26760.4766, ppl: 3.1484, duration: 49.6141s\n",
"2019-11-26 12:59:11,290 Epoch 65 Step: 28100 Batch Loss: 0.542845 Tokens per Sec: 14901, Lr: 0.000300\n",
"2019-11-26 12:59:27,794 Epoch 65 Step: 28200 Batch Loss: 0.637733 Tokens per Sec: 14801, Lr: 0.000300\n",
"2019-11-26 12:59:44,132 Epoch 65 Step: 28300 Batch Loss: 0.789681 Tokens per Sec: 15229, Lr: 0.000300\n",
"2019-11-26 12:59:57,706 Epoch 65: total training loss 361.99\n",
"2019-11-26 12:59:57,706 EPOCH 66\n",
"2019-11-26 13:00:00,397 Epoch 66 Step: 28400 Batch Loss: 0.498018 Tokens per Sec: 15255, Lr: 0.000300\n",
"2019-11-26 13:00:16,660 Epoch 66 Step: 28500 Batch Loss: 0.784142 Tokens per Sec: 15059, Lr: 0.000300\n",
"2019-11-26 13:00:32,896 Epoch 66 Step: 28600 Batch Loss: 1.109083 Tokens per Sec: 15053, Lr: 0.000300\n",
"2019-11-26 13:00:49,245 Epoch 66 Step: 28700 Batch Loss: 0.537676 Tokens per Sec: 15134, Lr: 0.000300\n",
"2019-11-26 13:01:05,438 Epoch 66 Step: 28800 Batch Loss: 0.826802 Tokens per Sec: 15258, Lr: 0.000300\n",
"2019-11-26 13:01:08,645 Epoch 66: total training loss 357.63\n",
"2019-11-26 13:01:08,645 EPOCH 67\n",
"2019-11-26 13:01:21,714 Epoch 67 Step: 28900 Batch Loss: 0.987926 Tokens per Sec: 15226, Lr: 0.000300\n",
"2019-11-26 13:01:38,055 Epoch 67 Step: 29000 Batch Loss: 0.745742 Tokens per Sec: 15080, Lr: 0.000300\n",
"2019-11-26 13:01:54,296 Epoch 67 Step: 29100 Batch Loss: 0.377114 Tokens per Sec: 15214, Lr: 0.000300\n",
"2019-11-26 13:02:10,495 Epoch 67 Step: 29200 Batch Loss: 0.678766 Tokens per Sec: 15277, Lr: 0.000300\n",
"2019-11-26 13:02:19,452 Epoch 67: total training loss 355.98\n",
"2019-11-26 13:02:19,452 EPOCH 68\n",
"2019-11-26 13:02:26,590 Epoch 68 Step: 29300 Batch Loss: 0.721982 Tokens per Sec: 15453, Lr: 0.000300\n",
"2019-11-26 13:02:42,437 Epoch 68 Step: 29400 Batch Loss: 0.919434 Tokens per Sec: 14818, Lr: 0.000300\n",
"2019-11-26 13:02:58,542 Epoch 68 Step: 29500 Batch Loss: 0.370095 Tokens per Sec: 15163, Lr: 0.000300\n",
"2019-11-26 13:03:15,036 Epoch 68 Step: 29600 Batch Loss: 0.557850 Tokens per Sec: 15233, Lr: 0.000300\n",
"2019-11-26 13:03:30,402 Epoch 68: total training loss 354.75\n",
"2019-11-26 13:03:30,403 EPOCH 69\n",
"2019-11-26 13:03:31,349 Epoch 69 Step: 29700 Batch Loss: 0.982612 Tokens per Sec: 15084, Lr: 0.000300\n",
"2019-11-26 13:03:47,578 Epoch 69 Step: 29800 Batch Loss: 0.917254 Tokens per Sec: 15089, Lr: 0.000300\n",
"2019-11-26 13:04:03,805 Epoch 69 Step: 29900 Batch Loss: 0.886195 Tokens per Sec: 15005, Lr: 0.000300\n",
"2019-11-26 13:04:19,939 Epoch 69 Step: 30000 Batch Loss: 0.775156 Tokens per Sec: 15081, Lr: 0.000300\n",
"2019-11-26 13:05:09,194 Hooray! New best validation result [ppl]!\n",
"2019-11-26 13:05:09,194 Saving new checkpoint.\n",
"2019-11-26 13:05:09,494 Example #0\n",
"2019-11-26 13:05:09,494 \tSource: GEORGE LOCAL MUNICIPALITY: CONTACT\n",
"2019-11-26 13:05:09,494 \tReference: GEORGE PLAASLIKE MUNISIPALITEIT: KONTAK\n",
"2019-11-26 13:05:09,494 \tHypothesis: GEORGE PLAASLIKE MUNISIPALITEIT: KONTAK\n",
"2019-11-26 13:05:09,494 Example #1\n",
"2019-11-26 13:05:09,495 \tSource: The Drostdy\n",
"2019-11-26 13:05:09,495 \tReference: Die Drostdy\n",
"2019-11-26 13:05:09,495 \tHypothesis: Die Drostdy\n",
"2019-11-26 13:05:09,495 Example #2\n",
"2019-11-26 13:05:09,495 \tSource: the object of the second category of committees is to utilise the expertise of persons outside the commission and to ensure direct community involvement in the activities of the commission .\n",
"2019-11-26 13:05:09,495 \tReference: die doel van die tweede kategorie van komitees is om ook die kundigheid van persone buite die kommissie vir die kommissie se werksaamhede te benut en om direkte gemeenskapsbetrokkenheid te verseker .\n",
"2019-11-26 13:05:09,495 \tHypothesis: die voorwerp van die tweede kategorie van komitees is om die uitvoer van persone buite die kommissie te verrig en te verseker dat gemeenskapsbetrokkenheid by die aktiwiteite van die kommissie betrokke is .\n",
"2019-11-26 13:05:09,495 Example #3\n",
"2019-11-26 13:05:09,495 \tSource: * private acts by individuals\n",
"2019-11-26 13:05:09,495 \tReference: * indiwidue se private optrede\n",
"2019-11-26 13:05:09,495 \tHypothesis: * private akte deur individue\n",
"2019-11-26 13:05:09,495 Validation result (greedy) at epoch 69, step 30000: bleu: 47.77, loss: 26577.5254, ppl: 3.1238, duration: 49.5561s\n",
"2019-11-26 13:05:25,880 Epoch 69 Step: 30100 Batch Loss: 0.887959 Tokens per Sec: 15364, Lr: 0.000300\n",
"2019-11-26 13:05:30,743 Epoch 69: total training loss 350.43\n",
"2019-11-26 13:05:30,743 EPOCH 70\n",
"2019-11-26 13:05:41,846 Epoch 70 Step: 30200 Batch Loss: 0.631063 Tokens per Sec: 14963, Lr: 0.000300\n",
"2019-11-26 13:05:58,055 Epoch 70 Step: 30300 Batch Loss: 0.611507 Tokens per Sec: 15184, Lr: 0.000300\n",
"2019-11-26 13:06:14,201 Epoch 70 Step: 30400 Batch Loss: 0.539814 Tokens per Sec: 15244, Lr: 0.000300\n",
"2019-11-26 13:06:30,591 Epoch 70 Step: 30500 Batch Loss: 1.071048 Tokens per Sec: 15352, Lr: 0.000300\n",
"2019-11-26 13:06:41,451 Epoch 70: total training loss 351.13\n",
"2019-11-26 13:06:41,451 EPOCH 71\n",
"2019-11-26 13:06:46,726 Epoch 71 Step: 30600 Batch Loss: 0.711578 Tokens per Sec: 15386, Lr: 0.000300\n",
"2019-11-26 13:07:02,862 Epoch 71 Step: 30700 Batch Loss: 0.814951 Tokens per Sec: 14923, Lr: 0.000300\n",
"2019-11-26 13:07:19,091 Epoch 71 Step: 30800 Batch Loss: 1.108014 Tokens per Sec: 15314, Lr: 0.000300\n",
"2019-11-26 13:07:35,279 Epoch 71 Step: 30900 Batch Loss: 0.923361 Tokens per Sec: 15218, Lr: 0.000300\n",
"2019-11-26 13:07:51,504 Epoch 71 Step: 31000 Batch Loss: 0.925191 Tokens per Sec: 14991, Lr: 0.000300\n",
"2019-11-26 13:07:52,322 Epoch 71: total training loss 348.45\n",
"2019-11-26 13:07:52,322 EPOCH 72\n",
"2019-11-26 13:08:07,849 Epoch 72 Step: 31100 Batch Loss: 1.060984 Tokens per Sec: 15239, Lr: 0.000300\n",
"2019-11-26 13:08:23,939 Epoch 72 Step: 31200 Batch Loss: 0.665788 Tokens per Sec: 15055, Lr: 0.000300\n",
"2019-11-26 13:08:40,298 Epoch 72 Step: 31300 Batch Loss: 1.167653 Tokens per Sec: 15369, Lr: 0.000300\n",
"2019-11-26 13:08:56,488 Epoch 72 Step: 31400 Batch Loss: 0.965262 Tokens per Sec: 14999, Lr: 0.000300\n",
"2019-11-26 13:09:03,006 Epoch 72: total training loss 342.94\n",
"2019-11-26 13:09:03,006 EPOCH 73\n",
"2019-11-26 13:09:12,876 Epoch 73 Step: 31500 Batch Loss: 1.073630 Tokens per Sec: 15205, Lr: 0.000300\n",
"2019-11-26 13:09:29,245 Epoch 73 Step: 31600 Batch Loss: 0.324575 Tokens per Sec: 15429, Lr: 0.000300\n",
"2019-11-26 13:09:45,104 Epoch 73 Step: 31700 Batch Loss: 1.072775 Tokens per Sec: 14945, Lr: 0.000300\n",
"2019-11-26 13:10:01,039 Epoch 73 Step: 31800 Batch Loss: 0.528711 Tokens per Sec: 14972, Lr: 0.000300\n",
"2019-11-26 13:10:13,539 Epoch 73: total training loss 342.31\n",
"2019-11-26 13:10:13,540 EPOCH 74\n",
"2019-11-26 13:10:17,500 Epoch 74 Step: 31900 Batch Loss: 0.875707 Tokens per Sec: 14605, Lr: 0.000300\n",
"2019-11-26 13:10:33,860 Epoch 74 Step: 32000 Batch Loss: 0.853001 Tokens per Sec: 15452, Lr: 0.000300\n",
"2019-11-26 13:11:23,031 Hooray! New best validation result [ppl]!\n",
"2019-11-26 13:11:23,031 Saving new checkpoint.\n",
"2019-11-26 13:11:23,334 Example #0\n",
"2019-11-26 13:11:23,335 \tSource: GEORGE LOCAL MUNICIPALITY: CONTACT\n",
"2019-11-26 13:11:23,335 \tReference: GEORGE PLAASLIKE MUNISIPALITEIT: KONTAK\n",
"2019-11-26 13:11:23,335 \tHypothesis: GEORGE PLAASLIKE MUNISIPALITEIT: KONTAK\n",
"2019-11-26 13:11:23,335 Example #1\n",
"2019-11-26 13:11:23,335 \tSource: The Drostdy\n",
"2019-11-26 13:11:23,335 \tReference: Die Drostdy\n",
"2019-11-26 13:11:23,335 \tHypothesis: Die Drostdy\n",
"2019-11-26 13:11:23,336 Example #2\n",
"2019-11-26 13:11:23,336 \tSource: the object of the second category of committees is to utilise the expertise of persons outside the commission and to ensure direct community involvement in the activities of the commission .\n",
"2019-11-26 13:11:23,336 \tReference: die doel van die tweede kategorie van komitees is om ook die kundigheid van persone buite die kommissie vir die kommissie se werksaamhede te benut en om direkte gemeenskapsbetrokkenheid te verseker .\n",
"2019-11-26 13:11:23,336 \tHypothesis: die voorwerp van die tweede kategorie van komitees is om die uitvoer van persone buite die kommissie te verplig en om gemeenskapsbetrokkenheid in die aktiwiteite van die kommissie te verseker .\n",
"2019-11-26 13:11:23,336 Example #3\n",
"2019-11-26 13:11:23,336 \tSource: * private acts by individuals\n",
"2019-11-26 13:11:23,336 \tReference: * indiwidue se private optrede\n",
"2019-11-26 13:11:23,336 \tHypothesis: * private akte deur individue\n",
"2019-11-26 13:11:23,336 Validation result (greedy) at epoch 74, step 32000: bleu: 49.18, loss: 26218.0801, ppl: 3.0761, duration: 49.4765s\n",
"2019-11-26 13:11:39,405 Epoch 74 Step: 32100 Batch Loss: 0.682031 Tokens per Sec: 15277, Lr: 0.000300\n",
"2019-11-26 13:11:55,492 Epoch 74 Step: 32200 Batch Loss: 0.591827 Tokens per Sec: 15119, Lr: 0.000300\n",
"2019-11-26 13:12:11,506 Epoch 74 Step: 32300 Batch Loss: 1.013833 Tokens per Sec: 15392, Lr: 0.000300\n",
"2019-11-26 13:12:13,305 Epoch 74: total training loss 337.46\n",
"2019-11-26 13:12:13,306 EPOCH 75\n",
"2019-11-26 13:12:27,542 Epoch 75 Step: 32400 Batch Loss: 1.147855 Tokens per Sec: 15091, Lr: 0.000300\n",
"2019-11-26 13:12:43,678 Epoch 75 Step: 32500 Batch Loss: 0.578004 Tokens per Sec: 15168, Lr: 0.000300\n",
"2019-11-26 13:12:59,743 Epoch 75 Step: 32600 Batch Loss: 0.668102 Tokens per Sec: 15015, Lr: 0.000300\n",
"2019-11-26 13:13:15,971 Epoch 75 Step: 32700 Batch Loss: 0.725984 Tokens per Sec: 15305, Lr: 0.000300\n",
"2019-11-26 13:13:23,987 Epoch 75: total training loss 338.22\n",
"2019-11-26 13:13:23,988 EPOCH 76\n",
"2019-11-26 13:13:32,069 Epoch 76 Step: 32800 Batch Loss: 0.544484 Tokens per Sec: 15270, Lr: 0.000300\n",
"2019-11-26 13:13:48,121 Epoch 76 Step: 32900 Batch Loss: 0.547336 Tokens per Sec: 15005, Lr: 0.000300\n",
"2019-11-26 13:14:04,291 Epoch 76 Step: 33000 Batch Loss: 1.006842 Tokens per Sec: 15109, Lr: 0.000300\n",
"2019-11-26 13:14:20,384 Epoch 76 Step: 33100 Batch Loss: 0.723646 Tokens per Sec: 15522, Lr: 0.000300\n",
"2019-11-26 13:14:34,480 Epoch 76: total training loss 336.95\n",
"2019-11-26 13:14:34,480 EPOCH 77\n",
"2019-11-26 13:14:36,548 Epoch 77 Step: 33200 Batch Loss: 1.025953 Tokens per Sec: 15535, Lr: 0.000300\n",
"2019-11-26 13:14:52,589 Epoch 77 Step: 33300 Batch Loss: 1.019696 Tokens per Sec: 15200, Lr: 0.000300\n",
"2019-11-26 13:15:08,822 Epoch 77 Step: 33400 Batch Loss: 0.669594 Tokens per Sec: 15209, Lr: 0.000300\n",
"2019-11-26 13:15:24,993 Epoch 77 Step: 33500 Batch Loss: 0.671676 Tokens per Sec: 15374, Lr: 0.000300\n",
"2019-11-26 13:15:40,984 Epoch 77 Step: 33600 Batch Loss: 0.650119 Tokens per Sec: 15199, Lr: 0.000300\n",
"2019-11-26 13:15:44,736 Epoch 77: total training loss 332.27\n",
"2019-11-26 13:15:44,736 EPOCH 78\n",
"2019-11-26 13:15:57,337 Epoch 78 Step: 33700 Batch Loss: 0.544939 Tokens per Sec: 15133, Lr: 0.000300\n",
"2019-11-26 13:16:13,560 Epoch 78 Step: 33800 Batch Loss: 0.922034 Tokens per Sec: 15277, Lr: 0.000300\n",
"2019-11-26 13:16:29,537 Epoch 78 Step: 33900 Batch Loss: 1.048963 Tokens per Sec: 15282, Lr: 0.000300\n",
"2019-11-26 13:16:45,623 Epoch 78 Step: 34000 Batch Loss: 0.721920 Tokens per Sec: 15424, Lr: 0.000300\n",
"2019-11-26 13:17:34,750 Hooray! New best validation result [ppl]!\n",
"2019-11-26 13:17:34,750 Saving new checkpoint.\n",
"2019-11-26 13:17:35,073 Example #0\n",
"2019-11-26 13:17:35,073 \tSource: GEORGE LOCAL MUNICIPALITY: CONTACT\n",
"2019-11-26 13:17:35,073 \tReference: GEORGE PLAASLIKE MUNISIPALITEIT: KONTAK\n",
"2019-11-26 13:17:35,073 \tHypothesis: GEORGE PLAASLIKE MUNISIPALITEIT: KONTAK\n",
"2019-11-26 13:17:35,073 Example #1\n",
"2019-11-26 13:17:35,073 \tSource: The Drostdy\n",
"2019-11-26 13:17:35,074 \tReference: Die Drostdy\n",
"2019-11-26 13:17:35,074 \tHypothesis: Die Drostdy\n",
"2019-11-26 13:17:35,074 Example #2\n",
"2019-11-26 13:17:35,074 \tSource: the object of the second category of committees is to utilise the expertise of persons outside the commission and to ensure direct community involvement in the activities of the commission .\n",
"2019-11-26 13:17:35,074 \tReference: die doel van die tweede kategorie van komitees is om ook die kundigheid van persone buite die kommissie vir die kommissie se werksaamhede te benut en om direkte gemeenskapsbetrokkenheid te verseker .\n",
"2019-11-26 13:17:35,074 \tHypothesis: die voorwerp van die tweede kategorie van komitees is om die presiese kennis van persone buite die kommissie te verrig en om regstreekse betrokkenheid te verseker in die aktiwiteite van die kommissie .\n",
"2019-11-26 13:17:35,074 Example #3\n",
"2019-11-26 13:17:35,074 \tSource: * private acts by individuals\n",
"2019-11-26 13:17:35,074 \tReference: * indiwidue se private optrede\n",
"2019-11-26 13:17:35,074 \tHypothesis: * private aktiwiteite deur individue\n",
"2019-11-26 13:17:35,074 Validation result (greedy) at epoch 78, step 34000: bleu: 49.27, loss: 26035.1660, ppl: 3.0520, duration: 49.4508s\n",
"2019-11-26 13:17:44,581 Epoch 78: total training loss 331.04\n",
"2019-11-26 13:17:44,581 EPOCH 79\n",
"2019-11-26 13:17:51,227 Epoch 79 Step: 34100 Batch Loss: 0.854058 Tokens per Sec: 14864, Lr: 0.000300\n",
"2019-11-26 13:18:07,396 Epoch 79 Step: 34200 Batch Loss: 0.748328 Tokens per Sec: 15361, Lr: 0.000300\n",
"2019-11-26 13:18:23,437 Epoch 79 Step: 34300 Batch Loss: 0.907164 Tokens per Sec: 14928, Lr: 0.000300\n",
"2019-11-26 13:18:39,561 Epoch 79 Step: 34400 Batch Loss: 0.965993 Tokens per Sec: 15413, Lr: 0.000300\n",
"2019-11-26 13:18:54,879 Epoch 79: total training loss 328.70\n",
"2019-11-26 13:18:54,879 EPOCH 80\n",
"2019-11-26 13:18:55,753 Epoch 80 Step: 34500 Batch Loss: 1.017356 Tokens per Sec: 12591, Lr: 0.000300\n",
"2019-11-26 13:19:11,952 Epoch 80 Step: 34600 Batch Loss: 0.848761 Tokens per Sec: 15422, Lr: 0.000300\n",
"2019-11-26 13:19:28,000 Epoch 80 Step: 34700 Batch Loss: 0.715679 Tokens per Sec: 15278, Lr: 0.000300\n",
"2019-11-26 13:19:43,964 Epoch 80 Step: 34800 Batch Loss: 0.535557 Tokens per Sec: 14932, Lr: 0.000300\n",
"2019-11-26 13:19:59,921 Epoch 80 Step: 34900 Batch Loss: 0.861750 Tokens per Sec: 15064, Lr: 0.000300\n",
"2019-11-26 13:20:05,480 Epoch 80: total training loss 329.55\n",
"2019-11-26 13:20:05,480 EPOCH 81\n",
"2019-11-26 13:20:16,149 Epoch 81 Step: 35000 Batch Loss: 1.011204 Tokens per Sec: 15059, Lr: 0.000300\n",
"2019-11-26 13:20:32,245 Epoch 81 Step: 35100 Batch Loss: 0.744987 Tokens per Sec: 14999, Lr: 0.000300\n",
"2019-11-26 13:20:48,366 Epoch 81 Step: 35200 Batch Loss: 0.741128 Tokens per Sec: 15498, Lr: 0.000300\n",
"2019-11-26 13:21:04,459 Epoch 81 Step: 35300 Batch Loss: 0.439612 Tokens per Sec: 15167, Lr: 0.000300\n",
"2019-11-26 13:21:15,929 Epoch 81: total training loss 324.50\n",
"2019-11-26 13:21:15,929 EPOCH 82\n",
"2019-11-26 13:21:20,728 Epoch 82 Step: 35400 Batch Loss: 0.640325 Tokens per Sec: 14950, Lr: 0.000300\n",
"2019-11-26 13:21:36,610 Epoch 82 Step: 35500 Batch Loss: 0.623967 Tokens per Sec: 14980, Lr: 0.000300\n",
"2019-11-26 13:21:52,849 Epoch 82 Step: 35600 Batch Loss: 0.806691 Tokens per Sec: 15303, Lr: 0.000300\n",
"2019-11-26 13:22:09,099 Epoch 82 Step: 35700 Batch Loss: 0.562056 Tokens per Sec: 15388, Lr: 0.000300\n",
"2019-11-26 13:22:25,086 Epoch 82 Step: 35800 Batch Loss: 0.864480 Tokens per Sec: 15084, Lr: 0.000300\n",
"2019-11-26 13:22:26,565 Epoch 82: total training loss 323.27\n",
"2019-11-26 13:22:26,566 EPOCH 83\n",
"2019-11-26 13:22:41,166 Epoch 83 Step: 35900 Batch Loss: 0.389210 Tokens per Sec: 15278, Lr: 0.000300\n",
"2019-11-26 13:22:57,289 Epoch 83 Step: 36000 Batch Loss: 0.587104 Tokens per Sec: 15225, Lr: 0.000300\n",
"2019-11-26 13:23:46,417 Hooray! New best validation result [ppl]!\n",
"2019-11-26 13:23:46,418 Saving new checkpoint.\n",
"2019-11-26 13:23:46,719 Example #0\n",
"2019-11-26 13:23:46,720 \tSource: GEORGE LOCAL MUNICIPALITY: CONTACT\n",
"2019-11-26 13:23:46,720 \tReference: GEORGE PLAASLIKE MUNISIPALITEIT: KONTAK\n",
"2019-11-26 13:23:46,720 \tHypothesis: GEORGE PLAASLIKE MUNISIPALITEIT: KONTAK\n",
"2019-11-26 13:23:46,720 Example #1\n",
"2019-11-26 13:23:46,720 \tSource: The Drostdy\n",
"2019-11-26 13:23:46,720 \tReference: Die Drostdy\n",
"2019-11-26 13:23:46,720 \tHypothesis: Die Drostdy\n",
"2019-11-26 13:23:46,720 Example #2\n",
"2019-11-26 13:23:46,720 \tSource: the object of the second category of committees is to utilise the expertise of persons outside the commission and to ensure direct community involvement in the activities of the commission .\n",
"2019-11-26 13:23:46,720 \tReference: die doel van die tweede kategorie van komitees is om ook die kundigheid van persone buite die kommissie vir die kommissie se werksaamhede te benut en om direkte gemeenskapsbetrokkenheid te verseker .\n",
"2019-11-26 13:23:46,720 \tHypothesis: die voorwerp van die tweede kategorie van komitees is om die kundigheid van persone buite die kommissie te verrig en om gemeenskapsbetrokkenheid te verseker in die aktiwiteite van die kommissie .\n",
"2019-11-26 13:23:46,720 Example #3\n",
"2019-11-26 13:23:46,721 \tSource: * private acts by individuals\n",
"2019-11-26 13:23:46,721 \tReference: * indiwidue se private optrede\n",
"2019-11-26 13:23:46,721 \tHypothesis: * private akte deur individue\n",
"2019-11-26 13:23:46,721 Validation result (greedy) at epoch 83, step 36000: bleu: 49.67, loss: 25899.0938, ppl: 3.0343, duration: 49.4310s\n",
"2019-11-26 13:24:03,098 Epoch 83 Step: 36100 Batch Loss: 0.924729 Tokens per Sec: 15170, Lr: 0.000300\n",
"2019-11-26 13:24:19,307 Epoch 83 Step: 36200 Batch Loss: 0.973561 Tokens per Sec: 14914, Lr: 0.000300\n",
"2019-11-26 13:24:26,586 Epoch 83: total training loss 319.50\n",
"2019-11-26 13:24:26,586 EPOCH 84\n",
"2019-11-26 13:24:35,572 Epoch 84 Step: 36300 Batch Loss: 0.934725 Tokens per Sec: 15152, Lr: 0.000300\n",
"2019-11-26 13:24:51,748 Epoch 84 Step: 36400 Batch Loss: 0.762359 Tokens per Sec: 15118, Lr: 0.000300\n",
"2019-11-26 13:25:07,966 Epoch 84 Step: 36500 Batch Loss: 0.696560 Tokens per Sec: 15168, Lr: 0.000300\n",
"2019-11-26 13:25:24,099 Epoch 84 Step: 36600 Batch Loss: 0.438995 Tokens per Sec: 15300, Lr: 0.000300\n",
"2019-11-26 13:25:37,164 Epoch 84: total training loss 317.51\n",
"2019-11-26 13:25:37,164 EPOCH 85\n",
"2019-11-26 13:25:40,351 Epoch 85 Step: 36700 Batch Loss: 0.583036 Tokens per Sec: 14714, Lr: 0.000300\n",
"2019-11-26 13:25:56,375 Epoch 85 Step: 36800 Batch Loss: 0.678274 Tokens per Sec: 15186, Lr: 0.000300\n",
"2019-11-26 13:26:12,684 Epoch 85 Step: 36900 Batch Loss: 0.599494 Tokens per Sec: 15311, Lr: 0.000300\n",
"2019-11-26 13:26:28,685 Epoch 85 Step: 37000 Batch Loss: 1.023514 Tokens per Sec: 15295, Lr: 0.000300\n",
"2019-11-26 13:26:45,006 Epoch 85 Step: 37100 Batch Loss: 0.721533 Tokens per Sec: 15170, Lr: 0.000300\n",
"2019-11-26 13:26:47,724 Epoch 85: total training loss 316.44\n",
"2019-11-26 13:26:47,724 EPOCH 86\n",
"2019-11-26 13:27:01,176 Epoch 86 Step: 37200 Batch Loss: 0.839128 Tokens per Sec: 15268, Lr: 0.000300\n",
"2019-11-26 13:27:17,346 Epoch 86 Step: 37300 Batch Loss: 0.734333 Tokens per Sec: 15305, Lr: 0.000300\n",
"2019-11-26 13:27:33,374 Epoch 86 Step: 37400 Batch Loss: 0.508487 Tokens per Sec: 15344, Lr: 0.000300\n",
"2019-11-26 13:27:49,688 Epoch 86 Step: 37500 Batch Loss: 1.090178 Tokens per Sec: 15320, Lr: 0.000300\n",
"2019-11-26 13:27:57,890 Epoch 86: total training loss 313.48\n",
"2019-11-26 13:27:57,890 EPOCH 87\n",
"2019-11-26 13:28:05,851 Epoch 87 Step: 37600 Batch Loss: 0.479971 Tokens per Sec: 15041, Lr: 0.000300\n",
"2019-11-26 13:28:22,097 Epoch 87 Step: 37700 Batch Loss: 0.454109 Tokens per Sec: 15331, Lr: 0.000300\n",
"2019-11-26 13:28:38,159 Epoch 87 Step: 37800 Batch Loss: 0.441764 Tokens per Sec: 15315, Lr: 0.000300\n",
"2019-11-26 13:28:54,355 Epoch 87 Step: 37900 Batch Loss: 0.903597 Tokens per Sec: 15444, Lr: 0.000300\n",
"2019-11-26 13:29:08,252 Epoch 87: total training loss 311.77\n",
"2019-11-26 13:29:08,253 EPOCH 88\n",
"2019-11-26 13:29:10,382 Epoch 88 Step: 38000 Batch Loss: 0.977019 Tokens per Sec: 14602, Lr: 0.000300\n",
"2019-11-26 13:29:59,453 Hooray! New best validation result [ppl]!\n",
"2019-11-26 13:29:59,453 Saving new checkpoint.\n",
"2019-11-26 13:29:59,765 Example #0\n",
"2019-11-26 13:29:59,765 \tSource: GEORGE LOCAL MUNICIPALITY: CONTACT\n",
"2019-11-26 13:29:59,765 \tReference: GEORGE PLAASLIKE MUNISIPALITEIT: KONTAK\n",
"2019-11-26 13:29:59,765 \tHypothesis: GEORGE PLAASLIKE MUNISIPALITEIT: KONTAK\n",
"2019-11-26 13:29:59,765 Example #1\n",
"2019-11-26 13:29:59,766 \tSource: The Drostdy\n",
"2019-11-26 13:29:59,766 \tReference: Die Drostdy\n",
"2019-11-26 13:29:59,766 \tHypothesis: Die Drostdy\n",
"2019-11-26 13:29:59,766 Example #2\n",
"2019-11-26 13:29:59,766 \tSource: the object of the second category of committees is to utilise the expertise of persons outside the commission and to ensure direct community involvement in the activities of the commission .\n",
"2019-11-26 13:29:59,766 \tReference: die doel van die tweede kategorie van komitees is om ook die kundigheid van persone buite die kommissie vir die kommissie se werksaamhede te benut en om direkte gemeenskapsbetrokkenheid te verseker .\n",
"2019-11-26 13:29:59,766 \tHypothesis: die voorwerp van die tweede kategorie van komitees is om die kundigheid van persone buite die kommissie te verplig en om gemeenskapsbetrokkenheid by die aktiwiteite van die kommissie te verseker .\n",
"2019-11-26 13:29:59,766 Example #3\n",
"2019-11-26 13:29:59,766 \tSource: * private acts by individuals\n",
"2019-11-26 13:29:59,766 \tReference: * indiwidue se private optrede\n",
"2019-11-26 13:29:59,766 \tHypothesis: * private akte deur individue\n",
"2019-11-26 13:29:59,766 Validation result (greedy) at epoch 88, step 38000: bleu: 50.04, loss: 25706.0918, ppl: 3.0093, duration: 49.3840s\n",
"2019-11-26 13:30:16,101 Epoch 88 Step: 38100 Batch Loss: 0.665654 Tokens per Sec: 15339, Lr: 0.000300\n",
"2019-11-26 13:30:32,225 Epoch 88 Step: 38200 Batch Loss: 0.896674 Tokens per Sec: 15138, Lr: 0.000300\n",
"2019-11-26 13:30:48,275 Epoch 88 Step: 38300 Batch Loss: 0.852050 Tokens per Sec: 15208, Lr: 0.000300\n",
"2019-11-26 13:31:04,404 Epoch 88 Step: 38400 Batch Loss: 0.578186 Tokens per Sec: 15370, Lr: 0.000300\n",
"2019-11-26 13:31:07,957 Epoch 88: total training loss 309.43\n",
"2019-11-26 13:31:07,957 EPOCH 89\n",
"2019-11-26 13:31:20,442 Epoch 89 Step: 38500 Batch Loss: 0.734052 Tokens per Sec: 14887, Lr: 0.000300\n",
"2019-11-26 13:31:36,694 Epoch 89 Step: 38600 Batch Loss: 0.467864 Tokens per Sec: 15335, Lr: 0.000300\n",
"2019-11-26 13:31:52,862 Epoch 89 Step: 38700 Batch Loss: 0.987611 Tokens per Sec: 15180, Lr: 0.000300\n",
"2019-11-26 13:32:08,826 Epoch 89 Step: 38800 Batch Loss: 0.947608 Tokens per Sec: 15310, Lr: 0.000300\n",
"2019-11-26 13:32:18,337 Epoch 89: total training loss 309.07\n",
"2019-11-26 13:32:18,337 EPOCH 90\n",
"2019-11-26 13:32:24,927 Epoch 90 Step: 38900 Batch Loss: 0.760241 Tokens per Sec: 14917, Lr: 0.000300\n",
"2019-11-26 13:32:41,115 Epoch 90 Step: 39000 Batch Loss: 0.988469 Tokens per Sec: 15270, Lr: 0.000300\n",
"2019-11-26 13:32:57,083 Epoch 90 Step: 39100 Batch Loss: 0.380122 Tokens per Sec: 15434, Lr: 0.000300\n",
"2019-11-26 13:33:13,302 Epoch 90 Step: 39200 Batch Loss: 0.398116 Tokens per Sec: 15147, Lr: 0.000300\n",
"2019-11-26 13:33:28,802 Epoch 90: total training loss 309.41\n",
"2019-11-26 13:33:28,802 EPOCH 91\n",
"2019-11-26 13:33:29,346 Epoch 91 Step: 39300 Batch Loss: 0.462888 Tokens per Sec: 12529, Lr: 0.000300\n",
"2019-11-26 13:33:45,464 Epoch 91 Step: 39400 Batch Loss: 0.643982 Tokens per Sec: 15392, Lr: 0.000300\n",
"2019-11-26 13:34:01,637 Epoch 91 Step: 39500 Batch Loss: 1.007519 Tokens per Sec: 15314, Lr: 0.000300\n",
"2019-11-26 13:34:17,730 Epoch 91 Step: 39600 Batch Loss: 0.753260 Tokens per Sec: 15602, Lr: 0.000300\n",
"2019-11-26 13:34:33,674 Epoch 91 Step: 39700 Batch Loss: 0.654618 Tokens per Sec: 15012, Lr: 0.000300\n",
"2019-11-26 13:34:38,890 Epoch 91: total training loss 303.97\n",
"2019-11-26 13:34:38,890 EPOCH 92\n",
"2019-11-26 13:34:49,837 Epoch 92 Step: 39800 Batch Loss: 0.793661 Tokens per Sec: 15403, Lr: 0.000300\n",
"2019-11-26 13:35:05,771 Epoch 92 Step: 39900 Batch Loss: 0.650563 Tokens per Sec: 15366, Lr: 0.000300\n",
"2019-11-26 13:35:21,729 Epoch 92 Step: 40000 Batch Loss: 0.688826 Tokens per Sec: 15343, Lr: 0.000300\n",
"2019-11-26 13:36:10,737 Hooray! New best validation result [ppl]!\n",
"2019-11-26 13:36:10,737 Saving new checkpoint.\n",
"2019-11-26 13:36:11,026 Example #0\n",
"2019-11-26 13:36:11,027 \tSource: GEORGE LOCAL MUNICIPALITY: CONTACT\n",
"2019-11-26 13:36:11,027 \tReference: GEORGE PLAASLIKE MUNISIPALITEIT: KONTAK\n",
"2019-11-26 13:36:11,027 \tHypothesis: GEORGE PLAASLIKE MUNISIPALITEIT: KONTAK\n",
"2019-11-26 13:36:11,027 Example #1\n",
"2019-11-26 13:36:11,027 \tSource: The Drostdy\n",
"2019-11-26 13:36:11,027 \tReference: Die Drostdy\n",
"2019-11-26 13:36:11,027 \tHypothesis: Die Drostdy\n",
"2019-11-26 13:36:11,027 Example #2\n",
"2019-11-26 13:36:11,027 \tSource: the object of the second category of committees is to utilise the expertise of persons outside the commission and to ensure direct community involvement in the activities of the commission .\n",
"2019-11-26 13:36:11,027 \tReference: die doel van die tweede kategorie van komitees is om ook die kundigheid van persone buite die kommissie vir die kommissie se werksaamhede te benut en om direkte gemeenskapsbetrokkenheid te verseker .\n",
"2019-11-26 13:36:11,027 \tHypothesis: die oogmerk van die tweede kategorie van komitees is om die uitvoering van persone buite die kommissie te verrig en te verseker dat direkte gemeenskap betrokkenheid by die aktiwiteite van die kommissie .\n",
"2019-11-26 13:36:11,027 Example #3\n",
"2019-11-26 13:36:11,028 \tSource: * private acts by individuals\n",
"2019-11-26 13:36:11,028 \tReference: * indiwidue se private optrede\n",
"2019-11-26 13:36:11,028 \tHypothesis: * private akte deur individue\n",
"2019-11-26 13:36:11,028 Validation result (greedy) at epoch 92, step 40000: bleu: 49.61, loss: 25581.3008, ppl: 2.9932, duration: 49.2989s\n",
"2019-11-26 13:36:26,921 Epoch 92 Step: 40100 Batch Loss: 0.821566 Tokens per Sec: 15279, Lr: 0.000300\n",
"2019-11-26 13:36:38,111 Epoch 92: total training loss 304.97\n",
"2019-11-26 13:36:38,111 EPOCH 93\n",
"2019-11-26 13:36:42,896 Epoch 93 Step: 40200 Batch Loss: 0.737165 Tokens per Sec: 15286, Lr: 0.000300\n",
"2019-11-26 13:36:58,975 Epoch 93 Step: 40300 Batch Loss: 0.605476 Tokens per Sec: 15240, Lr: 0.000300\n",
"2019-11-26 13:37:15,308 Epoch 93 Step: 40400 Batch Loss: 0.927479 Tokens per Sec: 15439, Lr: 0.000300\n",
"2019-11-26 13:37:31,097 Epoch 93 Step: 40500 Batch Loss: 0.983400 Tokens per Sec: 15036, Lr: 0.000300\n",
"2019-11-26 13:37:47,240 Epoch 93 Step: 40600 Batch Loss: 0.927685 Tokens per Sec: 15485, Lr: 0.000300\n",
"2019-11-26 13:37:48,166 Epoch 93: total training loss 302.69\n",
"2019-11-26 13:37:48,166 EPOCH 94\n",
"2019-11-26 13:38:03,364 Epoch 94 Step: 40700 Batch Loss: 0.695183 Tokens per Sec: 15284, Lr: 0.000300\n",
"2019-11-26 13:38:19,282 Epoch 94 Step: 40800 Batch Loss: 0.730492 Tokens per Sec: 15100, Lr: 0.000300\n",
"2019-11-26 13:38:35,538 Epoch 94 Step: 40900 Batch Loss: 0.961166 Tokens per Sec: 15156, Lr: 0.000300\n",
"2019-11-26 13:38:51,562 Epoch 94 Step: 41000 Batch Loss: 0.710943 Tokens per Sec: 15475, Lr: 0.000300\n",
"2019-11-26 13:38:58,318 Epoch 94: total training loss 301.28\n",
"2019-11-26 13:38:58,318 EPOCH 95\n",
"2019-11-26 13:39:07,656 Epoch 95 Step: 41100 Batch Loss: 0.635635 Tokens per Sec: 15097, Lr: 0.000300\n",
"2019-11-26 13:39:23,746 Epoch 95 Step: 41200 Batch Loss: 0.764734 Tokens per Sec: 15378, Lr: 0.000300\n",
"2019-11-26 13:39:39,585 Epoch 95 Step: 41300 Batch Loss: 0.726223 Tokens per Sec: 14994, Lr: 0.000300\n",
"2019-11-26 13:39:55,803 Epoch 95 Step: 41400 Batch Loss: 0.973904 Tokens per Sec: 15543, Lr: 0.000300\n",
"2019-11-26 13:40:08,295 Epoch 95: total training loss 301.23\n",
"2019-11-26 13:40:08,295 EPOCH 96\n",
"2019-11-26 13:40:11,983 Epoch 96 Step: 41500 Batch Loss: 0.952833 Tokens per Sec: 15587, Lr: 0.000300\n",
"2019-11-26 13:40:28,039 Epoch 96 Step: 41600 Batch Loss: 0.685765 Tokens per Sec: 15345, Lr: 0.000300\n",
"2019-11-26 13:40:44,453 Epoch 96 Step: 41700 Batch Loss: 1.019803 Tokens per Sec: 15659, Lr: 0.000300\n",
"2019-11-26 13:41:00,560 Epoch 96 Step: 41800 Batch Loss: 0.601478 Tokens per Sec: 15283, Lr: 0.000300\n",
"2019-11-26 13:41:16,371 Epoch 96 Step: 41900 Batch Loss: 0.636775 Tokens per Sec: 14926, Lr: 0.000300\n",
"2019-11-26 13:41:18,267 Epoch 96: total training loss 295.91\n",
"2019-11-26 13:41:18,267 EPOCH 97\n",
"2019-11-26 13:41:32,278 Epoch 97 Step: 42000 Batch Loss: 0.967375 Tokens per Sec: 15130, Lr: 0.000300\n",
"2019-11-26 13:42:21,208 Example #0\n",
"2019-11-26 13:42:21,208 \tSource: GEORGE LOCAL MUNICIPALITY: CONTACT\n",
"2019-11-26 13:42:21,208 \tReference: GEORGE PLAASLIKE MUNISIPALITEIT: KONTAK\n",
"2019-11-26 13:42:21,208 \tHypothesis: GEORGE PLAASLIKE MUNISIPALITEIT: KONTAK\n",
"2019-11-26 13:42:21,208 Example #1\n",
"2019-11-26 13:42:21,209 \tSource: The Drostdy\n",
"2019-11-26 13:42:21,209 \tReference: Die Drostdy\n",
"2019-11-26 13:42:21,209 \tHypothesis: Die Drostdy\n",
"2019-11-26 13:42:21,209 Example #2\n",
"2019-11-26 13:42:21,209 \tSource: the object of the second category of committees is to utilise the expertise of persons outside the commission and to ensure direct community involvement in the activities of the commission .\n",
"2019-11-26 13:42:21,209 \tReference: die doel van die tweede kategorie van komitees is om ook die kundigheid van persone buite die kommissie vir die kommissie se werksaamhede te benut en om direkte gemeenskapsbetrokkenheid te verseker .\n",
"2019-11-26 13:42:21,209 \tHypothesis: die voorwerp van die tweede kategorie van komitees is om die uitvoer van persone buite die kommissie te verrig en te verseker dat gemeenskapsbetrokkenheid by die aktiwiteite van die kommissie geniet .\n",
"2019-11-26 13:42:21,209 Example #3\n",
"2019-11-26 13:42:21,209 \tSource: * private acts by individuals\n",
"2019-11-26 13:42:21,209 \tReference: * indiwidue se private optrede\n",
"2019-11-26 13:42:21,209 \tHypothesis: * private akte deur individue\n",
"2019-11-26 13:42:21,209 Validation result (greedy) at epoch 97, step 42000: bleu: 50.55, loss: 25650.0742, ppl: 3.0021, duration: 48.9310s\n",
"2019-11-26 13:42:37,346 Epoch 97 Step: 42100 Batch Loss: 0.730989 Tokens per Sec: 15465, Lr: 0.000300\n",
"2019-11-26 13:42:53,345 Epoch 97 Step: 42200 Batch Loss: 0.697391 Tokens per Sec: 15646, Lr: 0.000300\n",
"2019-11-26 13:43:09,412 Epoch 97 Step: 42300 Batch Loss: 0.723275 Tokens per Sec: 15356, Lr: 0.000300\n",
"2019-11-26 13:43:16,901 Epoch 97: total training loss 296.88\n",
"2019-11-26 13:43:16,901 EPOCH 98\n",
"2019-11-26 13:43:25,529 Epoch 98 Step: 42400 Batch Loss: 0.581989 Tokens per Sec: 15189, Lr: 0.000300\n",
"2019-11-26 13:43:41,195 Epoch 98 Step: 42500 Batch Loss: 0.941858 Tokens per Sec: 15275, Lr: 0.000300\n",
"2019-11-26 13:43:57,262 Epoch 98 Step: 42600 Batch Loss: 0.701926 Tokens per Sec: 15269, Lr: 0.000300\n",
"2019-11-26 13:44:13,271 Epoch 98 Step: 42700 Batch Loss: 0.465616 Tokens per Sec: 15611, Lr: 0.000300\n",
"2019-11-26 13:44:26,759 Epoch 98: total training loss 296.85\n",
"2019-11-26 13:44:26,759 EPOCH 99\n",
"2019-11-26 13:44:29,105 Epoch 99 Step: 42800 Batch Loss: 0.589439 Tokens per Sec: 14413, Lr: 0.000300\n",
"2019-11-26 13:44:45,198 Epoch 99 Step: 42900 Batch Loss: 0.503430 Tokens per Sec: 15244, Lr: 0.000300\n",
"2019-11-26 13:45:01,427 Epoch 99 Step: 43000 Batch Loss: 0.546762 Tokens per Sec: 15396, Lr: 0.000300\n",
"2019-11-26 13:45:17,476 Epoch 99 Step: 43100 Batch Loss: 0.561702 Tokens per Sec: 15548, Lr: 0.000300\n",
"2019-11-26 13:45:33,518 Epoch 99 Step: 43200 Batch Loss: 0.968779 Tokens per Sec: 15407, Lr: 0.000300\n",
"2019-11-26 13:45:36,676 Epoch 99: total training loss 292.35\n",
"2019-11-26 13:45:36,676 EPOCH 100\n",
"2019-11-26 13:45:49,484 Epoch 100 Step: 43300 Batch Loss: 0.821155 Tokens per Sec: 15152, Lr: 0.000300\n",
"2019-11-26 13:46:05,568 Epoch 100 Step: 43400 Batch Loss: 0.401050 Tokens per Sec: 15539, Lr: 0.000300\n",
"2019-11-26 13:46:21,506 Epoch 100 Step: 43500 Batch Loss: 0.500488 Tokens per Sec: 15254, Lr: 0.000300\n",
"2019-11-26 13:46:37,440 Epoch 100 Step: 43600 Batch Loss: 0.538274 Tokens per Sec: 15333, Lr: 0.000300\n",
"2019-11-26 13:46:46,523 Epoch 100: total training loss 291.58\n",
"2019-11-26 13:46:46,524 Training ended after 100 epochs.\n",
"2019-11-26 13:46:46,524 Best validation result (greedy) at step 40000: 2.99 ppl.\n",
"2019-11-26 13:47:16,886 dev bleu: 48.65 [Beam search decoding with beam size = 5 and alpha = 1.0]\n",
"2019-11-26 13:47:16,887 Translations saved to: models/enaf_transformer/00040000.hyps.dev\n",
"2019-11-26 13:48:27,509 test bleu: 19.56 [Beam search decoding with beam size = 5 and alpha = 1.0]\n",
"2019-11-26 13:48:27,510 Translations saved to: models/enaf_transformer/00040000.hyps.test\n"
],
"name": "stdout"
}
]
},
{
"cell_type": "code",
"metadata": {
"colab_type": "code",
"id": "MBoDS09JM807",
"outputId": "4befa276-f2e6-41ba-b10e-dce5bc6991d5",
"colab": {
"base_uri": "https://localhost:8080/",
"height": 54
}
},
"source": [
"# Copy the created models from the notebook storage to google drive for persistant storage \n",
"!cp -r joeynmt/models/${src}${tgt}_transformer/* \"/content/drive/My Drive/masakhane/en-af-baseline/models/enaf_transformer/\""
],
"execution_count": 16,
"outputs": [
{
"output_type": "stream",
"text": [
"cp: cannot create symbolic link '/content/drive/My Drive/masakhane/en-af-baseline/models/enaf_transformer/best.ckpt': Function not implemented\n"
],
"name": "stdout"
}
]
},
{
"cell_type": "code",
"metadata": {
"colab_type": "code",
"id": "n94wlrCjVc17",
"outputId": "8aed15df-c9f2-4732-d80d-c97f6cdb6eda",
"colab": {
"base_uri": "https://localhost:8080/",
"height": 370
}
},
"source": [
"# Output our validation accuracy\n",
"! cat \"$gdrive_path/models/${src}${tgt}_transformer/validations.txt\""
],
"execution_count": 17,
"outputs": [
{
"output_type": "stream",
"text": [
"Steps: 2000\tLoss: 74854.25781\tPPL: 24.73169\tbleu: 12.36405\tLR: 0.00030000\t*\n",
"Steps: 4000\tLoss: 52469.36719\tPPL: 9.47559\tbleu: 26.50927\tLR: 0.00030000\t*\n",
"Steps: 6000\tLoss: 42362.46094\tPPL: 6.14452\tbleu: 33.55846\tLR: 0.00030000\t*\n",
"Steps: 8000\tLoss: 37101.53125\tPPL: 4.90418\tbleu: 37.38237\tLR: 0.00030000\t*\n",
"Steps: 10000\tLoss: 34156.69531\tPPL: 4.32270\tbleu: 39.24070\tLR: 0.00030000\t*\n",
"Steps: 12000\tLoss: 32103.47656\tPPL: 3.95857\tbleu: 40.75340\tLR: 0.00030000\t*\n",
"Steps: 14000\tLoss: 30750.45508\tPPL: 3.73555\tbleu: 42.70344\tLR: 0.00030000\t*\n",
"Steps: 16000\tLoss: 29685.38477\tPPL: 3.56887\tbleu: 43.53423\tLR: 0.00030000\t*\n",
"Steps: 18000\tLoss: 28864.55078\tPPL: 3.44550\tbleu: 44.48371\tLR: 0.00030000\t*\n",
"Steps: 20000\tLoss: 28165.52148\tPPL: 3.34381\tbleu: 45.28709\tLR: 0.00030000\t*\n",
"Steps: 22000\tLoss: 27861.96484\tPPL: 3.30059\tbleu: 45.67252\tLR: 0.00030000\t*\n",
"Steps: 24000\tLoss: 27393.80469\tPPL: 3.23503\tbleu: 47.06020\tLR: 0.00030000\t*\n",
"Steps: 26000\tLoss: 26914.48047\tPPL: 3.16925\tbleu: 47.45031\tLR: 0.00030000\t*\n",
"Steps: 28000\tLoss: 26760.47656\tPPL: 3.14840\tbleu: 46.99819\tLR: 0.00030000\t*\n",
"Steps: 30000\tLoss: 26577.52539\tPPL: 3.12381\tbleu: 47.76965\tLR: 0.00030000\t*\n",
"Steps: 32000\tLoss: 26218.08008\tPPL: 3.07606\tbleu: 49.17810\tLR: 0.00030000\t*\n",
"Steps: 34000\tLoss: 26035.16602\tPPL: 3.05204\tbleu: 49.27485\tLR: 0.00030000\t*\n",
"Steps: 36000\tLoss: 25899.09375\tPPL: 3.03429\tbleu: 49.66901\tLR: 0.00030000\t*\n",
"Steps: 38000\tLoss: 25706.09180\tPPL: 3.00929\tbleu: 50.04462\tLR: 0.00030000\t*\n",
"Steps: 40000\tLoss: 25581.30078\tPPL: 2.99324\tbleu: 49.61441\tLR: 0.00030000\t*\n",
"Steps: 42000\tLoss: 25650.07422\tPPL: 3.00208\tbleu: 50.54650\tLR: 0.00030000\t\n"
],
"name": "stdout"
}
]
},
{
"cell_type": "code",
"metadata": {
"colab_type": "code",
"id": "66WhRE9lIhoD",
"outputId": "204d1778-99db-48d2-8af6-89053a46af53",
"colab": {
"base_uri": "https://localhost:8080/",
"height": 67
}
},
"source": [
"# Test our model\n",
"! cd joeynmt; python3 -m joeynmt test \"$gdrive_path/models/${src}${tgt}_transformer/config.yaml\""
],
"execution_count": 18,
"outputs": [
{
"output_type": "stream",
"text": [
"2019-11-26 13:49:10,919 Hello! This is Joey-NMT.\n",
"2019-11-26 13:49:45,068 dev bleu: 48.65 [Beam search decoding with beam size = 5 and alpha = 1.0]\n",
"2019-11-26 13:50:55,979 test bleu: 19.56 [Beam search decoding with beam size = 5 and alpha = 1.0]\n"
],
"name": "stdout"
}
]
},
{
"cell_type": "code",
"metadata": {
"id": "k9QbsG8rCJBX",
"colab_type": "code",
"colab": {}
},
"source": [
""
],
"execution_count": 0,
"outputs": []
}
]
} |