File size: 198,529 Bytes
78aa4ee
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
211
212
213
214
215
216
217
218
219
220
221
222
223
224
225
226
227
228
229
230
231
232
233
234
235
236
237
238
239
240
241
242
243
244
245
246
247
248
249
250
251
252
253
254
255
256
257
258
259
260
261
262
263
264
265
266
267
268
269
270
271
272
273
274
275
276
277
278
279
280
281
282
283
284
285
286
287
288
289
290
291
292
293
294
295
296
297
298
299
300
301
302
303
304
305
306
307
308
309
310
311
312
313
314
315
316
317
318
319
320
321
322
323
324
325
326
327
328
329
330
331
332
333
334
335
336
337
338
339
340
341
342
343
344
345
346
347
348
349
350
351
352
353
354
355
356
357
358
359
360
361
362
363
364
365
366
367
368
369
370
371
372
373
374
375
376
377
378
379
380
381
382
383
384
385
386
387
388
389
390
391
392
393
394
395
396
397
398
399
400
401
402
403
404
405
406
407
408
409
410
411
412
413
414
415
416
417
418
419
420
421
422
423
424
425
426
427
428
429
430
431
432
433
434
435
436
437
438
439
440
441
442
443
444
445
446
447
448
449
450
451
452
453
454
455
456
457
458
459
460
461
462
463
464
465
466
467
468
469
470
471
472
473
474
475
476
477
478
479
480
481
482
483
484
485
486
487
488
489
490
491
492
493
494
495
496
497
498
499
500
501
502
503
504
505
506
507
508
509
510
511
512
513
514
515
516
517
518
519
520
521
522
523
524
525
526
527
528
529
530
531
532
533
534
535
536
537
538
539
540
541
542
543
544
545
546
547
548
549
550
551
552
553
554
555
556
557
558
559
560
561
562
563
564
565
566
567
568
569
570
571
572
573
574
575
576
577
578
579
580
581
582
583
584
585
586
587
588
589
590
591
592
593
594
595
596
597
598
599
600
601
602
603
604
605
606
607
608
609
610
611
612
613
614
615
616
617
618
619
620
621
622
623
624
625
626
627
628
629
630
631
632
633
634
635
636
637
638
639
640
641
642
643
644
645
646
647
648
649
650
651
652
653
654
655
656
657
658
659
660
661
662
663
664
665
666
667
668
669
670
671
672
673
674
675
676
677
678
679
680
681
682
683
684
685
686
687
688
689
690
691
692
693
694
695
696
697
698
699
700
701
702
703
704
705
706
707
708
709
710
711
712
713
714
715
716
717
718
719
720
721
722
723
724
725
726
727
728
729
730
731
732
733
734
735
736
737
738
739
740
741
742
743
744
745
746
747
748
749
750
751
752
753
754
755
756
757
758
759
760
761
762
763
764
765
766
767
768
769
770
771
772
773
774
775
776
777
778
779
780
781
782
783
784
785
786
787
788
789
790
791
792
793
794
795
796
797
798
799
800
801
802
803
804
805
806
807
808
809
810
811
812
813
814
815
816
817
818
819
820
821
822
823
824
825
826
827
828
829
830
831
832
833
834
835
836
837
838
839
840
841
842
843
844
845
846
847
848
849
850
851
852
853
854
855
856
857
858
859
860
861
862
863
864
865
866
867
868
869
870
871
872
873
874
875
876
877
878
879
880
881
882
883
884
885
886
887
888
889
890
891
892
893
894
895
896
897
898
899
900
901
902
903
904
905
906
907
908
909
910
911
912
913
914
915
916
917
918
919
920
921
922
923
924
925
926
927
928
929
930
931
932
933
934
935
936
937
938
939
940
941
942
943
944
945
946
947
948
949
950
951
952
953
954
955
956
957
958
959
960
961
962
963
964
965
966
967
968
969
970
971
972
973
974
975
976
977
978
979
980
981
982
983
984
985
986
987
988
989
990
991
992
993
994
995
996
997
998
999
1000
1001
1002
1003
1004
1005
1006
1007
1008
1009
1010
1011
1012
1013
1014
1015
1016
1017
1018
1019
1020
1021
1022
1023
1024
1025
1026
1027
1028
1029
1030
1031
1032
1033
1034
1035
1036
1037
1038
1039
1040
1041
1042
1043
1044
1045
1046
1047
1048
1049
1050
1051
1052
1053
1054
1055
1056
1057
1058
1059
1060
1061
1062
1063
1064
1065
1066
1067
1068
1069
1070
1071
1072
1073
1074
1075
1076
1077
1078
1079
1080
1081
1082
1083
1084
1085
1086
1087
1088
1089
1090
1091
1092
1093
1094
1095
1096
1097
1098
1099
1100
1101
1102
1103
1104
1105
1106
1107
1108
1109
1110
1111
1112
1113
1114
1115
1116
1117
1118
1119
1120
1121
1122
1123
1124
1125
1126
1127
1128
1129
1130
1131
1132
1133
1134
1135
1136
1137
1138
1139
1140
1141
1142
1143
1144
1145
1146
1147
1148
1149
1150
1151
1152
1153
1154
1155
1156
1157
1158
1159
1160
1161
1162
1163
1164
1165
1166
1167
1168
1169
1170
1171
1172
1173
1174
1175
1176
1177
1178
1179
1180
1181
1182
1183
1184
1185
1186
1187
1188
1189
1190
1191
1192
1193
1194
1195
1196
1197
1198
1199
1200
1201
1202
1203
1204
1205
1206
1207
1208
1209
1210
1211
1212
1213
1214
1215
1216
1217
1218
1219
1220
1221
1222
1223
1224
1225
1226
1227
1228
1229
1230
1231
1232
1233
1234
1235
1236
1237
1238
1239
1240
1241
1242
1243
1244
1245
1246
1247
1248
1249
1250
1251
1252
1253
1254
1255
1256
1257
1258
1259
1260
1261
1262
1263
1264
1265
1266
1267
1268
1269
1270
1271
1272
1273
1274
1275
1276
1277
1278
1279
1280
1281
1282
1283
1284
1285
1286
1287
1288
1289
1290
1291
1292
1293
1294
1295
1296
1297
1298
1299
1300
1301
1302
1303
1304
1305
1306
1307
1308
1309
1310
1311
1312
1313
1314
1315
1316
1317
1318
1319
1320
1321
1322
1323
1324
1325
1326
1327
1328
1329
1330
1331
1332
1333
1334
1335
1336
1337
1338
1339
1340
1341
1342
1343
1344
1345
1346
1347
1348
1349
1350
1351
1352
1353
1354
1355
1356
1357
1358
1359
1360
1361
1362
1363
1364
1365
1366
1367
1368
1369
1370
1371
1372
1373
1374
1375
1376
1377
1378
1379
1380
1381
1382
1383
1384
1385
1386
1387
1388
1389
1390
1391
1392
1393
1394
1395
1396
1397
1398
1399
1400
1401
1402
1403
1404
1405
1406
1407
1408
1409
1410
1411
1412
1413
1414
1415
1416
1417
1418
1419
1420
1421
1422
1423
1424
1425
1426
1427
1428
1429
1430
1431
1432
1433
1434
1435
1436
1437
1438
1439
1440
1441
1442
1443
1444
1445
1446
1447
1448
1449
1450
1451
1452
1453
1454
1455
1456
1457
1458
1459
1460
1461
1462
1463
1464
1465
1466
1467
1468
1469
1470
1471
1472
1473
1474
1475
1476
1477
1478
1479
1480
1481
1482
1483
1484
1485
1486
1487
1488
1489
1490
1491
1492
1493
1494
1495
1496
1497
1498
1499
1500
1501
1502
1503
1504
1505
1506
1507
1508
1509
1510
1511
1512
1513
1514
1515
1516
1517
1518
1519
1520
1521
1522
1523
1524
1525
1526
1527
1528
1529
1530
1531
1532
1533
1534
1535
1536
1537
1538
1539
1540
1541
1542
1543
1544
1545
1546
1547
1548
1549
1550
1551
1552
1553
1554
1555
1556
1557
1558
1559
1560
1561
1562
1563
1564
1565
1566
1567
1568
1569
1570
1571
1572
1573
1574
1575
1576
1577
1578
1579
1580
1581
1582
1583
1584
1585
1586
1587
1588
1589
1590
1591
1592
1593
1594
1595
1596
1597
1598
1599
1600
1601
1602
1603
1604
1605
1606
1607
1608
1609
1610
1611
1612
1613
1614
1615
1616
1617
1618
1619
1620
1621
1622
1623
1624
1625
1626
1627
1628
1629
1630
1631
1632
1633
1634
1635
1636
1637
1638
1639
1640
1641
1642
1643
1644
1645
1646
1647
1648
1649
1650
1651
1652
1653
1654
1655
1656
1657
1658
1659
1660
1661
1662
1663
1664
1665
1666
1667
1668
1669
1670
1671
1672
1673
1674
1675
1676
1677
1678
1679
1680
1681
1682
1683
1684
1685
1686
1687
1688
1689
1690
1691
1692
1693
1694
1695
1696
1697
1698
1699
1700
1701
1702
1703
1704
1705
1706
1707
1708
1709
1710
1711
1712
1713
1714
1715
1716
1717
1718
1719
1720
1721
1722
1723
1724
1725
1726
1727
1728
1729
1730
1731
1732
1733
1734
1735
1736
1737
1738
1739
1740
1741
1742
1743
1744
1745
1746
1747
1748
1749
1750
1751
1752
1753
1754
1755
1756
1757
1758
1759
1760
1761
1762
1763
1764
1765
1766
1767
1768
1769
1770
1771
1772
1773
1774
1775
1776
1777
1778
1779
1780
1781
1782
1783
1784
1785
1786
1787
1788
1789
1790
1791
1792
1793
1794
1795
1796
1797
1798
1799
1800
1801
1802
1803
1804
1805
1806
1807
1808
1809
1810
1811
1812
1813
1814
1815
1816
1817
1818
1819
1820
1821
1822
1823
1824
1825
1826
1827
1828
1829
1830
1831
1832
1833
1834
1835
1836
1837
1838
1839
1840
1841
1842
1843
1844
1845
1846
1847
1848
1849
1850
1851
1852
1853
1854
1855
1856
1857
1858
1859
1860
1861
1862
1863
1864
1865
1866
1867
1868
1869
1870
1871
1872
1873
1874
1875
1876
1877
1878
1879
1880
1881
1882
1883
1884
1885
1886
1887
1888
1889
1890
1891
1892
1893
1894
1895
1896
1897
1898
1899
1900
1901
1902
1903
1904
1905
1906
1907
1908
1909
1910
1911
1912
1913
1914
1915
1916
1917
1918
1919
1920
1921
1922
1923
1924
1925
1926
1927
1928
1929
1930
1931
1932
1933
1934
1935
1936
1937
1938
1939
1940
1941
1942
1943
1944
1945
1946
1947
1948
1949
1950
1951
1952
1953
1954
1955
1956
1957
1958
1959
1960
1961
1962
1963
1964
1965
1966
1967
1968
1969
1970
1971
1972
1973
1974
1975
1976
1977
1978
1979
1980
1981
1982
1983
1984
1985
1986
1987
1988
1989
1990
1991
1992
1993
1994
1995
1996
1997
1998
1999
2000
2001
2002
2003
2004
2005
2006
2007
2008
2009
2010
2011
2012
2013
2014
2015
2016
2017
2018
2019
2020
2021
2022
2023
2024
2025
2026
2027
2028
2029
2030
2031
2032
2033
2034
2035
2036
2037
2038
2039
2040
2041
2042
2043
2044
2045
2046
2047
2048
2049
2050
2051
2052
2053
2054
2055
2056
2057
2058
2059
2060
2061
2062
2063
2064
2065
2066
2067
2068
2069
2070
2071
2072
2073
2074
2075
2076
2077
2078
2079
2080
2081
2082
2083
2084
2085
2086
2087
2088
2089
2090
2091
2092
2093
2094
2095
2096
2097
2098
2099
2100
2101
2102
2103
2104
2105
2106
2107
2108
2109
2110
2111
2112
2113
2114
2115
2116
2117
2118
2119
2120
2121
2122
2123
2124
2125
2126
2127
2128
2129
2130
2131
2132
2133
2134
2135
2136
2137
2138
2139
2140
2141
2142
2143
2144
2145
2146
2147
2148
2149
2150
2151
2152
2153
2154
2155
2156
2157
2158
2159
2160
2161
2162
2163
2164
2165
2166
2167
2168
2169
2170
2171
2172
2173
2174
2175
2176
2177
2178
2179
2180
2181
2182
2183
2184
2185
2186
2187
2188
2189
2190
2191
2192
2193
2194
2195
2196
2197
2198
2199
2200
2201
2202
2203
2204
2205
2206
2207
2208
2209
2210
2211
2212
2213
2214
2215
2216
2217
2218
2219
2220
2221
2222
2223
2224
2225
2226
2227
2228
2229
2230
2231
2232
2233
2234
2235
2236
2237
2238
2239
2240
2241
2242
2243
2244
2245
2246
2247
2248
2249
2250
2251
2252
2253
2254
2255
2256
2257
2258
2259
2260
2261
2262
2263
2264
2265
2266
2267
2268
2269
2270
2271
2272
2273
2274
2275
2276
2277
2278
2279
2280
2281
2282
2283
2284
2285
2286
2287
2288
2289
2290
2291
2292
2293
2294
2295
2296
2297
2298
2299
2300
2301
2302
2303
2304
2305
2306
2307
2308
2309
2310
2311
2312
2313
2314
2315
2316
2317
2318
2319
2320
2321
2322
2323
2324
2325
2326
2327
2328
2329
2330
2331
2332
2333
2334
2335
2336
2337
2338
2339
2340
2341
2342
2343
2344
2345
2346
2347
2348
2349
2350
2351
2352
2353
2354
2355
2356
2357
2358
2359
2360
2361
2362
2363
2364
2365
2366
2367
2368
2369
2370
2371
2372
2373
2374
2375
2376
2377
2378
2379
2380
2381
2382
2383
2384
2385
2386
2387
2388
2389
2390
2391
2392
2393
2394
2395
2396
2397
2398
2399
2400
2401
2402
2403
2404
2405
2406
2407
2408
2409
2410
2411
2412
2413
2414
2415
2416
2417
2418
2419
{
  "nbformat": 4,
  "nbformat_minor": 0,
  "metadata": {
    "accelerator": "GPU",
    "colab": {
      "name": "enaf.ipynb",
      "provenance": [],
      "collapsed_sections": [],
      "toc_visible": true
    },
    "kernelspec": {
      "display_name": "Python 3",
      "language": "python",
      "name": "python3"
    },
    "language_info": {
      "codemirror_mode": {
        "name": "ipython",
        "version": 3
      },
      "file_extension": ".py",
      "mimetype": "text/x-python",
      "name": "python",
      "nbconvert_exporter": "python",
      "pygments_lexer": "ipython3",
      "version": "3.5.6"
    }
  },
  "cells": [
    {
      "cell_type": "markdown",
      "metadata": {
        "colab_type": "text",
        "id": "Igc5itf-xMGj"
      },
      "source": [
        "# Masakhane - Machine Translation for African Languages (Using JoeyNMT)"
      ]
    },
    {
      "cell_type": "markdown",
      "metadata": {
        "colab_type": "text",
        "id": "x4fXCKCf36IK"
      },
      "source": [
        "## Note before beginning:\n",
        "### - The idea is that you should be able to make minimal changes to this in order to get SOME result for your own translation corpus. \n",
        "\n",
        "### - The tl;dr: Go to the **\"TODO\"** comments which will tell you what to update to get up and running\n",
        "\n",
        "### - If you actually want to have a clue what you're doing, read the text and peek at the links\n",
        "\n",
        "### - With 100 epochs, it should take around 7 hours to run in Google Colab\n",
        "\n",
        "### - Once you've gotten a result for your language, please attach and email your notebook that generated it to [email protected]\n",
        "\n",
        "### - If you care enough and get a chance, doing a brief background on your language would be amazing. See examples in  [(Martinus, 2019)](https://arxiv.org/abs/1906.05685)"
      ]
    },
    {
      "cell_type": "markdown",
      "metadata": {
        "colab_type": "text",
        "id": "l929HimrxS0a"
      },
      "source": [
        "## Retrieve your data & make a parallel corpus\n",
        "\n",
        "If you are wanting to use the JW300 data referenced on the Masakhane website or in our GitHub repo, you can use `opus-tools` to convert the data into a convenient format. `opus_read` from that package provides a convenient tool for reading the native aligned XML files and to convert them to TMX format. The tool can also be used to fetch relevant files from OPUS on the fly and to filter the data as necessary. [Read the documentation](https://pypi.org/project/opustools-pkg/) for more details.\n",
        "\n",
        "Once you have your corpus files in TMX format (an xml structure which will include the sentences in your target language and your source language in a single file), we recommend reading them into a pandas dataframe. Thankfully, Jade wrote a silly `tmx2dataframe` package which converts your tmx file to a pandas dataframe. "
      ]
    },
    {
      "cell_type": "code",
      "metadata": {
        "colab_type": "code",
        "id": "oGRmDELn7Az0",
        "outputId": "b1921b80-ca0f-4d61-d1b1-dd6f488877e5",
        "colab": {
          "base_uri": "https://localhost:8080/",
          "height": 121
        }
      },
      "source": [
        "from google.colab import drive\n",
        "drive.mount('/content/drive')"
      ],
      "execution_count": 1,
      "outputs": [
        {
          "output_type": "stream",
          "text": [
            "Go to this URL in a browser: https://accounts.google.com/o/oauth2/auth?client_id=947318989803-6bn6qk8qdgf4n4g3pfee6491hc0brc4i.apps.googleusercontent.com&redirect_uri=urn%3aietf%3awg%3aoauth%3a2.0%3aoob&response_type=code&scope=email%20https%3a%2f%2fwww.googleapis.com%2fauth%2fdocs.test%20https%3a%2f%2fwww.googleapis.com%2fauth%2fdrive%20https%3a%2f%2fwww.googleapis.com%2fauth%2fdrive.photos.readonly%20https%3a%2f%2fwww.googleapis.com%2fauth%2fpeopleapi.readonly\n",
            "\n",
            "Enter your authorization code:\n",
            "··········\n",
            "Mounted at /content/drive\n"
          ],
          "name": "stdout"
        }
      ]
    },
    {
      "cell_type": "code",
      "metadata": {
        "colab_type": "code",
        "id": "Cn3tgQLzUxwn",
        "colab": {}
      },
      "source": [
        "# TODO: Set your source and target languages. Keep in mind, these traditionally use language codes as found here:\n",
        "# These will also become the suffix's of all vocab and corpus files used throughout\n",
        "import os\n",
        "source_language = \"en\"\n",
        "target_language = \"af\" \n",
        "lc = False  # If True, lowercase the data.\n",
        "seed = 42  # Random seed for shuffling.\n",
        "tag = \"baseline\" # Give a unique name to your folder - this is to ensure you don't rewrite any models you've already submitted\n",
        "\n",
        "os.environ[\"src\"] = source_language # Sets them in bash as well, since we often use bash scripts\n",
        "os.environ[\"tgt\"] = target_language\n",
        "os.environ[\"tag\"] = tag\n",
        "\n",
        "# This will save it to a folder in our gdrive instead!\n",
        "!mkdir -p \"/content/drive/My Drive/masakhane/$src-$tgt-$tag\"\n",
        "os.environ[\"gdrive_path\"] = \"/content/drive/My Drive/masakhane/%s-%s-%s\" % (source_language, target_language, tag)"
      ],
      "execution_count": 0,
      "outputs": []
    },
    {
      "cell_type": "code",
      "metadata": {
        "colab_type": "code",
        "id": "kBSgJHEw7Nvx",
        "outputId": "8ab7ecfd-cbc3-4cae-ca91-aff9991f9bd8",
        "colab": {
          "base_uri": "https://localhost:8080/",
          "height": 34
        }
      },
      "source": [
        "!echo $gdrive_path"
      ],
      "execution_count": 3,
      "outputs": [
        {
          "output_type": "stream",
          "text": [
            "/content/drive/My Drive/masakhane/en-af-baseline\n"
          ],
          "name": "stdout"
        }
      ]
    },
    {
      "cell_type": "code",
      "metadata": {
        "colab_type": "code",
        "id": "gA75Fs9ys8Y9",
        "outputId": "ebf2668b-ac76-4753-fd01-87d0bac351c0",
        "colab": {
          "base_uri": "https://localhost:8080/",
          "height": 121
        }
      },
      "source": [
        "# Install opus-tools\n",
        "! pip install opustools-pkg"
      ],
      "execution_count": 4,
      "outputs": [
        {
          "output_type": "stream",
          "text": [
            "Collecting opustools-pkg\n",
            "\u001b[?25l  Downloading https://files.pythonhosted.org/packages/6c/9f/e829a0cceccc603450cd18e1ff80807b6237a88d9a8df2c0bb320796e900/opustools_pkg-0.0.52-py3-none-any.whl (80kB)\n",
            "\r\u001b[K     |████                            | 10kB 25.8MB/s eta 0:00:01\r\u001b[K     |████████                        | 20kB 27.1MB/s eta 0:00:01\r\u001b[K     |████████████▏                   | 30kB 31.8MB/s eta 0:00:01\r\u001b[K     |████████████████▏               | 40kB 34.7MB/s eta 0:00:01\r\u001b[K     |████████████████████▎           | 51kB 37.1MB/s eta 0:00:01\r\u001b[K     |████████████████████████▎       | 61kB 39.3MB/s eta 0:00:01\r\u001b[K     |████████████████████████████▎   | 71kB 40.1MB/s eta 0:00:01\r\u001b[K     |████████████████████████████████| 81kB 9.3MB/s \n",
            "\u001b[?25hInstalling collected packages: opustools-pkg\n",
            "Successfully installed opustools-pkg-0.0.52\n"
          ],
          "name": "stdout"
        }
      ]
    },
    {
      "cell_type": "code",
      "metadata": {
        "colab_type": "code",
        "id": "xq-tDZVks7ZD",
        "colab": {}
      },
      "source": [
        "# Downloading our corpus\n",
        "! opus_read -d JW300 -s $src -t $tgt -wm moses -w jw300.$src jw300.$tgt -q\n",
        "\n",
        "# extract the corpus file\n",
        "! gunzip JW300_latest_xml_$src-$tgt.xml.gz"
      ],
      "execution_count": 0,
      "outputs": []
    },
    {
      "cell_type": "code",
      "metadata": {
        "id": "n48GDRnP8y2G",
        "colab_type": "code",
        "outputId": "ba03d09d-43bb-466e-9e26-c9149b89d1b0",
        "colab": {
          "base_uri": "https://localhost:8080/",
          "height": 571
        }
      },
      "source": [
        "# Download the global test set.\n",
        "! wget https://raw.githubusercontent.com/juliakreutzer/masakhane/master/jw300_utils/test/test.en-any.en\n",
        "  \n",
        "# And the specific test set for this language pair.\n",
        "os.environ[\"trg\"] = target_language \n",
        "os.environ[\"src\"] = source_language \n",
        "\n",
        "! wget https://raw.githubusercontent.com/juliakreutzer/masakhane/master/jw300_utils/test/test.en-$trg.en \n",
        "! mv test.en-$trg.en test.en\n",
        "! wget https://raw.githubusercontent.com/juliakreutzer/masakhane/master/jw300_utils/test/test.en-$trg.$trg \n",
        "! mv test.en-$trg.$trg test.$trg"
      ],
      "execution_count": 5,
      "outputs": [
        {
          "output_type": "stream",
          "text": [
            "--2019-11-26 11:15:28--  https://raw.githubusercontent.com/juliakreutzer/masakhane/master/jw300_utils/test/test.en-any.en\n",
            "Resolving raw.githubusercontent.com (raw.githubusercontent.com)... 151.101.0.133, 151.101.64.133, 151.101.128.133, ...\n",
            "Connecting to raw.githubusercontent.com (raw.githubusercontent.com)|151.101.0.133|:443... connected.\n",
            "HTTP request sent, awaiting response... 200 OK\n",
            "Length: 277791 (271K) [text/plain]\n",
            "Saving to: ‘test.en-any.en’\n",
            "\n",
            "\rtest.en-any.en        0%[                    ]       0  --.-KB/s               \rtest.en-any.en      100%[===================>] 271.28K  --.-KB/s    in 0.005s  \n",
            "\n",
            "2019-11-26 11:15:29 (52.1 MB/s) - ‘test.en-any.en’ saved [277791/277791]\n",
            "\n",
            "--2019-11-26 11:15:31--  https://raw.githubusercontent.com/juliakreutzer/masakhane/master/jw300_utils/test/test.en-af.en\n",
            "Resolving raw.githubusercontent.com (raw.githubusercontent.com)... 151.101.0.133, 151.101.64.133, 151.101.128.133, ...\n",
            "Connecting to raw.githubusercontent.com (raw.githubusercontent.com)|151.101.0.133|:443... connected.\n",
            "HTTP request sent, awaiting response... 200 OK\n",
            "Length: 203446 (199K) [text/plain]\n",
            "Saving to: ‘test.en-af.en’\n",
            "\n",
            "test.en-af.en       100%[===================>] 198.68K  --.-KB/s    in 0.004s  \n",
            "\n",
            "2019-11-26 11:15:31 (53.0 MB/s) - ‘test.en-af.en’ saved [203446/203446]\n",
            "\n",
            "--2019-11-26 11:15:39--  https://raw.githubusercontent.com/juliakreutzer/masakhane/master/jw300_utils/test/test.en-af.af\n",
            "Resolving raw.githubusercontent.com (raw.githubusercontent.com)... 151.101.0.133, 151.101.64.133, 151.101.128.133, ...\n",
            "Connecting to raw.githubusercontent.com (raw.githubusercontent.com)|151.101.0.133|:443... connected.\n",
            "HTTP request sent, awaiting response... 200 OK\n",
            "Length: 212484 (208K) [text/plain]\n",
            "Saving to: ‘test.en-af.af’\n",
            "\n",
            "test.en-af.af       100%[===================>] 207.50K  --.-KB/s    in 0.003s  \n",
            "\n",
            "2019-11-26 11:15:39 (65.1 MB/s) - ‘test.en-af.af’ saved [212484/212484]\n",
            "\n"
          ],
          "name": "stdout"
        }
      ]
    },
    {
      "cell_type": "code",
      "metadata": {
        "id": "NqDG-CI28y2L",
        "colab_type": "code",
        "outputId": "0d978a04-cf67-494a-f582-28e365f6d3aa",
        "colab": {
          "base_uri": "https://localhost:8080/",
          "height": 34
        }
      },
      "source": [
        "# Read the test data to filter from train and dev splits.\n",
        "# Store english portion in set for quick filtering checks.\n",
        "en_test_sents = set()\n",
        "filter_test_sents = \"test.en-any.en\"\n",
        "j = 0\n",
        "with open(filter_test_sents) as f:\n",
        "  for line in f:\n",
        "    en_test_sents.add(line.strip())\n",
        "    j += 1\n",
        "print('Loaded {} global test sentences to filter from the training/dev data.'.format(j))"
      ],
      "execution_count": 6,
      "outputs": [
        {
          "output_type": "stream",
          "text": [
            "Loaded 3571 global test sentences to filter from the training/dev data.\n"
          ],
          "name": "stdout"
        }
      ]
    },
    {
      "cell_type": "code",
      "metadata": {
        "colab_type": "code",
        "id": "3CNdwLBCfSIl",
        "outputId": "8e58933f-2bfa-4417-d29f-0a70da4486ba",
        "colab": {
          "base_uri": "https://localhost:8080/",
          "height": 153
        }
      },
      "source": [
        "import pandas as pd\n",
        "\n",
        "# TMX file to dataframe\n",
        "source_file = 'enaf_parallel.train.' + source_language\n",
        "target_file = 'enaf_parallel.train.' + target_language\n",
        "\n",
        "source = []\n",
        "target = []\n",
        "skip_lines = []  # Collect the line numbers of the source portion to skip the same lines for the target portion.\n",
        "with open(source_file) as f:\n",
        "    for i, line in enumerate(f):\n",
        "        # Skip sentences that are contained in the test set.\n",
        "        if line.strip() not in en_test_sents:\n",
        "            source.append(line.strip())\n",
        "        else:\n",
        "            skip_lines.append(i)             \n",
        "with open(target_file) as f:\n",
        "    for j, line in enumerate(f):\n",
        "        # Only add to corpus if corresponding source was not skipped.\n",
        "        if j not in skip_lines:\n",
        "            target.append(line.strip())\n",
        "    \n",
        "print('Loaded data and skipped {}/{} lines since contained in test set.'.format(len(skip_lines), i))\n",
        "    \n",
        "df = pd.DataFrame(zip(source, target), columns=['source_sentence', 'target_sentence'])\n",
        "# if you get TypeError: data argument can't be an iterator is because of your zip version run this below\n",
        "#df = pd.DataFrame(list(zip(source, target)), columns=['source_sentence', 'target_sentence'])\n",
        "df.head(3)"
      ],
      "execution_count": 7,
      "outputs": [
        {
          "output_type": "stream",
          "text": [
            "Loaded data and skipped 1/50171 lines since contained in test set.\n"
          ],
          "name": "stdout"
        },
        {
          "output_type": "execute_result",
          "data": {
            "text/html": [
              "<div>\n",
              "<style scoped>\n",
              "    .dataframe tbody tr th:only-of-type {\n",
              "        vertical-align: middle;\n",
              "    }\n",
              "\n",
              "    .dataframe tbody tr th {\n",
              "        vertical-align: top;\n",
              "    }\n",
              "\n",
              "    .dataframe thead th {\n",
              "        text-align: right;\n",
              "    }\n",
              "</style>\n",
              "<table border=\"1\" class=\"dataframe\">\n",
              "  <thead>\n",
              "    <tr style=\"text-align: right;\">\n",
              "      <th></th>\n",
              "      <th>source_sentence</th>\n",
              "      <th>target_sentence</th>\n",
              "    </tr>\n",
              "  </thead>\n",
              "  <tbody>\n",
              "    <tr>\n",
              "      <th>0</th>\n",
              "      <td>( 3 ) if material transfer agreements or benef...</td>\n",
              "      <td>( 3 ) indien materiaaloordragooreenkomste of v...</td>\n",
              "    </tr>\n",
              "    <tr>\n",
              "      <th>1</th>\n",
              "      <td>( a ) signed material transfer agreements or b...</td>\n",
              "      <td>( a ) getekende materiaaloordragooreenkomste o...</td>\n",
              "    </tr>\n",
              "    <tr>\n",
              "      <th>2</th>\n",
              "      <td>( b ) if it has not been possible to conclude ...</td>\n",
              "      <td>( b ) indien dit nie moontlik was om sodanige ...</td>\n",
              "    </tr>\n",
              "  </tbody>\n",
              "</table>\n",
              "</div>"
            ],
            "text/plain": [
              "                                     source_sentence                                    target_sentence\n",
              "0  ( 3 ) if material transfer agreements or benef...  ( 3 ) indien materiaaloordragooreenkomste of v...\n",
              "1  ( a ) signed material transfer agreements or b...  ( a ) getekende materiaaloordragooreenkomste o...\n",
              "2  ( b ) if it has not been possible to conclude ...  ( b ) indien dit nie moontlik was om sodanige ..."
            ]
          },
          "metadata": {
            "tags": []
          },
          "execution_count": 7
        }
      ]
    },
    {
      "cell_type": "markdown",
      "metadata": {
        "colab_type": "text",
        "id": "YkuK3B4p2AkN"
      },
      "source": [
        "## Pre-processing and export\n",
        "\n",
        "It is generally a good idea to remove duplicate translations and conflicting translations from the corpus. In practice, these public corpora include some number of these that need to be cleaned.\n",
        "\n",
        "In addition we will split our data into dev/test/train and export to the filesystem."
      ]
    },
    {
      "cell_type": "code",
      "metadata": {
        "colab_type": "code",
        "id": "M_2ouEOH1_1q",
        "outputId": "c43fbf86-b2e6-4136-f206-d57519166978",
        "colab": {
          "base_uri": "https://localhost:8080/",
          "height": 185
        }
      },
      "source": [
        "# drop duplicate translations\n",
        "df_pp = df.drop_duplicates()\n",
        "\n",
        "# drop conflicting translations\n",
        "# (this is optional and something that you might want to comment out \n",
        "# depending on the size of your corpus)\n",
        "df_pp.drop_duplicates(subset='source_sentence', inplace=True)\n",
        "df_pp.drop_duplicates(subset='target_sentence', inplace=True)\n",
        "\n",
        "# Shuffle the data to remove bias in dev set selection.\n",
        "df_pp = df_pp.sample(frac=1, random_state=seed).reset_index(drop=True)"
      ],
      "execution_count": 8,
      "outputs": [
        {
          "output_type": "stream",
          "text": [
            "/usr/local/lib/python3.6/dist-packages/ipykernel_launcher.py:6: SettingWithCopyWarning: \n",
            "A value is trying to be set on a copy of a slice from a DataFrame\n",
            "\n",
            "See the caveats in the documentation: http://pandas.pydata.org/pandas-docs/stable/user_guide/indexing.html#returning-a-view-versus-a-copy\n",
            "  \n",
            "/usr/local/lib/python3.6/dist-packages/ipykernel_launcher.py:7: SettingWithCopyWarning: \n",
            "A value is trying to be set on a copy of a slice from a DataFrame\n",
            "\n",
            "See the caveats in the documentation: http://pandas.pydata.org/pandas-docs/stable/user_guide/indexing.html#returning-a-view-versus-a-copy\n",
            "  import sys\n"
          ],
          "name": "stderr"
        }
      ]
    },
    {
      "cell_type": "code",
      "metadata": {
        "id": "Z_1BwAApEtMk",
        "colab_type": "code",
        "outputId": "7aeda118-931b-40d6-d0d9-9eb21236b4bd",
        "colab": {
          "base_uri": "https://localhost:8080/",
          "height": 1000
        }
      },
      "source": [
        "# Install fuzzy wuzzy to remove \"almost duplicate\" sentences in the\n",
        "# test and training sets.\n",
        "! pip install fuzzywuzzy\n",
        "! pip install python-Levenshtein\n",
        "import time\n",
        "from fuzzywuzzy import process\n",
        "import numpy as np\n",
        "\n",
        "# reset the index of the training set after previous filtering\n",
        "df_pp.reset_index(drop=False, inplace=True)\n",
        "\n",
        "# Remove samples from the training data set if they \"almost overlap\" with the\n",
        "# samples in the test set.\n",
        "\n",
        "# Filtering function. Adjust pad to narrow down the candidate matches to\n",
        "# within a certain length of characters of the given sample.\n",
        "def fuzzfilter(sample, candidates, pad):\n",
        "  candidates = [x for x in candidates if len(x) <= len(sample)+pad and len(x) >= len(sample)-pad] \n",
        "  if len(candidates) > 0:\n",
        "    return process.extractOne(sample, candidates)[1]\n",
        "  else:\n",
        "    return np.nan\n",
        "\n",
        "# NOTE - This might run slow depending on the size of your training set. We are\n",
        "# printing some information to help you track how long it would take. \n",
        "scores = []\n",
        "start_time = time.time()\n",
        "for idx, row in df_pp.iterrows():\n",
        "  scores.append(fuzzfilter(row['source_sentence'], list(en_test_sents), 5))\n",
        "  if idx % 1000 == 0:\n",
        "    hours, rem = divmod(time.time() - start_time, 3600)\n",
        "    minutes, seconds = divmod(rem, 60)\n",
        "    print(\"{:0>2}:{:0>2}:{:05.2f}\".format(int(hours),int(minutes),seconds), \"%0.2f percent complete\" % (100.0*float(idx)/float(len(df_pp))))\n",
        "\n",
        "# Filter out \"almost overlapping samples\"\n",
        "df_pp['scores'] = scores\n",
        "df_pp = df_pp[df_pp['scores'] < 95]"
      ],
      "execution_count": 9,
      "outputs": [
        {
          "output_type": "stream",
          "text": [
            "Collecting fuzzywuzzy\n",
            "  Downloading https://files.pythonhosted.org/packages/d8/f1/5a267addb30ab7eaa1beab2b9323073815da4551076554ecc890a3595ec9/fuzzywuzzy-0.17.0-py2.py3-none-any.whl\n",
            "Installing collected packages: fuzzywuzzy\n",
            "Successfully installed fuzzywuzzy-0.17.0\n",
            "Collecting python-Levenshtein\n",
            "\u001b[?25l  Downloading https://files.pythonhosted.org/packages/42/a9/d1785c85ebf9b7dfacd08938dd028209c34a0ea3b1bcdb895208bd40a67d/python-Levenshtein-0.12.0.tar.gz (48kB)\n",
            "\u001b[K     |████████████████████████████████| 51kB 8.2MB/s \n",
            "\u001b[?25hRequirement already satisfied: setuptools in /usr/local/lib/python3.6/dist-packages (from python-Levenshtein) (41.6.0)\n",
            "Building wheels for collected packages: python-Levenshtein\n",
            "  Building wheel for python-Levenshtein (setup.py) ... \u001b[?25l\u001b[?25hdone\n",
            "  Created wheel for python-Levenshtein: filename=python_Levenshtein-0.12.0-cp36-cp36m-linux_x86_64.whl size=144662 sha256=839189df0920c81aeedf1e6572a35a13de649e40fcf0d61080db2673c1e227b1\n",
            "  Stored in directory: /root/.cache/pip/wheels/de/c2/93/660fd5f7559049268ad2dc6d81c4e39e9e36518766eaf7e342\n",
            "Successfully built python-Levenshtein\n",
            "Installing collected packages: python-Levenshtein\n",
            "Successfully installed python-Levenshtein-0.12.0\n",
            "00:00:00.02 0.00 percent complete\n",
            "00:00:14.44 2.08 percent complete\n",
            "00:00:28.83 4.17 percent complete\n",
            "00:00:43.76 6.25 percent complete\n",
            "00:00:58.65 8.34 percent complete\n",
            "00:01:13.09 10.42 percent complete\n",
            "00:01:27.06 12.50 percent complete\n",
            "00:01:40.52 14.59 percent complete\n"
          ],
          "name": "stdout"
        },
        {
          "output_type": "stream",
          "text": [
            "WARNING:root:Applied processor reduces input query to empty string, all comparisons will have score 0. [Query: ':']\n"
          ],
          "name": "stderr"
        },
        {
          "output_type": "stream",
          "text": [
            "00:01:54.51 16.67 percent complete\n",
            "00:02:08.22 18.75 percent complete\n",
            "00:02:21.96 20.84 percent complete\n",
            "00:02:36.32 22.92 percent complete\n",
            "00:02:50.34 25.01 percent complete\n",
            "00:03:04.63 27.09 percent complete\n",
            "00:03:18.58 29.17 percent complete\n",
            "00:03:32.73 31.26 percent complete\n"
          ],
          "name": "stdout"
        },
        {
          "output_type": "stream",
          "text": [
            "WARNING:root:Applied processor reduces input query to empty string, all comparisons will have score 0. [Query: '|']\n"
          ],
          "name": "stderr"
        },
        {
          "output_type": "stream",
          "text": [
            "00:03:46.90 33.34 percent complete\n",
            "00:04:01.33 35.42 percent complete\n",
            "00:04:15.57 37.51 percent complete\n",
            "00:04:29.17 39.59 percent complete\n",
            "00:04:42.97 41.68 percent complete\n",
            "00:04:57.24 43.76 percent complete\n",
            "00:05:11.76 45.84 percent complete\n",
            "00:05:25.78 47.93 percent complete\n",
            "00:05:39.29 50.01 percent complete\n",
            "00:05:53.25 52.09 percent complete\n",
            "00:06:07.30 54.18 percent complete\n",
            "00:06:21.92 56.26 percent complete\n",
            "00:06:35.96 58.35 percent complete\n",
            "00:06:50.12 60.43 percent complete\n",
            "00:07:04.53 62.51 percent complete\n",
            "00:07:18.47 64.60 percent complete\n"
          ],
          "name": "stdout"
        },
        {
          "output_type": "stream",
          "text": [
            "WARNING:root:Applied processor reduces input query to empty string, all comparisons will have score 0. [Query: '/']\n"
          ],
          "name": "stderr"
        },
        {
          "output_type": "stream",
          "text": [
            "00:07:32.24 66.68 percent complete\n",
            "00:07:46.07 68.76 percent complete\n",
            "00:07:59.82 70.85 percent complete\n",
            "00:08:13.33 72.93 percent complete\n",
            "00:08:26.94 75.02 percent complete\n",
            "00:08:41.12 77.10 percent complete\n",
            "00:08:55.04 79.18 percent complete\n",
            "00:09:09.58 81.27 percent complete\n",
            "00:09:23.75 83.35 percent complete\n",
            "00:09:37.88 85.43 percent complete\n",
            "00:09:52.05 87.52 percent complete\n",
            "00:10:06.92 89.60 percent complete\n",
            "00:10:21.68 91.69 percent complete\n",
            "00:10:35.72 93.77 percent complete\n",
            "00:10:50.09 95.85 percent complete\n",
            "00:11:04.32 97.94 percent complete\n"
          ],
          "name": "stdout"
        }
      ]
    },
    {
      "cell_type": "code",
      "metadata": {
        "colab_type": "code",
        "id": "hxxBOCA-xXhy",
        "outputId": "844bdd09-19b3-4e63-ccee-3c87644a2597",
        "colab": {
          "base_uri": "https://localhost:8080/",
          "height": 810
        }
      },
      "source": [
        "# This section does the split between train/dev for the parallel corpora then saves them as separate files\n",
        "# We use 1000 dev test and the given test set.\n",
        "import csv\n",
        "\n",
        "# Do the split between dev/train and create parallel corpora\n",
        "num_dev_patterns = 1000\n",
        "\n",
        "# Optional: lower case the corpora - this will make it easier to generalize, but without proper casing.\n",
        "if lc:  # Julia: making lowercasing optional\n",
        "    df_pp[\"source_sentence\"] = df_pp[\"source_sentence\"].str.lower()\n",
        "    df_pp[\"target_sentence\"] = df_pp[\"target_sentence\"].str.lower()\n",
        "\n",
        "# Julia: test sets are already generated\n",
        "dev = df_pp.tail(num_dev_patterns) # Herman: Error in original\n",
        "stripped = df_pp.drop(df_pp.tail(num_dev_patterns).index)\n",
        "\n",
        "with open(\"train.\"+source_language, \"w\") as src_file, open(\"train.\"+target_language, \"w\") as trg_file:\n",
        "  for index, row in stripped.iterrows():\n",
        "    src_file.write(row[\"source_sentence\"]+\"\\n\")\n",
        "    trg_file.write(row[\"target_sentence\"]+\"\\n\")\n",
        "    \n",
        "with open(\"dev.\"+source_language, \"w\") as src_file, open(\"dev.\"+target_language, \"w\") as trg_file:\n",
        "  for index, row in dev.iterrows():\n",
        "    src_file.write(row[\"source_sentence\"]+\"\\n\")\n",
        "    trg_file.write(row[\"target_sentence\"]+\"\\n\")\n",
        "\n",
        "#stripped[[\"source_sentence\"]].to_csv(\"train.\"+source_language, header=False, index=False)  # Herman: Added `header=False` everywhere\n",
        "#stripped[[\"target_sentence\"]].to_csv(\"train.\"+target_language, header=False, index=False)  # Julia: Problematic handling of quotation marks.\n",
        "\n",
        "#dev[[\"source_sentence\"]].to_csv(\"dev.\"+source_language, header=False, index=False)\n",
        "#dev[[\"target_sentence\"]].to_csv(\"dev.\"+target_language, header=False, index=False)\n",
        "\n",
        "# Doublecheck the format below. There should be no extra quotation marks or weird characters.\n",
        "! head train.*\n",
        "! head dev.*"
      ],
      "execution_count": 10,
      "outputs": [
        {
          "output_type": "stream",
          "text": [
            "==> train.af <==\n",
            "as persone aan ' n oortreding ingevolge dié verordening skuldig bevind word , welke oortreding skade aan of verlies van eiendom veroorsaak het en / of ' n nadelige uitwerking op die omgewing gehad het , kan die hof dan , benewens enige ander vonnis wat opgelê is , die volgende doen :\n",
            "* Small Claims Courts Act (Wet) (File type: pdf; size: 487 KB) (net in Engels beskikbaar)\n",
            "* Kinders wat min urineer\n",
            "Is Berading Nodig Voordat Mens 'n Vigstoets Ondergaan?\n",
            "* Mei/Junie 2006, Vol. 2, Issue 9\n",
            "Die regering moet seker maak dat mense toegang het tot behoorlike behuising.\n",
            "Dit is balju's se plig om alle mense, ryk en arm, te alle tye met empatie en waardigheid te behandel.\n",
            "Tuisblad > Jou Regering > Wes-Kaapse Provinsiale Regering > Wes-Kaap Onderwysdepartement > Fasiliteite > Sentrums vir Basiese Onderwys en Opleiding vir Volwassenes (BOOV), en Gemeenskapsleersentrums > Siyafuna Ukufunda Adult Learning Centre\n",
            "* Hoe om Aansoek te Doen om 'n Lisensie\n",
            "Vir gereelde ondersoeke en medikasie moet kliënte die kliniek besoek.\n",
            "\n",
            "==> train.en <==\n",
            "persons convicted of an offence under this bylaw which caused damage to or loss of property and / or which has had an adverse impact on the environment then , in addition to any other sentence imposed , the court may :\n",
            "* Small Claims Courts Act (Act) (File type: pdf; size: 487 KB)\n",
            "* Passing of a little urine\n",
            "Is Counselling Necessary before Having an Aids Test?\n",
            "* May/June 2006, Vol. 2, Issue 9\n",
            "The government must make sure people get access to proper housing.\n",
            "It is the duty of sheriffs to serve all people, rich and poor, with empathy and dignity at all times.\n",
            "Home > Your Government > Provincial Government of the Western Cape > Western Cape Education Department > Facilities > ABET & Community Learning Centres > Siyafuna Ukufunda Adult Learning Centre\n",
            "* How to Apply for a Licence\n",
            "Clients must return to the clinic for regular check-ups and medication.\n",
            "==> dev.af <==\n",
            "GEORGE PLAASLIKE MUNISIPALITEIT: KONTAK\n",
            "Die Drostdy\n",
            "die doel van die tweede kategorie van komitees is om ook die kundigheid van persone buite die kommissie vir die kommissie se werksaamhede te benut en om direkte gemeenskapsbetrokkenheid te verseker .\n",
            "* indiwidue se private optrede\n",
            "en die bepaling van enige diens deur die Raad ;\n",
            "Hulle het egter dieselfde magte en pligte as enige polisielid terwyl hulle aan diens is.\n",
            "Wanneer mens hoes of nies, moet enige mens, veral dié met TB of MMW TB hulle neus en mond met 'n snesie bedek om die verspreiding van basille deur die lug te keer.\n",
            "Approval for a boar for artificial insemination\n",
            "ek voel ontsaglik trots dat demokratiese suid-afrika verstanding en fyngevoelig genoeg was om erkenning te gee aan wat albert luthuli en oliver tambo vir ons volk beteken deur twee van ons nasionale ordes na hulle te vernoem : die orde van luthuli , en die orde van die metgeselle van or tambo .\n",
            "Indien u bestuurslisensie verlore raak, of gesteel of vernietig word, kan u om vervanging daarvan aansoek doen.\n",
            "\n",
            "==> dev.en <==\n",
            "GEORGE LOCAL MUNICIPALITY: CONTACT\n",
            "The Drostdy\n",
            "the object of the second category of committees is to utilise the expertise of persons outside the commission and to ensure direct community involvement in the activities of the commission .\n",
            "* private acts by individuals\n",
            "and the provision of any service by the Council ;\n",
            "However, they have the same powers and duties as any police officer while they are on duty.\n",
            "When coughing or sneezing, any person and especially those with TB or MDR TB should cover the nose and mouth with a tissue to prevent air-borne spread of the bacilli.\n",
            "Approval for a boar for artificial insemination\n",
            "i feel immensely proud that democratic south africa has had the sense and sensitivity to acknowledge what albert luthuli and oliver tambo mean to our nation by naming two of our national orders after them - the order of luthuli , and the order of the companions of o.r .\n",
            "If your driving licence is lost, stolen or destroyed, you can apply for a replacement licence.\n"
          ],
          "name": "stdout"
        }
      ]
    },
    {
      "cell_type": "markdown",
      "metadata": {
        "colab_type": "text",
        "id": "epeCydmCyS8X"
      },
      "source": [
        "\n",
        "\n",
        "---\n",
        "\n",
        "\n",
        "## Installation of JoeyNMT\n",
        "\n",
        "JoeyNMT is a simple, minimalist NMT package which is useful for learning and teaching. Check out the documentation for JoeyNMT [here](https://joeynmt.readthedocs.io)  "
      ]
    },
    {
      "cell_type": "code",
      "metadata": {
        "colab_type": "code",
        "id": "iBRMm4kMxZ8L",
        "outputId": "17c99725-9750-46ca-9b40-f39142d2abbc",
        "colab": {
          "base_uri": "https://localhost:8080/",
          "height": 1000
        }
      },
      "source": [
        "# Install JoeyNMT\n",
        "! git clone https://github.com/joeynmt/joeynmt.git\n",
        "! cd joeynmt; pip3 install ."
      ],
      "execution_count": 11,
      "outputs": [
        {
          "output_type": "stream",
          "text": [
            "Cloning into 'joeynmt'...\n",
            "remote: Enumerating objects: 15, done.\u001b[K\n",
            "remote: Counting objects: 100% (15/15), done.\u001b[K\n",
            "remote: Compressing objects: 100% (12/12), done.\u001b[K\n",
            "remote: Total 2199 (delta 4), reused 5 (delta 3), pack-reused 2184\u001b[K\n",
            "Receiving objects: 100% (2199/2199), 2.60 MiB | 963.00 KiB/s, done.\n",
            "Resolving deltas: 100% (1525/1525), done.\n",
            "Processing /content/joeynmt\n",
            "Requirement already satisfied: future in /usr/local/lib/python3.6/dist-packages (from joeynmt==0.0.1) (0.16.0)\n",
            "Requirement already satisfied: pillow in /usr/local/lib/python3.6/dist-packages (from joeynmt==0.0.1) (4.3.0)\n",
            "Requirement already satisfied: numpy<2.0,>=1.14.5 in /usr/local/lib/python3.6/dist-packages (from joeynmt==0.0.1) (1.17.4)\n",
            "Requirement already satisfied: setuptools>=41.0.0 in /usr/local/lib/python3.6/dist-packages (from joeynmt==0.0.1) (41.6.0)\n",
            "Requirement already satisfied: torch>=1.1 in /usr/local/lib/python3.6/dist-packages (from joeynmt==0.0.1) (1.3.1)\n",
            "Requirement already satisfied: tensorflow>=1.14 in /usr/local/lib/python3.6/dist-packages (from joeynmt==0.0.1) (1.15.0)\n",
            "Requirement already satisfied: torchtext in /usr/local/lib/python3.6/dist-packages (from joeynmt==0.0.1) (0.3.1)\n",
            "Collecting sacrebleu>=1.3.6\n",
            "  Downloading https://files.pythonhosted.org/packages/0e/e5/93d252182f7cbd4b59bb3ec5797e2ce33cfd6f5aadaf327db170cf4b7887/sacrebleu-1.4.2-py3-none-any.whl\n",
            "Collecting subword-nmt\n",
            "  Downloading https://files.pythonhosted.org/packages/74/60/6600a7bc09e7ab38bc53a48a20d8cae49b837f93f5842a41fe513a694912/subword_nmt-0.3.7-py2.py3-none-any.whl\n",
            "Requirement already satisfied: matplotlib in /usr/local/lib/python3.6/dist-packages (from joeynmt==0.0.1) (3.1.1)\n",
            "Requirement already satisfied: seaborn in /usr/local/lib/python3.6/dist-packages (from joeynmt==0.0.1) (0.9.0)\n",
            "Collecting pyyaml>=5.1\n",
            "\u001b[?25l  Downloading https://files.pythonhosted.org/packages/e3/e8/b3212641ee2718d556df0f23f78de8303f068fe29cdaa7a91018849582fe/PyYAML-5.1.2.tar.gz (265kB)\n",
            "\u001b[K     |████████████████████████████████| 266kB 39.2MB/s \n",
            "\u001b[?25hCollecting pylint\n",
            "\u001b[?25l  Downloading https://files.pythonhosted.org/packages/e9/59/43fc36c5ee316bb9aeb7cf5329cdbdca89e5749c34d5602753827c0aa2dc/pylint-2.4.4-py3-none-any.whl (302kB)\n",
            "\u001b[K     |████████████████████████████████| 307kB 52.2MB/s \n",
            "\u001b[?25hRequirement already satisfied: six==1.12 in /usr/local/lib/python3.6/dist-packages (from joeynmt==0.0.1) (1.12.0)\n",
            "Requirement already satisfied: olefile in /usr/local/lib/python3.6/dist-packages (from pillow->joeynmt==0.0.1) (0.46)\n",
            "Requirement already satisfied: protobuf>=3.6.1 in /usr/local/lib/python3.6/dist-packages (from tensorflow>=1.14->joeynmt==0.0.1) (3.10.0)\n",
            "Requirement already satisfied: termcolor>=1.1.0 in /usr/local/lib/python3.6/dist-packages (from tensorflow>=1.14->joeynmt==0.0.1) (1.1.0)\n",
            "Requirement already satisfied: gast==0.2.2 in /usr/local/lib/python3.6/dist-packages (from tensorflow>=1.14->joeynmt==0.0.1) (0.2.2)\n",
            "Requirement already satisfied: google-pasta>=0.1.6 in /usr/local/lib/python3.6/dist-packages (from tensorflow>=1.14->joeynmt==0.0.1) (0.1.8)\n",
            "Requirement already satisfied: keras-applications>=1.0.8 in /usr/local/lib/python3.6/dist-packages (from tensorflow>=1.14->joeynmt==0.0.1) (1.0.8)\n",
            "Requirement already satisfied: keras-preprocessing>=1.0.5 in /usr/local/lib/python3.6/dist-packages (from tensorflow>=1.14->joeynmt==0.0.1) (1.1.0)\n",
            "Requirement already satisfied: astor>=0.6.0 in /usr/local/lib/python3.6/dist-packages (from tensorflow>=1.14->joeynmt==0.0.1) (0.8.0)\n",
            "Requirement already satisfied: tensorflow-estimator==1.15.1 in /usr/local/lib/python3.6/dist-packages (from tensorflow>=1.14->joeynmt==0.0.1) (1.15.1)\n",
            "Requirement already satisfied: absl-py>=0.7.0 in /usr/local/lib/python3.6/dist-packages (from tensorflow>=1.14->joeynmt==0.0.1) (0.8.1)\n",
            "Requirement already satisfied: wrapt>=1.11.1 in /usr/local/lib/python3.6/dist-packages (from tensorflow>=1.14->joeynmt==0.0.1) (1.11.2)\n",
            "Requirement already satisfied: wheel>=0.26 in /usr/local/lib/python3.6/dist-packages (from tensorflow>=1.14->joeynmt==0.0.1) (0.33.6)\n",
            "Requirement already satisfied: grpcio>=1.8.6 in /usr/local/lib/python3.6/dist-packages (from tensorflow>=1.14->joeynmt==0.0.1) (1.15.0)\n",
            "Requirement already satisfied: opt-einsum>=2.3.2 in /usr/local/lib/python3.6/dist-packages (from tensorflow>=1.14->joeynmt==0.0.1) (3.1.0)\n",
            "Requirement already satisfied: tensorboard<1.16.0,>=1.15.0 in /usr/local/lib/python3.6/dist-packages (from tensorflow>=1.14->joeynmt==0.0.1) (1.15.0)\n",
            "Requirement already satisfied: tqdm in /usr/local/lib/python3.6/dist-packages (from torchtext->joeynmt==0.0.1) (4.28.1)\n",
            "Requirement already satisfied: requests in /usr/local/lib/python3.6/dist-packages (from torchtext->joeynmt==0.0.1) (2.21.0)\n",
            "Requirement already satisfied: typing in /usr/local/lib/python3.6/dist-packages (from sacrebleu>=1.3.6->joeynmt==0.0.1) (3.6.6)\n",
            "Collecting portalocker\n",
            "  Downloading https://files.pythonhosted.org/packages/91/db/7bc703c0760df726839e0699b7f78a4d8217fdc9c7fcb1b51b39c5a22a4e/portalocker-1.5.2-py2.py3-none-any.whl\n",
            "Requirement already satisfied: kiwisolver>=1.0.1 in /usr/local/lib/python3.6/dist-packages (from matplotlib->joeynmt==0.0.1) (1.1.0)\n",
            "Requirement already satisfied: cycler>=0.10 in /usr/local/lib/python3.6/dist-packages (from matplotlib->joeynmt==0.0.1) (0.10.0)\n",
            "Requirement already satisfied: pyparsing!=2.0.4,!=2.1.2,!=2.1.6,>=2.0.1 in /usr/local/lib/python3.6/dist-packages (from matplotlib->joeynmt==0.0.1) (2.4.5)\n",
            "Requirement already satisfied: python-dateutil>=2.1 in /usr/local/lib/python3.6/dist-packages (from matplotlib->joeynmt==0.0.1) (2.6.1)\n",
            "Requirement already satisfied: pandas>=0.15.2 in /usr/local/lib/python3.6/dist-packages (from seaborn->joeynmt==0.0.1) (0.25.3)\n",
            "Requirement already satisfied: scipy>=0.14.0 in /usr/local/lib/python3.6/dist-packages (from seaborn->joeynmt==0.0.1) (1.3.2)\n",
            "Collecting isort<5,>=4.2.5\n",
            "\u001b[?25l  Downloading https://files.pythonhosted.org/packages/e5/b0/c121fd1fa3419ea9bfd55c7f9c4fedfec5143208d8c7ad3ce3db6c623c21/isort-4.3.21-py2.py3-none-any.whl (42kB)\n",
            "\u001b[K     |████████████████████████████████| 51kB 9.7MB/s \n",
            "\u001b[?25hCollecting mccabe<0.7,>=0.6\n",
            "  Downloading https://files.pythonhosted.org/packages/87/89/479dc97e18549e21354893e4ee4ef36db1d237534982482c3681ee6e7b57/mccabe-0.6.1-py2.py3-none-any.whl\n",
            "Collecting astroid<2.4,>=2.3.0\n",
            "\u001b[?25l  Downloading https://files.pythonhosted.org/packages/ad/ae/86734823047962e7b8c8529186a1ac4a7ca19aaf1aa0c7713c022ef593fd/astroid-2.3.3-py3-none-any.whl (205kB)\n",
            "\u001b[K     |████████████████████████████████| 215kB 47.0MB/s \n",
            "\u001b[?25hRequirement already satisfied: h5py in /usr/local/lib/python3.6/dist-packages (from keras-applications>=1.0.8->tensorflow>=1.14->joeynmt==0.0.1) (2.8.0)\n",
            "Requirement already satisfied: werkzeug>=0.11.15 in /usr/local/lib/python3.6/dist-packages (from tensorboard<1.16.0,>=1.15.0->tensorflow>=1.14->joeynmt==0.0.1) (0.16.0)\n",
            "Requirement already satisfied: markdown>=2.6.8 in /usr/local/lib/python3.6/dist-packages (from tensorboard<1.16.0,>=1.15.0->tensorflow>=1.14->joeynmt==0.0.1) (3.1.1)\n",
            "Requirement already satisfied: chardet<3.1.0,>=3.0.2 in /usr/local/lib/python3.6/dist-packages (from requests->torchtext->joeynmt==0.0.1) (3.0.4)\n",
            "Requirement already satisfied: idna<2.9,>=2.5 in /usr/local/lib/python3.6/dist-packages (from requests->torchtext->joeynmt==0.0.1) (2.8)\n",
            "Requirement already satisfied: urllib3<1.25,>=1.21.1 in /usr/local/lib/python3.6/dist-packages (from requests->torchtext->joeynmt==0.0.1) (1.24.3)\n",
            "Requirement already satisfied: certifi>=2017.4.17 in /usr/local/lib/python3.6/dist-packages (from requests->torchtext->joeynmt==0.0.1) (2019.9.11)\n",
            "Requirement already satisfied: pytz>=2017.2 in /usr/local/lib/python3.6/dist-packages (from pandas>=0.15.2->seaborn->joeynmt==0.0.1) (2018.9)\n",
            "Collecting typed-ast<1.5,>=1.4.0; implementation_name == \"cpython\" and python_version < \"3.8\"\n",
            "\u001b[?25l  Downloading https://files.pythonhosted.org/packages/31/d3/9d1802c161626d0278bafb1ffb32f76b9d01e123881bbf9d91e8ccf28e18/typed_ast-1.4.0-cp36-cp36m-manylinux1_x86_64.whl (736kB)\n",
            "\u001b[K     |████████████████████████████████| 737kB 52.4MB/s \n",
            "\u001b[?25hCollecting lazy-object-proxy==1.4.*\n",
            "\u001b[?25l  Downloading https://files.pythonhosted.org/packages/0b/dd/b1e3407e9e6913cf178e506cd0dee818e58694d9a5cd1984e3f6a8b9a10f/lazy_object_proxy-1.4.3-cp36-cp36m-manylinux1_x86_64.whl (55kB)\n",
            "\u001b[K     |████████████████████████████████| 61kB 9.4MB/s \n",
            "\u001b[?25hBuilding wheels for collected packages: joeynmt, pyyaml\n",
            "  Building wheel for joeynmt (setup.py) ... \u001b[?25l\u001b[?25hdone\n",
            "  Created wheel for joeynmt: filename=joeynmt-0.0.1-cp36-none-any.whl size=72136 sha256=724dda0553f12fc3e25ad81a5090e464a3502c77c6529930463c0eba6d4f5066\n",
            "  Stored in directory: /tmp/pip-ephem-wheel-cache-ipbh1mlc/wheels/db/01/db/751cc9f3e7f6faec127c43644ba250a3ea7ad200594aeda70a\n",
            "  Building wheel for pyyaml (setup.py) ... \u001b[?25l\u001b[?25hdone\n",
            "  Created wheel for pyyaml: filename=PyYAML-5.1.2-cp36-cp36m-linux_x86_64.whl size=44104 sha256=1db864996a0509685026d3509c0b3476b62cdc0bd8ce97860fc2c6e1d06661f9\n",
            "  Stored in directory: /root/.cache/pip/wheels/d9/45/dd/65f0b38450c47cf7e5312883deb97d065e030c5cca0a365030\n",
            "Successfully built joeynmt pyyaml\n",
            "Installing collected packages: portalocker, sacrebleu, subword-nmt, pyyaml, isort, mccabe, typed-ast, lazy-object-proxy, astroid, pylint, joeynmt\n",
            "  Found existing installation: PyYAML 3.13\n",
            "    Uninstalling PyYAML-3.13:\n",
            "      Successfully uninstalled PyYAML-3.13\n",
            "Successfully installed astroid-2.3.3 isort-4.3.21 joeynmt-0.0.1 lazy-object-proxy-1.4.3 mccabe-0.6.1 portalocker-1.5.2 pylint-2.4.4 pyyaml-5.1.2 sacrebleu-1.4.2 subword-nmt-0.3.7 typed-ast-1.4.0\n"
          ],
          "name": "stdout"
        }
      ]
    },
    {
      "cell_type": "markdown",
      "metadata": {
        "colab_type": "text",
        "id": "AaE77Tcppex9"
      },
      "source": [
        "# Preprocessing the Data into Subword BPE Tokens\n",
        "\n",
        "- One of the most powerful improvements for agglutinative languages (a feature of most Bantu languages) is using BPE tokenization [ (Sennrich, 2015) ](https://arxiv.org/abs/1508.07909).\n",
        "\n",
        "- It was also shown that by optimizing the umber of BPE codes we significantly improve results for low-resourced languages [(Sennrich, 2019)](https://www.aclweb.org/anthology/P19-1021) [(Martinus, 2019)](https://arxiv.org/abs/1906.05685)\n",
        "\n",
        "- Below we have the scripts for doing BPE tokenization of our data. We use 4000 tokens as recommended by [(Sennrich, 2019)](https://www.aclweb.org/anthology/P19-1021). You do not need to change anything. Simply running the below will be suitable. "
      ]
    },
    {
      "cell_type": "code",
      "metadata": {
        "colab_type": "code",
        "id": "H-TyjtmXB1mL",
        "outputId": "b9f3ebf3-3345-44e9-853c-9e0fc9aa8cec",
        "colab": {
          "base_uri": "https://localhost:8080/",
          "height": 423
        }
      },
      "source": [
        "# One of the huge boosts in NMT performance was to use a different method of tokenizing. \n",
        "# Usually, NMT would tokenize by words. However, using a method called BPE gave amazing boosts to performance\n",
        "\n",
        "# Do subword NMT\n",
        "from os import path\n",
        "os.environ[\"src\"] = source_language # Sets them in bash as well, since we often use bash scripts\n",
        "os.environ[\"tgt\"] = target_language\n",
        "\n",
        "# Learn BPEs on the training data.\n",
        "os.environ[\"data_path\"] = path.join(\"joeynmt\", \"data\", source_language + target_language) # Herman! \n",
        "! subword-nmt learn-joint-bpe-and-vocab --input train.$src train.$tgt -s 4000 -o bpe.codes.4000 --write-vocabulary vocab.$src vocab.$tgt\n",
        "\n",
        "# Apply BPE splits to the development and test data.\n",
        "! subword-nmt apply-bpe -c bpe.codes.4000 --vocabulary vocab.$src < train.$src > train.bpe.$src\n",
        "! subword-nmt apply-bpe -c bpe.codes.4000 --vocabulary vocab.$tgt < train.$tgt > train.bpe.$tgt\n",
        "\n",
        "! subword-nmt apply-bpe -c bpe.codes.4000 --vocabulary vocab.$src < dev.$src > dev.bpe.$src\n",
        "! subword-nmt apply-bpe -c bpe.codes.4000 --vocabulary vocab.$tgt < dev.$tgt > dev.bpe.$tgt\n",
        "! subword-nmt apply-bpe -c bpe.codes.4000 --vocabulary vocab.$src < test.$src > test.bpe.$src\n",
        "! subword-nmt apply-bpe -c bpe.codes.4000 --vocabulary vocab.$tgt < test.$tgt > test.bpe.$tgt\n",
        "\n",
        "# Create directory, move everyone we care about to the correct location\n",
        "! mkdir -p $data_path\n",
        "! cp train.* $data_path\n",
        "! cp test.* $data_path\n",
        "! cp dev.* $data_path\n",
        "! cp bpe.codes.4000 $data_path\n",
        "! ls $data_path\n",
        "\n",
        "# Also move everything we care about to a mounted location in google drive (relevant if running in colab) at gdrive_path\n",
        "! cp train.* \"$gdrive_path\"\n",
        "! cp test.* \"$gdrive_path\"\n",
        "! cp dev.* \"$gdrive_path\"\n",
        "! cp bpe.codes.4000 \"$gdrive_path\"\n",
        "! ls \"$gdrive_path\"\n",
        "\n",
        "# Create that vocab using build_vocab\n",
        "! sudo chmod 777 joeynmt/scripts/build_vocab.py\n",
        "! joeynmt/scripts/build_vocab.py joeynmt/data/$src$tgt/train.bpe.$src joeynmt/data/$src$tgt/train.bpe.$tgt --output_path joeynmt/data/$src$tgt/vocab.txt\n",
        "\n",
        "# Some output\n",
        "! echo \"BPE Afrikaans Sentences\"\n",
        "! tail -n 5 test.bpe.$tgt\n",
        "! echo \"Combined BPE Vocab\"\n",
        "! tail -n 10 joeynmt/data/$src$tgt/vocab.txt  # Herman"
      ],
      "execution_count": 12,
      "outputs": [
        {
          "output_type": "stream",
          "text": [
            "bpe.codes.4000\tdev.bpe.en  test.bpe.af  test.en-any.en  train.bpe.en\n",
            "dev.af\t\tdev.en\t    test.bpe.en  train.af\t train.en\n",
            "dev.bpe.af\ttest.af     test.en\t train.bpe.af\n",
            "bpe.codes.4000\tdev.bpe.en  test.bpe.af  test.en-any.en  train.bpe.en\n",
            "dev.af\t\tdev.en\t    test.bpe.en  train.af\t train.en\n",
            "dev.bpe.af\ttest.af     test.en\t train.bpe.af\n",
            "BPE Afrikaans Sentences\n",
            "E@@ k mo@@ es h@@ om om@@ k@@ oop sodat hy sy o@@ ë s@@ ou sluit vir die maatskappy se on@@ eer@@ likheid .\n",
            "Ge@@ vol@@ g@@ lik was ek beken@@ d as ’ n on@@ eer@@ like man . To@@ e ek in die waar@@ heid kom , het ek gew@@ ei@@ er om daar@@ me@@ e voor@@ t te gaan , al het ek ’ n go@@ eie sal@@ aris ver@@ dien .\n",
            "E@@ k stel ’ n go@@ eie voorbe@@ eld vir my twee se@@ un@@ s , en ek het voor@@ regte in die gemeen@@ te ge@@ kry .\n",
            "Bel@@ ast@@ ing@@ ou@@ di@@ te@@ urs en ander met wie ek besi@@ gheid doen , we@@ et n@@ ou dat ek ’ n eer@@ like man is . ”\n",
            "R@@ ut het na I@@ s@@ ra@@ el ge@@ trek , waar sy die w@@ are G@@ o@@ d k@@ on aan@@ bi@@ d .\n",
            "Combined BPE Vocab\n",
            "Ö@@\n",
            "«@@\n",
            "(Servic@@\n",
            "Ô@@\n",
            "onomiese\n",
            "GOVER@@\n",
            "&nbsp;\n",
            "softw@@\n",
            "Ã@@\n",
            "―@@\n"
          ],
          "name": "stdout"
        }
      ]
    },
    {
      "cell_type": "code",
      "metadata": {
        "colab_type": "code",
        "id": "IlMitUHR8Qy-",
        "outputId": "6ab7079a-c488-4e18-a2ab-8f91792f0bc3",
        "colab": {
          "base_uri": "https://localhost:8080/",
          "height": 67
        }
      },
      "source": [
        "# Also move everything we care about to a mounted location in google drive (relevant if running in colab) at gdrive_path\n",
        "! cp train.* \"$gdrive_path\"\n",
        "! cp test.* \"$gdrive_path\"\n",
        "! cp dev.* \"$gdrive_path\"\n",
        "! cp bpe.codes.4000 \"$gdrive_path\"\n",
        "! ls \"$gdrive_path\""
      ],
      "execution_count": 13,
      "outputs": [
        {
          "output_type": "stream",
          "text": [
            "bpe.codes.4000\tdev.bpe.en  test.bpe.af  test.en-any.en  train.bpe.en\n",
            "dev.af\t\tdev.en\t    test.bpe.en  train.af\t train.en\n",
            "dev.bpe.af\ttest.af     test.en\t train.bpe.af\n"
          ],
          "name": "stdout"
        }
      ]
    },
    {
      "cell_type": "markdown",
      "metadata": {
        "colab_type": "text",
        "id": "Ixmzi60WsUZ8"
      },
      "source": [
        "# Creating the JoeyNMT Config\n",
        "\n",
        "JoeyNMT requires a yaml config. We provide a template below. We've also set a number of defaults with it, that you may play with!\n",
        "\n",
        "- We used Transformer architecture \n",
        "- We set our dropout to reasonably high: 0.3 (recommended in  [(Sennrich, 2019)](https://www.aclweb.org/anthology/P19-1021))\n",
        "\n",
        "Things worth playing with:\n",
        "- The batch size (also recommended to change for low-resourced languages)\n",
        "- The number of epochs (we've set it at 30 just so it runs in about an hour, for testing purposes)\n",
        "- The decoder options (beam_size, alpha)\n",
        "- Evaluation metrics (BLEU versus Crhf4)"
      ]
    },
    {
      "cell_type": "code",
      "metadata": {
        "colab_type": "code",
        "id": "PIs1lY2hxMsl",
        "colab": {}
      },
      "source": [
        "# This creates the config file for our JoeyNMT system. It might seem overwhelming so we've provided a couple of useful parameters you'll need to update\n",
        "# (You can of course play with all the parameters if you'd like!)\n",
        "\n",
        "name = '%s%s' % (source_language, target_language)\n",
        "gdrive_path = os.environ[\"gdrive_path\"]\n",
        "\n",
        "# Create the config\n",
        "config = \"\"\"\n",
        "name: \"{name}_transformer\"\n",
        "\n",
        "data:\n",
        "    src: \"{source_language}\"\n",
        "    trg: \"{target_language}\"\n",
        "    train: \"data/{name}/train.bpe\"\n",
        "    dev:   \"data/{name}/dev.bpe\"\n",
        "    test:  \"data/{name}/test.bpe\"\n",
        "    level: \"bpe\"\n",
        "    lowercase: False\n",
        "    max_sent_length: 100\n",
        "    src_vocab: \"data/{name}/vocab.txt\"\n",
        "    trg_vocab: \"data/{name}/vocab.txt\"\n",
        "\n",
        "testing:\n",
        "    beam_size: 5\n",
        "    alpha: 1.0\n",
        "\n",
        "training:\n",
        "    #load_model: \"{gdrive_path}/models/{name}_transformer/1.ckpt\" # if uncommented, load a pre-trained model from this checkpoint\n",
        "    random_seed: 42\n",
        "    optimizer: \"adam\"\n",
        "    normalization: \"tokens\"\n",
        "    adam_betas: [0.9, 0.999] \n",
        "    scheduling: \"plateau\"           # TODO: try switching from plateau to Noam scheduling\n",
        "    patience: 5                     # For plateau: decrease learning rate by decrease_factor if validation score has not improved for this many validation rounds.\n",
        "    learning_rate_factor: 0.5       # factor for Noam scheduler (used with Transformer)\n",
        "    learning_rate_warmup: 1000      # warmup steps for Noam scheduler (used with Transformer)\n",
        "    decrease_factor: 0.7\n",
        "    loss: \"crossentropy\"\n",
        "    learning_rate: 0.0003\n",
        "    learning_rate_min: 0.00000001\n",
        "    weight_decay: 0.0\n",
        "    label_smoothing: 0.1\n",
        "    batch_size: 4096\n",
        "    batch_type: \"token\"\n",
        "    eval_batch_size: 3600\n",
        "    eval_batch_type: \"token\"\n",
        "    batch_multiplier: 1\n",
        "    early_stopping_metric: \"ppl\"\n",
        "    epochs: 100                     # TODO: Decrease for when playing around and checking of working. Around 30 is sufficient to check if its working at all\n",
        "    validation_freq: 2000          # TODO: Set to at least once per epoch.\n",
        "    logging_freq: 100\n",
        "    eval_metric: \"bleu\"\n",
        "    model_dir: \"models/{name}_transformer\"\n",
        "    overwrite: False               # TODO: Set to True if you want to overwrite possibly existing models. \n",
        "    shuffle: True\n",
        "    use_cuda: True\n",
        "    max_output_length: 100\n",
        "    print_valid_sents: [0, 1, 2, 3]\n",
        "    keep_last_ckpts: 3\n",
        "\n",
        "model:\n",
        "    initializer: \"xavier\"\n",
        "    bias_initializer: \"zeros\"\n",
        "    init_gain: 1.0\n",
        "    embed_initializer: \"xavier\"\n",
        "    embed_init_gain: 1.0\n",
        "    tied_embeddings: True\n",
        "    tied_softmax: True\n",
        "    encoder:\n",
        "        type: \"transformer\"\n",
        "        num_layers: 6\n",
        "        num_heads: 4             # TODO: Increase to 8 for larger data.\n",
        "        embeddings:\n",
        "            embedding_dim: 256   # TODO: Increase to 512 for larger data.\n",
        "            scale: True\n",
        "            dropout: 0.2\n",
        "        # typically ff_size = 4 x hidden_size\n",
        "        hidden_size: 256         # TODO: Increase to 512 for larger data.\n",
        "        ff_size: 1024            # TODO: Increase to 2048 for larger data.\n",
        "        dropout: 0.3\n",
        "    decoder:\n",
        "        type: \"transformer\"\n",
        "        num_layers: 6\n",
        "        num_heads: 4              # TODO: Increase to 8 for larger data.\n",
        "        embeddings:\n",
        "            embedding_dim: 256    # TODO: Increase to 512 for larger data.\n",
        "            scale: True\n",
        "            dropout: 0.2\n",
        "        # typically ff_size = 4 x hidden_size\n",
        "        hidden_size: 256         # TODO: Increase to 512 for larger data.\n",
        "        ff_size: 1024            # TODO: Increase to 2048 for larger data.\n",
        "        dropout: 0.3\n",
        "\"\"\".format(name=name, gdrive_path=os.environ[\"gdrive_path\"], source_language=source_language, target_language=target_language)\n",
        "with open(\"joeynmt/configs/transformer_{name}.yaml\".format(name=name),'w') as f:\n",
        "    f.write(config)"
      ],
      "execution_count": 0,
      "outputs": []
    },
    {
      "cell_type": "markdown",
      "metadata": {
        "colab_type": "text",
        "id": "pIifxE3Qzuvs"
      },
      "source": [
        "# Train the Model\n",
        "\n",
        "This single line of joeynmt runs the training using the config we made above"
      ]
    },
    {
      "cell_type": "code",
      "metadata": {
        "colab_type": "code",
        "id": "6ZBPFwT94WpI",
        "outputId": "dfc0c383-dc2b-4389-c33d-36863014b6ae",
        "colab": {
          "base_uri": "https://localhost:8080/",
          "height": 1000
        }
      },
      "source": [
        "# Train the model\n",
        "# You can press Ctrl-C to stop. And then run the next cell to save your checkpoints! \n",
        "!cd joeynmt; python3 -m joeynmt train configs/transformer_$src$tgt.yaml"
      ],
      "execution_count": 15,
      "outputs": [
        {
          "output_type": "stream",
          "text": [
            "2019-11-26 11:31:47,451 Hello! This is Joey-NMT.\n",
            "2019-11-26 11:31:49,152 Total params: 12138240\n",
            "2019-11-26 11:31:49,154 Trainable parameters: ['decoder.layer_norm.bias', 'decoder.layer_norm.weight', 'decoder.layers.0.dec_layer_norm.bias', 'decoder.layers.0.dec_layer_norm.weight', 'decoder.layers.0.feed_forward.layer_norm.bias', 'decoder.layers.0.feed_forward.layer_norm.weight', 'decoder.layers.0.feed_forward.pwff_layer.0.bias', 'decoder.layers.0.feed_forward.pwff_layer.0.weight', 'decoder.layers.0.feed_forward.pwff_layer.3.bias', 'decoder.layers.0.feed_forward.pwff_layer.3.weight', 'decoder.layers.0.src_trg_att.k_layer.bias', 'decoder.layers.0.src_trg_att.k_layer.weight', 'decoder.layers.0.src_trg_att.output_layer.bias', 'decoder.layers.0.src_trg_att.output_layer.weight', 'decoder.layers.0.src_trg_att.q_layer.bias', 'decoder.layers.0.src_trg_att.q_layer.weight', 'decoder.layers.0.src_trg_att.v_layer.bias', 'decoder.layers.0.src_trg_att.v_layer.weight', 'decoder.layers.0.trg_trg_att.k_layer.bias', 'decoder.layers.0.trg_trg_att.k_layer.weight', 'decoder.layers.0.trg_trg_att.output_layer.bias', 'decoder.layers.0.trg_trg_att.output_layer.weight', 'decoder.layers.0.trg_trg_att.q_layer.bias', 'decoder.layers.0.trg_trg_att.q_layer.weight', 'decoder.layers.0.trg_trg_att.v_layer.bias', 'decoder.layers.0.trg_trg_att.v_layer.weight', 'decoder.layers.0.x_layer_norm.bias', 'decoder.layers.0.x_layer_norm.weight', 'decoder.layers.1.dec_layer_norm.bias', 'decoder.layers.1.dec_layer_norm.weight', 'decoder.layers.1.feed_forward.layer_norm.bias', 'decoder.layers.1.feed_forward.layer_norm.weight', 'decoder.layers.1.feed_forward.pwff_layer.0.bias', 'decoder.layers.1.feed_forward.pwff_layer.0.weight', 'decoder.layers.1.feed_forward.pwff_layer.3.bias', 'decoder.layers.1.feed_forward.pwff_layer.3.weight', 'decoder.layers.1.src_trg_att.k_layer.bias', 'decoder.layers.1.src_trg_att.k_layer.weight', 'decoder.layers.1.src_trg_att.output_layer.bias', 'decoder.layers.1.src_trg_att.output_layer.weight', 'decoder.layers.1.src_trg_att.q_layer.bias', 'decoder.layers.1.src_trg_att.q_layer.weight', 'decoder.layers.1.src_trg_att.v_layer.bias', 'decoder.layers.1.src_trg_att.v_layer.weight', 'decoder.layers.1.trg_trg_att.k_layer.bias', 'decoder.layers.1.trg_trg_att.k_layer.weight', 'decoder.layers.1.trg_trg_att.output_layer.bias', 'decoder.layers.1.trg_trg_att.output_layer.weight', 'decoder.layers.1.trg_trg_att.q_layer.bias', 'decoder.layers.1.trg_trg_att.q_layer.weight', 'decoder.layers.1.trg_trg_att.v_layer.bias', 'decoder.layers.1.trg_trg_att.v_layer.weight', 'decoder.layers.1.x_layer_norm.bias', 'decoder.layers.1.x_layer_norm.weight', 'decoder.layers.2.dec_layer_norm.bias', 'decoder.layers.2.dec_layer_norm.weight', 'decoder.layers.2.feed_forward.layer_norm.bias', 'decoder.layers.2.feed_forward.layer_norm.weight', 'decoder.layers.2.feed_forward.pwff_layer.0.bias', 'decoder.layers.2.feed_forward.pwff_layer.0.weight', 'decoder.layers.2.feed_forward.pwff_layer.3.bias', 'decoder.layers.2.feed_forward.pwff_layer.3.weight', 'decoder.layers.2.src_trg_att.k_layer.bias', 'decoder.layers.2.src_trg_att.k_layer.weight', 'decoder.layers.2.src_trg_att.output_layer.bias', 'decoder.layers.2.src_trg_att.output_layer.weight', 'decoder.layers.2.src_trg_att.q_layer.bias', 'decoder.layers.2.src_trg_att.q_layer.weight', 'decoder.layers.2.src_trg_att.v_layer.bias', 'decoder.layers.2.src_trg_att.v_layer.weight', 'decoder.layers.2.trg_trg_att.k_layer.bias', 'decoder.layers.2.trg_trg_att.k_layer.weight', 'decoder.layers.2.trg_trg_att.output_layer.bias', 'decoder.layers.2.trg_trg_att.output_layer.weight', 'decoder.layers.2.trg_trg_att.q_layer.bias', 'decoder.layers.2.trg_trg_att.q_layer.weight', 'decoder.layers.2.trg_trg_att.v_layer.bias', 'decoder.layers.2.trg_trg_att.v_layer.weight', 'decoder.layers.2.x_layer_norm.bias', 'decoder.layers.2.x_layer_norm.weight', 'decoder.layers.3.dec_layer_norm.bias', 'decoder.layers.3.dec_layer_norm.weight', 'decoder.layers.3.feed_forward.layer_norm.bias', 'decoder.layers.3.feed_forward.layer_norm.weight', 'decoder.layers.3.feed_forward.pwff_layer.0.bias', 'decoder.layers.3.feed_forward.pwff_layer.0.weight', 'decoder.layers.3.feed_forward.pwff_layer.3.bias', 'decoder.layers.3.feed_forward.pwff_layer.3.weight', 'decoder.layers.3.src_trg_att.k_layer.bias', 'decoder.layers.3.src_trg_att.k_layer.weight', 'decoder.layers.3.src_trg_att.output_layer.bias', 'decoder.layers.3.src_trg_att.output_layer.weight', 'decoder.layers.3.src_trg_att.q_layer.bias', 'decoder.layers.3.src_trg_att.q_layer.weight', 'decoder.layers.3.src_trg_att.v_layer.bias', 'decoder.layers.3.src_trg_att.v_layer.weight', 'decoder.layers.3.trg_trg_att.k_layer.bias', 'decoder.layers.3.trg_trg_att.k_layer.weight', 'decoder.layers.3.trg_trg_att.output_layer.bias', 'decoder.layers.3.trg_trg_att.output_layer.weight', 'decoder.layers.3.trg_trg_att.q_layer.bias', 'decoder.layers.3.trg_trg_att.q_layer.weight', 'decoder.layers.3.trg_trg_att.v_layer.bias', 'decoder.layers.3.trg_trg_att.v_layer.weight', 'decoder.layers.3.x_layer_norm.bias', 'decoder.layers.3.x_layer_norm.weight', 'decoder.layers.4.dec_layer_norm.bias', 'decoder.layers.4.dec_layer_norm.weight', 'decoder.layers.4.feed_forward.layer_norm.bias', 'decoder.layers.4.feed_forward.layer_norm.weight', 'decoder.layers.4.feed_forward.pwff_layer.0.bias', 'decoder.layers.4.feed_forward.pwff_layer.0.weight', 'decoder.layers.4.feed_forward.pwff_layer.3.bias', 'decoder.layers.4.feed_forward.pwff_layer.3.weight', 'decoder.layers.4.src_trg_att.k_layer.bias', 'decoder.layers.4.src_trg_att.k_layer.weight', 'decoder.layers.4.src_trg_att.output_layer.bias', 'decoder.layers.4.src_trg_att.output_layer.weight', 'decoder.layers.4.src_trg_att.q_layer.bias', 'decoder.layers.4.src_trg_att.q_layer.weight', 'decoder.layers.4.src_trg_att.v_layer.bias', 'decoder.layers.4.src_trg_att.v_layer.weight', 'decoder.layers.4.trg_trg_att.k_layer.bias', 'decoder.layers.4.trg_trg_att.k_layer.weight', 'decoder.layers.4.trg_trg_att.output_layer.bias', 'decoder.layers.4.trg_trg_att.output_layer.weight', 'decoder.layers.4.trg_trg_att.q_layer.bias', 'decoder.layers.4.trg_trg_att.q_layer.weight', 'decoder.layers.4.trg_trg_att.v_layer.bias', 'decoder.layers.4.trg_trg_att.v_layer.weight', 'decoder.layers.4.x_layer_norm.bias', 'decoder.layers.4.x_layer_norm.weight', 'decoder.layers.5.dec_layer_norm.bias', 'decoder.layers.5.dec_layer_norm.weight', 'decoder.layers.5.feed_forward.layer_norm.bias', 'decoder.layers.5.feed_forward.layer_norm.weight', 'decoder.layers.5.feed_forward.pwff_layer.0.bias', 'decoder.layers.5.feed_forward.pwff_layer.0.weight', 'decoder.layers.5.feed_forward.pwff_layer.3.bias', 'decoder.layers.5.feed_forward.pwff_layer.3.weight', 'decoder.layers.5.src_trg_att.k_layer.bias', 'decoder.layers.5.src_trg_att.k_layer.weight', 'decoder.layers.5.src_trg_att.output_layer.bias', 'decoder.layers.5.src_trg_att.output_layer.weight', 'decoder.layers.5.src_trg_att.q_layer.bias', 'decoder.layers.5.src_trg_att.q_layer.weight', 'decoder.layers.5.src_trg_att.v_layer.bias', 'decoder.layers.5.src_trg_att.v_layer.weight', 'decoder.layers.5.trg_trg_att.k_layer.bias', 'decoder.layers.5.trg_trg_att.k_layer.weight', 'decoder.layers.5.trg_trg_att.output_layer.bias', 'decoder.layers.5.trg_trg_att.output_layer.weight', 'decoder.layers.5.trg_trg_att.q_layer.bias', 'decoder.layers.5.trg_trg_att.q_layer.weight', 'decoder.layers.5.trg_trg_att.v_layer.bias', 'decoder.layers.5.trg_trg_att.v_layer.weight', 'decoder.layers.5.x_layer_norm.bias', 'decoder.layers.5.x_layer_norm.weight', 'encoder.layer_norm.bias', 'encoder.layer_norm.weight', 'encoder.layers.0.feed_forward.layer_norm.bias', 'encoder.layers.0.feed_forward.layer_norm.weight', 'encoder.layers.0.feed_forward.pwff_layer.0.bias', 'encoder.layers.0.feed_forward.pwff_layer.0.weight', 'encoder.layers.0.feed_forward.pwff_layer.3.bias', 'encoder.layers.0.feed_forward.pwff_layer.3.weight', 'encoder.layers.0.layer_norm.bias', 'encoder.layers.0.layer_norm.weight', 'encoder.layers.0.src_src_att.k_layer.bias', 'encoder.layers.0.src_src_att.k_layer.weight', 'encoder.layers.0.src_src_att.output_layer.bias', 'encoder.layers.0.src_src_att.output_layer.weight', 'encoder.layers.0.src_src_att.q_layer.bias', 'encoder.layers.0.src_src_att.q_layer.weight', 'encoder.layers.0.src_src_att.v_layer.bias', 'encoder.layers.0.src_src_att.v_layer.weight', 'encoder.layers.1.feed_forward.layer_norm.bias', 'encoder.layers.1.feed_forward.layer_norm.weight', 'encoder.layers.1.feed_forward.pwff_layer.0.bias', 'encoder.layers.1.feed_forward.pwff_layer.0.weight', 'encoder.layers.1.feed_forward.pwff_layer.3.bias', 'encoder.layers.1.feed_forward.pwff_layer.3.weight', 'encoder.layers.1.layer_norm.bias', 'encoder.layers.1.layer_norm.weight', 'encoder.layers.1.src_src_att.k_layer.bias', 'encoder.layers.1.src_src_att.k_layer.weight', 'encoder.layers.1.src_src_att.output_layer.bias', 'encoder.layers.1.src_src_att.output_layer.weight', 'encoder.layers.1.src_src_att.q_layer.bias', 'encoder.layers.1.src_src_att.q_layer.weight', 'encoder.layers.1.src_src_att.v_layer.bias', 'encoder.layers.1.src_src_att.v_layer.weight', 'encoder.layers.2.feed_forward.layer_norm.bias', 'encoder.layers.2.feed_forward.layer_norm.weight', 'encoder.layers.2.feed_forward.pwff_layer.0.bias', 'encoder.layers.2.feed_forward.pwff_layer.0.weight', 'encoder.layers.2.feed_forward.pwff_layer.3.bias', 'encoder.layers.2.feed_forward.pwff_layer.3.weight', 'encoder.layers.2.layer_norm.bias', 'encoder.layers.2.layer_norm.weight', 'encoder.layers.2.src_src_att.k_layer.bias', 'encoder.layers.2.src_src_att.k_layer.weight', 'encoder.layers.2.src_src_att.output_layer.bias', 'encoder.layers.2.src_src_att.output_layer.weight', 'encoder.layers.2.src_src_att.q_layer.bias', 'encoder.layers.2.src_src_att.q_layer.weight', 'encoder.layers.2.src_src_att.v_layer.bias', 'encoder.layers.2.src_src_att.v_layer.weight', 'encoder.layers.3.feed_forward.layer_norm.bias', 'encoder.layers.3.feed_forward.layer_norm.weight', 'encoder.layers.3.feed_forward.pwff_layer.0.bias', 'encoder.layers.3.feed_forward.pwff_layer.0.weight', 'encoder.layers.3.feed_forward.pwff_layer.3.bias', 'encoder.layers.3.feed_forward.pwff_layer.3.weight', 'encoder.layers.3.layer_norm.bias', 'encoder.layers.3.layer_norm.weight', 'encoder.layers.3.src_src_att.k_layer.bias', 'encoder.layers.3.src_src_att.k_layer.weight', 'encoder.layers.3.src_src_att.output_layer.bias', 'encoder.layers.3.src_src_att.output_layer.weight', 'encoder.layers.3.src_src_att.q_layer.bias', 'encoder.layers.3.src_src_att.q_layer.weight', 'encoder.layers.3.src_src_att.v_layer.bias', 'encoder.layers.3.src_src_att.v_layer.weight', 'encoder.layers.4.feed_forward.layer_norm.bias', 'encoder.layers.4.feed_forward.layer_norm.weight', 'encoder.layers.4.feed_forward.pwff_layer.0.bias', 'encoder.layers.4.feed_forward.pwff_layer.0.weight', 'encoder.layers.4.feed_forward.pwff_layer.3.bias', 'encoder.layers.4.feed_forward.pwff_layer.3.weight', 'encoder.layers.4.layer_norm.bias', 'encoder.layers.4.layer_norm.weight', 'encoder.layers.4.src_src_att.k_layer.bias', 'encoder.layers.4.src_src_att.k_layer.weight', 'encoder.layers.4.src_src_att.output_layer.bias', 'encoder.layers.4.src_src_att.output_layer.weight', 'encoder.layers.4.src_src_att.q_layer.bias', 'encoder.layers.4.src_src_att.q_layer.weight', 'encoder.layers.4.src_src_att.v_layer.bias', 'encoder.layers.4.src_src_att.v_layer.weight', 'encoder.layers.5.feed_forward.layer_norm.bias', 'encoder.layers.5.feed_forward.layer_norm.weight', 'encoder.layers.5.feed_forward.pwff_layer.0.bias', 'encoder.layers.5.feed_forward.pwff_layer.0.weight', 'encoder.layers.5.feed_forward.pwff_layer.3.bias', 'encoder.layers.5.feed_forward.pwff_layer.3.weight', 'encoder.layers.5.layer_norm.bias', 'encoder.layers.5.layer_norm.weight', 'encoder.layers.5.src_src_att.k_layer.bias', 'encoder.layers.5.src_src_att.k_layer.weight', 'encoder.layers.5.src_src_att.output_layer.bias', 'encoder.layers.5.src_src_att.output_layer.weight', 'encoder.layers.5.src_src_att.q_layer.bias', 'encoder.layers.5.src_src_att.q_layer.weight', 'encoder.layers.5.src_src_att.v_layer.bias', 'encoder.layers.5.src_src_att.v_layer.weight', 'src_embed.lut.weight']\n",
            "2019-11-26 11:31:56,433 cfg.name                           : enaf_transformer\n",
            "2019-11-26 11:31:56,433 cfg.data.src                       : en\n",
            "2019-11-26 11:31:56,434 cfg.data.trg                       : af\n",
            "2019-11-26 11:31:56,434 cfg.data.train                     : data/enaf/train.bpe\n",
            "2019-11-26 11:31:56,434 cfg.data.dev                       : data/enaf/dev.bpe\n",
            "2019-11-26 11:31:56,434 cfg.data.test                      : data/enaf/test.bpe\n",
            "2019-11-26 11:31:56,434 cfg.data.level                     : bpe\n",
            "2019-11-26 11:31:56,434 cfg.data.lowercase                 : False\n",
            "2019-11-26 11:31:56,434 cfg.data.max_sent_length           : 100\n",
            "2019-11-26 11:31:56,434 cfg.data.src_vocab                 : data/enaf/vocab.txt\n",
            "2019-11-26 11:31:56,434 cfg.data.trg_vocab                 : data/enaf/vocab.txt\n",
            "2019-11-26 11:31:56,434 cfg.testing.beam_size              : 5\n",
            "2019-11-26 11:31:56,434 cfg.testing.alpha                  : 1.0\n",
            "2019-11-26 11:31:56,434 cfg.training.random_seed           : 42\n",
            "2019-11-26 11:31:56,434 cfg.training.optimizer             : adam\n",
            "2019-11-26 11:31:56,434 cfg.training.normalization         : tokens\n",
            "2019-11-26 11:31:56,434 cfg.training.adam_betas            : [0.9, 0.999]\n",
            "2019-11-26 11:31:56,434 cfg.training.scheduling            : plateau\n",
            "2019-11-26 11:31:56,434 cfg.training.patience              : 5\n",
            "2019-11-26 11:31:56,434 cfg.training.learning_rate_factor  : 0.5\n",
            "2019-11-26 11:31:56,434 cfg.training.learning_rate_warmup  : 1000\n",
            "2019-11-26 11:31:56,434 cfg.training.decrease_factor       : 0.7\n",
            "2019-11-26 11:31:56,434 cfg.training.loss                  : crossentropy\n",
            "2019-11-26 11:31:56,434 cfg.training.learning_rate         : 0.0003\n",
            "2019-11-26 11:31:56,434 cfg.training.learning_rate_min     : 1e-08\n",
            "2019-11-26 11:31:56,434 cfg.training.weight_decay          : 0.0\n",
            "2019-11-26 11:31:56,434 cfg.training.label_smoothing       : 0.1\n",
            "2019-11-26 11:31:56,435 cfg.training.batch_size            : 4096\n",
            "2019-11-26 11:31:56,435 cfg.training.batch_type            : token\n",
            "2019-11-26 11:31:56,435 cfg.training.eval_batch_size       : 3600\n",
            "2019-11-26 11:31:56,435 cfg.training.eval_batch_type       : token\n",
            "2019-11-26 11:31:56,435 cfg.training.batch_multiplier      : 1\n",
            "2019-11-26 11:31:56,435 cfg.training.early_stopping_metric : ppl\n",
            "2019-11-26 11:31:56,435 cfg.training.epochs                : 100\n",
            "2019-11-26 11:31:56,435 cfg.training.validation_freq       : 2000\n",
            "2019-11-26 11:31:56,435 cfg.training.logging_freq          : 100\n",
            "2019-11-26 11:31:56,435 cfg.training.eval_metric           : bleu\n",
            "2019-11-26 11:31:56,435 cfg.training.model_dir             : models/enaf_transformer\n",
            "2019-11-26 11:31:56,435 cfg.training.overwrite             : False\n",
            "2019-11-26 11:31:56,435 cfg.training.shuffle               : True\n",
            "2019-11-26 11:31:56,435 cfg.training.use_cuda              : True\n",
            "2019-11-26 11:31:56,435 cfg.training.max_output_length     : 100\n",
            "2019-11-26 11:31:56,435 cfg.training.print_valid_sents     : [0, 1, 2, 3]\n",
            "2019-11-26 11:31:56,435 cfg.training.keep_last_ckpts       : 3\n",
            "2019-11-26 11:31:56,435 cfg.model.initializer              : xavier\n",
            "2019-11-26 11:31:56,435 cfg.model.bias_initializer         : zeros\n",
            "2019-11-26 11:31:56,435 cfg.model.init_gain                : 1.0\n",
            "2019-11-26 11:31:56,435 cfg.model.embed_initializer        : xavier\n",
            "2019-11-26 11:31:56,435 cfg.model.embed_init_gain          : 1.0\n",
            "2019-11-26 11:31:56,435 cfg.model.tied_embeddings          : True\n",
            "2019-11-26 11:31:56,435 cfg.model.tied_softmax             : True\n",
            "2019-11-26 11:31:56,435 cfg.model.encoder.type             : transformer\n",
            "2019-11-26 11:31:56,435 cfg.model.encoder.num_layers       : 6\n",
            "2019-11-26 11:31:56,435 cfg.model.encoder.num_heads        : 4\n",
            "2019-11-26 11:31:56,436 cfg.model.encoder.embeddings.embedding_dim : 256\n",
            "2019-11-26 11:31:56,436 cfg.model.encoder.embeddings.scale : True\n",
            "2019-11-26 11:31:56,436 cfg.model.encoder.embeddings.dropout : 0.2\n",
            "2019-11-26 11:31:56,436 cfg.model.encoder.hidden_size      : 256\n",
            "2019-11-26 11:31:56,436 cfg.model.encoder.ff_size          : 1024\n",
            "2019-11-26 11:31:56,436 cfg.model.encoder.dropout          : 0.3\n",
            "2019-11-26 11:31:56,436 cfg.model.decoder.type             : transformer\n",
            "2019-11-26 11:31:56,436 cfg.model.decoder.num_layers       : 6\n",
            "2019-11-26 11:31:56,436 cfg.model.decoder.num_heads        : 4\n",
            "2019-11-26 11:31:56,436 cfg.model.decoder.embeddings.embedding_dim : 256\n",
            "2019-11-26 11:31:56,436 cfg.model.decoder.embeddings.scale : True\n",
            "2019-11-26 11:31:56,436 cfg.model.decoder.embeddings.dropout : 0.2\n",
            "2019-11-26 11:31:56,436 cfg.model.decoder.hidden_size      : 256\n",
            "2019-11-26 11:31:56,436 cfg.model.decoder.ff_size          : 1024\n",
            "2019-11-26 11:31:56,436 cfg.model.decoder.dropout          : 0.3\n",
            "2019-11-26 11:31:56,436 Data set sizes: \n",
            "\ttrain 46442,\n",
            "\tvalid 1000,\n",
            "\ttest 2682\n",
            "2019-11-26 11:31:56,436 First training example:\n",
            "\t[SRC] persons con@@ vic@@ ted of an off@@ ence under this by@@ law which ca@@ used da@@ ma@@ ge to or lo@@ ss of property and / or which has had an ad@@ ver@@ se imp@@ act on the environ@@ ment then , in addi@@ tion to any other s@@ ent@@ ence im@@ posed , the court may :\n",
            "\t[TRG] as persone aan ' n oortre@@ ding ingevolge dié ver@@ or@@ den@@ ing sk@@ ul@@ dig be@@ vind word , wel@@ ke oortre@@ ding ska@@ de aan of ver@@ lies van eiendom veroor@@ saak het en / of ' n n@@ ad@@ el@@ ige uit@@ werking op die omgewing ge@@ had het , kan die hof dan , bene@@ w@@ ens enige ander v@@ on@@ n@@ is wat op@@ gelê is , die volgende doen :\n",
            "2019-11-26 11:31:56,436 First 10 words (src): (0) <unk> (1) <pad> (2) <s> (3) </s> (4) > (5) die (6) the (7) of (8) , (9) van\n",
            "2019-11-26 11:31:56,437 First 10 words (trg): (0) <unk> (1) <pad> (2) <s> (3) </s> (4) > (5) die (6) the (7) of (8) , (9) van\n",
            "2019-11-26 11:31:56,437 Number of Src words (types): 4211\n",
            "2019-11-26 11:31:56,438 Number of Trg words (types): 4211\n",
            "2019-11-26 11:31:56,438 Model(\n",
            "\tencoder=TransformerEncoder(num_layers=6, num_heads=4),\n",
            "\tdecoder=TransformerDecoder(num_layers=6, num_heads=4),\n",
            "\tsrc_embed=Embeddings(embedding_dim=256, vocab_size=4211),\n",
            "\ttrg_embed=Embeddings(embedding_dim=256, vocab_size=4211))\n",
            "2019-11-26 11:31:56,442 EPOCH 1\n",
            "2019-11-26 11:32:11,765 Epoch   1 Step:      100 Batch Loss:     5.608022 Tokens per Sec:    15825, Lr: 0.000300\n",
            "2019-11-26 11:32:27,294 Epoch   1 Step:      200 Batch Loss:     5.463318 Tokens per Sec:    16006, Lr: 0.000300\n",
            "2019-11-26 11:32:42,783 Epoch   1 Step:      300 Batch Loss:     5.370947 Tokens per Sec:    15892, Lr: 0.000300\n",
            "2019-11-26 11:32:58,332 Epoch   1 Step:      400 Batch Loss:     4.917095 Tokens per Sec:    15679, Lr: 0.000300\n",
            "2019-11-26 11:33:04,100 Epoch   1: total training loss 2422.10\n",
            "2019-11-26 11:33:04,101 EPOCH 2\n",
            "2019-11-26 11:33:14,286 Epoch   2 Step:      500 Batch Loss:     4.905149 Tokens per Sec:    15494, Lr: 0.000300\n",
            "2019-11-26 11:33:30,507 Epoch   2 Step:      600 Batch Loss:     4.610600 Tokens per Sec:    15285, Lr: 0.000300\n",
            "2019-11-26 11:33:46,814 Epoch   2 Step:      700 Batch Loss:     4.996385 Tokens per Sec:    15002, Lr: 0.000300\n",
            "2019-11-26 11:34:03,302 Epoch   2 Step:      800 Batch Loss:     4.187446 Tokens per Sec:    14752, Lr: 0.000300\n",
            "2019-11-26 11:34:14,964 Epoch   2: total training loss 2021.33\n",
            "2019-11-26 11:34:14,965 EPOCH 3\n",
            "2019-11-26 11:34:19,537 Epoch   3 Step:      900 Batch Loss:     3.939539 Tokens per Sec:    14351, Lr: 0.000300\n",
            "2019-11-26 11:34:35,657 Epoch   3 Step:     1000 Batch Loss:     3.818528 Tokens per Sec:    15270, Lr: 0.000300\n",
            "2019-11-26 11:34:51,732 Epoch   3 Step:     1100 Batch Loss:     3.625695 Tokens per Sec:    15168, Lr: 0.000300\n",
            "2019-11-26 11:35:07,852 Epoch   3 Step:     1200 Batch Loss:     3.946392 Tokens per Sec:    14928, Lr: 0.000300\n",
            "2019-11-26 11:35:24,259 Epoch   3 Step:     1300 Batch Loss:     3.731726 Tokens per Sec:    15277, Lr: 0.000300\n",
            "2019-11-26 11:35:25,934 Epoch   3: total training loss 1791.17\n",
            "2019-11-26 11:35:25,934 EPOCH 4\n",
            "2019-11-26 11:35:40,879 Epoch   4 Step:     1400 Batch Loss:     3.751532 Tokens per Sec:    15160, Lr: 0.000300\n",
            "2019-11-26 11:35:57,097 Epoch   4 Step:     1500 Batch Loss:     3.689330 Tokens per Sec:    15015, Lr: 0.000300\n",
            "2019-11-26 11:36:13,120 Epoch   4 Step:     1600 Batch Loss:     3.929770 Tokens per Sec:    14982, Lr: 0.000300\n",
            "2019-11-26 11:36:29,465 Epoch   4 Step:     1700 Batch Loss:     3.113327 Tokens per Sec:    15081, Lr: 0.000300\n",
            "2019-11-26 11:36:36,897 Epoch   4: total training loss 1576.17\n",
            "2019-11-26 11:36:36,898 EPOCH 5\n",
            "2019-11-26 11:36:45,780 Epoch   5 Step:     1800 Batch Loss:     3.865883 Tokens per Sec:    14533, Lr: 0.000300\n",
            "2019-11-26 11:37:02,071 Epoch   5 Step:     1900 Batch Loss:     4.273342 Tokens per Sec:    15221, Lr: 0.000300\n",
            "2019-11-26 11:37:18,372 Epoch   5 Step:     2000 Batch Loss:     3.196836 Tokens per Sec:    15284, Lr: 0.000300\n",
            "2019-11-26 11:38:07,776 Hooray! New best validation result [ppl]!\n",
            "2019-11-26 11:38:07,776 Saving new checkpoint.\n",
            "2019-11-26 11:38:08,090 Example #0\n",
            "2019-11-26 11:38:08,090 \tSource:     GEORGE LOCAL MUNICIPALITY: CONTACT\n",
            "2019-11-26 11:38:08,090 \tReference:  GEORGE PLAASLIKE MUNISIPALITEIT: KONTAK\n",
            "2019-11-26 11:38:08,090 \tHypothesis: GEWINGMUNISIPALITEIT: KONTAK\n",
            "2019-11-26 11:38:08,091 Example #1\n",
            "2019-11-26 11:38:08,091 \tSource:     The Drostdy\n",
            "2019-11-26 11:38:08,091 \tReference:  Die Drostdy\n",
            "2019-11-26 11:38:08,091 \tHypothesis: Die Drotale\n",
            "2019-11-26 11:38:08,091 Example #2\n",
            "2019-11-26 11:38:08,091 \tSource:     the object of the second category of committees is to utilise the expertise of persons outside the commission and to ensure direct community involvement in the activities of the commission .\n",
            "2019-11-26 11:38:08,091 \tReference:  die doel van die tweede kategorie van komitees is om ook die kundigheid van persone buite die kommissie vir die kommissie se werksaamhede te benut en om direkte gemeenskapsbetrokkenheid te verseker .\n",
            "2019-11-26 11:38:08,092 \tHypothesis: die raad van die verrigtinge van die verrigting van die verrigtinge van die verwante stel om die staatsdiensdiensneming van die ontwikkeling van die provinsie te verseker dat die provinsie en die ontwikkeling van die provinsie .\n",
            "2019-11-26 11:38:08,092 Example #3\n",
            "2019-11-26 11:38:08,092 \tSource:     * private acts by individuals\n",
            "2019-11-26 11:38:08,092 \tReference:  * indiwidue se private optrede\n",
            "2019-11-26 11:38:08,092 \tHypothesis: * openbare liggaam deur die uitbreiding\n",
            "2019-11-26 11:38:08,092 Validation result (greedy) at epoch   5, step     2000: bleu:  12.36, loss: 74854.2578, ppl:  24.7317, duration: 49.7199s\n",
            "2019-11-26 11:38:24,497 Epoch   5 Step:     2100 Batch Loss:     3.192021 Tokens per Sec:    15186, Lr: 0.000300\n",
            "2019-11-26 11:38:37,659 Epoch   5: total training loss 1406.83\n",
            "2019-11-26 11:38:37,659 EPOCH 6\n",
            "2019-11-26 11:38:40,691 Epoch   6 Step:     2200 Batch Loss:     2.781468 Tokens per Sec:    14106, Lr: 0.000300\n",
            "2019-11-26 11:38:56,794 Epoch   6 Step:     2300 Batch Loss:     3.204317 Tokens per Sec:    14912, Lr: 0.000300\n",
            "2019-11-26 11:39:13,039 Epoch   6 Step:     2400 Batch Loss:     3.285748 Tokens per Sec:    14922, Lr: 0.000300\n",
            "2019-11-26 11:39:29,271 Epoch   6 Step:     2500 Batch Loss:     2.839251 Tokens per Sec:    15336, Lr: 0.000300\n",
            "2019-11-26 11:39:45,650 Epoch   6 Step:     2600 Batch Loss:     3.585898 Tokens per Sec:    15151, Lr: 0.000300\n",
            "2019-11-26 11:39:49,013 Epoch   6: total training loss 1272.56\n",
            "2019-11-26 11:39:49,013 EPOCH 7\n",
            "2019-11-26 11:40:01,996 Epoch   7 Step:     2700 Batch Loss:     2.570757 Tokens per Sec:    15140, Lr: 0.000300\n",
            "2019-11-26 11:40:18,041 Epoch   7 Step:     2800 Batch Loss:     2.637045 Tokens per Sec:    15093, Lr: 0.000300\n",
            "2019-11-26 11:40:34,218 Epoch   7 Step:     2900 Batch Loss:     3.006508 Tokens per Sec:    15137, Lr: 0.000300\n",
            "2019-11-26 11:40:50,598 Epoch   7 Step:     3000 Batch Loss:     2.436803 Tokens per Sec:    15142, Lr: 0.000300\n",
            "2019-11-26 11:41:00,100 Epoch   7: total training loss 1166.51\n",
            "2019-11-26 11:41:00,100 EPOCH 8\n",
            "2019-11-26 11:41:06,840 Epoch   8 Step:     3100 Batch Loss:     2.900514 Tokens per Sec:    14948, Lr: 0.000300\n",
            "2019-11-26 11:41:22,984 Epoch   8 Step:     3200 Batch Loss:     2.230870 Tokens per Sec:    15114, Lr: 0.000300\n",
            "2019-11-26 11:41:39,189 Epoch   8 Step:     3300 Batch Loss:     2.176509 Tokens per Sec:    15150, Lr: 0.000300\n",
            "2019-11-26 11:41:55,429 Epoch   8 Step:     3400 Batch Loss:     2.247450 Tokens per Sec:    15147, Lr: 0.000300\n",
            "2019-11-26 11:42:10,746 Epoch   8: total training loss 1078.80\n",
            "2019-11-26 11:42:10,746 EPOCH 9\n",
            "2019-11-26 11:42:11,815 Epoch   9 Step:     3500 Batch Loss:     1.725628 Tokens per Sec:    14151, Lr: 0.000300\n",
            "2019-11-26 11:42:27,897 Epoch   9 Step:     3600 Batch Loss:     1.688234 Tokens per Sec:    15190, Lr: 0.000300\n",
            "2019-11-26 11:42:44,198 Epoch   9 Step:     3700 Batch Loss:     2.664847 Tokens per Sec:    15236, Lr: 0.000300\n",
            "2019-11-26 11:43:00,309 Epoch   9 Step:     3800 Batch Loss:     1.284317 Tokens per Sec:    14963, Lr: 0.000300\n",
            "2019-11-26 11:43:16,551 Epoch   9 Step:     3900 Batch Loss:     2.050797 Tokens per Sec:    15223, Lr: 0.000300\n",
            "2019-11-26 11:43:21,720 Epoch   9: total training loss 1023.69\n",
            "2019-11-26 11:43:21,720 EPOCH 10\n",
            "2019-11-26 11:43:32,900 Epoch  10 Step:     4000 Batch Loss:     3.058451 Tokens per Sec:    15199, Lr: 0.000300\n",
            "2019-11-26 11:44:22,239 Hooray! New best validation result [ppl]!\n",
            "2019-11-26 11:44:22,240 Saving new checkpoint.\n",
            "2019-11-26 11:44:22,499 Example #0\n",
            "2019-11-26 11:44:22,500 \tSource:     GEORGE LOCAL MUNICIPALITY: CONTACT\n",
            "2019-11-26 11:44:22,500 \tReference:  GEORGE PLAASLIKE MUNISIPALITEIT: KONTAK\n",
            "2019-11-26 11:44:22,500 \tHypothesis: GEORGE PLAASLIKE MUNISIPALITEIT: KONTAK\n",
            "2019-11-26 11:44:22,500 Example #1\n",
            "2019-11-26 11:44:22,500 \tSource:     The Drostdy\n",
            "2019-11-26 11:44:22,500 \tReference:  Die Drostdy\n",
            "2019-11-26 11:44:22,500 \tHypothesis: Die Drostdy\n",
            "2019-11-26 11:44:22,500 Example #2\n",
            "2019-11-26 11:44:22,501 \tSource:     the object of the second category of committees is to utilise the expertise of persons outside the commission and to ensure direct community involvement in the activities of the commission .\n",
            "2019-11-26 11:44:22,501 \tReference:  die doel van die tweede kategorie van komitees is om ook die kundigheid van persone buite die kommissie vir die kommissie se werksaamhede te benut en om direkte gemeenskapsbetrokkenheid te verseker .\n",
            "2019-11-26 11:44:22,501 \tHypothesis: die voorwerp van die seksuele kategorie van komitees is om die uitvoer van persone te verander , en om die kommissie te verseker dat die kommissie se aktiwiteite in die kommissie se aktiwiteite .\n",
            "2019-11-26 11:44:22,501 Example #3\n",
            "2019-11-26 11:44:22,501 \tSource:     * private acts by individuals\n",
            "2019-11-26 11:44:22,501 \tReference:  * indiwidue se private optrede\n",
            "2019-11-26 11:44:22,501 \tHypothesis: * privaatliggame deur individuele\n",
            "2019-11-26 11:44:22,501 Validation result (greedy) at epoch  10, step     4000: bleu:  26.51, loss: 52469.3672, ppl:   9.4756, duration: 49.6011s\n",
            "2019-11-26 11:44:38,865 Epoch  10 Step:     4100 Batch Loss:     2.862207 Tokens per Sec:    15103, Lr: 0.000300\n",
            "2019-11-26 11:44:55,167 Epoch  10 Step:     4200 Batch Loss:     1.729798 Tokens per Sec:    15214, Lr: 0.000300\n",
            "2019-11-26 11:45:11,422 Epoch  10 Step:     4300 Batch Loss:     2.381748 Tokens per Sec:    15342, Lr: 0.000300\n",
            "2019-11-26 11:45:22,012 Epoch  10: total training loss 949.79\n",
            "2019-11-26 11:45:22,013 EPOCH 11\n",
            "2019-11-26 11:45:27,711 Epoch  11 Step:     4400 Batch Loss:     2.298461 Tokens per Sec:    14736, Lr: 0.000300\n",
            "2019-11-26 11:45:43,984 Epoch  11 Step:     4500 Batch Loss:     3.077555 Tokens per Sec:    14930, Lr: 0.000300\n",
            "2019-11-26 11:46:00,210 Epoch  11 Step:     4600 Batch Loss:     2.786949 Tokens per Sec:    14965, Lr: 0.000300\n",
            "2019-11-26 11:46:16,368 Epoch  11 Step:     4700 Batch Loss:     2.088893 Tokens per Sec:    15158, Lr: 0.000300\n",
            "2019-11-26 11:46:32,480 Epoch  11 Step:     4800 Batch Loss:     2.518680 Tokens per Sec:    15061, Lr: 0.000300\n",
            "2019-11-26 11:46:33,345 Epoch  11: total training loss 920.89\n",
            "2019-11-26 11:46:33,345 EPOCH 12\n",
            "2019-11-26 11:46:49,062 Epoch  12 Step:     4900 Batch Loss:     1.790246 Tokens per Sec:    15327, Lr: 0.000300\n",
            "2019-11-26 11:47:05,025 Epoch  12 Step:     5000 Batch Loss:     2.516450 Tokens per Sec:    14710, Lr: 0.000300\n",
            "2019-11-26 11:47:21,147 Epoch  12 Step:     5100 Batch Loss:     0.975306 Tokens per Sec:    15034, Lr: 0.000300\n",
            "2019-11-26 11:47:37,640 Epoch  12 Step:     5200 Batch Loss:     1.202131 Tokens per Sec:    15535, Lr: 0.000300\n",
            "2019-11-26 11:47:44,228 Epoch  12: total training loss 867.65\n",
            "2019-11-26 11:47:44,228 EPOCH 13\n",
            "2019-11-26 11:47:53,959 Epoch  13 Step:     5300 Batch Loss:     1.634143 Tokens per Sec:    15130, Lr: 0.000300\n",
            "2019-11-26 11:48:10,070 Epoch  13 Step:     5400 Batch Loss:     2.598377 Tokens per Sec:    15112, Lr: 0.000300\n",
            "2019-11-26 11:48:26,292 Epoch  13 Step:     5500 Batch Loss:     1.726901 Tokens per Sec:    14871, Lr: 0.000300\n",
            "2019-11-26 11:48:42,694 Epoch  13 Step:     5600 Batch Loss:     1.384664 Tokens per Sec:    15168, Lr: 0.000300\n",
            "2019-11-26 11:48:55,197 Epoch  13: total training loss 825.53\n",
            "2019-11-26 11:48:55,197 EPOCH 14\n",
            "2019-11-26 11:48:59,179 Epoch  14 Step:     5700 Batch Loss:     2.271524 Tokens per Sec:    15404, Lr: 0.000300\n",
            "2019-11-26 11:49:15,473 Epoch  14 Step:     5800 Batch Loss:     2.350677 Tokens per Sec:    14999, Lr: 0.000300\n",
            "2019-11-26 11:49:31,751 Epoch  14 Step:     5900 Batch Loss:     1.843396 Tokens per Sec:    15136, Lr: 0.000300\n",
            "2019-11-26 11:49:48,095 Epoch  14 Step:     6000 Batch Loss:     1.916567 Tokens per Sec:    15303, Lr: 0.000300\n",
            "2019-11-26 11:50:37,391 Hooray! New best validation result [ppl]!\n",
            "2019-11-26 11:50:37,391 Saving new checkpoint.\n",
            "2019-11-26 11:50:37,650 Example #0\n",
            "2019-11-26 11:50:37,650 \tSource:     GEORGE LOCAL MUNICIPALITY: CONTACT\n",
            "2019-11-26 11:50:37,650 \tReference:  GEORGE PLAASLIKE MUNISIPALITEIT: KONTAK\n",
            "2019-11-26 11:50:37,650 \tHypothesis: GEORGE PLAASLIKE MUNISIPALITEIT: KONTAK\n",
            "2019-11-26 11:50:37,650 Example #1\n",
            "2019-11-26 11:50:37,651 \tSource:     The Drostdy\n",
            "2019-11-26 11:50:37,651 \tReference:  Die Drostdy\n",
            "2019-11-26 11:50:37,651 \tHypothesis: Die Drostdy\n",
            "2019-11-26 11:50:37,651 Example #2\n",
            "2019-11-26 11:50:37,651 \tSource:     the object of the second category of committees is to utilise the expertise of persons outside the commission and to ensure direct community involvement in the activities of the commission .\n",
            "2019-11-26 11:50:37,651 \tReference:  die doel van die tweede kategorie van komitees is om ook die kundigheid van persone buite die kommissie vir die kommissie se werksaamhede te benut en om direkte gemeenskapsbetrokkenheid te verseker .\n",
            "2019-11-26 11:50:37,651 \tHypothesis: die voorwerp van die tweede kategorie van komitees is om die uitoefening van persone te maak van die kommissie en te verseker dat die kommissie en betrokkenheid in die kommissie van die kommissie van die kommissie .\n",
            "2019-11-26 11:50:37,651 Example #3\n",
            "2019-11-26 11:50:37,652 \tSource:     * private acts by individuals\n",
            "2019-11-26 11:50:37,652 \tReference:  * indiwidue se private optrede\n",
            "2019-11-26 11:50:37,652 \tHypothesis: * private aksies deur individue\n",
            "2019-11-26 11:50:37,652 Validation result (greedy) at epoch  14, step     6000: bleu:  33.56, loss: 42362.4609, ppl:   6.1445, duration: 49.5567s\n",
            "2019-11-26 11:50:53,800 Epoch  14 Step:     6100 Batch Loss:     1.992535 Tokens per Sec:    15073, Lr: 0.000300\n",
            "2019-11-26 11:50:55,479 Epoch  14: total training loss 788.52\n",
            "2019-11-26 11:50:55,479 EPOCH 15\n",
            "2019-11-26 11:51:10,277 Epoch  15 Step:     6200 Batch Loss:     2.023537 Tokens per Sec:    15114, Lr: 0.000300\n",
            "2019-11-26 11:51:26,329 Epoch  15 Step:     6300 Batch Loss:     2.314336 Tokens per Sec:    15020, Lr: 0.000300\n",
            "2019-11-26 11:51:42,486 Epoch  15 Step:     6400 Batch Loss:     1.569038 Tokens per Sec:    15108, Lr: 0.000300\n",
            "2019-11-26 11:51:58,661 Epoch  15 Step:     6500 Batch Loss:     2.190273 Tokens per Sec:    15237, Lr: 0.000300\n",
            "2019-11-26 11:52:06,500 Epoch  15: total training loss 768.51\n",
            "2019-11-26 11:52:06,500 EPOCH 16\n",
            "2019-11-26 11:52:14,939 Epoch  16 Step:     6600 Batch Loss:     1.241720 Tokens per Sec:    15387, Lr: 0.000300\n",
            "2019-11-26 11:52:30,968 Epoch  16 Step:     6700 Batch Loss:     1.467147 Tokens per Sec:    14874, Lr: 0.000300\n",
            "2019-11-26 11:52:47,070 Epoch  16 Step:     6800 Batch Loss:     1.967465 Tokens per Sec:    15264, Lr: 0.000300\n",
            "2019-11-26 11:53:03,349 Epoch  16 Step:     6900 Batch Loss:     1.676328 Tokens per Sec:    15298, Lr: 0.000300\n",
            "2019-11-26 11:53:17,223 Epoch  16: total training loss 738.36\n",
            "2019-11-26 11:53:17,224 EPOCH 17\n",
            "2019-11-26 11:53:19,437 Epoch  17 Step:     7000 Batch Loss:     0.934059 Tokens per Sec:    13372, Lr: 0.000300\n",
            "2019-11-26 11:53:35,536 Epoch  17 Step:     7100 Batch Loss:     1.657806 Tokens per Sec:    14943, Lr: 0.000300\n",
            "2019-11-26 11:53:51,669 Epoch  17 Step:     7200 Batch Loss:     1.226249 Tokens per Sec:    15264, Lr: 0.000300\n",
            "2019-11-26 11:54:07,998 Epoch  17 Step:     7300 Batch Loss:     2.209456 Tokens per Sec:    15441, Lr: 0.000300\n",
            "2019-11-26 11:54:24,231 Epoch  17 Step:     7400 Batch Loss:     1.720668 Tokens per Sec:    15393, Lr: 0.000300\n",
            "2019-11-26 11:54:27,792 Epoch  17: total training loss 714.93\n",
            "2019-11-26 11:54:27,792 EPOCH 18\n",
            "2019-11-26 11:54:40,204 Epoch  18 Step:     7500 Batch Loss:     1.135857 Tokens per Sec:    14700, Lr: 0.000300\n",
            "2019-11-26 11:54:56,583 Epoch  18 Step:     7600 Batch Loss:     2.273018 Tokens per Sec:    15302, Lr: 0.000300\n",
            "2019-11-26 11:55:12,880 Epoch  18 Step:     7700 Batch Loss:     1.397834 Tokens per Sec:    15419, Lr: 0.000300\n",
            "2019-11-26 11:55:28,941 Epoch  18 Step:     7800 Batch Loss:     2.175472 Tokens per Sec:    15108, Lr: 0.000300\n",
            "2019-11-26 11:55:38,522 Epoch  18: total training loss 692.67\n",
            "2019-11-26 11:55:38,522 EPOCH 19\n",
            "2019-11-26 11:55:45,111 Epoch  19 Step:     7900 Batch Loss:     1.137055 Tokens per Sec:    14630, Lr: 0.000300\n",
            "2019-11-26 11:56:01,315 Epoch  19 Step:     8000 Batch Loss:     0.744475 Tokens per Sec:    15410, Lr: 0.000300\n",
            "2019-11-26 11:56:50,686 Hooray! New best validation result [ppl]!\n",
            "2019-11-26 11:56:50,686 Saving new checkpoint.\n",
            "2019-11-26 11:56:50,965 Example #0\n",
            "2019-11-26 11:56:50,965 \tSource:     GEORGE LOCAL MUNICIPALITY: CONTACT\n",
            "2019-11-26 11:56:50,965 \tReference:  GEORGE PLAASLIKE MUNISIPALITEIT: KONTAK\n",
            "2019-11-26 11:56:50,965 \tHypothesis: GEORGE PLAASLIKE MUNISIPALITEIT: KONTAK\n",
            "2019-11-26 11:56:50,965 Example #1\n",
            "2019-11-26 11:56:50,966 \tSource:     The Drostdy\n",
            "2019-11-26 11:56:50,966 \tReference:  Die Drostdy\n",
            "2019-11-26 11:56:50,966 \tHypothesis: Die Drostdy\n",
            "2019-11-26 11:56:50,966 Example #2\n",
            "2019-11-26 11:56:50,966 \tSource:     the object of the second category of committees is to utilise the expertise of persons outside the commission and to ensure direct community involvement in the activities of the commission .\n",
            "2019-11-26 11:56:50,966 \tReference:  die doel van die tweede kategorie van komitees is om ook die kundigheid van persone buite die kommissie vir die kommissie se werksaamhede te benut en om direkte gemeenskapsbetrokkenheid te verseker .\n",
            "2019-11-26 11:56:50,966 \tHypothesis: die voorwerp van die tweede kategorie van komitees is om die uitoefening van persone buite die kommissie en om gemeenskapsbetrokkenheid te verseker dat die aktiwiteite van die kommissie .\n",
            "2019-11-26 11:56:50,966 Example #3\n",
            "2019-11-26 11:56:50,966 \tSource:     * private acts by individuals\n",
            "2019-11-26 11:56:50,966 \tReference:  * indiwidue se private optrede\n",
            "2019-11-26 11:56:50,966 \tHypothesis: * private aktiwiteite\n",
            "2019-11-26 11:56:50,967 Validation result (greedy) at epoch  19, step     8000: bleu:  37.38, loss: 37101.5312, ppl:   4.9042, duration: 49.6516s\n",
            "2019-11-26 11:57:07,168 Epoch  19 Step:     8100 Batch Loss:     1.343613 Tokens per Sec:    15250, Lr: 0.000300\n",
            "2019-11-26 11:57:23,183 Epoch  19 Step:     8200 Batch Loss:     1.560163 Tokens per Sec:    15112, Lr: 0.000300\n",
            "2019-11-26 11:57:38,611 Epoch  19: total training loss 668.08\n",
            "2019-11-26 11:57:38,611 EPOCH 20\n",
            "2019-11-26 11:57:39,619 Epoch  20 Step:     8300 Batch Loss:     1.303026 Tokens per Sec:    14111, Lr: 0.000300\n",
            "2019-11-26 11:57:55,953 Epoch  20 Step:     8400 Batch Loss:     2.189736 Tokens per Sec:    15124, Lr: 0.000300\n",
            "2019-11-26 11:58:12,254 Epoch  20 Step:     8500 Batch Loss:     2.371931 Tokens per Sec:    15080, Lr: 0.000300\n",
            "2019-11-26 11:58:28,533 Epoch  20 Step:     8600 Batch Loss:     1.199755 Tokens per Sec:    15320, Lr: 0.000300\n",
            "2019-11-26 11:58:44,679 Epoch  20 Step:     8700 Batch Loss:     1.696189 Tokens per Sec:    15200, Lr: 0.000300\n",
            "2019-11-26 11:58:49,286 Epoch  20: total training loss 658.15\n",
            "2019-11-26 11:58:49,286 EPOCH 21\n",
            "2019-11-26 11:59:01,062 Epoch  21 Step:     8800 Batch Loss:     1.814345 Tokens per Sec:    15202, Lr: 0.000300\n",
            "2019-11-26 11:59:17,383 Epoch  21 Step:     8900 Batch Loss:     1.208518 Tokens per Sec:    15373, Lr: 0.000300\n",
            "2019-11-26 11:59:33,675 Epoch  21 Step:     9000 Batch Loss:     1.584646 Tokens per Sec:    15159, Lr: 0.000300\n",
            "2019-11-26 11:59:49,908 Epoch  21 Step:     9100 Batch Loss:     1.363551 Tokens per Sec:    15324, Lr: 0.000300\n",
            "2019-11-26 11:59:59,784 Epoch  21: total training loss 634.78\n",
            "2019-11-26 11:59:59,785 EPOCH 22\n",
            "2019-11-26 12:00:05,863 Epoch  22 Step:     9200 Batch Loss:     1.234421 Tokens per Sec:    14720, Lr: 0.000300\n",
            "2019-11-26 12:00:22,161 Epoch  22 Step:     9300 Batch Loss:     1.366633 Tokens per Sec:    15356, Lr: 0.000300\n",
            "2019-11-26 12:00:38,320 Epoch  22 Step:     9400 Batch Loss:     0.922922 Tokens per Sec:    15111, Lr: 0.000300\n",
            "2019-11-26 12:00:54,446 Epoch  22 Step:     9500 Batch Loss:     1.129673 Tokens per Sec:    15157, Lr: 0.000300\n",
            "2019-11-26 12:01:10,329 Epoch  22: total training loss 620.19\n",
            "2019-11-26 12:01:10,330 EPOCH 23\n",
            "2019-11-26 12:01:10,872 Epoch  23 Step:     9600 Batch Loss:     0.834196 Tokens per Sec:    11898, Lr: 0.000300\n",
            "2019-11-26 12:01:27,012 Epoch  23 Step:     9700 Batch Loss:     1.974342 Tokens per Sec:    14733, Lr: 0.000300\n",
            "2019-11-26 12:01:43,280 Epoch  23 Step:     9800 Batch Loss:     1.712468 Tokens per Sec:    15026, Lr: 0.000300\n",
            "2019-11-26 12:01:59,561 Epoch  23 Step:     9900 Batch Loss:     1.192902 Tokens per Sec:    15332, Lr: 0.000300\n",
            "2019-11-26 12:02:15,717 Epoch  23 Step:    10000 Batch Loss:     1.113884 Tokens per Sec:    15262, Lr: 0.000300\n",
            "2019-11-26 12:03:05,106 Hooray! New best validation result [ppl]!\n",
            "2019-11-26 12:03:05,107 Saving new checkpoint.\n",
            "2019-11-26 12:03:05,427 Example #0\n",
            "2019-11-26 12:03:05,428 \tSource:     GEORGE LOCAL MUNICIPALITY: CONTACT\n",
            "2019-11-26 12:03:05,428 \tReference:  GEORGE PLAASLIKE MUNISIPALITEIT: KONTAK\n",
            "2019-11-26 12:03:05,428 \tHypothesis: GEORGE PLAASLIKE MUNISIPALITEIT: KONTAK\n",
            "2019-11-26 12:03:05,428 Example #1\n",
            "2019-11-26 12:03:05,428 \tSource:     The Drostdy\n",
            "2019-11-26 12:03:05,428 \tReference:  Die Drostdy\n",
            "2019-11-26 12:03:05,428 \tHypothesis: Die Drostdy\n",
            "2019-11-26 12:03:05,428 Example #2\n",
            "2019-11-26 12:03:05,428 \tSource:     the object of the second category of committees is to utilise the expertise of persons outside the commission and to ensure direct community involvement in the activities of the commission .\n",
            "2019-11-26 12:03:05,428 \tReference:  die doel van die tweede kategorie van komitees is om ook die kundigheid van persone buite die kommissie vir die kommissie se werksaamhede te benut en om direkte gemeenskapsbetrokkenheid te verseker .\n",
            "2019-11-26 12:03:05,429 \tHypothesis: die voorwerp van die tweede kategorie van komitees is om die uitoefening van persone buite die kommissie en om gemeenskapsbetrokkenheid te verseker in die aktiwiteite van die kommissie .\n",
            "2019-11-26 12:03:05,429 Example #3\n",
            "2019-11-26 12:03:05,429 \tSource:     * private acts by individuals\n",
            "2019-11-26 12:03:05,429 \tReference:  * indiwidue se private optrede\n",
            "2019-11-26 12:03:05,429 \tHypothesis: * private aktiwiteite\n",
            "2019-11-26 12:03:05,429 Validation result (greedy) at epoch  23, step    10000: bleu:  39.24, loss: 34156.6953, ppl:   4.3227, duration: 49.7111s\n",
            "2019-11-26 12:03:11,229 Epoch  23: total training loss 615.70\n",
            "2019-11-26 12:03:11,229 EPOCH 24\n",
            "2019-11-26 12:03:21,789 Epoch  24 Step:    10100 Batch Loss:     1.073194 Tokens per Sec:    15289, Lr: 0.000300\n",
            "2019-11-26 12:03:37,939 Epoch  24 Step:    10200 Batch Loss:     0.900523 Tokens per Sec:    15149, Lr: 0.000300\n",
            "2019-11-26 12:03:53,980 Epoch  24 Step:    10300 Batch Loss:     0.963902 Tokens per Sec:    14954, Lr: 0.000300\n",
            "2019-11-26 12:04:09,997 Epoch  24 Step:    10400 Batch Loss:     2.269618 Tokens per Sec:    15070, Lr: 0.000300\n",
            "2019-11-26 12:04:21,952 Epoch  24: total training loss 601.49\n",
            "2019-11-26 12:04:21,953 EPOCH 25\n",
            "2019-11-26 12:04:26,251 Epoch  25 Step:    10500 Batch Loss:     0.856459 Tokens per Sec:    15093, Lr: 0.000300\n",
            "2019-11-26 12:04:42,325 Epoch  25 Step:    10600 Batch Loss:     1.371791 Tokens per Sec:    14951, Lr: 0.000300\n",
            "2019-11-26 12:04:58,329 Epoch  25 Step:    10700 Batch Loss:     2.013452 Tokens per Sec:    15087, Lr: 0.000300\n",
            "2019-11-26 12:05:14,811 Epoch  25 Step:    10800 Batch Loss:     1.043119 Tokens per Sec:    15628, Lr: 0.000300\n",
            "2019-11-26 12:05:30,824 Epoch  25 Step:    10900 Batch Loss:     1.488485 Tokens per Sec:    15095, Lr: 0.000300\n",
            "2019-11-26 12:05:32,691 Epoch  25: total training loss 585.86\n",
            "2019-11-26 12:05:32,691 EPOCH 26\n",
            "2019-11-26 12:05:46,973 Epoch  26 Step:    11000 Batch Loss:     1.354562 Tokens per Sec:    14988, Lr: 0.000300\n",
            "2019-11-26 12:06:03,166 Epoch  26 Step:    11100 Batch Loss:     1.148171 Tokens per Sec:    15192, Lr: 0.000300\n",
            "2019-11-26 12:06:19,367 Epoch  26 Step:    11200 Batch Loss:     1.528958 Tokens per Sec:    15187, Lr: 0.000300\n",
            "2019-11-26 12:06:35,624 Epoch  26 Step:    11300 Batch Loss:     1.651470 Tokens per Sec:    15094, Lr: 0.000300\n",
            "2019-11-26 12:06:43,633 Epoch  26: total training loss 572.71\n",
            "2019-11-26 12:06:43,634 EPOCH 27\n",
            "2019-11-26 12:06:51,731 Epoch  27 Step:    11400 Batch Loss:     0.593972 Tokens per Sec:    14497, Lr: 0.000300\n",
            "2019-11-26 12:07:07,731 Epoch  27 Step:    11500 Batch Loss:     1.662266 Tokens per Sec:    15226, Lr: 0.000300\n",
            "2019-11-26 12:07:24,086 Epoch  27 Step:    11600 Batch Loss:     1.297733 Tokens per Sec:    15404, Lr: 0.000300\n",
            "2019-11-26 12:07:40,217 Epoch  27 Step:    11700 Batch Loss:     2.105778 Tokens per Sec:    15112, Lr: 0.000300\n",
            "2019-11-26 12:07:54,329 Epoch  27: total training loss 564.17\n",
            "2019-11-26 12:07:54,329 EPOCH 28\n",
            "2019-11-26 12:07:56,491 Epoch  28 Step:    11800 Batch Loss:     0.865440 Tokens per Sec:    14615, Lr: 0.000300\n",
            "2019-11-26 12:08:12,484 Epoch  28 Step:    11900 Batch Loss:     1.723002 Tokens per Sec:    15050, Lr: 0.000300\n",
            "2019-11-26 12:08:28,696 Epoch  28 Step:    12000 Batch Loss:     1.384915 Tokens per Sec:    15254, Lr: 0.000300\n",
            "2019-11-26 12:09:17,865 Hooray! New best validation result [ppl]!\n",
            "2019-11-26 12:09:17,866 Saving new checkpoint.\n",
            "2019-11-26 12:09:18,163 Example #0\n",
            "2019-11-26 12:09:18,164 \tSource:     GEORGE LOCAL MUNICIPALITY: CONTACT\n",
            "2019-11-26 12:09:18,164 \tReference:  GEORGE PLAASLIKE MUNISIPALITEIT: KONTAK\n",
            "2019-11-26 12:09:18,164 \tHypothesis: GEORGE PLAASLIKE MUNISIPALITEIT: KONTAK\n",
            "2019-11-26 12:09:18,164 Example #1\n",
            "2019-11-26 12:09:18,165 \tSource:     The Drostdy\n",
            "2019-11-26 12:09:18,165 \tReference:  Die Drostdy\n",
            "2019-11-26 12:09:18,165 \tHypothesis: Die Drostdy\n",
            "2019-11-26 12:09:18,165 Example #2\n",
            "2019-11-26 12:09:18,165 \tSource:     the object of the second category of committees is to utilise the expertise of persons outside the commission and to ensure direct community involvement in the activities of the commission .\n",
            "2019-11-26 12:09:18,165 \tReference:  die doel van die tweede kategorie van komitees is om ook die kundigheid van persone buite die kommissie vir die kommissie se werksaamhede te benut en om direkte gemeenskapsbetrokkenheid te verseker .\n",
            "2019-11-26 12:09:18,165 \tHypothesis: die voorwerp van die tweede kategorie van komitees is om die uitoefening van persone buite die kommissie en om gemeenskapsbetrokkenheid by die aktiwiteite van die kommissie te verseker .\n",
            "2019-11-26 12:09:18,165 Example #3\n",
            "2019-11-26 12:09:18,166 \tSource:     * private acts by individuals\n",
            "2019-11-26 12:09:18,166 \tReference:  * indiwidue se private optrede\n",
            "2019-11-26 12:09:18,166 \tHypothesis: * private aktiwitte deur individue\n",
            "2019-11-26 12:09:18,166 Validation result (greedy) at epoch  28, step    12000: bleu:  40.75, loss: 32103.4766, ppl:   3.9586, duration: 49.4692s\n",
            "2019-11-26 12:09:34,605 Epoch  28 Step:    12100 Batch Loss:     0.898625 Tokens per Sec:    15389, Lr: 0.000300\n",
            "2019-11-26 12:09:50,813 Epoch  28 Step:    12200 Batch Loss:     0.866637 Tokens per Sec:    15133, Lr: 0.000300\n",
            "2019-11-26 12:09:54,228 Epoch  28: total training loss 545.53\n",
            "2019-11-26 12:09:54,228 EPOCH 29\n",
            "2019-11-26 12:10:07,395 Epoch  29 Step:    12300 Batch Loss:     0.867669 Tokens per Sec:    15033, Lr: 0.000300\n",
            "2019-11-26 12:10:23,427 Epoch  29 Step:    12400 Batch Loss:     1.148031 Tokens per Sec:    15062, Lr: 0.000300\n",
            "2019-11-26 12:10:39,675 Epoch  29 Step:    12500 Batch Loss:     0.895892 Tokens per Sec:    15196, Lr: 0.000300\n",
            "2019-11-26 12:10:56,010 Epoch  29 Step:    12600 Batch Loss:     1.510698 Tokens per Sec:    15395, Lr: 0.000300\n",
            "2019-11-26 12:11:04,947 Epoch  29: total training loss 541.54\n",
            "2019-11-26 12:11:04,947 EPOCH 30\n",
            "2019-11-26 12:11:12,165 Epoch  30 Step:    12700 Batch Loss:     0.837670 Tokens per Sec:    15142, Lr: 0.000300\n",
            "2019-11-26 12:11:28,433 Epoch  30 Step:    12800 Batch Loss:     1.230110 Tokens per Sec:    15259, Lr: 0.000300\n",
            "2019-11-26 12:11:44,668 Epoch  30 Step:    12900 Batch Loss:     1.488923 Tokens per Sec:    15090, Lr: 0.000300\n",
            "2019-11-26 12:12:00,827 Epoch  30 Step:    13000 Batch Loss:     1.608192 Tokens per Sec:    15088, Lr: 0.000300\n",
            "2019-11-26 12:12:15,873 Epoch  30: total training loss 536.01\n",
            "2019-11-26 12:12:15,873 EPOCH 31\n",
            "2019-11-26 12:12:17,066 Epoch  31 Step:    13100 Batch Loss:     0.685046 Tokens per Sec:    13524, Lr: 0.000300\n",
            "2019-11-26 12:12:33,255 Epoch  31 Step:    13200 Batch Loss:     1.043526 Tokens per Sec:    15304, Lr: 0.000300\n",
            "2019-11-26 12:12:49,554 Epoch  31 Step:    13300 Batch Loss:     1.331799 Tokens per Sec:    15257, Lr: 0.000300\n",
            "2019-11-26 12:13:05,761 Epoch  31 Step:    13400 Batch Loss:     0.562917 Tokens per Sec:    15260, Lr: 0.000300\n",
            "2019-11-26 12:13:21,805 Epoch  31 Step:    13500 Batch Loss:     0.871661 Tokens per Sec:    15070, Lr: 0.000300\n",
            "2019-11-26 12:13:26,400 Epoch  31: total training loss 522.61\n",
            "2019-11-26 12:13:26,400 EPOCH 32\n",
            "2019-11-26 12:13:38,142 Epoch  32 Step:    13600 Batch Loss:     1.529986 Tokens per Sec:    15354, Lr: 0.000300\n",
            "2019-11-26 12:13:54,424 Epoch  32 Step:    13700 Batch Loss:     0.749274 Tokens per Sec:    15151, Lr: 0.000300\n",
            "2019-11-26 12:14:10,606 Epoch  32 Step:    13800 Batch Loss:     1.366758 Tokens per Sec:    15268, Lr: 0.000300\n",
            "2019-11-26 12:14:26,717 Epoch  32 Step:    13900 Batch Loss:     0.794766 Tokens per Sec:    15063, Lr: 0.000300\n",
            "2019-11-26 12:14:36,969 Epoch  32: total training loss 515.14\n",
            "2019-11-26 12:14:36,970 EPOCH 33\n",
            "2019-11-26 12:14:43,040 Epoch  33 Step:    14000 Batch Loss:     1.347236 Tokens per Sec:    15130, Lr: 0.000300\n",
            "2019-11-26 12:15:32,235 Hooray! New best validation result [ppl]!\n",
            "2019-11-26 12:15:32,235 Saving new checkpoint.\n",
            "2019-11-26 12:15:32,529 Example #0\n",
            "2019-11-26 12:15:32,530 \tSource:     GEORGE LOCAL MUNICIPALITY: CONTACT\n",
            "2019-11-26 12:15:32,530 \tReference:  GEORGE PLAASLIKE MUNISIPALITEIT: KONTAK\n",
            "2019-11-26 12:15:32,530 \tHypothesis: GEORGE PLAASLIKE MUNISIPALITEIT: KONTAK\n",
            "2019-11-26 12:15:32,530 Example #1\n",
            "2019-11-26 12:15:32,530 \tSource:     The Drostdy\n",
            "2019-11-26 12:15:32,530 \tReference:  Die Drostdy\n",
            "2019-11-26 12:15:32,530 \tHypothesis: Die Drostdy\n",
            "2019-11-26 12:15:32,531 Example #2\n",
            "2019-11-26 12:15:32,531 \tSource:     the object of the second category of committees is to utilise the expertise of persons outside the commission and to ensure direct community involvement in the activities of the commission .\n",
            "2019-11-26 12:15:32,531 \tReference:  die doel van die tweede kategorie van komitees is om ook die kundigheid van persone buite die kommissie vir die kommissie se werksaamhede te benut en om direkte gemeenskapsbetrokkenheid te verseker .\n",
            "2019-11-26 12:15:32,531 \tHypothesis: die voorwerp van die tweede kategorie van komitees is om die uitoefening van persone buite die kommissie te verrig en om gemeenskapsbetrokkenheid by die aktiwiteite van die kommissie te verseker .\n",
            "2019-11-26 12:15:32,531 Example #3\n",
            "2019-11-26 12:15:32,531 \tSource:     * private acts by individuals\n",
            "2019-11-26 12:15:32,531 \tReference:  * indiwidue se private optrede\n",
            "2019-11-26 12:15:32,531 \tHypothesis: * private akte deur individue\n",
            "2019-11-26 12:15:32,531 Validation result (greedy) at epoch  33, step    14000: bleu:  42.70, loss: 30750.4551, ppl:   3.7356, duration: 49.4913s\n",
            "2019-11-26 12:15:48,801 Epoch  33 Step:    14100 Batch Loss:     1.323262 Tokens per Sec:    15296, Lr: 0.000300\n",
            "2019-11-26 12:16:04,902 Epoch  33 Step:    14200 Batch Loss:     0.639752 Tokens per Sec:    15164, Lr: 0.000300\n",
            "2019-11-26 12:16:20,847 Epoch  33 Step:    14300 Batch Loss:     1.079608 Tokens per Sec:    15209, Lr: 0.000300\n",
            "2019-11-26 12:16:37,000 Epoch  33 Step:    14400 Batch Loss:     1.483253 Tokens per Sec:    15126, Lr: 0.000300\n",
            "2019-11-26 12:16:37,002 Epoch  33: total training loss 507.69\n",
            "2019-11-26 12:16:37,002 EPOCH 34\n",
            "2019-11-26 12:16:53,186 Epoch  34 Step:    14500 Batch Loss:     1.170611 Tokens per Sec:    14936, Lr: 0.000300\n",
            "2019-11-26 12:17:09,308 Epoch  34 Step:    14600 Batch Loss:     0.669251 Tokens per Sec:    15056, Lr: 0.000300\n",
            "2019-11-26 12:17:25,362 Epoch  34 Step:    14700 Batch Loss:     1.111993 Tokens per Sec:    15259, Lr: 0.000300\n",
            "2019-11-26 12:17:41,577 Epoch  34 Step:    14800 Batch Loss:     1.475204 Tokens per Sec:    15252, Lr: 0.000300\n",
            "2019-11-26 12:17:47,862 Epoch  34: total training loss 503.21\n",
            "2019-11-26 12:17:47,863 EPOCH 35\n",
            "2019-11-26 12:17:57,760 Epoch  35 Step:    14900 Batch Loss:     0.921647 Tokens per Sec:    15098, Lr: 0.000300\n",
            "2019-11-26 12:18:13,861 Epoch  35 Step:    15000 Batch Loss:     1.141478 Tokens per Sec:    15162, Lr: 0.000300\n",
            "2019-11-26 12:18:30,162 Epoch  35 Step:    15100 Batch Loss:     0.792189 Tokens per Sec:    15325, Lr: 0.000300\n",
            "2019-11-26 12:18:46,250 Epoch  35 Step:    15200 Batch Loss:     0.894321 Tokens per Sec:    15142, Lr: 0.000300\n",
            "2019-11-26 12:18:58,375 Epoch  35: total training loss 491.17\n",
            "2019-11-26 12:18:58,375 EPOCH 36\n",
            "2019-11-26 12:19:02,451 Epoch  36 Step:    15300 Batch Loss:     1.113939 Tokens per Sec:    15135, Lr: 0.000300\n",
            "2019-11-26 12:19:18,516 Epoch  36 Step:    15400 Batch Loss:     0.942997 Tokens per Sec:    15060, Lr: 0.000300\n",
            "2019-11-26 12:19:34,748 Epoch  36 Step:    15500 Batch Loss:     1.089445 Tokens per Sec:    15092, Lr: 0.000300\n",
            "2019-11-26 12:19:50,960 Epoch  36 Step:    15600 Batch Loss:     0.848535 Tokens per Sec:    15393, Lr: 0.000300\n",
            "2019-11-26 12:20:07,044 Epoch  36 Step:    15700 Batch Loss:     0.793746 Tokens per Sec:    15296, Lr: 0.000300\n",
            "2019-11-26 12:20:08,866 Epoch  36: total training loss 485.58\n",
            "2019-11-26 12:20:08,866 EPOCH 37\n",
            "2019-11-26 12:20:23,278 Epoch  37 Step:    15800 Batch Loss:     1.291795 Tokens per Sec:    15147, Lr: 0.000300\n",
            "2019-11-26 12:20:39,626 Epoch  37 Step:    15900 Batch Loss:     0.503743 Tokens per Sec:    15214, Lr: 0.000300\n",
            "2019-11-26 12:20:55,779 Epoch  37 Step:    16000 Batch Loss:     1.535897 Tokens per Sec:    15183, Lr: 0.000300\n",
            "2019-11-26 12:21:44,969 Hooray! New best validation result [ppl]!\n",
            "2019-11-26 12:21:44,969 Saving new checkpoint.\n",
            "2019-11-26 12:21:45,283 Example #0\n",
            "2019-11-26 12:21:45,283 \tSource:     GEORGE LOCAL MUNICIPALITY: CONTACT\n",
            "2019-11-26 12:21:45,283 \tReference:  GEORGE PLAASLIKE MUNISIPALITEIT: KONTAK\n",
            "2019-11-26 12:21:45,283 \tHypothesis: GEORGE PLAASLIKE MUNISIPALITEIT: KONTAK\n",
            "2019-11-26 12:21:45,284 Example #1\n",
            "2019-11-26 12:21:45,284 \tSource:     The Drostdy\n",
            "2019-11-26 12:21:45,284 \tReference:  Die Drostdy\n",
            "2019-11-26 12:21:45,284 \tHypothesis: Die Drostdy\n",
            "2019-11-26 12:21:45,284 Example #2\n",
            "2019-11-26 12:21:45,284 \tSource:     the object of the second category of committees is to utilise the expertise of persons outside the commission and to ensure direct community involvement in the activities of the commission .\n",
            "2019-11-26 12:21:45,284 \tReference:  die doel van die tweede kategorie van komitees is om ook die kundigheid van persone buite die kommissie vir die kommissie se werksaamhede te benut en om direkte gemeenskapsbetrokkenheid te verseker .\n",
            "2019-11-26 12:21:45,285 \tHypothesis: die voorwerp van die tweede kategorie van komitees is om die uitvoering van persone buite die kommissie en om gemeenskapsbetrokkenheid by die aktiwiteite van die kommissie te verseker .\n",
            "2019-11-26 12:21:45,285 Example #3\n",
            "2019-11-26 12:21:45,285 \tSource:     * private acts by individuals\n",
            "2019-11-26 12:21:45,285 \tReference:  * indiwidue se private optrede\n",
            "2019-11-26 12:21:45,285 \tHypothesis: * private akte deur individue\n",
            "2019-11-26 12:21:45,286 Validation result (greedy) at epoch  37, step    16000: bleu:  43.53, loss: 29685.3848, ppl:   3.5689, duration: 49.5060s\n",
            "2019-11-26 12:22:01,514 Epoch  37 Step:    16100 Batch Loss:     0.977506 Tokens per Sec:    15133, Lr: 0.000300\n",
            "2019-11-26 12:22:09,019 Epoch  37: total training loss 477.42\n",
            "2019-11-26 12:22:09,019 EPOCH 38\n",
            "2019-11-26 12:22:17,862 Epoch  38 Step:    16200 Batch Loss:     0.912274 Tokens per Sec:    15267, Lr: 0.000300\n",
            "2019-11-26 12:22:33,879 Epoch  38 Step:    16300 Batch Loss:     0.727981 Tokens per Sec:    15001, Lr: 0.000300\n",
            "2019-11-26 12:22:49,879 Epoch  38 Step:    16400 Batch Loss:     1.225804 Tokens per Sec:    15153, Lr: 0.000300\n",
            "2019-11-26 12:23:06,183 Epoch  38 Step:    16500 Batch Loss:     1.238150 Tokens per Sec:    15327, Lr: 0.000300\n",
            "2019-11-26 12:23:19,612 Epoch  38: total training loss 473.37\n",
            "2019-11-26 12:23:19,612 EPOCH 39\n",
            "2019-11-26 12:23:22,509 Epoch  39 Step:    16600 Batch Loss:     1.538846 Tokens per Sec:    15618, Lr: 0.000300\n",
            "2019-11-26 12:23:38,561 Epoch  39 Step:    16700 Batch Loss:     1.262424 Tokens per Sec:    15037, Lr: 0.000300\n",
            "2019-11-26 12:23:54,833 Epoch  39 Step:    16800 Batch Loss:     0.833469 Tokens per Sec:    15480, Lr: 0.000300\n",
            "2019-11-26 12:24:10,897 Epoch  39 Step:    16900 Batch Loss:     1.285361 Tokens per Sec:    15151, Lr: 0.000300\n",
            "2019-11-26 12:24:27,113 Epoch  39 Step:    17000 Batch Loss:     1.659389 Tokens per Sec:    15363, Lr: 0.000300\n",
            "2019-11-26 12:24:29,950 Epoch  39: total training loss 466.35\n",
            "2019-11-26 12:24:29,950 EPOCH 40\n",
            "2019-11-26 12:24:43,272 Epoch  40 Step:    17100 Batch Loss:     1.011768 Tokens per Sec:    15085, Lr: 0.000300\n",
            "2019-11-26 12:24:59,561 Epoch  40 Step:    17200 Batch Loss:     0.899179 Tokens per Sec:    15377, Lr: 0.000300\n",
            "2019-11-26 12:25:15,546 Epoch  40 Step:    17300 Batch Loss:     1.233902 Tokens per Sec:    15265, Lr: 0.000300\n",
            "2019-11-26 12:25:31,671 Epoch  40 Step:    17400 Batch Loss:     0.851410 Tokens per Sec:    15242, Lr: 0.000300\n",
            "2019-11-26 12:25:40,139 Epoch  40: total training loss 457.48\n",
            "2019-11-26 12:25:40,139 EPOCH 41\n",
            "2019-11-26 12:25:47,817 Epoch  41 Step:    17500 Batch Loss:     0.938755 Tokens per Sec:    15240, Lr: 0.000300\n",
            "2019-11-26 12:26:04,211 Epoch  41 Step:    17600 Batch Loss:     0.670900 Tokens per Sec:    15533, Lr: 0.000300\n",
            "2019-11-26 12:26:20,520 Epoch  41 Step:    17700 Batch Loss:     1.540982 Tokens per Sec:    15310, Lr: 0.000300\n",
            "2019-11-26 12:26:36,599 Epoch  41 Step:    17800 Batch Loss:     0.465548 Tokens per Sec:    15153, Lr: 0.000300\n",
            "2019-11-26 12:26:50,603 Epoch  41: total training loss 456.14\n",
            "2019-11-26 12:26:50,603 EPOCH 42\n",
            "2019-11-26 12:26:52,389 Epoch  42 Step:    17900 Batch Loss:     1.453590 Tokens per Sec:    14513, Lr: 0.000300\n",
            "2019-11-26 12:27:08,452 Epoch  42 Step:    18000 Batch Loss:     0.585894 Tokens per Sec:    15103, Lr: 0.000300\n",
            "2019-11-26 12:27:57,678 Hooray! New best validation result [ppl]!\n",
            "2019-11-26 12:27:57,678 Saving new checkpoint.\n",
            "2019-11-26 12:27:57,986 Example #0\n",
            "2019-11-26 12:27:57,987 \tSource:     GEORGE LOCAL MUNICIPALITY: CONTACT\n",
            "2019-11-26 12:27:57,987 \tReference:  GEORGE PLAASLIKE MUNISIPALITEIT: KONTAK\n",
            "2019-11-26 12:27:57,987 \tHypothesis: GEORGE PLAASLIKE MUNISIPALITEIT: KONTAK\n",
            "2019-11-26 12:27:57,987 Example #1\n",
            "2019-11-26 12:27:57,987 \tSource:     The Drostdy\n",
            "2019-11-26 12:27:57,987 \tReference:  Die Drostdy\n",
            "2019-11-26 12:27:57,987 \tHypothesis: Die Drostdy\n",
            "2019-11-26 12:27:57,987 Example #2\n",
            "2019-11-26 12:27:57,987 \tSource:     the object of the second category of committees is to utilise the expertise of persons outside the commission and to ensure direct community involvement in the activities of the commission .\n",
            "2019-11-26 12:27:57,987 \tReference:  die doel van die tweede kategorie van komitees is om ook die kundigheid van persone buite die kommissie vir die kommissie se werksaamhede te benut en om direkte gemeenskapsbetrokkenheid te verseker .\n",
            "2019-11-26 12:27:57,988 \tHypothesis: die voorwerp van die tweede kategorie van komitees is om die prestasie van mense buite die kommissie te verrig en om gemeenskapsbetrokkenheid by die aktiwiteite van die kommissie te verseker .\n",
            "2019-11-26 12:27:57,988 Example #3\n",
            "2019-11-26 12:27:57,988 \tSource:     * private acts by individuals\n",
            "2019-11-26 12:27:57,988 \tReference:  * indiwidue se private optrede\n",
            "2019-11-26 12:27:57,988 \tHypothesis: * private akte deur individue\n",
            "2019-11-26 12:27:57,988 Validation result (greedy) at epoch  42, step    18000: bleu:  44.48, loss: 28864.5508, ppl:   3.4455, duration: 49.5352s\n",
            "2019-11-26 12:28:14,099 Epoch  42 Step:    18100 Batch Loss:     1.758319 Tokens per Sec:    15362, Lr: 0.000300\n",
            "2019-11-26 12:28:30,021 Epoch  42 Step:    18200 Batch Loss:     1.352633 Tokens per Sec:    15264, Lr: 0.000300\n",
            "2019-11-26 12:28:46,132 Epoch  42 Step:    18300 Batch Loss:     0.403492 Tokens per Sec:    15227, Lr: 0.000300\n",
            "2019-11-26 12:28:50,681 Epoch  42: total training loss 454.43\n",
            "2019-11-26 12:28:50,681 EPOCH 43\n",
            "2019-11-26 12:29:02,410 Epoch  43 Step:    18400 Batch Loss:     1.042653 Tokens per Sec:    15309, Lr: 0.000300\n",
            "2019-11-26 12:29:18,434 Epoch  43 Step:    18500 Batch Loss:     1.022686 Tokens per Sec:    15217, Lr: 0.000300\n",
            "2019-11-26 12:29:34,598 Epoch  43 Step:    18600 Batch Loss:     1.028972 Tokens per Sec:    15289, Lr: 0.000300\n",
            "2019-11-26 12:29:50,739 Epoch  43 Step:    18700 Batch Loss:     0.827851 Tokens per Sec:    15141, Lr: 0.000300\n",
            "2019-11-26 12:30:01,134 Epoch  43: total training loss 446.05\n",
            "2019-11-26 12:30:01,134 EPOCH 44\n",
            "2019-11-26 12:30:06,654 Epoch  44 Step:    18800 Batch Loss:     1.084404 Tokens per Sec:    15116, Lr: 0.000300\n",
            "2019-11-26 12:30:22,742 Epoch  44 Step:    18900 Batch Loss:     1.109812 Tokens per Sec:    15308, Lr: 0.000300\n",
            "2019-11-26 12:30:38,770 Epoch  44 Step:    19000 Batch Loss:     1.085626 Tokens per Sec:    15304, Lr: 0.000300\n",
            "2019-11-26 12:30:54,953 Epoch  44 Step:    19100 Batch Loss:     1.026974 Tokens per Sec:    15263, Lr: 0.000300\n",
            "2019-11-26 12:31:10,750 Epoch  44 Step:    19200 Batch Loss:     1.237570 Tokens per Sec:    14984, Lr: 0.000300\n",
            "2019-11-26 12:31:11,552 Epoch  44: total training loss 440.61\n",
            "2019-11-26 12:31:11,553 EPOCH 45\n",
            "2019-11-26 12:31:26,641 Epoch  45 Step:    19300 Batch Loss:     1.067398 Tokens per Sec:    14833, Lr: 0.000300\n",
            "2019-11-26 12:31:42,861 Epoch  45 Step:    19400 Batch Loss:     1.251102 Tokens per Sec:    15620, Lr: 0.000300\n",
            "2019-11-26 12:31:58,694 Epoch  45 Step:    19500 Batch Loss:     1.193938 Tokens per Sec:    15227, Lr: 0.000300\n",
            "2019-11-26 12:32:14,845 Epoch  45 Step:    19600 Batch Loss:     0.696879 Tokens per Sec:    15173, Lr: 0.000300\n",
            "2019-11-26 12:32:21,965 Epoch  45: total training loss 436.23\n",
            "2019-11-26 12:32:21,966 EPOCH 46\n",
            "2019-11-26 12:32:31,142 Epoch  46 Step:    19700 Batch Loss:     1.393640 Tokens per Sec:    15139, Lr: 0.000300\n",
            "2019-11-26 12:32:47,113 Epoch  46 Step:    19800 Batch Loss:     0.759225 Tokens per Sec:    15201, Lr: 0.000300\n",
            "2019-11-26 12:33:03,042 Epoch  46 Step:    19900 Batch Loss:     1.119920 Tokens per Sec:    15071, Lr: 0.000300\n",
            "2019-11-26 12:33:19,344 Epoch  46 Step:    20000 Batch Loss:     1.032209 Tokens per Sec:    15495, Lr: 0.000300\n",
            "2019-11-26 12:34:08,487 Hooray! New best validation result [ppl]!\n",
            "2019-11-26 12:34:08,488 Saving new checkpoint.\n",
            "2019-11-26 12:34:08,793 Example #0\n",
            "2019-11-26 12:34:08,793 \tSource:     GEORGE LOCAL MUNICIPALITY: CONTACT\n",
            "2019-11-26 12:34:08,793 \tReference:  GEORGE PLAASLIKE MUNISIPALITEIT: KONTAK\n",
            "2019-11-26 12:34:08,793 \tHypothesis: GEORGE PLAASLIKE MUNISIPALITEIT: KONTAK\n",
            "2019-11-26 12:34:08,793 Example #1\n",
            "2019-11-26 12:34:08,793 \tSource:     The Drostdy\n",
            "2019-11-26 12:34:08,793 \tReference:  Die Drostdy\n",
            "2019-11-26 12:34:08,794 \tHypothesis: Die Drostdy\n",
            "2019-11-26 12:34:08,794 Example #2\n",
            "2019-11-26 12:34:08,794 \tSource:     the object of the second category of committees is to utilise the expertise of persons outside the commission and to ensure direct community involvement in the activities of the commission .\n",
            "2019-11-26 12:34:08,794 \tReference:  die doel van die tweede kategorie van komitees is om ook die kundigheid van persone buite die kommissie vir die kommissie se werksaamhede te benut en om direkte gemeenskapsbetrokkenheid te verseker .\n",
            "2019-11-26 12:34:08,794 \tHypothesis: die voorwerp van die tweede kategorie van komitees is om die prestasie van persone buite die kommissie te verrig en om gemeenskapsbetrokkenheid te verseker in die aktiwiteite van die kommissie .\n",
            "2019-11-26 12:34:08,794 Example #3\n",
            "2019-11-26 12:34:08,794 \tSource:     * private acts by individuals\n",
            "2019-11-26 12:34:08,794 \tReference:  * indiwidue se private optrede\n",
            "2019-11-26 12:34:08,794 \tHypothesis: * private akte deur individue\n",
            "2019-11-26 12:34:08,794 Validation result (greedy) at epoch  46, step    20000: bleu:  45.29, loss: 28165.5215, ppl:   3.3438, duration: 49.4499s\n",
            "2019-11-26 12:34:21,853 Epoch  46: total training loss 433.22\n",
            "2019-11-26 12:34:21,853 EPOCH 47\n",
            "2019-11-26 12:34:24,766 Epoch  47 Step:    20100 Batch Loss:     0.468254 Tokens per Sec:    14227, Lr: 0.000300\n",
            "2019-11-26 12:34:40,873 Epoch  47 Step:    20200 Batch Loss:     1.215164 Tokens per Sec:    15341, Lr: 0.000300\n",
            "2019-11-26 12:34:56,979 Epoch  47 Step:    20300 Batch Loss:     0.461400 Tokens per Sec:    15495, Lr: 0.000300\n",
            "2019-11-26 12:35:13,060 Epoch  47 Step:    20400 Batch Loss:     0.578643 Tokens per Sec:    15084, Lr: 0.000300\n",
            "2019-11-26 12:35:29,084 Epoch  47 Step:    20500 Batch Loss:     1.248637 Tokens per Sec:    15181, Lr: 0.000300\n",
            "2019-11-26 12:35:32,298 Epoch  47: total training loss 425.75\n",
            "2019-11-26 12:35:32,298 EPOCH 48\n",
            "2019-11-26 12:35:45,305 Epoch  48 Step:    20600 Batch Loss:     0.957772 Tokens per Sec:    15184, Lr: 0.000300\n",
            "2019-11-26 12:36:01,312 Epoch  48 Step:    20700 Batch Loss:     1.181914 Tokens per Sec:    15048, Lr: 0.000300\n",
            "2019-11-26 12:36:17,330 Epoch  48 Step:    20800 Batch Loss:     0.418090 Tokens per Sec:    15133, Lr: 0.000300\n",
            "2019-11-26 12:36:33,632 Epoch  48 Step:    20900 Batch Loss:     1.357821 Tokens per Sec:    15282, Lr: 0.000300\n",
            "2019-11-26 12:36:42,844 Epoch  48: total training loss 421.14\n",
            "2019-11-26 12:36:42,844 EPOCH 49\n",
            "2019-11-26 12:36:49,969 Epoch  49 Step:    21000 Batch Loss:     1.088681 Tokens per Sec:    15064, Lr: 0.000300\n",
            "2019-11-26 12:37:05,778 Epoch  49 Step:    21100 Batch Loss:     0.738177 Tokens per Sec:    15012, Lr: 0.000300\n",
            "2019-11-26 12:37:21,886 Epoch  49 Step:    21200 Batch Loss:     0.707294 Tokens per Sec:    15294, Lr: 0.000300\n",
            "2019-11-26 12:37:38,156 Epoch  49 Step:    21300 Batch Loss:     1.099869 Tokens per Sec:    15548, Lr: 0.000300\n",
            "2019-11-26 12:37:53,316 Epoch  49: total training loss 424.99\n",
            "2019-11-26 12:37:53,316 EPOCH 50\n",
            "2019-11-26 12:37:54,338 Epoch  50 Step:    21400 Batch Loss:     1.343167 Tokens per Sec:    13686, Lr: 0.000300\n",
            "2019-11-26 12:38:10,322 Epoch  50 Step:    21500 Batch Loss:     1.236026 Tokens per Sec:    15273, Lr: 0.000300\n",
            "2019-11-26 12:38:26,352 Epoch  50 Step:    21600 Batch Loss:     0.770427 Tokens per Sec:    15153, Lr: 0.000300\n",
            "2019-11-26 12:38:42,469 Epoch  50 Step:    21700 Batch Loss:     0.912537 Tokens per Sec:    15479, Lr: 0.000300\n",
            "2019-11-26 12:38:58,545 Epoch  50 Step:    21800 Batch Loss:     0.712236 Tokens per Sec:    15273, Lr: 0.000300\n",
            "2019-11-26 12:39:03,509 Epoch  50: total training loss 415.63\n",
            "2019-11-26 12:39:03,510 EPOCH 51\n",
            "2019-11-26 12:39:14,675 Epoch  51 Step:    21900 Batch Loss:     0.610291 Tokens per Sec:    15019, Lr: 0.000300\n",
            "2019-11-26 12:39:30,690 Epoch  51 Step:    22000 Batch Loss:     1.360288 Tokens per Sec:    15119, Lr: 0.000300\n",
            "2019-11-26 12:40:19,739 Hooray! New best validation result [ppl]!\n",
            "2019-11-26 12:40:19,740 Saving new checkpoint.\n",
            "2019-11-26 12:40:20,033 Example #0\n",
            "2019-11-26 12:40:20,034 \tSource:     GEORGE LOCAL MUNICIPALITY: CONTACT\n",
            "2019-11-26 12:40:20,034 \tReference:  GEORGE PLAASLIKE MUNISIPALITEIT: KONTAK\n",
            "2019-11-26 12:40:20,034 \tHypothesis: GEORGE PLAASLIKE MUNISIPALITEIT: KONTAK\n",
            "2019-11-26 12:40:20,034 Example #1\n",
            "2019-11-26 12:40:20,034 \tSource:     The Drostdy\n",
            "2019-11-26 12:40:20,034 \tReference:  Die Drostdy\n",
            "2019-11-26 12:40:20,034 \tHypothesis: Die Drostdy\n",
            "2019-11-26 12:40:20,034 Example #2\n",
            "2019-11-26 12:40:20,034 \tSource:     the object of the second category of committees is to utilise the expertise of persons outside the commission and to ensure direct community involvement in the activities of the commission .\n",
            "2019-11-26 12:40:20,034 \tReference:  die doel van die tweede kategorie van komitees is om ook die kundigheid van persone buite die kommissie vir die kommissie se werksaamhede te benut en om direkte gemeenskapsbetrokkenheid te verseker .\n",
            "2019-11-26 12:40:20,034 \tHypothesis: die voorwerp van die tweede kategorie van komitees is om die uitvoer van persone buite die kommissie te verrig en om gemeenskapsbetrokkenheid by die aktiwiteite van die kommissie te verseker .\n",
            "2019-11-26 12:40:20,034 Example #3\n",
            "2019-11-26 12:40:20,034 \tSource:     * private acts by individuals\n",
            "2019-11-26 12:40:20,035 \tReference:  * indiwidue se private optrede\n",
            "2019-11-26 12:40:20,035 \tHypothesis: * private aktiwiteite deur individue\n",
            "2019-11-26 12:40:20,035 Validation result (greedy) at epoch  51, step    22000: bleu:  45.67, loss: 27861.9648, ppl:   3.3006, duration: 49.3443s\n",
            "2019-11-26 12:40:35,990 Epoch  51 Step:    22100 Batch Loss:     0.817147 Tokens per Sec:    15144, Lr: 0.000300\n",
            "2019-11-26 12:40:52,247 Epoch  51 Step:    22200 Batch Loss:     0.663797 Tokens per Sec:    15307, Lr: 0.000300\n",
            "2019-11-26 12:41:03,320 Epoch  51: total training loss 408.61\n",
            "2019-11-26 12:41:03,320 EPOCH 52\n",
            "2019-11-26 12:41:08,379 Epoch  52 Step:    22300 Batch Loss:     0.925180 Tokens per Sec:    15338, Lr: 0.000300\n",
            "2019-11-26 12:41:24,295 Epoch  52 Step:    22400 Batch Loss:     1.305108 Tokens per Sec:    15390, Lr: 0.000300\n",
            "2019-11-26 12:41:40,358 Epoch  52 Step:    22500 Batch Loss:     0.610038 Tokens per Sec:    15234, Lr: 0.000300\n",
            "2019-11-26 12:41:56,407 Epoch  52 Step:    22600 Batch Loss:     0.951900 Tokens per Sec:    15227, Lr: 0.000300\n",
            "2019-11-26 12:42:12,500 Epoch  52 Step:    22700 Batch Loss:     1.455232 Tokens per Sec:    15229, Lr: 0.000300\n",
            "2019-11-26 12:42:13,615 Epoch  52: total training loss 408.93\n",
            "2019-11-26 12:42:13,616 EPOCH 53\n",
            "2019-11-26 12:42:28,584 Epoch  53 Step:    22800 Batch Loss:     0.811055 Tokens per Sec:    15221, Lr: 0.000300\n",
            "2019-11-26 12:42:44,659 Epoch  53 Step:    22900 Batch Loss:     0.992817 Tokens per Sec:    15176, Lr: 0.000300\n",
            "2019-11-26 12:43:00,892 Epoch  53 Step:    23000 Batch Loss:     1.011394 Tokens per Sec:    15145, Lr: 0.000300\n",
            "2019-11-26 12:43:16,895 Epoch  53 Step:    23100 Batch Loss:     0.627608 Tokens per Sec:    15258, Lr: 0.000300\n",
            "2019-11-26 12:43:23,899 Epoch  53: total training loss 399.86\n",
            "2019-11-26 12:43:23,900 EPOCH 54\n",
            "2019-11-26 12:43:33,224 Epoch  54 Step:    23200 Batch Loss:     0.776448 Tokens per Sec:    15413, Lr: 0.000300\n",
            "2019-11-26 12:43:49,284 Epoch  54 Step:    23300 Batch Loss:     0.541824 Tokens per Sec:    15024, Lr: 0.000300\n",
            "2019-11-26 12:44:05,413 Epoch  54 Step:    23400 Batch Loss:     1.097711 Tokens per Sec:    15589, Lr: 0.000300\n",
            "2019-11-26 12:44:21,358 Epoch  54 Step:    23500 Batch Loss:     0.652817 Tokens per Sec:    14880, Lr: 0.000300\n",
            "2019-11-26 12:44:34,162 Epoch  54: total training loss 395.18\n",
            "2019-11-26 12:44:34,162 EPOCH 55\n",
            "2019-11-26 12:44:37,631 Epoch  55 Step:    23600 Batch Loss:     0.653211 Tokens per Sec:    14899, Lr: 0.000300\n",
            "2019-11-26 12:44:53,779 Epoch  55 Step:    23700 Batch Loss:     0.817440 Tokens per Sec:    15327, Lr: 0.000300\n",
            "2019-11-26 12:45:09,858 Epoch  55 Step:    23800 Batch Loss:     1.058987 Tokens per Sec:    15085, Lr: 0.000300\n",
            "2019-11-26 12:45:26,080 Epoch  55 Step:    23900 Batch Loss:     1.008387 Tokens per Sec:    15448, Lr: 0.000300\n",
            "2019-11-26 12:45:42,389 Epoch  55 Step:    24000 Batch Loss:     0.760989 Tokens per Sec:    15439, Lr: 0.000300\n",
            "2019-11-26 12:46:31,554 Hooray! New best validation result [ppl]!\n",
            "2019-11-26 12:46:31,554 Saving new checkpoint.\n",
            "2019-11-26 12:46:31,862 Example #0\n",
            "2019-11-26 12:46:31,862 \tSource:     GEORGE LOCAL MUNICIPALITY: CONTACT\n",
            "2019-11-26 12:46:31,862 \tReference:  GEORGE PLAASLIKE MUNISIPALITEIT: KONTAK\n",
            "2019-11-26 12:46:31,862 \tHypothesis: GEORGE PLAASLIKE MUNISIPALITEIT: KONTAK\n",
            "2019-11-26 12:46:31,862 Example #1\n",
            "2019-11-26 12:46:31,862 \tSource:     The Drostdy\n",
            "2019-11-26 12:46:31,862 \tReference:  Die Drostdy\n",
            "2019-11-26 12:46:31,862 \tHypothesis: Die Drostdy\n",
            "2019-11-26 12:46:31,862 Example #2\n",
            "2019-11-26 12:46:31,862 \tSource:     the object of the second category of committees is to utilise the expertise of persons outside the commission and to ensure direct community involvement in the activities of the commission .\n",
            "2019-11-26 12:46:31,862 \tReference:  die doel van die tweede kategorie van komitees is om ook die kundigheid van persone buite die kommissie vir die kommissie se werksaamhede te benut en om direkte gemeenskapsbetrokkenheid te verseker .\n",
            "2019-11-26 12:46:31,863 \tHypothesis: die voorwerp van die tweede kategorie van komitees is om die uitvoering van persone buite die kommissie te verrig en om gemeenskapsbetrokkenheid by die aktiwiteite van die kommissie te verseker .\n",
            "2019-11-26 12:46:31,863 Example #3\n",
            "2019-11-26 12:46:31,863 \tSource:     * private acts by individuals\n",
            "2019-11-26 12:46:31,863 \tReference:  * indiwidue se private optrede\n",
            "2019-11-26 12:46:31,863 \tHypothesis: * private akte deur individue\n",
            "2019-11-26 12:46:31,863 Validation result (greedy) at epoch  55, step    24000: bleu:  47.06, loss: 27393.8047, ppl:   3.2350, duration: 49.4739s\n",
            "2019-11-26 12:46:33,675 Epoch  55: total training loss 388.99\n",
            "2019-11-26 12:46:33,676 EPOCH 56\n",
            "2019-11-26 12:46:47,830 Epoch  56 Step:    24100 Batch Loss:     0.435184 Tokens per Sec:    14840, Lr: 0.000300\n",
            "2019-11-26 12:47:03,916 Epoch  56 Step:    24200 Batch Loss:     0.777254 Tokens per Sec:    15185, Lr: 0.000300\n",
            "2019-11-26 12:47:20,008 Epoch  56 Step:    24300 Batch Loss:     1.170903 Tokens per Sec:    15558, Lr: 0.000300\n",
            "2019-11-26 12:47:36,393 Epoch  56 Step:    24400 Batch Loss:     0.976754 Tokens per Sec:    15367, Lr: 0.000300\n",
            "2019-11-26 12:47:44,006 Epoch  56: total training loss 388.88\n",
            "2019-11-26 12:47:44,006 EPOCH 57\n",
            "2019-11-26 12:47:52,646 Epoch  57 Step:    24500 Batch Loss:     0.735243 Tokens per Sec:    15321, Lr: 0.000300\n",
            "2019-11-26 12:48:08,770 Epoch  57 Step:    24600 Batch Loss:     1.187664 Tokens per Sec:    15045, Lr: 0.000300\n",
            "2019-11-26 12:48:24,897 Epoch  57 Step:    24700 Batch Loss:     1.073763 Tokens per Sec:    15125, Lr: 0.000300\n",
            "2019-11-26 12:48:41,008 Epoch  57 Step:    24800 Batch Loss:     0.665125 Tokens per Sec:    15157, Lr: 0.000300\n",
            "2019-11-26 12:48:54,409 Epoch  57: total training loss 384.62\n",
            "2019-11-26 12:48:54,409 EPOCH 58\n",
            "2019-11-26 12:48:57,382 Epoch  58 Step:    24900 Batch Loss:     0.701790 Tokens per Sec:    15188, Lr: 0.000300\n",
            "2019-11-26 12:49:13,541 Epoch  58 Step:    25000 Batch Loss:     1.179395 Tokens per Sec:    15134, Lr: 0.000300\n",
            "2019-11-26 12:49:29,471 Epoch  58 Step:    25100 Batch Loss:     0.944794 Tokens per Sec:    14946, Lr: 0.000300\n",
            "2019-11-26 12:49:45,669 Epoch  58 Step:    25200 Batch Loss:     0.907928 Tokens per Sec:    15309, Lr: 0.000300\n",
            "2019-11-26 12:50:01,698 Epoch  58 Step:    25300 Batch Loss:     1.173214 Tokens per Sec:    15466, Lr: 0.000300\n",
            "2019-11-26 12:50:04,882 Epoch  58: total training loss 384.27\n",
            "2019-11-26 12:50:04,882 EPOCH 59\n",
            "2019-11-26 12:50:17,875 Epoch  59 Step:    25400 Batch Loss:     0.998782 Tokens per Sec:    15550, Lr: 0.000300\n",
            "2019-11-26 12:50:33,865 Epoch  59 Step:    25500 Batch Loss:     1.223902 Tokens per Sec:    15178, Lr: 0.000300\n",
            "2019-11-26 12:50:49,993 Epoch  59 Step:    25600 Batch Loss:     1.320425 Tokens per Sec:    15353, Lr: 0.000300\n",
            "2019-11-26 12:51:06,125 Epoch  59 Step:    25700 Batch Loss:     0.623917 Tokens per Sec:    15074, Lr: 0.000300\n",
            "2019-11-26 12:51:15,376 Epoch  59: total training loss 380.87\n",
            "2019-11-26 12:51:15,376 EPOCH 60\n",
            "2019-11-26 12:51:22,285 Epoch  60 Step:    25800 Batch Loss:     1.006226 Tokens per Sec:    15034, Lr: 0.000300\n",
            "2019-11-26 12:51:38,694 Epoch  60 Step:    25900 Batch Loss:     0.843723 Tokens per Sec:    14957, Lr: 0.000300\n",
            "2019-11-26 12:51:54,693 Epoch  60 Step:    26000 Batch Loss:     0.444974 Tokens per Sec:    15440, Lr: 0.000300\n",
            "2019-11-26 12:52:43,820 Hooray! New best validation result [ppl]!\n",
            "2019-11-26 12:52:43,820 Saving new checkpoint.\n",
            "2019-11-26 12:52:44,111 Example #0\n",
            "2019-11-26 12:52:44,112 \tSource:     GEORGE LOCAL MUNICIPALITY: CONTACT\n",
            "2019-11-26 12:52:44,112 \tReference:  GEORGE PLAASLIKE MUNISIPALITEIT: KONTAK\n",
            "2019-11-26 12:52:44,112 \tHypothesis: GEORGE PLAASLIKE MUNISIPALITEIT: KONTAK\n",
            "2019-11-26 12:52:44,112 Example #1\n",
            "2019-11-26 12:52:44,112 \tSource:     The Drostdy\n",
            "2019-11-26 12:52:44,112 \tReference:  Die Drostdy\n",
            "2019-11-26 12:52:44,112 \tHypothesis: Die Drostdy\n",
            "2019-11-26 12:52:44,113 Example #2\n",
            "2019-11-26 12:52:44,113 \tSource:     the object of the second category of committees is to utilise the expertise of persons outside the commission and to ensure direct community involvement in the activities of the commission .\n",
            "2019-11-26 12:52:44,113 \tReference:  die doel van die tweede kategorie van komitees is om ook die kundigheid van persone buite die kommissie vir die kommissie se werksaamhede te benut en om direkte gemeenskapsbetrokkenheid te verseker .\n",
            "2019-11-26 12:52:44,113 \tHypothesis: die voorwerp van die tweede kategorie van komitees is om die uitvoering van persone buite die kommissie te verplig en om gemeenskapsbetrokkenheid by die aktiwiteite van die kommissie te verseker .\n",
            "2019-11-26 12:52:44,113 Example #3\n",
            "2019-11-26 12:52:44,113 \tSource:     * private acts by individuals\n",
            "2019-11-26 12:52:44,113 \tReference:  * indiwidue se private optrede\n",
            "2019-11-26 12:52:44,114 \tHypothesis: * private aktiwiteite deur individue\n",
            "2019-11-26 12:52:44,114 Validation result (greedy) at epoch  60, step    26000: bleu:  47.45, loss: 26914.4805, ppl:   3.1692, duration: 49.4213s\n",
            "2019-11-26 12:53:00,273 Epoch  60 Step:    26100 Batch Loss:     0.989446 Tokens per Sec:    15227, Lr: 0.000300\n",
            "2019-11-26 12:53:15,584 Epoch  60: total training loss 376.27\n",
            "2019-11-26 12:53:15,585 EPOCH 61\n",
            "2019-11-26 12:53:16,397 Epoch  61 Step:    26200 Batch Loss:     0.575541 Tokens per Sec:    12867, Lr: 0.000300\n",
            "2019-11-26 12:53:32,510 Epoch  61 Step:    26300 Batch Loss:     0.673162 Tokens per Sec:    15553, Lr: 0.000300\n",
            "2019-11-26 12:53:48,457 Epoch  61 Step:    26400 Batch Loss:     0.687498 Tokens per Sec:    15051, Lr: 0.000300\n",
            "2019-11-26 12:54:04,736 Epoch  61 Step:    26500 Batch Loss:     1.163097 Tokens per Sec:    15211, Lr: 0.000300\n",
            "2019-11-26 12:54:20,588 Epoch  61 Step:    26600 Batch Loss:     0.736466 Tokens per Sec:    14963, Lr: 0.000300\n",
            "2019-11-26 12:54:26,167 Epoch  61: total training loss 376.97\n",
            "2019-11-26 12:54:26,167 EPOCH 62\n",
            "2019-11-26 12:54:36,973 Epoch  62 Step:    26700 Batch Loss:     0.550314 Tokens per Sec:    15221, Lr: 0.000300\n",
            "2019-11-26 12:54:52,867 Epoch  62 Step:    26800 Batch Loss:     1.064360 Tokens per Sec:    15105, Lr: 0.000300\n",
            "2019-11-26 12:55:08,788 Epoch  62 Step:    26900 Batch Loss:     1.218435 Tokens per Sec:    15168, Lr: 0.000300\n",
            "2019-11-26 12:55:24,851 Epoch  62 Step:    27000 Batch Loss:     1.178409 Tokens per Sec:    15256, Lr: 0.000300\n",
            "2019-11-26 12:55:36,683 Epoch  62: total training loss 373.81\n",
            "2019-11-26 12:55:36,683 EPOCH 63\n",
            "2019-11-26 12:55:41,018 Epoch  63 Step:    27100 Batch Loss:     0.433264 Tokens per Sec:    14612, Lr: 0.000300\n",
            "2019-11-26 12:55:57,274 Epoch  63 Step:    27200 Batch Loss:     0.690832 Tokens per Sec:    15475, Lr: 0.000300\n",
            "2019-11-26 12:56:13,298 Epoch  63 Step:    27300 Batch Loss:     1.054951 Tokens per Sec:    15144, Lr: 0.000300\n",
            "2019-11-26 12:56:29,503 Epoch  63 Step:    27400 Batch Loss:     0.663507 Tokens per Sec:    15662, Lr: 0.000300\n",
            "2019-11-26 12:56:45,325 Epoch  63 Step:    27500 Batch Loss:     0.971017 Tokens per Sec:    14988, Lr: 0.000300\n",
            "2019-11-26 12:56:46,909 Epoch  63: total training loss 367.83\n",
            "2019-11-26 12:56:46,909 EPOCH 64\n",
            "2019-11-26 12:57:01,375 Epoch  64 Step:    27600 Batch Loss:     1.309990 Tokens per Sec:    15379, Lr: 0.000300\n",
            "2019-11-26 12:57:17,300 Epoch  64 Step:    27700 Batch Loss:     0.708928 Tokens per Sec:    15200, Lr: 0.000300\n",
            "2019-11-26 12:57:33,597 Epoch  64 Step:    27800 Batch Loss:     0.759926 Tokens per Sec:    15742, Lr: 0.000300\n",
            "2019-11-26 12:57:49,383 Epoch  64 Step:    27900 Batch Loss:     0.767020 Tokens per Sec:    15023, Lr: 0.000300\n",
            "2019-11-26 12:57:56,928 Epoch  64: total training loss 365.45\n",
            "2019-11-26 12:57:56,928 EPOCH 65\n",
            "2019-11-26 12:58:05,349 Epoch  65 Step:    28000 Batch Loss:     1.017252 Tokens per Sec:    15326, Lr: 0.000300\n",
            "2019-11-26 12:58:54,663 Hooray! New best validation result [ppl]!\n",
            "2019-11-26 12:58:54,663 Saving new checkpoint.\n",
            "2019-11-26 12:58:54,962 Example #0\n",
            "2019-11-26 12:58:54,962 \tSource:     GEORGE LOCAL MUNICIPALITY: CONTACT\n",
            "2019-11-26 12:58:54,962 \tReference:  GEORGE PLAASLIKE MUNISIPALITEIT: KONTAK\n",
            "2019-11-26 12:58:54,962 \tHypothesis: GEORGE PLAASLIKE MUNISIPALITEIT: KONTAK\n",
            "2019-11-26 12:58:54,962 Example #1\n",
            "2019-11-26 12:58:54,962 \tSource:     The Drostdy\n",
            "2019-11-26 12:58:54,962 \tReference:  Die Drostdy\n",
            "2019-11-26 12:58:54,962 \tHypothesis: Die Drostdy\n",
            "2019-11-26 12:58:54,962 Example #2\n",
            "2019-11-26 12:58:54,963 \tSource:     the object of the second category of committees is to utilise the expertise of persons outside the commission and to ensure direct community involvement in the activities of the commission .\n",
            "2019-11-26 12:58:54,963 \tReference:  die doel van die tweede kategorie van komitees is om ook die kundigheid van persone buite die kommissie vir die kommissie se werksaamhede te benut en om direkte gemeenskapsbetrokkenheid te verseker .\n",
            "2019-11-26 12:58:54,963 \tHypothesis: die voorwerp van die tweede kategorie van komitees is om die uitvoering van persone buite die kommissie te verplig en om gemeenskapsbetrokkenheid by die aktiwiteite van die kommissie te verseker .\n",
            "2019-11-26 12:58:54,963 Example #3\n",
            "2019-11-26 12:58:54,963 \tSource:     * private acts by individuals\n",
            "2019-11-26 12:58:54,963 \tReference:  * indiwidue se private optrede\n",
            "2019-11-26 12:58:54,963 \tHypothesis: * private aktiwiteite deur individue\n",
            "2019-11-26 12:58:54,963 Validation result (greedy) at epoch  65, step    28000: bleu:  47.00, loss: 26760.4766, ppl:   3.1484, duration: 49.6141s\n",
            "2019-11-26 12:59:11,290 Epoch  65 Step:    28100 Batch Loss:     0.542845 Tokens per Sec:    14901, Lr: 0.000300\n",
            "2019-11-26 12:59:27,794 Epoch  65 Step:    28200 Batch Loss:     0.637733 Tokens per Sec:    14801, Lr: 0.000300\n",
            "2019-11-26 12:59:44,132 Epoch  65 Step:    28300 Batch Loss:     0.789681 Tokens per Sec:    15229, Lr: 0.000300\n",
            "2019-11-26 12:59:57,706 Epoch  65: total training loss 361.99\n",
            "2019-11-26 12:59:57,706 EPOCH 66\n",
            "2019-11-26 13:00:00,397 Epoch  66 Step:    28400 Batch Loss:     0.498018 Tokens per Sec:    15255, Lr: 0.000300\n",
            "2019-11-26 13:00:16,660 Epoch  66 Step:    28500 Batch Loss:     0.784142 Tokens per Sec:    15059, Lr: 0.000300\n",
            "2019-11-26 13:00:32,896 Epoch  66 Step:    28600 Batch Loss:     1.109083 Tokens per Sec:    15053, Lr: 0.000300\n",
            "2019-11-26 13:00:49,245 Epoch  66 Step:    28700 Batch Loss:     0.537676 Tokens per Sec:    15134, Lr: 0.000300\n",
            "2019-11-26 13:01:05,438 Epoch  66 Step:    28800 Batch Loss:     0.826802 Tokens per Sec:    15258, Lr: 0.000300\n",
            "2019-11-26 13:01:08,645 Epoch  66: total training loss 357.63\n",
            "2019-11-26 13:01:08,645 EPOCH 67\n",
            "2019-11-26 13:01:21,714 Epoch  67 Step:    28900 Batch Loss:     0.987926 Tokens per Sec:    15226, Lr: 0.000300\n",
            "2019-11-26 13:01:38,055 Epoch  67 Step:    29000 Batch Loss:     0.745742 Tokens per Sec:    15080, Lr: 0.000300\n",
            "2019-11-26 13:01:54,296 Epoch  67 Step:    29100 Batch Loss:     0.377114 Tokens per Sec:    15214, Lr: 0.000300\n",
            "2019-11-26 13:02:10,495 Epoch  67 Step:    29200 Batch Loss:     0.678766 Tokens per Sec:    15277, Lr: 0.000300\n",
            "2019-11-26 13:02:19,452 Epoch  67: total training loss 355.98\n",
            "2019-11-26 13:02:19,452 EPOCH 68\n",
            "2019-11-26 13:02:26,590 Epoch  68 Step:    29300 Batch Loss:     0.721982 Tokens per Sec:    15453, Lr: 0.000300\n",
            "2019-11-26 13:02:42,437 Epoch  68 Step:    29400 Batch Loss:     0.919434 Tokens per Sec:    14818, Lr: 0.000300\n",
            "2019-11-26 13:02:58,542 Epoch  68 Step:    29500 Batch Loss:     0.370095 Tokens per Sec:    15163, Lr: 0.000300\n",
            "2019-11-26 13:03:15,036 Epoch  68 Step:    29600 Batch Loss:     0.557850 Tokens per Sec:    15233, Lr: 0.000300\n",
            "2019-11-26 13:03:30,402 Epoch  68: total training loss 354.75\n",
            "2019-11-26 13:03:30,403 EPOCH 69\n",
            "2019-11-26 13:03:31,349 Epoch  69 Step:    29700 Batch Loss:     0.982612 Tokens per Sec:    15084, Lr: 0.000300\n",
            "2019-11-26 13:03:47,578 Epoch  69 Step:    29800 Batch Loss:     0.917254 Tokens per Sec:    15089, Lr: 0.000300\n",
            "2019-11-26 13:04:03,805 Epoch  69 Step:    29900 Batch Loss:     0.886195 Tokens per Sec:    15005, Lr: 0.000300\n",
            "2019-11-26 13:04:19,939 Epoch  69 Step:    30000 Batch Loss:     0.775156 Tokens per Sec:    15081, Lr: 0.000300\n",
            "2019-11-26 13:05:09,194 Hooray! New best validation result [ppl]!\n",
            "2019-11-26 13:05:09,194 Saving new checkpoint.\n",
            "2019-11-26 13:05:09,494 Example #0\n",
            "2019-11-26 13:05:09,494 \tSource:     GEORGE LOCAL MUNICIPALITY: CONTACT\n",
            "2019-11-26 13:05:09,494 \tReference:  GEORGE PLAASLIKE MUNISIPALITEIT: KONTAK\n",
            "2019-11-26 13:05:09,494 \tHypothesis: GEORGE PLAASLIKE MUNISIPALITEIT: KONTAK\n",
            "2019-11-26 13:05:09,494 Example #1\n",
            "2019-11-26 13:05:09,495 \tSource:     The Drostdy\n",
            "2019-11-26 13:05:09,495 \tReference:  Die Drostdy\n",
            "2019-11-26 13:05:09,495 \tHypothesis: Die Drostdy\n",
            "2019-11-26 13:05:09,495 Example #2\n",
            "2019-11-26 13:05:09,495 \tSource:     the object of the second category of committees is to utilise the expertise of persons outside the commission and to ensure direct community involvement in the activities of the commission .\n",
            "2019-11-26 13:05:09,495 \tReference:  die doel van die tweede kategorie van komitees is om ook die kundigheid van persone buite die kommissie vir die kommissie se werksaamhede te benut en om direkte gemeenskapsbetrokkenheid te verseker .\n",
            "2019-11-26 13:05:09,495 \tHypothesis: die voorwerp van die tweede kategorie van komitees is om die uitvoer van persone buite die kommissie te verrig en te verseker dat gemeenskapsbetrokkenheid by die aktiwiteite van die kommissie betrokke is .\n",
            "2019-11-26 13:05:09,495 Example #3\n",
            "2019-11-26 13:05:09,495 \tSource:     * private acts by individuals\n",
            "2019-11-26 13:05:09,495 \tReference:  * indiwidue se private optrede\n",
            "2019-11-26 13:05:09,495 \tHypothesis: * private akte deur individue\n",
            "2019-11-26 13:05:09,495 Validation result (greedy) at epoch  69, step    30000: bleu:  47.77, loss: 26577.5254, ppl:   3.1238, duration: 49.5561s\n",
            "2019-11-26 13:05:25,880 Epoch  69 Step:    30100 Batch Loss:     0.887959 Tokens per Sec:    15364, Lr: 0.000300\n",
            "2019-11-26 13:05:30,743 Epoch  69: total training loss 350.43\n",
            "2019-11-26 13:05:30,743 EPOCH 70\n",
            "2019-11-26 13:05:41,846 Epoch  70 Step:    30200 Batch Loss:     0.631063 Tokens per Sec:    14963, Lr: 0.000300\n",
            "2019-11-26 13:05:58,055 Epoch  70 Step:    30300 Batch Loss:     0.611507 Tokens per Sec:    15184, Lr: 0.000300\n",
            "2019-11-26 13:06:14,201 Epoch  70 Step:    30400 Batch Loss:     0.539814 Tokens per Sec:    15244, Lr: 0.000300\n",
            "2019-11-26 13:06:30,591 Epoch  70 Step:    30500 Batch Loss:     1.071048 Tokens per Sec:    15352, Lr: 0.000300\n",
            "2019-11-26 13:06:41,451 Epoch  70: total training loss 351.13\n",
            "2019-11-26 13:06:41,451 EPOCH 71\n",
            "2019-11-26 13:06:46,726 Epoch  71 Step:    30600 Batch Loss:     0.711578 Tokens per Sec:    15386, Lr: 0.000300\n",
            "2019-11-26 13:07:02,862 Epoch  71 Step:    30700 Batch Loss:     0.814951 Tokens per Sec:    14923, Lr: 0.000300\n",
            "2019-11-26 13:07:19,091 Epoch  71 Step:    30800 Batch Loss:     1.108014 Tokens per Sec:    15314, Lr: 0.000300\n",
            "2019-11-26 13:07:35,279 Epoch  71 Step:    30900 Batch Loss:     0.923361 Tokens per Sec:    15218, Lr: 0.000300\n",
            "2019-11-26 13:07:51,504 Epoch  71 Step:    31000 Batch Loss:     0.925191 Tokens per Sec:    14991, Lr: 0.000300\n",
            "2019-11-26 13:07:52,322 Epoch  71: total training loss 348.45\n",
            "2019-11-26 13:07:52,322 EPOCH 72\n",
            "2019-11-26 13:08:07,849 Epoch  72 Step:    31100 Batch Loss:     1.060984 Tokens per Sec:    15239, Lr: 0.000300\n",
            "2019-11-26 13:08:23,939 Epoch  72 Step:    31200 Batch Loss:     0.665788 Tokens per Sec:    15055, Lr: 0.000300\n",
            "2019-11-26 13:08:40,298 Epoch  72 Step:    31300 Batch Loss:     1.167653 Tokens per Sec:    15369, Lr: 0.000300\n",
            "2019-11-26 13:08:56,488 Epoch  72 Step:    31400 Batch Loss:     0.965262 Tokens per Sec:    14999, Lr: 0.000300\n",
            "2019-11-26 13:09:03,006 Epoch  72: total training loss 342.94\n",
            "2019-11-26 13:09:03,006 EPOCH 73\n",
            "2019-11-26 13:09:12,876 Epoch  73 Step:    31500 Batch Loss:     1.073630 Tokens per Sec:    15205, Lr: 0.000300\n",
            "2019-11-26 13:09:29,245 Epoch  73 Step:    31600 Batch Loss:     0.324575 Tokens per Sec:    15429, Lr: 0.000300\n",
            "2019-11-26 13:09:45,104 Epoch  73 Step:    31700 Batch Loss:     1.072775 Tokens per Sec:    14945, Lr: 0.000300\n",
            "2019-11-26 13:10:01,039 Epoch  73 Step:    31800 Batch Loss:     0.528711 Tokens per Sec:    14972, Lr: 0.000300\n",
            "2019-11-26 13:10:13,539 Epoch  73: total training loss 342.31\n",
            "2019-11-26 13:10:13,540 EPOCH 74\n",
            "2019-11-26 13:10:17,500 Epoch  74 Step:    31900 Batch Loss:     0.875707 Tokens per Sec:    14605, Lr: 0.000300\n",
            "2019-11-26 13:10:33,860 Epoch  74 Step:    32000 Batch Loss:     0.853001 Tokens per Sec:    15452, Lr: 0.000300\n",
            "2019-11-26 13:11:23,031 Hooray! New best validation result [ppl]!\n",
            "2019-11-26 13:11:23,031 Saving new checkpoint.\n",
            "2019-11-26 13:11:23,334 Example #0\n",
            "2019-11-26 13:11:23,335 \tSource:     GEORGE LOCAL MUNICIPALITY: CONTACT\n",
            "2019-11-26 13:11:23,335 \tReference:  GEORGE PLAASLIKE MUNISIPALITEIT: KONTAK\n",
            "2019-11-26 13:11:23,335 \tHypothesis: GEORGE PLAASLIKE MUNISIPALITEIT: KONTAK\n",
            "2019-11-26 13:11:23,335 Example #1\n",
            "2019-11-26 13:11:23,335 \tSource:     The Drostdy\n",
            "2019-11-26 13:11:23,335 \tReference:  Die Drostdy\n",
            "2019-11-26 13:11:23,335 \tHypothesis: Die Drostdy\n",
            "2019-11-26 13:11:23,336 Example #2\n",
            "2019-11-26 13:11:23,336 \tSource:     the object of the second category of committees is to utilise the expertise of persons outside the commission and to ensure direct community involvement in the activities of the commission .\n",
            "2019-11-26 13:11:23,336 \tReference:  die doel van die tweede kategorie van komitees is om ook die kundigheid van persone buite die kommissie vir die kommissie se werksaamhede te benut en om direkte gemeenskapsbetrokkenheid te verseker .\n",
            "2019-11-26 13:11:23,336 \tHypothesis: die voorwerp van die tweede kategorie van komitees is om die uitvoer van persone buite die kommissie te verplig en om gemeenskapsbetrokkenheid in die aktiwiteite van die kommissie te verseker .\n",
            "2019-11-26 13:11:23,336 Example #3\n",
            "2019-11-26 13:11:23,336 \tSource:     * private acts by individuals\n",
            "2019-11-26 13:11:23,336 \tReference:  * indiwidue se private optrede\n",
            "2019-11-26 13:11:23,336 \tHypothesis: * private akte deur individue\n",
            "2019-11-26 13:11:23,336 Validation result (greedy) at epoch  74, step    32000: bleu:  49.18, loss: 26218.0801, ppl:   3.0761, duration: 49.4765s\n",
            "2019-11-26 13:11:39,405 Epoch  74 Step:    32100 Batch Loss:     0.682031 Tokens per Sec:    15277, Lr: 0.000300\n",
            "2019-11-26 13:11:55,492 Epoch  74 Step:    32200 Batch Loss:     0.591827 Tokens per Sec:    15119, Lr: 0.000300\n",
            "2019-11-26 13:12:11,506 Epoch  74 Step:    32300 Batch Loss:     1.013833 Tokens per Sec:    15392, Lr: 0.000300\n",
            "2019-11-26 13:12:13,305 Epoch  74: total training loss 337.46\n",
            "2019-11-26 13:12:13,306 EPOCH 75\n",
            "2019-11-26 13:12:27,542 Epoch  75 Step:    32400 Batch Loss:     1.147855 Tokens per Sec:    15091, Lr: 0.000300\n",
            "2019-11-26 13:12:43,678 Epoch  75 Step:    32500 Batch Loss:     0.578004 Tokens per Sec:    15168, Lr: 0.000300\n",
            "2019-11-26 13:12:59,743 Epoch  75 Step:    32600 Batch Loss:     0.668102 Tokens per Sec:    15015, Lr: 0.000300\n",
            "2019-11-26 13:13:15,971 Epoch  75 Step:    32700 Batch Loss:     0.725984 Tokens per Sec:    15305, Lr: 0.000300\n",
            "2019-11-26 13:13:23,987 Epoch  75: total training loss 338.22\n",
            "2019-11-26 13:13:23,988 EPOCH 76\n",
            "2019-11-26 13:13:32,069 Epoch  76 Step:    32800 Batch Loss:     0.544484 Tokens per Sec:    15270, Lr: 0.000300\n",
            "2019-11-26 13:13:48,121 Epoch  76 Step:    32900 Batch Loss:     0.547336 Tokens per Sec:    15005, Lr: 0.000300\n",
            "2019-11-26 13:14:04,291 Epoch  76 Step:    33000 Batch Loss:     1.006842 Tokens per Sec:    15109, Lr: 0.000300\n",
            "2019-11-26 13:14:20,384 Epoch  76 Step:    33100 Batch Loss:     0.723646 Tokens per Sec:    15522, Lr: 0.000300\n",
            "2019-11-26 13:14:34,480 Epoch  76: total training loss 336.95\n",
            "2019-11-26 13:14:34,480 EPOCH 77\n",
            "2019-11-26 13:14:36,548 Epoch  77 Step:    33200 Batch Loss:     1.025953 Tokens per Sec:    15535, Lr: 0.000300\n",
            "2019-11-26 13:14:52,589 Epoch  77 Step:    33300 Batch Loss:     1.019696 Tokens per Sec:    15200, Lr: 0.000300\n",
            "2019-11-26 13:15:08,822 Epoch  77 Step:    33400 Batch Loss:     0.669594 Tokens per Sec:    15209, Lr: 0.000300\n",
            "2019-11-26 13:15:24,993 Epoch  77 Step:    33500 Batch Loss:     0.671676 Tokens per Sec:    15374, Lr: 0.000300\n",
            "2019-11-26 13:15:40,984 Epoch  77 Step:    33600 Batch Loss:     0.650119 Tokens per Sec:    15199, Lr: 0.000300\n",
            "2019-11-26 13:15:44,736 Epoch  77: total training loss 332.27\n",
            "2019-11-26 13:15:44,736 EPOCH 78\n",
            "2019-11-26 13:15:57,337 Epoch  78 Step:    33700 Batch Loss:     0.544939 Tokens per Sec:    15133, Lr: 0.000300\n",
            "2019-11-26 13:16:13,560 Epoch  78 Step:    33800 Batch Loss:     0.922034 Tokens per Sec:    15277, Lr: 0.000300\n",
            "2019-11-26 13:16:29,537 Epoch  78 Step:    33900 Batch Loss:     1.048963 Tokens per Sec:    15282, Lr: 0.000300\n",
            "2019-11-26 13:16:45,623 Epoch  78 Step:    34000 Batch Loss:     0.721920 Tokens per Sec:    15424, Lr: 0.000300\n",
            "2019-11-26 13:17:34,750 Hooray! New best validation result [ppl]!\n",
            "2019-11-26 13:17:34,750 Saving new checkpoint.\n",
            "2019-11-26 13:17:35,073 Example #0\n",
            "2019-11-26 13:17:35,073 \tSource:     GEORGE LOCAL MUNICIPALITY: CONTACT\n",
            "2019-11-26 13:17:35,073 \tReference:  GEORGE PLAASLIKE MUNISIPALITEIT: KONTAK\n",
            "2019-11-26 13:17:35,073 \tHypothesis: GEORGE PLAASLIKE MUNISIPALITEIT: KONTAK\n",
            "2019-11-26 13:17:35,073 Example #1\n",
            "2019-11-26 13:17:35,073 \tSource:     The Drostdy\n",
            "2019-11-26 13:17:35,074 \tReference:  Die Drostdy\n",
            "2019-11-26 13:17:35,074 \tHypothesis: Die Drostdy\n",
            "2019-11-26 13:17:35,074 Example #2\n",
            "2019-11-26 13:17:35,074 \tSource:     the object of the second category of committees is to utilise the expertise of persons outside the commission and to ensure direct community involvement in the activities of the commission .\n",
            "2019-11-26 13:17:35,074 \tReference:  die doel van die tweede kategorie van komitees is om ook die kundigheid van persone buite die kommissie vir die kommissie se werksaamhede te benut en om direkte gemeenskapsbetrokkenheid te verseker .\n",
            "2019-11-26 13:17:35,074 \tHypothesis: die voorwerp van die tweede kategorie van komitees is om die presiese kennis van persone buite die kommissie te verrig en om regstreekse betrokkenheid te verseker in die aktiwiteite van die kommissie .\n",
            "2019-11-26 13:17:35,074 Example #3\n",
            "2019-11-26 13:17:35,074 \tSource:     * private acts by individuals\n",
            "2019-11-26 13:17:35,074 \tReference:  * indiwidue se private optrede\n",
            "2019-11-26 13:17:35,074 \tHypothesis: * private aktiwiteite deur individue\n",
            "2019-11-26 13:17:35,074 Validation result (greedy) at epoch  78, step    34000: bleu:  49.27, loss: 26035.1660, ppl:   3.0520, duration: 49.4508s\n",
            "2019-11-26 13:17:44,581 Epoch  78: total training loss 331.04\n",
            "2019-11-26 13:17:44,581 EPOCH 79\n",
            "2019-11-26 13:17:51,227 Epoch  79 Step:    34100 Batch Loss:     0.854058 Tokens per Sec:    14864, Lr: 0.000300\n",
            "2019-11-26 13:18:07,396 Epoch  79 Step:    34200 Batch Loss:     0.748328 Tokens per Sec:    15361, Lr: 0.000300\n",
            "2019-11-26 13:18:23,437 Epoch  79 Step:    34300 Batch Loss:     0.907164 Tokens per Sec:    14928, Lr: 0.000300\n",
            "2019-11-26 13:18:39,561 Epoch  79 Step:    34400 Batch Loss:     0.965993 Tokens per Sec:    15413, Lr: 0.000300\n",
            "2019-11-26 13:18:54,879 Epoch  79: total training loss 328.70\n",
            "2019-11-26 13:18:54,879 EPOCH 80\n",
            "2019-11-26 13:18:55,753 Epoch  80 Step:    34500 Batch Loss:     1.017356 Tokens per Sec:    12591, Lr: 0.000300\n",
            "2019-11-26 13:19:11,952 Epoch  80 Step:    34600 Batch Loss:     0.848761 Tokens per Sec:    15422, Lr: 0.000300\n",
            "2019-11-26 13:19:28,000 Epoch  80 Step:    34700 Batch Loss:     0.715679 Tokens per Sec:    15278, Lr: 0.000300\n",
            "2019-11-26 13:19:43,964 Epoch  80 Step:    34800 Batch Loss:     0.535557 Tokens per Sec:    14932, Lr: 0.000300\n",
            "2019-11-26 13:19:59,921 Epoch  80 Step:    34900 Batch Loss:     0.861750 Tokens per Sec:    15064, Lr: 0.000300\n",
            "2019-11-26 13:20:05,480 Epoch  80: total training loss 329.55\n",
            "2019-11-26 13:20:05,480 EPOCH 81\n",
            "2019-11-26 13:20:16,149 Epoch  81 Step:    35000 Batch Loss:     1.011204 Tokens per Sec:    15059, Lr: 0.000300\n",
            "2019-11-26 13:20:32,245 Epoch  81 Step:    35100 Batch Loss:     0.744987 Tokens per Sec:    14999, Lr: 0.000300\n",
            "2019-11-26 13:20:48,366 Epoch  81 Step:    35200 Batch Loss:     0.741128 Tokens per Sec:    15498, Lr: 0.000300\n",
            "2019-11-26 13:21:04,459 Epoch  81 Step:    35300 Batch Loss:     0.439612 Tokens per Sec:    15167, Lr: 0.000300\n",
            "2019-11-26 13:21:15,929 Epoch  81: total training loss 324.50\n",
            "2019-11-26 13:21:15,929 EPOCH 82\n",
            "2019-11-26 13:21:20,728 Epoch  82 Step:    35400 Batch Loss:     0.640325 Tokens per Sec:    14950, Lr: 0.000300\n",
            "2019-11-26 13:21:36,610 Epoch  82 Step:    35500 Batch Loss:     0.623967 Tokens per Sec:    14980, Lr: 0.000300\n",
            "2019-11-26 13:21:52,849 Epoch  82 Step:    35600 Batch Loss:     0.806691 Tokens per Sec:    15303, Lr: 0.000300\n",
            "2019-11-26 13:22:09,099 Epoch  82 Step:    35700 Batch Loss:     0.562056 Tokens per Sec:    15388, Lr: 0.000300\n",
            "2019-11-26 13:22:25,086 Epoch  82 Step:    35800 Batch Loss:     0.864480 Tokens per Sec:    15084, Lr: 0.000300\n",
            "2019-11-26 13:22:26,565 Epoch  82: total training loss 323.27\n",
            "2019-11-26 13:22:26,566 EPOCH 83\n",
            "2019-11-26 13:22:41,166 Epoch  83 Step:    35900 Batch Loss:     0.389210 Tokens per Sec:    15278, Lr: 0.000300\n",
            "2019-11-26 13:22:57,289 Epoch  83 Step:    36000 Batch Loss:     0.587104 Tokens per Sec:    15225, Lr: 0.000300\n",
            "2019-11-26 13:23:46,417 Hooray! New best validation result [ppl]!\n",
            "2019-11-26 13:23:46,418 Saving new checkpoint.\n",
            "2019-11-26 13:23:46,719 Example #0\n",
            "2019-11-26 13:23:46,720 \tSource:     GEORGE LOCAL MUNICIPALITY: CONTACT\n",
            "2019-11-26 13:23:46,720 \tReference:  GEORGE PLAASLIKE MUNISIPALITEIT: KONTAK\n",
            "2019-11-26 13:23:46,720 \tHypothesis: GEORGE PLAASLIKE MUNISIPALITEIT: KONTAK\n",
            "2019-11-26 13:23:46,720 Example #1\n",
            "2019-11-26 13:23:46,720 \tSource:     The Drostdy\n",
            "2019-11-26 13:23:46,720 \tReference:  Die Drostdy\n",
            "2019-11-26 13:23:46,720 \tHypothesis: Die Drostdy\n",
            "2019-11-26 13:23:46,720 Example #2\n",
            "2019-11-26 13:23:46,720 \tSource:     the object of the second category of committees is to utilise the expertise of persons outside the commission and to ensure direct community involvement in the activities of the commission .\n",
            "2019-11-26 13:23:46,720 \tReference:  die doel van die tweede kategorie van komitees is om ook die kundigheid van persone buite die kommissie vir die kommissie se werksaamhede te benut en om direkte gemeenskapsbetrokkenheid te verseker .\n",
            "2019-11-26 13:23:46,720 \tHypothesis: die voorwerp van die tweede kategorie van komitees is om die kundigheid van persone buite die kommissie te verrig en om gemeenskapsbetrokkenheid te verseker in die aktiwiteite van die kommissie .\n",
            "2019-11-26 13:23:46,720 Example #3\n",
            "2019-11-26 13:23:46,721 \tSource:     * private acts by individuals\n",
            "2019-11-26 13:23:46,721 \tReference:  * indiwidue se private optrede\n",
            "2019-11-26 13:23:46,721 \tHypothesis: * private akte deur individue\n",
            "2019-11-26 13:23:46,721 Validation result (greedy) at epoch  83, step    36000: bleu:  49.67, loss: 25899.0938, ppl:   3.0343, duration: 49.4310s\n",
            "2019-11-26 13:24:03,098 Epoch  83 Step:    36100 Batch Loss:     0.924729 Tokens per Sec:    15170, Lr: 0.000300\n",
            "2019-11-26 13:24:19,307 Epoch  83 Step:    36200 Batch Loss:     0.973561 Tokens per Sec:    14914, Lr: 0.000300\n",
            "2019-11-26 13:24:26,586 Epoch  83: total training loss 319.50\n",
            "2019-11-26 13:24:26,586 EPOCH 84\n",
            "2019-11-26 13:24:35,572 Epoch  84 Step:    36300 Batch Loss:     0.934725 Tokens per Sec:    15152, Lr: 0.000300\n",
            "2019-11-26 13:24:51,748 Epoch  84 Step:    36400 Batch Loss:     0.762359 Tokens per Sec:    15118, Lr: 0.000300\n",
            "2019-11-26 13:25:07,966 Epoch  84 Step:    36500 Batch Loss:     0.696560 Tokens per Sec:    15168, Lr: 0.000300\n",
            "2019-11-26 13:25:24,099 Epoch  84 Step:    36600 Batch Loss:     0.438995 Tokens per Sec:    15300, Lr: 0.000300\n",
            "2019-11-26 13:25:37,164 Epoch  84: total training loss 317.51\n",
            "2019-11-26 13:25:37,164 EPOCH 85\n",
            "2019-11-26 13:25:40,351 Epoch  85 Step:    36700 Batch Loss:     0.583036 Tokens per Sec:    14714, Lr: 0.000300\n",
            "2019-11-26 13:25:56,375 Epoch  85 Step:    36800 Batch Loss:     0.678274 Tokens per Sec:    15186, Lr: 0.000300\n",
            "2019-11-26 13:26:12,684 Epoch  85 Step:    36900 Batch Loss:     0.599494 Tokens per Sec:    15311, Lr: 0.000300\n",
            "2019-11-26 13:26:28,685 Epoch  85 Step:    37000 Batch Loss:     1.023514 Tokens per Sec:    15295, Lr: 0.000300\n",
            "2019-11-26 13:26:45,006 Epoch  85 Step:    37100 Batch Loss:     0.721533 Tokens per Sec:    15170, Lr: 0.000300\n",
            "2019-11-26 13:26:47,724 Epoch  85: total training loss 316.44\n",
            "2019-11-26 13:26:47,724 EPOCH 86\n",
            "2019-11-26 13:27:01,176 Epoch  86 Step:    37200 Batch Loss:     0.839128 Tokens per Sec:    15268, Lr: 0.000300\n",
            "2019-11-26 13:27:17,346 Epoch  86 Step:    37300 Batch Loss:     0.734333 Tokens per Sec:    15305, Lr: 0.000300\n",
            "2019-11-26 13:27:33,374 Epoch  86 Step:    37400 Batch Loss:     0.508487 Tokens per Sec:    15344, Lr: 0.000300\n",
            "2019-11-26 13:27:49,688 Epoch  86 Step:    37500 Batch Loss:     1.090178 Tokens per Sec:    15320, Lr: 0.000300\n",
            "2019-11-26 13:27:57,890 Epoch  86: total training loss 313.48\n",
            "2019-11-26 13:27:57,890 EPOCH 87\n",
            "2019-11-26 13:28:05,851 Epoch  87 Step:    37600 Batch Loss:     0.479971 Tokens per Sec:    15041, Lr: 0.000300\n",
            "2019-11-26 13:28:22,097 Epoch  87 Step:    37700 Batch Loss:     0.454109 Tokens per Sec:    15331, Lr: 0.000300\n",
            "2019-11-26 13:28:38,159 Epoch  87 Step:    37800 Batch Loss:     0.441764 Tokens per Sec:    15315, Lr: 0.000300\n",
            "2019-11-26 13:28:54,355 Epoch  87 Step:    37900 Batch Loss:     0.903597 Tokens per Sec:    15444, Lr: 0.000300\n",
            "2019-11-26 13:29:08,252 Epoch  87: total training loss 311.77\n",
            "2019-11-26 13:29:08,253 EPOCH 88\n",
            "2019-11-26 13:29:10,382 Epoch  88 Step:    38000 Batch Loss:     0.977019 Tokens per Sec:    14602, Lr: 0.000300\n",
            "2019-11-26 13:29:59,453 Hooray! New best validation result [ppl]!\n",
            "2019-11-26 13:29:59,453 Saving new checkpoint.\n",
            "2019-11-26 13:29:59,765 Example #0\n",
            "2019-11-26 13:29:59,765 \tSource:     GEORGE LOCAL MUNICIPALITY: CONTACT\n",
            "2019-11-26 13:29:59,765 \tReference:  GEORGE PLAASLIKE MUNISIPALITEIT: KONTAK\n",
            "2019-11-26 13:29:59,765 \tHypothesis: GEORGE PLAASLIKE MUNISIPALITEIT: KONTAK\n",
            "2019-11-26 13:29:59,765 Example #1\n",
            "2019-11-26 13:29:59,766 \tSource:     The Drostdy\n",
            "2019-11-26 13:29:59,766 \tReference:  Die Drostdy\n",
            "2019-11-26 13:29:59,766 \tHypothesis: Die Drostdy\n",
            "2019-11-26 13:29:59,766 Example #2\n",
            "2019-11-26 13:29:59,766 \tSource:     the object of the second category of committees is to utilise the expertise of persons outside the commission and to ensure direct community involvement in the activities of the commission .\n",
            "2019-11-26 13:29:59,766 \tReference:  die doel van die tweede kategorie van komitees is om ook die kundigheid van persone buite die kommissie vir die kommissie se werksaamhede te benut en om direkte gemeenskapsbetrokkenheid te verseker .\n",
            "2019-11-26 13:29:59,766 \tHypothesis: die voorwerp van die tweede kategorie van komitees is om die kundigheid van persone buite die kommissie te verplig en om gemeenskapsbetrokkenheid by die aktiwiteite van die kommissie te verseker .\n",
            "2019-11-26 13:29:59,766 Example #3\n",
            "2019-11-26 13:29:59,766 \tSource:     * private acts by individuals\n",
            "2019-11-26 13:29:59,766 \tReference:  * indiwidue se private optrede\n",
            "2019-11-26 13:29:59,766 \tHypothesis: * private akte deur individue\n",
            "2019-11-26 13:29:59,766 Validation result (greedy) at epoch  88, step    38000: bleu:  50.04, loss: 25706.0918, ppl:   3.0093, duration: 49.3840s\n",
            "2019-11-26 13:30:16,101 Epoch  88 Step:    38100 Batch Loss:     0.665654 Tokens per Sec:    15339, Lr: 0.000300\n",
            "2019-11-26 13:30:32,225 Epoch  88 Step:    38200 Batch Loss:     0.896674 Tokens per Sec:    15138, Lr: 0.000300\n",
            "2019-11-26 13:30:48,275 Epoch  88 Step:    38300 Batch Loss:     0.852050 Tokens per Sec:    15208, Lr: 0.000300\n",
            "2019-11-26 13:31:04,404 Epoch  88 Step:    38400 Batch Loss:     0.578186 Tokens per Sec:    15370, Lr: 0.000300\n",
            "2019-11-26 13:31:07,957 Epoch  88: total training loss 309.43\n",
            "2019-11-26 13:31:07,957 EPOCH 89\n",
            "2019-11-26 13:31:20,442 Epoch  89 Step:    38500 Batch Loss:     0.734052 Tokens per Sec:    14887, Lr: 0.000300\n",
            "2019-11-26 13:31:36,694 Epoch  89 Step:    38600 Batch Loss:     0.467864 Tokens per Sec:    15335, Lr: 0.000300\n",
            "2019-11-26 13:31:52,862 Epoch  89 Step:    38700 Batch Loss:     0.987611 Tokens per Sec:    15180, Lr: 0.000300\n",
            "2019-11-26 13:32:08,826 Epoch  89 Step:    38800 Batch Loss:     0.947608 Tokens per Sec:    15310, Lr: 0.000300\n",
            "2019-11-26 13:32:18,337 Epoch  89: total training loss 309.07\n",
            "2019-11-26 13:32:18,337 EPOCH 90\n",
            "2019-11-26 13:32:24,927 Epoch  90 Step:    38900 Batch Loss:     0.760241 Tokens per Sec:    14917, Lr: 0.000300\n",
            "2019-11-26 13:32:41,115 Epoch  90 Step:    39000 Batch Loss:     0.988469 Tokens per Sec:    15270, Lr: 0.000300\n",
            "2019-11-26 13:32:57,083 Epoch  90 Step:    39100 Batch Loss:     0.380122 Tokens per Sec:    15434, Lr: 0.000300\n",
            "2019-11-26 13:33:13,302 Epoch  90 Step:    39200 Batch Loss:     0.398116 Tokens per Sec:    15147, Lr: 0.000300\n",
            "2019-11-26 13:33:28,802 Epoch  90: total training loss 309.41\n",
            "2019-11-26 13:33:28,802 EPOCH 91\n",
            "2019-11-26 13:33:29,346 Epoch  91 Step:    39300 Batch Loss:     0.462888 Tokens per Sec:    12529, Lr: 0.000300\n",
            "2019-11-26 13:33:45,464 Epoch  91 Step:    39400 Batch Loss:     0.643982 Tokens per Sec:    15392, Lr: 0.000300\n",
            "2019-11-26 13:34:01,637 Epoch  91 Step:    39500 Batch Loss:     1.007519 Tokens per Sec:    15314, Lr: 0.000300\n",
            "2019-11-26 13:34:17,730 Epoch  91 Step:    39600 Batch Loss:     0.753260 Tokens per Sec:    15602, Lr: 0.000300\n",
            "2019-11-26 13:34:33,674 Epoch  91 Step:    39700 Batch Loss:     0.654618 Tokens per Sec:    15012, Lr: 0.000300\n",
            "2019-11-26 13:34:38,890 Epoch  91: total training loss 303.97\n",
            "2019-11-26 13:34:38,890 EPOCH 92\n",
            "2019-11-26 13:34:49,837 Epoch  92 Step:    39800 Batch Loss:     0.793661 Tokens per Sec:    15403, Lr: 0.000300\n",
            "2019-11-26 13:35:05,771 Epoch  92 Step:    39900 Batch Loss:     0.650563 Tokens per Sec:    15366, Lr: 0.000300\n",
            "2019-11-26 13:35:21,729 Epoch  92 Step:    40000 Batch Loss:     0.688826 Tokens per Sec:    15343, Lr: 0.000300\n",
            "2019-11-26 13:36:10,737 Hooray! New best validation result [ppl]!\n",
            "2019-11-26 13:36:10,737 Saving new checkpoint.\n",
            "2019-11-26 13:36:11,026 Example #0\n",
            "2019-11-26 13:36:11,027 \tSource:     GEORGE LOCAL MUNICIPALITY: CONTACT\n",
            "2019-11-26 13:36:11,027 \tReference:  GEORGE PLAASLIKE MUNISIPALITEIT: KONTAK\n",
            "2019-11-26 13:36:11,027 \tHypothesis: GEORGE PLAASLIKE MUNISIPALITEIT: KONTAK\n",
            "2019-11-26 13:36:11,027 Example #1\n",
            "2019-11-26 13:36:11,027 \tSource:     The Drostdy\n",
            "2019-11-26 13:36:11,027 \tReference:  Die Drostdy\n",
            "2019-11-26 13:36:11,027 \tHypothesis: Die Drostdy\n",
            "2019-11-26 13:36:11,027 Example #2\n",
            "2019-11-26 13:36:11,027 \tSource:     the object of the second category of committees is to utilise the expertise of persons outside the commission and to ensure direct community involvement in the activities of the commission .\n",
            "2019-11-26 13:36:11,027 \tReference:  die doel van die tweede kategorie van komitees is om ook die kundigheid van persone buite die kommissie vir die kommissie se werksaamhede te benut en om direkte gemeenskapsbetrokkenheid te verseker .\n",
            "2019-11-26 13:36:11,027 \tHypothesis: die oogmerk van die tweede kategorie van komitees is om die uitvoering van persone buite die kommissie te verrig en te verseker dat direkte gemeenskap betrokkenheid by die aktiwiteite van die kommissie .\n",
            "2019-11-26 13:36:11,027 Example #3\n",
            "2019-11-26 13:36:11,028 \tSource:     * private acts by individuals\n",
            "2019-11-26 13:36:11,028 \tReference:  * indiwidue se private optrede\n",
            "2019-11-26 13:36:11,028 \tHypothesis: * private akte deur individue\n",
            "2019-11-26 13:36:11,028 Validation result (greedy) at epoch  92, step    40000: bleu:  49.61, loss: 25581.3008, ppl:   2.9932, duration: 49.2989s\n",
            "2019-11-26 13:36:26,921 Epoch  92 Step:    40100 Batch Loss:     0.821566 Tokens per Sec:    15279, Lr: 0.000300\n",
            "2019-11-26 13:36:38,111 Epoch  92: total training loss 304.97\n",
            "2019-11-26 13:36:38,111 EPOCH 93\n",
            "2019-11-26 13:36:42,896 Epoch  93 Step:    40200 Batch Loss:     0.737165 Tokens per Sec:    15286, Lr: 0.000300\n",
            "2019-11-26 13:36:58,975 Epoch  93 Step:    40300 Batch Loss:     0.605476 Tokens per Sec:    15240, Lr: 0.000300\n",
            "2019-11-26 13:37:15,308 Epoch  93 Step:    40400 Batch Loss:     0.927479 Tokens per Sec:    15439, Lr: 0.000300\n",
            "2019-11-26 13:37:31,097 Epoch  93 Step:    40500 Batch Loss:     0.983400 Tokens per Sec:    15036, Lr: 0.000300\n",
            "2019-11-26 13:37:47,240 Epoch  93 Step:    40600 Batch Loss:     0.927685 Tokens per Sec:    15485, Lr: 0.000300\n",
            "2019-11-26 13:37:48,166 Epoch  93: total training loss 302.69\n",
            "2019-11-26 13:37:48,166 EPOCH 94\n",
            "2019-11-26 13:38:03,364 Epoch  94 Step:    40700 Batch Loss:     0.695183 Tokens per Sec:    15284, Lr: 0.000300\n",
            "2019-11-26 13:38:19,282 Epoch  94 Step:    40800 Batch Loss:     0.730492 Tokens per Sec:    15100, Lr: 0.000300\n",
            "2019-11-26 13:38:35,538 Epoch  94 Step:    40900 Batch Loss:     0.961166 Tokens per Sec:    15156, Lr: 0.000300\n",
            "2019-11-26 13:38:51,562 Epoch  94 Step:    41000 Batch Loss:     0.710943 Tokens per Sec:    15475, Lr: 0.000300\n",
            "2019-11-26 13:38:58,318 Epoch  94: total training loss 301.28\n",
            "2019-11-26 13:38:58,318 EPOCH 95\n",
            "2019-11-26 13:39:07,656 Epoch  95 Step:    41100 Batch Loss:     0.635635 Tokens per Sec:    15097, Lr: 0.000300\n",
            "2019-11-26 13:39:23,746 Epoch  95 Step:    41200 Batch Loss:     0.764734 Tokens per Sec:    15378, Lr: 0.000300\n",
            "2019-11-26 13:39:39,585 Epoch  95 Step:    41300 Batch Loss:     0.726223 Tokens per Sec:    14994, Lr: 0.000300\n",
            "2019-11-26 13:39:55,803 Epoch  95 Step:    41400 Batch Loss:     0.973904 Tokens per Sec:    15543, Lr: 0.000300\n",
            "2019-11-26 13:40:08,295 Epoch  95: total training loss 301.23\n",
            "2019-11-26 13:40:08,295 EPOCH 96\n",
            "2019-11-26 13:40:11,983 Epoch  96 Step:    41500 Batch Loss:     0.952833 Tokens per Sec:    15587, Lr: 0.000300\n",
            "2019-11-26 13:40:28,039 Epoch  96 Step:    41600 Batch Loss:     0.685765 Tokens per Sec:    15345, Lr: 0.000300\n",
            "2019-11-26 13:40:44,453 Epoch  96 Step:    41700 Batch Loss:     1.019803 Tokens per Sec:    15659, Lr: 0.000300\n",
            "2019-11-26 13:41:00,560 Epoch  96 Step:    41800 Batch Loss:     0.601478 Tokens per Sec:    15283, Lr: 0.000300\n",
            "2019-11-26 13:41:16,371 Epoch  96 Step:    41900 Batch Loss:     0.636775 Tokens per Sec:    14926, Lr: 0.000300\n",
            "2019-11-26 13:41:18,267 Epoch  96: total training loss 295.91\n",
            "2019-11-26 13:41:18,267 EPOCH 97\n",
            "2019-11-26 13:41:32,278 Epoch  97 Step:    42000 Batch Loss:     0.967375 Tokens per Sec:    15130, Lr: 0.000300\n",
            "2019-11-26 13:42:21,208 Example #0\n",
            "2019-11-26 13:42:21,208 \tSource:     GEORGE LOCAL MUNICIPALITY: CONTACT\n",
            "2019-11-26 13:42:21,208 \tReference:  GEORGE PLAASLIKE MUNISIPALITEIT: KONTAK\n",
            "2019-11-26 13:42:21,208 \tHypothesis: GEORGE PLAASLIKE MUNISIPALITEIT: KONTAK\n",
            "2019-11-26 13:42:21,208 Example #1\n",
            "2019-11-26 13:42:21,209 \tSource:     The Drostdy\n",
            "2019-11-26 13:42:21,209 \tReference:  Die Drostdy\n",
            "2019-11-26 13:42:21,209 \tHypothesis: Die Drostdy\n",
            "2019-11-26 13:42:21,209 Example #2\n",
            "2019-11-26 13:42:21,209 \tSource:     the object of the second category of committees is to utilise the expertise of persons outside the commission and to ensure direct community involvement in the activities of the commission .\n",
            "2019-11-26 13:42:21,209 \tReference:  die doel van die tweede kategorie van komitees is om ook die kundigheid van persone buite die kommissie vir die kommissie se werksaamhede te benut en om direkte gemeenskapsbetrokkenheid te verseker .\n",
            "2019-11-26 13:42:21,209 \tHypothesis: die voorwerp van die tweede kategorie van komitees is om die uitvoer van persone buite die kommissie te verrig en te verseker dat gemeenskapsbetrokkenheid by die aktiwiteite van die kommissie geniet .\n",
            "2019-11-26 13:42:21,209 Example #3\n",
            "2019-11-26 13:42:21,209 \tSource:     * private acts by individuals\n",
            "2019-11-26 13:42:21,209 \tReference:  * indiwidue se private optrede\n",
            "2019-11-26 13:42:21,209 \tHypothesis: * private akte deur individue\n",
            "2019-11-26 13:42:21,209 Validation result (greedy) at epoch  97, step    42000: bleu:  50.55, loss: 25650.0742, ppl:   3.0021, duration: 48.9310s\n",
            "2019-11-26 13:42:37,346 Epoch  97 Step:    42100 Batch Loss:     0.730989 Tokens per Sec:    15465, Lr: 0.000300\n",
            "2019-11-26 13:42:53,345 Epoch  97 Step:    42200 Batch Loss:     0.697391 Tokens per Sec:    15646, Lr: 0.000300\n",
            "2019-11-26 13:43:09,412 Epoch  97 Step:    42300 Batch Loss:     0.723275 Tokens per Sec:    15356, Lr: 0.000300\n",
            "2019-11-26 13:43:16,901 Epoch  97: total training loss 296.88\n",
            "2019-11-26 13:43:16,901 EPOCH 98\n",
            "2019-11-26 13:43:25,529 Epoch  98 Step:    42400 Batch Loss:     0.581989 Tokens per Sec:    15189, Lr: 0.000300\n",
            "2019-11-26 13:43:41,195 Epoch  98 Step:    42500 Batch Loss:     0.941858 Tokens per Sec:    15275, Lr: 0.000300\n",
            "2019-11-26 13:43:57,262 Epoch  98 Step:    42600 Batch Loss:     0.701926 Tokens per Sec:    15269, Lr: 0.000300\n",
            "2019-11-26 13:44:13,271 Epoch  98 Step:    42700 Batch Loss:     0.465616 Tokens per Sec:    15611, Lr: 0.000300\n",
            "2019-11-26 13:44:26,759 Epoch  98: total training loss 296.85\n",
            "2019-11-26 13:44:26,759 EPOCH 99\n",
            "2019-11-26 13:44:29,105 Epoch  99 Step:    42800 Batch Loss:     0.589439 Tokens per Sec:    14413, Lr: 0.000300\n",
            "2019-11-26 13:44:45,198 Epoch  99 Step:    42900 Batch Loss:     0.503430 Tokens per Sec:    15244, Lr: 0.000300\n",
            "2019-11-26 13:45:01,427 Epoch  99 Step:    43000 Batch Loss:     0.546762 Tokens per Sec:    15396, Lr: 0.000300\n",
            "2019-11-26 13:45:17,476 Epoch  99 Step:    43100 Batch Loss:     0.561702 Tokens per Sec:    15548, Lr: 0.000300\n",
            "2019-11-26 13:45:33,518 Epoch  99 Step:    43200 Batch Loss:     0.968779 Tokens per Sec:    15407, Lr: 0.000300\n",
            "2019-11-26 13:45:36,676 Epoch  99: total training loss 292.35\n",
            "2019-11-26 13:45:36,676 EPOCH 100\n",
            "2019-11-26 13:45:49,484 Epoch 100 Step:    43300 Batch Loss:     0.821155 Tokens per Sec:    15152, Lr: 0.000300\n",
            "2019-11-26 13:46:05,568 Epoch 100 Step:    43400 Batch Loss:     0.401050 Tokens per Sec:    15539, Lr: 0.000300\n",
            "2019-11-26 13:46:21,506 Epoch 100 Step:    43500 Batch Loss:     0.500488 Tokens per Sec:    15254, Lr: 0.000300\n",
            "2019-11-26 13:46:37,440 Epoch 100 Step:    43600 Batch Loss:     0.538274 Tokens per Sec:    15333, Lr: 0.000300\n",
            "2019-11-26 13:46:46,523 Epoch 100: total training loss 291.58\n",
            "2019-11-26 13:46:46,524 Training ended after 100 epochs.\n",
            "2019-11-26 13:46:46,524 Best validation result (greedy) at step    40000:   2.99 ppl.\n",
            "2019-11-26 13:47:16,886  dev bleu:  48.65 [Beam search decoding with beam size = 5 and alpha = 1.0]\n",
            "2019-11-26 13:47:16,887 Translations saved to: models/enaf_transformer/00040000.hyps.dev\n",
            "2019-11-26 13:48:27,509 test bleu:  19.56 [Beam search decoding with beam size = 5 and alpha = 1.0]\n",
            "2019-11-26 13:48:27,510 Translations saved to: models/enaf_transformer/00040000.hyps.test\n"
          ],
          "name": "stdout"
        }
      ]
    },
    {
      "cell_type": "code",
      "metadata": {
        "colab_type": "code",
        "id": "MBoDS09JM807",
        "outputId": "4befa276-f2e6-41ba-b10e-dce5bc6991d5",
        "colab": {
          "base_uri": "https://localhost:8080/",
          "height": 54
        }
      },
      "source": [
        "# Copy the created models from the notebook storage to google drive for persistant storage \n",
        "!cp -r joeynmt/models/${src}${tgt}_transformer/* \"/content/drive/My Drive/masakhane/en-af-baseline/models/enaf_transformer/\""
      ],
      "execution_count": 16,
      "outputs": [
        {
          "output_type": "stream",
          "text": [
            "cp: cannot create symbolic link '/content/drive/My Drive/masakhane/en-af-baseline/models/enaf_transformer/best.ckpt': Function not implemented\n"
          ],
          "name": "stdout"
        }
      ]
    },
    {
      "cell_type": "code",
      "metadata": {
        "colab_type": "code",
        "id": "n94wlrCjVc17",
        "outputId": "8aed15df-c9f2-4732-d80d-c97f6cdb6eda",
        "colab": {
          "base_uri": "https://localhost:8080/",
          "height": 370
        }
      },
      "source": [
        "# Output our validation accuracy\n",
        "! cat \"$gdrive_path/models/${src}${tgt}_transformer/validations.txt\""
      ],
      "execution_count": 17,
      "outputs": [
        {
          "output_type": "stream",
          "text": [
            "Steps: 2000\tLoss: 74854.25781\tPPL: 24.73169\tbleu: 12.36405\tLR: 0.00030000\t*\n",
            "Steps: 4000\tLoss: 52469.36719\tPPL: 9.47559\tbleu: 26.50927\tLR: 0.00030000\t*\n",
            "Steps: 6000\tLoss: 42362.46094\tPPL: 6.14452\tbleu: 33.55846\tLR: 0.00030000\t*\n",
            "Steps: 8000\tLoss: 37101.53125\tPPL: 4.90418\tbleu: 37.38237\tLR: 0.00030000\t*\n",
            "Steps: 10000\tLoss: 34156.69531\tPPL: 4.32270\tbleu: 39.24070\tLR: 0.00030000\t*\n",
            "Steps: 12000\tLoss: 32103.47656\tPPL: 3.95857\tbleu: 40.75340\tLR: 0.00030000\t*\n",
            "Steps: 14000\tLoss: 30750.45508\tPPL: 3.73555\tbleu: 42.70344\tLR: 0.00030000\t*\n",
            "Steps: 16000\tLoss: 29685.38477\tPPL: 3.56887\tbleu: 43.53423\tLR: 0.00030000\t*\n",
            "Steps: 18000\tLoss: 28864.55078\tPPL: 3.44550\tbleu: 44.48371\tLR: 0.00030000\t*\n",
            "Steps: 20000\tLoss: 28165.52148\tPPL: 3.34381\tbleu: 45.28709\tLR: 0.00030000\t*\n",
            "Steps: 22000\tLoss: 27861.96484\tPPL: 3.30059\tbleu: 45.67252\tLR: 0.00030000\t*\n",
            "Steps: 24000\tLoss: 27393.80469\tPPL: 3.23503\tbleu: 47.06020\tLR: 0.00030000\t*\n",
            "Steps: 26000\tLoss: 26914.48047\tPPL: 3.16925\tbleu: 47.45031\tLR: 0.00030000\t*\n",
            "Steps: 28000\tLoss: 26760.47656\tPPL: 3.14840\tbleu: 46.99819\tLR: 0.00030000\t*\n",
            "Steps: 30000\tLoss: 26577.52539\tPPL: 3.12381\tbleu: 47.76965\tLR: 0.00030000\t*\n",
            "Steps: 32000\tLoss: 26218.08008\tPPL: 3.07606\tbleu: 49.17810\tLR: 0.00030000\t*\n",
            "Steps: 34000\tLoss: 26035.16602\tPPL: 3.05204\tbleu: 49.27485\tLR: 0.00030000\t*\n",
            "Steps: 36000\tLoss: 25899.09375\tPPL: 3.03429\tbleu: 49.66901\tLR: 0.00030000\t*\n",
            "Steps: 38000\tLoss: 25706.09180\tPPL: 3.00929\tbleu: 50.04462\tLR: 0.00030000\t*\n",
            "Steps: 40000\tLoss: 25581.30078\tPPL: 2.99324\tbleu: 49.61441\tLR: 0.00030000\t*\n",
            "Steps: 42000\tLoss: 25650.07422\tPPL: 3.00208\tbleu: 50.54650\tLR: 0.00030000\t\n"
          ],
          "name": "stdout"
        }
      ]
    },
    {
      "cell_type": "code",
      "metadata": {
        "colab_type": "code",
        "id": "66WhRE9lIhoD",
        "outputId": "204d1778-99db-48d2-8af6-89053a46af53",
        "colab": {
          "base_uri": "https://localhost:8080/",
          "height": 67
        }
      },
      "source": [
        "# Test our model\n",
        "! cd joeynmt; python3 -m joeynmt test \"$gdrive_path/models/${src}${tgt}_transformer/config.yaml\""
      ],
      "execution_count": 18,
      "outputs": [
        {
          "output_type": "stream",
          "text": [
            "2019-11-26 13:49:10,919 Hello! This is Joey-NMT.\n",
            "2019-11-26 13:49:45,068  dev bleu:  48.65 [Beam search decoding with beam size = 5 and alpha = 1.0]\n",
            "2019-11-26 13:50:55,979 test bleu:  19.56 [Beam search decoding with beam size = 5 and alpha = 1.0]\n"
          ],
          "name": "stdout"
        }
      ]
    },
    {
      "cell_type": "code",
      "metadata": {
        "id": "k9QbsG8rCJBX",
        "colab_type": "code",
        "colab": {}
      },
      "source": [
        ""
      ],
      "execution_count": 0,
      "outputs": []
    }
  ]
}