File size: 152,511 Bytes
78aa4ee
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
211
212
213
214
215
216
217
218
219
220
221
222
223
224
225
226
227
228
229
230
231
232
233
234
235
236
237
238
239
240
241
242
243
244
245
246
247
248
249
250
251
252
253
254
255
256
257
258
259
260
261
262
263
264
265
266
267
268
269
270
271
272
273
274
275
276
277
278
279
280
281
282
283
284
285
286
287
288
289
290
291
292
293
294
295
296
297
298
299
300
301
302
303
304
305
306
307
308
309
310
311
312
313
314
315
316
317
318
319
320
321
322
323
324
325
326
327
328
329
330
331
332
333
334
335
336
337
338
339
340
341
342
343
344
345
346
347
348
349
350
351
352
353
354
355
356
357
358
359
360
361
362
363
364
365
366
367
368
369
370
371
372
373
374
375
376
377
378
379
380
381
382
383
384
385
386
387
388
389
390
391
392
393
394
395
396
397
398
399
400
401
402
403
404
405
406
407
408
409
410
411
412
413
414
415
416
417
418
419
420
421
422
423
424
425
426
427
428
429
430
431
432
433
434
435
436
437
438
439
440
441
442
443
444
445
446
447
448
449
450
451
452
453
454
455
456
457
458
459
460
461
462
463
464
465
466
467
468
469
470
471
472
473
474
475
476
477
478
479
480
481
482
483
484
485
486
487
488
489
490
491
492
493
494
495
496
497
498
499
500
501
502
503
504
505
506
507
508
509
510
511
512
513
514
515
516
517
518
519
520
521
522
523
524
525
526
527
528
529
530
531
532
533
534
535
536
537
538
539
540
541
542
543
544
545
546
547
548
549
550
551
552
553
554
555
556
557
558
559
560
561
562
563
564
565
566
567
568
569
570
571
572
573
574
575
576
577
578
579
580
581
582
583
584
585
586
587
588
589
590
591
592
593
594
595
596
597
598
599
600
601
602
603
604
605
606
607
608
609
610
611
612
613
614
615
616
617
618
619
620
621
622
623
624
625
626
627
628
629
630
631
632
633
634
635
636
637
638
639
640
641
642
643
644
645
646
647
648
649
650
651
652
653
654
655
656
657
658
659
660
661
662
663
664
665
666
667
668
669
670
671
672
673
674
675
676
677
678
679
680
681
682
683
684
685
686
687
688
689
690
691
692
693
694
695
696
697
698
699
700
701
702
703
704
705
706
707
708
709
710
711
712
713
714
715
716
717
718
719
720
721
722
723
724
725
726
727
728
729
730
731
732
733
734
735
736
737
738
739
740
741
742
743
744
745
746
747
748
749
750
751
752
753
754
755
756
757
758
759
760
761
762
763
764
765
766
767
768
769
770
771
772
773
774
775
776
777
778
779
780
781
782
783
784
785
786
787
788
789
790
791
792
793
794
795
796
797
798
799
800
801
802
803
804
805
806
807
808
809
810
811
812
813
814
815
816
817
818
819
820
821
822
823
824
825
826
827
828
829
830
831
832
833
834
835
836
837
838
839
840
841
842
843
844
845
846
847
848
849
850
851
852
853
854
855
856
857
858
859
860
861
862
863
864
865
866
867
868
869
870
871
872
873
874
875
876
877
878
879
880
881
882
883
884
885
886
887
888
889
890
891
892
893
894
895
896
897
898
899
900
901
902
903
904
905
906
907
908
909
910
911
912
913
914
915
916
917
918
919
920
921
922
923
924
925
926
927
928
929
930
931
932
933
934
935
936
937
938
939
940
941
942
943
944
945
946
947
948
949
950
951
952
953
954
955
956
957
958
959
960
961
962
963
964
965
966
967
968
969
970
971
972
973
974
975
976
977
978
979
980
981
982
983
984
985
986
987
988
989
990
991
992
993
994
995
996
997
998
999
1000
1001
1002
1003
1004
1005
1006
1007
1008
1009
1010
1011
1012
1013
1014
1015
1016
1017
1018
1019
1020
1021
1022
1023
1024
1025
1026
1027
1028
1029
1030
1031
1032
1033
1034
1035
1036
1037
1038
1039
1040
1041
1042
1043
1044
1045
1046
1047
1048
1049
1050
1051
1052
1053
1054
1055
1056
1057
1058
1059
1060
1061
1062
1063
1064
1065
1066
1067
1068
1069
1070
1071
1072
1073
1074
1075
1076
1077
1078
1079
1080
1081
1082
1083
1084
1085
1086
1087
1088
1089
1090
1091
1092
1093
1094
1095
1096
1097
1098
1099
1100
1101
1102
1103
1104
1105
1106
1107
1108
1109
1110
1111
1112
1113
1114
1115
1116
1117
1118
1119
1120
1121
1122
1123
1124
1125
1126
1127
1128
1129
1130
1131
1132
1133
1134
1135
1136
1137
1138
1139
1140
1141
1142
1143
1144
1145
1146
1147
1148
1149
1150
1151
1152
1153
1154
1155
1156
1157
1158
1159
1160
1161
1162
1163
1164
1165
1166
1167
1168
1169
1170
1171
1172
1173
1174
1175
1176
1177
1178
1179
1180
1181
1182
1183
1184
1185
1186
1187
1188
1189
1190
1191
1192
1193
1194
1195
1196
1197
1198
1199
1200
1201
1202
1203
1204
1205
1206
1207
1208
1209
1210
1211
1212
1213
1214
1215
1216
1217
1218
1219
1220
1221
1222
1223
1224
1225
1226
1227
1228
1229
1230
1231
1232
1233
1234
1235
1236
1237
1238
1239
1240
1241
1242
1243
1244
1245
1246
1247
1248
1249
1250
1251
1252
1253
1254
1255
1256
1257
1258
1259
1260
1261
1262
1263
1264
1265
1266
1267
1268
1269
1270
1271
1272
1273
1274
1275
1276
1277
1278
1279
1280
1281
1282
1283
1284
1285
1286
1287
1288
1289
1290
1291
1292
1293
1294
1295
1296
1297
1298
1299
1300
1301
1302
1303
1304
1305
1306
1307
1308
1309
1310
1311
1312
1313
1314
1315
1316
1317
1318
1319
1320
1321
1322
1323
1324
1325
1326
1327
1328
1329
1330
1331
1332
1333
1334
1335
1336
1337
1338
1339
1340
1341
1342
1343
1344
1345
1346
1347
1348
1349
1350
1351
1352
1353
1354
1355
1356
1357
1358
1359
1360
1361
1362
1363
1364
1365
1366
1367
1368
1369
1370
1371
1372
1373
1374
1375
1376
1377
1378
1379
1380
1381
1382
1383
1384
1385
1386
1387
1388
1389
1390
1391
1392
1393
1394
1395
1396
1397
1398
1399
1400
1401
1402
1403
1404
1405
1406
1407
1408
1409
1410
1411
1412
1413
1414
1415
1416
1417
1418
1419
1420
1421
1422
1423
1424
1425
1426
1427
1428
1429
1430
1431
1432
1433
1434
1435
1436
1437
1438
1439
1440
1441
1442
1443
1444
1445
1446
1447
1448
1449
1450
1451
1452
1453
1454
1455
1456
1457
1458
1459
1460
1461
1462
1463
1464
1465
1466
1467
1468
1469
1470
1471
1472
1473
1474
1475
1476
1477
1478
1479
1480
1481
1482
1483
1484
1485
1486
1487
1488
1489
1490
1491
1492
1493
1494
1495
1496
1497
1498
1499
1500
1501
1502
1503
1504
1505
1506
1507
1508
1509
1510
1511
1512
1513
1514
1515
1516
1517
1518
1519
1520
1521
1522
1523
1524
1525
1526
1527
1528
1529
1530
1531
1532
1533
1534
1535
1536
1537
1538
1539
1540
1541
1542
1543
1544
1545
1546
1547
1548
1549
1550
1551
1552
1553
1554
1555
1556
1557
1558
1559
1560
1561
1562
1563
1564
1565
1566
1567
1568
1569
1570
1571
1572
1573
1574
1575
1576
1577
1578
1579
1580
1581
1582
1583
1584
1585
1586
1587
1588
1589
1590
1591
1592
1593
1594
1595
1596
1597
1598
1599
1600
1601
1602
1603
1604
1605
1606
1607
1608
1609
1610
1611
1612
1613
1614
1615
1616
1617
1618
1619
1620
1621
1622
1623
1624
1625
1626
1627
1628
1629
1630
1631
1632
1633
1634
1635
1636
1637
1638
1639
1640
1641
1642
1643
1644
1645
1646
1647
1648
1649
1650
1651
1652
1653
1654
1655
1656
1657
1658
1659
1660
1661
1662
1663
1664
1665
1666
1667
1668
1669
1670
1671
1672
1673
1674
1675
1676
1677
1678
1679
1680
1681
1682
1683
1684
1685
1686
1687
1688
1689
1690
1691
1692
1693
1694
1695
1696
1697
1698
1699
1700
1701
1702
1703
1704
1705
1706
1707
1708
1709
1710
1711
1712
1713
1714
1715
1716
1717
1718
1719
1720
1721
1722
1723
1724
1725
1726
1727
1728
1729
1730
1731
1732
1733
1734
1735
1736
1737
1738
1739
1740
1741
1742
1743
1744
1745
1746
1747
1748
1749
1750
1751
1752
1753
1754
1755
1756
1757
1758
1759
1760
1761
1762
1763
1764
1765
1766
1767
1768
1769
1770
1771
1772
1773
1774
1775
1776
1777
1778
1779
1780
1781
1782
1783
1784
1785
1786
1787
1788
1789
1790
1791
1792
1793
1794
1795
1796
1797
1798
1799
1800
1801
1802
1803
1804
1805
1806
1807
1808
1809
1810
1811
1812
1813
1814
1815
1816
1817
1818
1819
1820
1821
1822
1823
1824
1825
1826
1827
1828
1829
1830
1831
1832
1833
1834
1835
1836
1837
1838
1839
1840
1841
1842
1843
1844
1845
1846
1847
1848
1849
1850
1851
1852
1853
1854
1855
1856
1857
1858
1859
1860
1861
1862
1863
1864
1865
1866
1867
1868
1869
1870
1871
1872
1873
1874
1875
1876
1877
1878
1879
1880
1881
1882
1883
1884
1885
1886
1887
1888
1889
1890
1891
1892
1893
1894
1895
1896
1897
1898
1899
1900
1901
1902
1903
1904
1905
1906
1907
1908
1909
1910
1911
1912
1913
1914
1915
1916
1917
1918
1919
1920
1921
1922
1923
1924
1925
1926
1927
1928
1929
1930
1931
1932
1933
1934
1935
1936
1937
1938
1939
1940
1941
1942
1943
1944
1945
1946
1947
1948
1949
1950
1951
1952
1953
1954
1955
1956
1957
1958
1959
1960
1961
1962
1963
1964
1965
1966
1967
1968
1969
1970
1971
1972
1973
1974
1975
1976
1977
1978
1979
1980
1981
1982
1983
1984
1985
1986
1987
1988
1989
1990
1991
1992
1993
1994
1995
1996
1997
1998
1999
2000
2001
2002
2003
2004
2005
2006
2007
2008
2009
2010
2011
2012
2013
2014
2015
2016
2017
2018
2019
2020
2021
2022
2023
2024
2025
2026
2027
2028
2029
2030
2031
2032
2033
2034
2035
2036
2037
2038
2039
2040
2041
2042
2043
2044
2045
2046
2047
2048
2049
2050
2051
2052
2053
2054
2055
2056
2057
2058
2059
2060
2061
2062
2063
2064
2065
2066
2067
2068
2069
2070
2071
2072
2073
2074
2075
2076
2077
2078
2079
2080
2081
2082
2083
2084
2085
2086
2087
2088
2089
2090
2091
2092
2093
2094
2095
2096
2097
2098
2099
2100
2101
2102
2103
2104
2105
2106
2107
2108
2109
2110
2111
2112
2113
2114
2115
2116
2117
2118
2119
2120
2121
2122
2123
2124
2125
2126
2127
2128
2129
2130
2131
2132
2133
2134
2135
2136
2137
2138
2139
2140
2141
2142
2143
2144
2145
2146
2147
2148
2149
2150
2151
2152
2153
2154
2155
2156
2157
2158
2159
2160
2161
2162
2163
2164
2165
2166
2167
2168
2169
2170
2171
2172
2173
2174
2175
2176
2177
2178
2179
2180
2181
2182
2183
2184
2185
2186
2187
2188
2189
2190
2191
2192
2193
2194
2195
2196
2197
2198
2199
2200
2201
2202
2203
2204
2205
2206
2207
2208
2209
2210
2211
2212
2213
2214
2215
2216
2217
2218
2219
2220
2221
2222
2223
2224
2225
2226
2227
2228
2229
2230
2231
2232
2233
2234
2235
2236
2237
2238
2239
2240
2241
2242
2243
2244
2245
2246
2247
2248
2249
2250
2251
2252
2253
2254
2255
2256
2257
2258
2259
2260
2261
2262
2263
2264
2265
2266
2267
2268
2269
2270
2271
2272
2273
2274
2275
2276
2277
2278
2279
2280
2281
2282
2283
2284
2285
2286
2287
2288
2289
2290
2291
2292
2293
2294
2295
2296
2297
2298
2299
2300
2301
2302
2303
2304
2305
2306
2307
2308
2309
2310
2311
2312
2313
2314
2315
2316
2317
2318
2319
2320
2321
2322
2323
2324
2325
2326
2327
2328
2329
2330
2331
2332
{
  "nbformat": 4,
  "nbformat_minor": 0,
  "metadata": {
    "accelerator": "GPU",
    "colab": {
      "name": "starter_notebook.ipynb",
      "provenance": [],
      "collapsed_sections": [],
      "toc_visible": true,
      "include_colab_link": true
    },
    "kernelspec": {
      "display_name": "Python 3",
      "language": "python",
      "name": "python3"
    },
    "language_info": {
      "codemirror_mode": {
        "name": "ipython",
        "version": 3
      },
      "file_extension": ".py",
      "mimetype": "text/x-python",
      "name": "python",
      "nbconvert_exporter": "python",
      "pygments_lexer": "ipython3",
      "version": "3.5.6"
    }
  },
  "cells": [
    {
      "cell_type": "markdown",
      "metadata": {
        "id": "view-in-github",
        "colab_type": "text"
      },
      "source": [
        "<a href=\"https://colab.research.google.com/github/bamtak/masakhane/blob/master/en-yo/jw300-baseline-improve/en_yo_jw300_notebook_gdrive.ipynb\" target=\"_parent\"><img src=\"https://colab.research.google.com/assets/colab-badge.svg\" alt=\"Open In Colab\"/></a>"
      ]
    },
    {
      "cell_type": "markdown",
      "metadata": {
        "colab_type": "text",
        "id": "Igc5itf-xMGj"
      },
      "source": [
        "# Masakhane - Machine Translation for African Languages (Using JoeyNMT)"
      ]
    },
    {
      "cell_type": "markdown",
      "metadata": {
        "colab_type": "text",
        "id": "x4fXCKCf36IK"
      },
      "source": [
        "## Note before beginning:\n",
        "### - The idea is that you should be able to make minimal changes to this in order to get SOME result for your own translation corpus. \n",
        "\n",
        "### - The tl;dr: Go to the **\"TODO\"** comments which will tell you what to update to get up and running\n",
        "\n",
        "### - If you actually want to have a clue what you're doing, read the text and peek at the links\n",
        "\n",
        "### - With 100 epochs, it should take around 7 hours to run in Google Colab\n",
        "\n",
        "### - Once you've gotten a result for your language, please attach and email your notebook that generated it to [email protected]\n",
        "\n",
        "### - If you care enough and get a chance, doing a brief background on your language would be amazing. See examples in  [(Martinus, 2019)](https://arxiv.org/abs/1906.05685)"
      ]
    },
    {
      "cell_type": "markdown",
      "metadata": {
        "colab_type": "text",
        "id": "l929HimrxS0a"
      },
      "source": [
        "## Retrieve your data & make a parallel corpus\n",
        "\n",
        "If you are wanting to use the JW300 data referenced on the Masakhane website or in our GitHub repo, you can use `opus-tools` to convert the data into a convenient format. `opus_read` from that package provides a convenient tool for reading the native aligned XML files and to convert them to TMX format. The tool can also be used to fetch relevant files from OPUS on the fly and to filter the data as necessary. [Read the documentation](https://pypi.org/project/opustools-pkg/) for more details.\n",
        "\n",
        "Once you have your corpus files in TMX format (an xml structure which will include the sentences in your target language and your source language in a single file), we recommend reading them into a pandas dataframe. Thankfully, Jade wrote a silly `tmx2dataframe` package which converts your tmx file to a pandas dataframe. "
      ]
    },
    {
      "cell_type": "code",
      "metadata": {
        "colab_type": "code",
        "id": "oGRmDELn7Az0",
        "outputId": "98551454-5471-46f5-81fc-fa483f28d350",
        "colab": {
          "base_uri": "https://localhost:8080/",
          "height": 127
        }
      },
      "source": [
        "from google.colab import drive\n",
        "drive.mount('/content/drive')"
      ],
      "execution_count": 0,
      "outputs": [
        {
          "output_type": "stream",
          "text": [
            "Go to this URL in a browser: https://accounts.google.com/o/oauth2/auth?client_id=947318989803-6bn6qk8qdgf4n4g3pfee6491hc0brc4i.apps.googleusercontent.com&redirect_uri=urn%3aietf%3awg%3aoauth%3a2.0%3aoob&response_type=code&scope=email%20https%3a%2f%2fwww.googleapis.com%2fauth%2fdocs.test%20https%3a%2f%2fwww.googleapis.com%2fauth%2fdrive%20https%3a%2f%2fwww.googleapis.com%2fauth%2fdrive.photos.readonly%20https%3a%2f%2fwww.googleapis.com%2fauth%2fpeopleapi.readonly\n",
            "\n",
            "Enter your authorization code:\n",
            "··········\n",
            "Mounted at /content/drive\n"
          ],
          "name": "stdout"
        }
      ]
    },
    {
      "cell_type": "code",
      "metadata": {
        "colab_type": "code",
        "id": "Cn3tgQLzUxwn",
        "colab": {}
      },
      "source": [
        "# TODO: Set your source and target languages. Keep in mind, these traditionally use language codes as found here:\n",
        "# These will also become the suffix's of all vocab and corpus files used throughout\n",
        "import os\n",
        "source_language = \"en\"\n",
        "target_language = \"yo\" \n",
        "lc = False  # If True, lowercase the data.\n",
        "seed = 42  # Random seed for shuffling.\n",
        "tag = \"baseline\" # Give a unique name to your folder - this is to ensure you don't rewrite any models you've already submitted\n",
        "\n",
        "os.environ[\"src\"] = source_language # Sets them in bash as well, since we often use bash scripts\n",
        "os.environ[\"tgt\"] = target_language\n",
        "os.environ[\"tag\"] = tag\n",
        "\n",
        "# This will save it to a folder in our gdrive instead! \n",
        "!mkdir -p \"/content/drive/My Drive/masakhane/$src-$tgt-$tag\"\n",
        "g_drive_path = \"/content/drive/My Drive/masakhane/%s-%s-%s\" % (source_language, target_language, tag)\n",
        "os.environ[\"gdrive_path\"] = g_drive_path\n",
        "models_path = '%s/models/%s%s_transformer'% (g_drive_path, source_language, target_language)\n",
        "# model temporary directory for training\n",
        "model_temp_dir = \"/content/drive/My Drive/masakhane/model-temp\"\n",
        "# model permanent storage on the drive\n",
        "!mkdir -p \"$gdrive_path/models/${src}${tgt}_transformer/\""
      ],
      "execution_count": 0,
      "outputs": []
    },
    {
      "cell_type": "code",
      "metadata": {
        "colab_type": "code",
        "id": "kBSgJHEw7Nvx",
        "outputId": "0af3ab77-2c6a-431e-a299-9ea9f7904869",
        "colab": {
          "base_uri": "https://localhost:8080/",
          "height": 35
        }
      },
      "source": [
        "!echo $gdrive_path"
      ],
      "execution_count": 0,
      "outputs": [
        {
          "output_type": "stream",
          "text": [
            "/content/drive/My Drive/masakhane/en-yo-baseline\n"
          ],
          "name": "stdout"
        }
      ]
    },
    {
      "cell_type": "code",
      "metadata": {
        "colab_type": "code",
        "id": "gA75Fs9ys8Y9",
        "outputId": "835f0426-5e3e-4c70-8737-d1f1677ee041",
        "colab": {
          "base_uri": "https://localhost:8080/",
          "height": 35
        }
      },
      "source": [
        "#TODO: Skip for retrain\n",
        "# Install opus-tools\n",
        "! pip install opustools-pkg "
      ],
      "execution_count": 0,
      "outputs": [
        {
          "output_type": "stream",
          "text": [
            "Requirement already satisfied: opustools-pkg in /usr/local/lib/python3.6/dist-packages (0.0.52)\n"
          ],
          "name": "stdout"
        }
      ]
    },
    {
      "cell_type": "code",
      "metadata": {
        "colab_type": "code",
        "id": "xq-tDZVks7ZD",
        "outputId": "96da3b64-d252-4747-95e9-38645b578431",
        "colab": {
          "base_uri": "https://localhost:8080/",
          "height": 215
        }
      },
      "source": [
        "#TODO: Skip for retrain\n",
        "# Downloading our corpus\n",
        "! opus_read -d JW300 -s $src -t $tgt -wm moses -w jw300.$src jw300.$tgt -q\n",
        "\n",
        "# extract the corpus file\n",
        "! gunzip JW300_latest_xml_$src-$tgt.xml.gz"
      ],
      "execution_count": 0,
      "outputs": [
        {
          "output_type": "stream",
          "text": [
            "\n",
            "Alignment file /proj/nlpl/data/OPUS/JW300/latest/xml/en-yo.xml.gz not found. The following files are available for downloading:\n",
            "\n",
            "        ./JW300_latest_xml_en.zip already exists\n",
            "        ./JW300_latest_xml_yo.zip already exists\n",
            "   4 MB https://object.pouta.csc.fi/OPUS-JW300/v1/xml/en-yo.xml.gz\n",
            "\n",
            "   4 MB Total size\n",
            "./JW300_latest_xml_en-yo.xml.gz ... 100% of 4 MB\n",
            "gzip: JW300_latest_xml_en-yo.xml already exists; do you wish to overwrite (y or n)? n\n",
            "\tnot overwritten\n"
          ],
          "name": "stdout"
        }
      ]
    },
    {
      "cell_type": "code",
      "metadata": {
        "id": "n48GDRnP8y2G",
        "colab_type": "code",
        "outputId": "10dc77a6-1b2c-4db7-dea0-90648614af5b",
        "colab": {
          "base_uri": "https://localhost:8080/",
          "height": 611
        }
      },
      "source": [
        "#TODO: Skip for retrain\n",
        "# Download the global test set.\n",
        "! wget https://raw.githubusercontent.com/juliakreutzer/masakhane/master/jw300_utils/test/test.en-any.en\n",
        "  \n",
        "# And the specific test set for this language pair.\n",
        "os.environ[\"trg\"] = target_language \n",
        "os.environ[\"src\"] = source_language \n",
        "\n",
        "! wget https://raw.githubusercontent.com/juliakreutzer/masakhane/master/jw300_utils/test/test.en-$trg.en \n",
        "! mv test.en-$trg.en test.en\n",
        "! wget https://raw.githubusercontent.com/juliakreutzer/masakhane/master/jw300_utils/test/test.en-$trg.$trg \n",
        "! mv test.en-$trg.$trg test.$trg"
      ],
      "execution_count": 0,
      "outputs": [
        {
          "output_type": "stream",
          "text": [
            "--2020-04-12 10:38:37--  https://raw.githubusercontent.com/juliakreutzer/masakhane/master/jw300_utils/test/test.en-any.en\n",
            "Resolving raw.githubusercontent.com (raw.githubusercontent.com)... 151.101.0.133, 151.101.64.133, 151.101.128.133, ...\n",
            "Connecting to raw.githubusercontent.com (raw.githubusercontent.com)|151.101.0.133|:443... connected.\n",
            "HTTP request sent, awaiting response... 200 OK\n",
            "Length: 277791 (271K) [text/plain]\n",
            "Saving to: ‘test.en-any.en’\n",
            "\n",
            "\rtest.en-any.en        0%[                    ]       0  --.-KB/s               \rtest.en-any.en      100%[===================>] 271.28K  --.-KB/s    in 0.02s   \n",
            "\n",
            "2020-04-12 10:38:38 (17.4 MB/s) - ‘test.en-any.en’ saved [277791/277791]\n",
            "\n",
            "--2020-04-12 10:38:40--  https://raw.githubusercontent.com/juliakreutzer/masakhane/master/jw300_utils/test/test.en-yo.en\n",
            "Resolving raw.githubusercontent.com (raw.githubusercontent.com)... 151.101.0.133, 151.101.64.133, 151.101.128.133, ...\n",
            "Connecting to raw.githubusercontent.com (raw.githubusercontent.com)|151.101.0.133|:443... connected.\n",
            "HTTP request sent, awaiting response... 200 OK\n",
            "Length: 201994 (197K) [text/plain]\n",
            "Saving to: ‘test.en-yo.en’\n",
            "\n",
            "test.en-yo.en       100%[===================>] 197.26K  --.-KB/s    in 0.02s   \n",
            "\n",
            "2020-04-12 10:38:40 (12.4 MB/s) - ‘test.en-yo.en’ saved [201994/201994]\n",
            "\n",
            "--2020-04-12 10:38:45--  https://raw.githubusercontent.com/juliakreutzer/masakhane/master/jw300_utils/test/test.en-yo.yo\n",
            "Resolving raw.githubusercontent.com (raw.githubusercontent.com)... 151.101.0.133, 151.101.64.133, 151.101.128.133, ...\n",
            "Connecting to raw.githubusercontent.com (raw.githubusercontent.com)|151.101.0.133|:443... connected.\n",
            "HTTP request sent, awaiting response... 200 OK\n",
            "Length: 280073 (274K) [text/plain]\n",
            "Saving to: ‘test.en-yo.yo’\n",
            "\n",
            "test.en-yo.yo       100%[===================>] 273.51K  --.-KB/s    in 0.02s   \n",
            "\n",
            "2020-04-12 10:38:45 (13.8 MB/s) - ‘test.en-yo.yo’ saved [280073/280073]\n",
            "\n"
          ],
          "name": "stdout"
        }
      ]
    },
    {
      "cell_type": "code",
      "metadata": {
        "id": "NqDG-CI28y2L",
        "colab_type": "code",
        "outputId": "58edfffd-d1fe-47e4-aed8-bed2d882b389",
        "colab": {
          "base_uri": "https://localhost:8080/",
          "height": 35
        }
      },
      "source": [
        "#TODO: Skip for retrain\n",
        "# Read the test data to filter from train and dev splits.\n",
        "# Store english portion in set for quick filtering checks.\n",
        "en_test_sents = set()\n",
        "filter_test_sents = \"test.en-any.en\"\n",
        "j = 0\n",
        "with open(filter_test_sents) as f:\n",
        "  for line in f:\n",
        "    en_test_sents.add(line.strip())\n",
        "    j += 1\n",
        "print('Loaded {} global test sentences to filter from the training/dev data.'.format(j))"
      ],
      "execution_count": 0,
      "outputs": [
        {
          "output_type": "stream",
          "text": [
            "Loaded 3571 global test sentences to filter from the training/dev data.\n"
          ],
          "name": "stdout"
        }
      ]
    },
    {
      "cell_type": "code",
      "metadata": {
        "colab_type": "code",
        "id": "3CNdwLBCfSIl",
        "outputId": "7dd3286b-6348-4c6a-bdea-bd43a4c04dfb",
        "colab": {
          "base_uri": "https://localhost:8080/",
          "height": 160
        }
      },
      "source": [
        "#TODO: Skip for retrain\n",
        "import pandas as pd\n",
        "\n",
        "# TMX file to dataframe\n",
        "source_file = 'jw300.' + source_language\n",
        "target_file = 'jw300.' + target_language\n",
        "\n",
        "source = []\n",
        "target = []\n",
        "skip_lines = []  # Collect the line numbers of the source portion to skip the same lines for the target portion.\n",
        "with open(source_file) as f:\n",
        "    for i, line in enumerate(f):\n",
        "        # Skip sentences that are contained in the test set.\n",
        "        if line.strip() not in en_test_sents:\n",
        "            source.append(line.strip())\n",
        "        else:\n",
        "            skip_lines.append(i)             \n",
        "with open(target_file) as f:\n",
        "    for j, line in enumerate(f):\n",
        "        # Only add to corpus if corresponding source was not skipped.\n",
        "        if j not in skip_lines:\n",
        "            target.append(line.strip())\n",
        "    \n",
        "print('Loaded data and skipped {}/{} lines since contained in test set.'.format(len(skip_lines), i))\n",
        "    \n",
        "df = pd.DataFrame(zip(source, target), columns=['source_sentence', 'target_sentence'])\n",
        "# if you get TypeError: data argument can't be an iterator is because of your zip version run this below\n",
        "#df = pd.DataFrame(list(zip(source, target)), columns=['source_sentence', 'target_sentence'])\n",
        "df.head(3)"
      ],
      "execution_count": 0,
      "outputs": [
        {
          "output_type": "stream",
          "text": [
            "Loaded data and skipped 5663/474986 lines since contained in test set.\n"
          ],
          "name": "stdout"
        },
        {
          "output_type": "execute_result",
          "data": {
            "text/html": [
              "<div>\n",
              "<style scoped>\n",
              "    .dataframe tbody tr th:only-of-type {\n",
              "        vertical-align: middle;\n",
              "    }\n",
              "\n",
              "    .dataframe tbody tr th {\n",
              "        vertical-align: top;\n",
              "    }\n",
              "\n",
              "    .dataframe thead th {\n",
              "        text-align: right;\n",
              "    }\n",
              "</style>\n",
              "<table border=\"1\" class=\"dataframe\">\n",
              "  <thead>\n",
              "    <tr style=\"text-align: right;\">\n",
              "      <th></th>\n",
              "      <th>source_sentence</th>\n",
              "      <th>target_sentence</th>\n",
              "    </tr>\n",
              "  </thead>\n",
              "  <tbody>\n",
              "    <tr>\n",
              "      <th>0</th>\n",
              "      <td>Using Ladders — Do You Make These Safety Checks ?</td>\n",
              "      <td>Lílo Àkàbà — Ǹjẹ́ O Máa Ń Ṣe Àyẹ̀wò Wọ̀nyí Tó...</td>\n",
              "    </tr>\n",
              "    <tr>\n",
              "      <th>1</th>\n",
              "      <td>By Awake !</td>\n",
              "      <td>Látọwọ́ akọ̀ròyìn Jí !</td>\n",
              "    </tr>\n",
              "    <tr>\n",
              "      <th>2</th>\n",
              "      <td>correspondent in Ireland</td>\n",
              "      <td>ní Ireland</td>\n",
              "    </tr>\n",
              "  </tbody>\n",
              "</table>\n",
              "</div>"
            ],
            "text/plain": [
              "                                     source_sentence                                    target_sentence\n",
              "0  Using Ladders — Do You Make These Safety Checks ?  Lílo Àkàbà — Ǹjẹ́ O Máa Ń Ṣe Àyẹ̀wò Wọ̀nyí Tó...\n",
              "1                                         By Awake !                             Látọwọ́ akọ̀ròyìn Jí !\n",
              "2                           correspondent in Ireland                                         ní Ireland"
            ]
          },
          "metadata": {
            "tags": []
          },
          "execution_count": 25
        }
      ]
    },
    {
      "cell_type": "code",
      "metadata": {
        "id": "PvLN2qO1_NuA",
        "colab_type": "code",
        "outputId": "5f6e31c7-2d79-4ca5-d404-368b86bf261d",
        "colab": {
          "base_uri": "https://localhost:8080/",
          "height": 35
        }
      },
      "source": [
        "print(df.shape)"
      ],
      "execution_count": 0,
      "outputs": [
        {
          "output_type": "stream",
          "text": [
            "(469324, 2)\n"
          ],
          "name": "stdout"
        }
      ]
    },
    {
      "cell_type": "markdown",
      "metadata": {
        "colab_type": "text",
        "id": "YkuK3B4p2AkN"
      },
      "source": [
        "## Pre-processing and export\n",
        "\n",
        "It is generally a good idea to remove duplicate translations and conflicting translations from the corpus. In practice, these public corpora include some number of these that need to be cleaned.\n",
        "\n",
        "In addition we will split our data into dev/test/train and export to the filesystem."
      ]
    },
    {
      "cell_type": "code",
      "metadata": {
        "colab_type": "code",
        "id": "M_2ouEOH1_1q",
        "outputId": "29f8a1d0-a910-44a6-955a-40c6a3d4cb28",
        "colab": {
          "base_uri": "https://localhost:8080/",
          "height": 197
        }
      },
      "source": [
        "#TODO: Skip for retrain\n",
        "# drop duplicate translations\n",
        "df_pp = df.drop_duplicates()\n",
        "\n",
        "# drop conflicting translations\n",
        "# (this is optional and something that you might want to comment out \n",
        "# depending on the size of your corpus)\n",
        "df_pp.drop_duplicates(subset='source_sentence', inplace=True)\n",
        "df_pp.drop_duplicates(subset='target_sentence', inplace=True)\n",
        "\n",
        "# Shuffle the data to remove bias in dev set selection.\n",
        "df_pp = df_pp.sample(frac=1, random_state=seed).reset_index(drop=True)"
      ],
      "execution_count": 0,
      "outputs": [
        {
          "output_type": "stream",
          "text": [
            "/usr/local/lib/python3.6/dist-packages/ipykernel_launcher.py:6: SettingWithCopyWarning: \n",
            "A value is trying to be set on a copy of a slice from a DataFrame\n",
            "\n",
            "See the caveats in the documentation: https://pandas.pydata.org/pandas-docs/stable/user_guide/indexing.html#returning-a-view-versus-a-copy\n",
            "  \n",
            "/usr/local/lib/python3.6/dist-packages/ipykernel_launcher.py:7: SettingWithCopyWarning: \n",
            "A value is trying to be set on a copy of a slice from a DataFrame\n",
            "\n",
            "See the caveats in the documentation: https://pandas.pydata.org/pandas-docs/stable/user_guide/indexing.html#returning-a-view-versus-a-copy\n",
            "  import sys\n"
          ],
          "name": "stderr"
        }
      ]
    },
    {
      "cell_type": "code",
      "metadata": {
        "id": "Z_1BwAApEtMk",
        "colab_type": "code",
        "outputId": "9cb9e1c7-df14-4985-c08b-650dab4239c3",
        "colab": {
          "base_uri": "https://localhost:8080/",
          "height": 1000
        }
      },
      "source": [
        "#TODO: Skip for retrain\n",
        "# Install fuzzy wuzzy to remove \"almost duplicate\" sentences in the\n",
        "# test and training sets.\n",
        "! pip install fuzzywuzzy\n",
        "! pip install python-Levenshtein\n",
        "import time\n",
        "from fuzzywuzzy import process\n",
        "import numpy as np\n",
        "\n",
        "# reset the index of the training set after previous filtering\n",
        "df_pp.reset_index(drop=False, inplace=True)\n",
        "\n",
        "# Remove samples from the training data set if they \"almost overlap\" with the\n",
        "# samples in the test set.\n",
        "\n",
        "# Filtering function. Adjust pad to narrow down the candidate matches to\n",
        "# within a certain length of characters of the given sample.\n",
        "def fuzzfilter(sample, candidates, pad):\n",
        "  candidates = [x for x in candidates if len(x) <= len(sample)+pad and len(x) >= len(sample)-pad] \n",
        "  if len(candidates) > 0:\n",
        "    return process.extractOne(sample, candidates)[1]\n",
        "  else:\n",
        "    return np.nan\n",
        "\n",
        "# NOTE - This might run slow depending on the size of your training set. We are\n",
        "# printing some information to help you track how long it would take. \n",
        "scores = []\n",
        "start_time = time.time()\n",
        "for idx, row in df_pp.iterrows():\n",
        "  scores.append(fuzzfilter(row['source_sentence'], list(en_test_sents), 5))\n",
        "  if idx % 1000 == 0:\n",
        "    hours, rem = divmod(time.time() - start_time, 3600)\n",
        "    minutes, seconds = divmod(rem, 60)\n",
        "    print(\"{:0>2}:{:0>2}:{:05.2f}\".format(int(hours),int(minutes),seconds), \"%0.2f percent complete\" % (100.0*float(idx)/float(len(df_pp))))\n",
        "\n",
        "# Filter out \"almost overlapping samples\"\n",
        "df_pp['scores'] = scores\n",
        "df_pp = df_pp[df_pp['scores'] < 95]"
      ],
      "execution_count": 0,
      "outputs": [
        {
          "output_type": "stream",
          "text": [
            "Collecting fuzzywuzzy\n",
            "  Downloading https://files.pythonhosted.org/packages/43/ff/74f23998ad2f93b945c0309f825be92e04e0348e062026998b5eefef4c33/fuzzywuzzy-0.18.0-py2.py3-none-any.whl\n",
            "Installing collected packages: fuzzywuzzy\n",
            "Successfully installed fuzzywuzzy-0.18.0\n",
            "Collecting python-Levenshtein\n",
            "\u001b[?25l  Downloading https://files.pythonhosted.org/packages/42/a9/d1785c85ebf9b7dfacd08938dd028209c34a0ea3b1bcdb895208bd40a67d/python-Levenshtein-0.12.0.tar.gz (48kB)\n",
            "\u001b[K     |████████████████████████████████| 51kB 3.7MB/s \n",
            "\u001b[?25hRequirement already satisfied: setuptools in /usr/local/lib/python3.6/dist-packages (from python-Levenshtein) (46.1.3)\n",
            "Building wheels for collected packages: python-Levenshtein\n",
            "  Building wheel for python-Levenshtein (setup.py) ... \u001b[?25l\u001b[?25hdone\n",
            "  Created wheel for python-Levenshtein: filename=python_Levenshtein-0.12.0-cp36-cp36m-linux_x86_64.whl size=144791 sha256=a1c171e3c3fe2182059c6a83ce2ae60e74751a04db7685b0ea524689d1f62695\n",
            "  Stored in directory: /root/.cache/pip/wheels/de/c2/93/660fd5f7559049268ad2dc6d81c4e39e9e36518766eaf7e342\n",
            "Successfully built python-Levenshtein\n",
            "Installing collected packages: python-Levenshtein\n",
            "Successfully installed python-Levenshtein-0.12.0\n",
            "00:00:00.14 0.00 percent complete\n",
            "00:00:19.48 0.24 percent complete\n",
            "00:00:38.24 0.48 percent complete\n",
            "00:00:57.35 0.72 percent complete\n",
            "00:01:16.41 0.96 percent complete\n",
            "00:01:36.32 1.20 percent complete\n",
            "00:01:54.42 1.43 percent complete\n",
            "00:02:13.76 1.67 percent complete\n",
            "00:02:32.86 1.91 percent complete\n",
            "00:02:51.77 2.15 percent complete\n",
            "00:03:10.64 2.39 percent complete\n",
            "00:03:29.13 2.63 percent complete\n",
            "00:03:48.32 2.87 percent complete\n",
            "00:04:08.03 3.11 percent complete\n",
            "00:04:27.79 3.35 percent complete\n",
            "00:04:47.30 3.59 percent complete\n",
            "00:05:06.58 3.82 percent complete\n",
            "00:05:26.26 4.06 percent complete\n",
            "00:05:45.64 4.30 percent complete\n",
            "00:06:04.54 4.54 percent complete\n",
            "00:06:23.68 4.78 percent complete\n",
            "00:06:43.17 5.02 percent complete\n",
            "00:07:02.45 5.26 percent complete\n",
            "00:07:22.16 5.50 percent complete\n",
            "00:07:41.64 5.74 percent complete\n"
          ],
          "name": "stdout"
        },
        {
          "output_type": "stream",
          "text": [
            "WARNING:root:Applied processor reduces input query to empty string, all comparisons will have score 0. [Query: '↓']\n"
          ],
          "name": "stderr"
        },
        {
          "output_type": "stream",
          "text": [
            "00:08:01.48 5.98 percent complete\n",
            "00:08:21.53 6.22 percent complete\n",
            "00:08:40.78 6.45 percent complete\n",
            "00:09:00.17 6.69 percent complete\n",
            "00:09:19.45 6.93 percent complete\n",
            "00:09:39.29 7.17 percent complete\n",
            "00:09:59.40 7.41 percent complete\n",
            "00:10:18.60 7.65 percent complete\n",
            "00:10:38.11 7.89 percent complete\n",
            "00:10:57.05 8.13 percent complete\n",
            "00:11:16.07 8.37 percent complete\n",
            "00:11:34.85 8.61 percent complete\n",
            "00:11:54.55 8.84 percent complete\n",
            "00:12:13.53 9.08 percent complete\n",
            "00:12:33.17 9.32 percent complete\n",
            "00:12:52.62 9.56 percent complete\n"
          ],
          "name": "stdout"
        },
        {
          "output_type": "stream",
          "text": [
            "WARNING:root:Applied processor reduces input query to empty string, all comparisons will have score 0. [Query: '” *']\n"
          ],
          "name": "stderr"
        },
        {
          "output_type": "stream",
          "text": [
            "00:13:11.97 9.80 percent complete\n",
            "00:13:30.86 10.04 percent complete\n",
            "00:13:50.00 10.28 percent complete\n",
            "00:14:08.82 10.52 percent complete\n",
            "00:14:27.63 10.76 percent complete\n",
            "00:14:46.80 11.00 percent complete\n",
            "00:15:06.59 11.24 percent complete\n",
            "00:15:25.99 11.47 percent complete\n",
            "00:15:45.38 11.71 percent complete\n",
            "00:16:04.40 11.95 percent complete\n",
            "00:16:24.45 12.19 percent complete\n",
            "00:16:44.30 12.43 percent complete\n",
            "00:17:03.79 12.67 percent complete\n",
            "00:17:23.06 12.91 percent complete\n",
            "00:17:42.35 13.15 percent complete\n",
            "00:18:01.42 13.39 percent complete\n",
            "00:18:20.67 13.63 percent complete\n",
            "00:18:39.97 13.86 percent complete\n"
          ],
          "name": "stdout"
        },
        {
          "output_type": "stream",
          "text": [
            "WARNING:root:Applied processor reduces input query to empty string, all comparisons will have score 0. [Query: '. .']\n"
          ],
          "name": "stderr"
        },
        {
          "output_type": "stream",
          "text": [
            "00:18:59.55 14.10 percent complete\n",
            "00:19:18.33 14.34 percent complete\n"
          ],
          "name": "stdout"
        },
        {
          "output_type": "stream",
          "text": [
            "WARNING:root:Applied processor reduces input query to empty string, all comparisons will have score 0. [Query: '․ ․']\n"
          ],
          "name": "stderr"
        },
        {
          "output_type": "stream",
          "text": [
            "00:19:37.46 14.58 percent complete\n",
            "00:19:56.46 14.82 percent complete\n",
            "00:20:15.45 15.06 percent complete\n",
            "00:20:34.26 15.30 percent complete\n",
            "00:20:53.51 15.54 percent complete\n",
            "00:21:12.89 15.78 percent complete\n",
            "00:21:33.00 16.02 percent complete\n",
            "00:21:51.93 16.26 percent complete\n",
            "00:22:11.19 16.49 percent complete\n",
            "00:22:30.35 16.73 percent complete\n",
            "00:22:49.70 16.97 percent complete\n",
            "00:23:08.82 17.21 percent complete\n",
            "00:23:27.89 17.45 percent complete\n",
            "00:23:46.97 17.69 percent complete\n",
            "00:24:06.84 17.93 percent complete\n",
            "00:24:27.01 18.17 percent complete\n",
            "00:24:46.83 18.41 percent complete\n",
            "00:25:06.58 18.65 percent complete\n",
            "00:25:25.83 18.88 percent complete\n",
            "00:25:44.76 19.12 percent complete\n",
            "00:26:04.07 19.36 percent complete\n",
            "00:26:23.82 19.60 percent complete\n",
            "00:26:43.21 19.84 percent complete\n",
            "00:27:02.60 20.08 percent complete\n",
            "00:27:21.80 20.32 percent complete\n",
            "00:27:40.93 20.56 percent complete\n",
            "00:28:00.87 20.80 percent complete\n"
          ],
          "name": "stdout"
        },
        {
          "output_type": "stream",
          "text": [
            "WARNING:root:Applied processor reduces input query to empty string, all comparisons will have score 0. [Query: '․ ․ ․']\n"
          ],
          "name": "stderr"
        },
        {
          "output_type": "stream",
          "text": [
            "00:28:21.00 21.04 percent complete\n",
            "00:28:40.58 21.28 percent complete\n",
            "00:29:00.14 21.51 percent complete\n",
            "00:29:19.55 21.75 percent complete\n",
            "00:29:38.64 21.99 percent complete\n",
            "00:29:58.39 22.23 percent complete\n",
            "00:30:18.61 22.47 percent complete\n",
            "00:30:37.60 22.71 percent complete\n",
            "00:30:57.43 22.95 percent complete\n",
            "00:31:17.22 23.19 percent complete\n",
            "00:31:36.00 23.43 percent complete\n",
            "00:31:55.60 23.67 percent complete\n",
            "00:32:14.69 23.90 percent complete\n",
            "00:32:34.38 24.14 percent complete\n",
            "00:32:54.37 24.38 percent complete\n",
            "00:33:13.84 24.62 percent complete\n",
            "00:33:33.13 24.86 percent complete\n",
            "00:33:52.54 25.10 percent complete\n",
            "00:34:11.92 25.34 percent complete\n",
            "00:34:31.24 25.58 percent complete\n",
            "00:34:50.33 25.82 percent complete\n",
            "00:35:09.71 26.06 percent complete\n"
          ],
          "name": "stdout"
        },
        {
          "output_type": "stream",
          "text": [
            "WARNING:root:Applied processor reduces input query to empty string, all comparisons will have score 0. [Query: '→ →']\n"
          ],
          "name": "stderr"
        },
        {
          "output_type": "stream",
          "text": [
            "00:35:28.90 26.29 percent complete\n",
            "00:35:49.15 26.53 percent complete\n",
            "00:36:09.29 26.77 percent complete\n",
            "00:36:29.17 27.01 percent complete\n",
            "00:36:48.44 27.25 percent complete\n",
            "00:37:07.91 27.49 percent complete\n",
            "00:37:27.28 27.73 percent complete\n",
            "00:37:46.68 27.97 percent complete\n",
            "00:38:06.01 28.21 percent complete\n",
            "00:38:25.17 28.45 percent complete\n",
            "00:38:43.85 28.69 percent complete\n",
            "00:39:02.70 28.92 percent complete\n",
            "00:39:21.71 29.16 percent complete\n",
            "00:39:40.86 29.40 percent complete\n",
            "00:39:59.39 29.64 percent complete\n",
            "00:40:18.25 29.88 percent complete\n",
            "00:40:37.33 30.12 percent complete\n",
            "00:40:55.96 30.36 percent complete\n",
            "00:41:15.03 30.60 percent complete\n",
            "00:41:34.04 30.84 percent complete\n",
            "00:41:53.28 31.08 percent complete\n",
            "00:42:11.78 31.31 percent complete\n",
            "00:42:30.65 31.55 percent complete\n",
            "00:42:49.16 31.79 percent complete\n",
            "00:43:08.59 32.03 percent complete\n",
            "00:43:28.07 32.27 percent complete\n",
            "00:43:47.07 32.51 percent complete\n",
            "00:44:05.67 32.75 percent complete\n",
            "00:44:24.69 32.99 percent complete\n",
            "00:44:43.52 33.23 percent complete\n",
            "00:45:02.12 33.47 percent complete\n",
            "00:45:20.69 33.71 percent complete\n",
            "00:45:40.03 33.94 percent complete\n",
            "00:45:59.24 34.18 percent complete\n",
            "00:46:18.22 34.42 percent complete\n",
            "00:46:37.17 34.66 percent complete\n",
            "00:46:56.24 34.90 percent complete\n",
            "00:47:15.74 35.14 percent complete\n",
            "00:47:34.56 35.38 percent complete\n",
            "00:47:53.57 35.62 percent complete\n",
            "00:48:13.48 35.86 percent complete\n",
            "00:48:32.86 36.10 percent complete\n",
            "00:48:52.11 36.33 percent complete\n",
            "00:49:10.67 36.57 percent complete\n",
            "00:49:29.52 36.81 percent complete\n",
            "00:49:48.74 37.05 percent complete\n",
            "00:50:07.61 37.29 percent complete\n",
            "00:50:27.28 37.53 percent complete\n",
            "00:50:47.25 37.77 percent complete\n",
            "00:51:05.67 38.01 percent complete\n",
            "00:51:25.20 38.25 percent complete\n",
            "00:51:43.96 38.49 percent complete\n",
            "00:52:03.39 38.73 percent complete\n",
            "00:52:22.39 38.96 percent complete\n",
            "00:52:41.97 39.20 percent complete\n",
            "00:53:00.97 39.44 percent complete\n",
            "00:53:21.17 39.68 percent complete\n",
            "00:53:40.23 39.92 percent complete\n",
            "00:53:59.55 40.16 percent complete\n",
            "00:54:19.29 40.40 percent complete\n",
            "00:54:37.83 40.64 percent complete\n",
            "00:54:56.81 40.88 percent complete\n",
            "00:55:16.31 41.12 percent complete\n",
            "00:55:36.08 41.35 percent complete\n",
            "00:55:55.85 41.59 percent complete\n",
            "00:56:14.97 41.83 percent complete\n",
            "00:56:34.66 42.07 percent complete\n",
            "00:56:53.64 42.31 percent complete\n",
            "00:57:13.45 42.55 percent complete\n",
            "00:57:33.47 42.79 percent complete\n",
            "00:57:53.12 43.03 percent complete\n",
            "00:58:12.20 43.27 percent complete\n"
          ],
          "name": "stdout"
        },
        {
          "output_type": "stream",
          "text": [
            "WARNING:root:Applied processor reduces input query to empty string, all comparisons will have score 0. [Query: '↓ ↓']\n"
          ],
          "name": "stderr"
        },
        {
          "output_type": "stream",
          "text": [
            "00:58:32.08 43.51 percent complete\n",
            "00:58:51.55 43.75 percent complete\n",
            "00:59:10.78 43.98 percent complete\n",
            "00:59:29.87 44.22 percent complete\n",
            "00:59:49.41 44.46 percent complete\n",
            "01:00:08.94 44.70 percent complete\n",
            "01:00:28.17 44.94 percent complete\n",
            "01:00:47.95 45.18 percent complete\n",
            "01:01:07.58 45.42 percent complete\n",
            "01:01:26.95 45.66 percent complete\n",
            "01:01:46.50 45.90 percent complete\n",
            "01:02:05.59 46.14 percent complete\n",
            "01:02:25.13 46.37 percent complete\n",
            "01:02:44.58 46.61 percent complete\n",
            "01:03:04.08 46.85 percent complete\n",
            "01:03:23.16 47.09 percent complete\n",
            "01:03:43.64 47.33 percent complete\n"
          ],
          "name": "stdout"
        },
        {
          "output_type": "stream",
          "text": [
            "WARNING:root:Applied processor reduces input query to empty string, all comparisons will have score 0. [Query: '*']\n"
          ],
          "name": "stderr"
        },
        {
          "output_type": "stream",
          "text": [
            "01:04:03.31 47.57 percent complete\n",
            "01:04:23.01 47.81 percent complete\n",
            "01:04:42.57 48.05 percent complete\n",
            "01:05:02.17 48.29 percent complete\n",
            "01:05:21.78 48.53 percent complete\n",
            "01:05:41.50 48.77 percent complete\n",
            "01:06:01.03 49.00 percent complete\n",
            "01:06:20.08 49.24 percent complete\n",
            "01:06:39.39 49.48 percent complete\n",
            "01:06:59.05 49.72 percent complete\n",
            "01:07:18.55 49.96 percent complete\n",
            "01:07:37.54 50.20 percent complete\n",
            "01:07:56.74 50.44 percent complete\n",
            "01:08:15.77 50.68 percent complete\n",
            "01:08:35.36 50.92 percent complete\n",
            "01:08:55.00 51.16 percent complete\n",
            "01:09:14.66 51.39 percent complete\n",
            "01:09:34.11 51.63 percent complete\n",
            "01:09:52.83 51.87 percent complete\n",
            "01:10:12.29 52.11 percent complete\n",
            "01:10:32.19 52.35 percent complete\n",
            "01:10:52.16 52.59 percent complete\n",
            "01:11:11.94 52.83 percent complete\n"
          ],
          "name": "stdout"
        },
        {
          "output_type": "stream",
          "text": [
            "WARNING:root:Applied processor reduces input query to empty string, all comparisons will have score 0. [Query: '⇩']\n"
          ],
          "name": "stderr"
        },
        {
          "output_type": "stream",
          "text": [
            "01:11:31.35 53.07 percent complete\n",
            "01:11:50.96 53.31 percent complete\n",
            "01:12:10.04 53.55 percent complete\n",
            "01:12:29.43 53.79 percent complete\n",
            "01:12:49.31 54.02 percent complete\n",
            "01:13:08.41 54.26 percent complete\n",
            "01:13:27.83 54.50 percent complete\n",
            "01:13:47.41 54.74 percent complete\n",
            "01:14:06.99 54.98 percent complete\n",
            "01:14:26.57 55.22 percent complete\n",
            "01:14:45.85 55.46 percent complete\n",
            "01:15:05.62 55.70 percent complete\n",
            "01:15:25.60 55.94 percent complete\n",
            "01:15:45.42 56.18 percent complete\n",
            "01:16:05.41 56.41 percent complete\n"
          ],
          "name": "stdout"
        },
        {
          "output_type": "stream",
          "text": [
            "WARNING:root:Applied processor reduces input query to empty string, all comparisons will have score 0. [Query: '”']\n"
          ],
          "name": "stderr"
        },
        {
          "output_type": "stream",
          "text": [
            "01:16:25.79 56.65 percent complete\n",
            "01:16:45.75 56.89 percent complete\n",
            "01:17:05.58 57.13 percent complete\n",
            "01:17:25.10 57.37 percent complete\n",
            "01:17:45.24 57.61 percent complete\n",
            "01:18:05.41 57.85 percent complete\n",
            "01:18:24.90 58.09 percent complete\n",
            "01:18:44.64 58.33 percent complete\n",
            "01:19:04.44 58.57 percent complete\n",
            "01:19:25.12 58.81 percent complete\n",
            "01:19:45.56 59.04 percent complete\n",
            "01:20:05.63 59.28 percent complete\n",
            "01:20:25.81 59.52 percent complete\n",
            "01:20:45.91 59.76 percent complete\n",
            "01:21:05.27 60.00 percent complete\n",
            "01:21:25.29 60.24 percent complete\n",
            "01:21:44.55 60.48 percent complete\n",
            "01:22:04.45 60.72 percent complete\n",
            "01:22:24.81 60.96 percent complete\n",
            "01:22:44.36 61.20 percent complete\n",
            "01:23:04.16 61.43 percent complete\n",
            "01:23:23.03 61.67 percent complete\n",
            "01:23:42.99 61.91 percent complete\n",
            "01:24:02.77 62.15 percent complete\n",
            "01:24:23.07 62.39 percent complete\n",
            "01:24:42.63 62.63 percent complete\n",
            "01:25:02.01 62.87 percent complete\n",
            "01:25:21.57 63.11 percent complete\n",
            "01:25:40.93 63.35 percent complete\n",
            "01:26:00.62 63.59 percent complete\n",
            "01:26:20.30 63.83 percent complete\n",
            "01:26:39.92 64.06 percent complete\n",
            "01:26:59.41 64.30 percent complete\n",
            "01:27:18.80 64.54 percent complete\n",
            "01:27:38.64 64.78 percent complete\n",
            "01:27:58.23 65.02 percent complete\n"
          ],
          "name": "stdout"
        },
        {
          "output_type": "stream",
          "text": [
            "WARNING:root:Applied processor reduces input query to empty string, all comparisons will have score 0. [Query: '↓ ↓ ↓ ↓']\n"
          ],
          "name": "stderr"
        },
        {
          "output_type": "stream",
          "text": [
            "01:28:17.56 65.26 percent complete\n",
            "01:28:36.69 65.50 percent complete\n",
            "01:28:55.87 65.74 percent complete\n",
            "01:29:15.58 65.98 percent complete\n",
            "01:29:34.82 66.22 percent complete\n",
            "01:29:54.19 66.45 percent complete\n",
            "01:30:13.99 66.69 percent complete\n",
            "01:30:33.75 66.93 percent complete\n",
            "01:30:53.24 67.17 percent complete\n",
            "01:31:12.51 67.41 percent complete\n",
            "01:31:31.99 67.65 percent complete\n",
            "01:31:51.55 67.89 percent complete\n",
            "01:32:10.31 68.13 percent complete\n",
            "01:32:29.96 68.37 percent complete\n",
            "01:32:50.08 68.61 percent complete\n",
            "01:33:10.33 68.85 percent complete\n",
            "01:33:30.22 69.08 percent complete\n",
            "01:33:49.70 69.32 percent complete\n",
            "01:34:09.18 69.56 percent complete\n",
            "01:34:28.07 69.80 percent complete\n",
            "01:34:46.97 70.04 percent complete\n",
            "01:35:06.03 70.28 percent complete\n",
            "01:35:26.04 70.52 percent complete\n",
            "01:35:45.87 70.76 percent complete\n",
            "01:36:05.54 71.00 percent complete\n",
            "01:36:25.32 71.24 percent complete\n",
            "01:36:45.05 71.47 percent complete\n",
            "01:37:04.41 71.71 percent complete\n",
            "01:37:23.57 71.95 percent complete\n",
            "01:37:43.14 72.19 percent complete\n"
          ],
          "name": "stdout"
        },
        {
          "output_type": "stream",
          "text": [
            "WARNING:root:Applied processor reduces input query to empty string, all comparisons will have score 0. [Query: '\\']\n"
          ],
          "name": "stderr"
        },
        {
          "output_type": "stream",
          "text": [
            "01:38:03.03 72.43 percent complete\n",
            "01:38:22.67 72.67 percent complete\n",
            "01:38:42.48 72.91 percent complete\n",
            "01:39:02.12 73.15 percent complete\n",
            "01:39:21.48 73.39 percent complete\n",
            "01:39:41.34 73.63 percent complete\n"
          ],
          "name": "stdout"
        },
        {
          "output_type": "stream",
          "text": [
            "WARNING:root:Applied processor reduces input query to empty string, all comparisons will have score 0. [Query: '●']\n"
          ],
          "name": "stderr"
        },
        {
          "output_type": "stream",
          "text": [
            "01:40:01.28 73.86 percent complete\n",
            "01:40:20.93 74.10 percent complete\n",
            "01:40:40.14 74.34 percent complete\n",
            "01:41:00.03 74.58 percent complete\n",
            "01:41:20.40 74.82 percent complete\n",
            "01:41:39.97 75.06 percent complete\n",
            "01:41:59.30 75.30 percent complete\n",
            "01:42:18.86 75.54 percent complete\n",
            "01:42:38.21 75.78 percent complete\n",
            "01:42:56.99 76.02 percent complete\n",
            "01:43:15.90 76.26 percent complete\n"
          ],
          "name": "stdout"
        },
        {
          "output_type": "stream",
          "text": [
            "WARNING:root:Applied processor reduces input query to empty string, all comparisons will have score 0. [Query: '․ ․ ․ ․ ․']\n"
          ],
          "name": "stderr"
        },
        {
          "output_type": "stream",
          "text": [
            "01:43:35.48 76.49 percent complete\n",
            "01:43:55.55 76.73 percent complete\n",
            "01:44:14.82 76.97 percent complete\n",
            "01:44:34.10 77.21 percent complete\n",
            "01:44:53.94 77.45 percent complete\n",
            "01:45:13.17 77.69 percent complete\n",
            "01:45:32.40 77.93 percent complete\n",
            "01:45:52.10 78.17 percent complete\n",
            "01:46:12.18 78.41 percent complete\n",
            "01:46:32.08 78.65 percent complete\n",
            "01:46:51.92 78.88 percent complete\n",
            "01:47:10.54 79.12 percent complete\n",
            "01:47:30.26 79.36 percent complete\n",
            "01:47:50.22 79.60 percent complete\n",
            "01:48:09.37 79.84 percent complete\n",
            "01:48:28.54 80.08 percent complete\n",
            "01:48:47.98 80.32 percent complete\n",
            "01:49:07.93 80.56 percent complete\n",
            "01:49:27.37 80.80 percent complete\n",
            "01:49:46.70 81.04 percent complete\n",
            "01:50:05.55 81.28 percent complete\n",
            "01:50:25.02 81.51 percent complete\n",
            "01:50:43.80 81.75 percent complete\n",
            "01:51:03.04 81.99 percent complete\n",
            "01:51:22.42 82.23 percent complete\n",
            "01:51:41.95 82.47 percent complete\n",
            "01:52:01.26 82.71 percent complete\n"
          ],
          "name": "stdout"
        },
        {
          "output_type": "stream",
          "text": [
            "WARNING:root:Applied processor reduces input query to empty string, all comparisons will have score 0. [Query: '□ ․ ․ ․ ․ ․']\n"
          ],
          "name": "stderr"
        },
        {
          "output_type": "stream",
          "text": [
            "01:52:21.23 82.95 percent complete\n",
            "01:52:40.37 83.19 percent complete\n",
            "01:52:59.68 83.43 percent complete\n",
            "01:53:19.09 83.67 percent complete\n",
            "01:53:38.76 83.90 percent complete\n",
            "01:53:58.42 84.14 percent complete\n"
          ],
          "name": "stdout"
        },
        {
          "output_type": "stream",
          "text": [
            "WARNING:root:Applied processor reduces input query to empty string, all comparisons will have score 0. [Query: '— ― ― ― ― ― ― ―']\n"
          ],
          "name": "stderr"
        },
        {
          "output_type": "stream",
          "text": [
            "01:54:17.73 84.38 percent complete\n",
            "01:54:37.15 84.62 percent complete\n",
            "01:54:56.52 84.86 percent complete\n",
            "01:55:15.57 85.10 percent complete\n",
            "01:55:35.53 85.34 percent complete\n",
            "01:55:54.96 85.58 percent complete\n",
            "01:56:14.84 85.82 percent complete\n",
            "01:56:34.90 86.06 percent complete\n",
            "01:56:55.15 86.30 percent complete\n",
            "01:57:14.53 86.53 percent complete\n",
            "01:57:33.78 86.77 percent complete\n",
            "01:57:53.07 87.01 percent complete\n",
            "01:58:12.39 87.25 percent complete\n",
            "01:58:31.64 87.49 percent complete\n",
            "01:58:50.68 87.73 percent complete\n",
            "01:59:09.88 87.97 percent complete\n",
            "01:59:29.71 88.21 percent complete\n",
            "01:59:48.88 88.45 percent complete\n",
            "02:00:08.40 88.69 percent complete\n",
            "02:00:27.13 88.92 percent complete\n"
          ],
          "name": "stdout"
        },
        {
          "output_type": "stream",
          "text": [
            "WARNING:root:Applied processor reduces input query to empty string, all comparisons will have score 0. [Query: '⇧']\n"
          ],
          "name": "stderr"
        },
        {
          "output_type": "stream",
          "text": [
            "02:00:46.08 89.16 percent complete\n",
            "02:01:05.66 89.40 percent complete\n",
            "02:01:25.05 89.64 percent complete\n",
            "02:01:44.92 89.88 percent complete\n",
            "02:02:04.86 90.12 percent complete\n",
            "02:02:24.68 90.36 percent complete\n",
            "02:02:43.69 90.60 percent complete\n",
            "02:03:03.36 90.84 percent complete\n",
            "02:03:22.94 91.08 percent complete\n",
            "02:03:42.05 91.32 percent complete\n",
            "02:04:01.85 91.55 percent complete\n",
            "02:04:20.88 91.79 percent complete\n",
            "02:04:40.39 92.03 percent complete\n",
            "02:04:59.71 92.27 percent complete\n",
            "02:05:19.84 92.51 percent complete\n",
            "02:05:39.14 92.75 percent complete\n",
            "02:05:59.21 92.99 percent complete\n",
            "02:06:18.53 93.23 percent complete\n",
            "02:06:38.62 93.47 percent complete\n",
            "02:06:59.31 93.71 percent complete\n",
            "02:07:19.17 93.94 percent complete\n",
            "02:07:38.72 94.18 percent complete\n",
            "02:07:58.08 94.42 percent complete\n",
            "02:08:17.85 94.66 percent complete\n",
            "02:08:37.15 94.90 percent complete\n",
            "02:08:57.10 95.14 percent complete\n",
            "02:09:16.13 95.38 percent complete\n"
          ],
          "name": "stdout"
        },
        {
          "output_type": "stream",
          "text": [
            "WARNING:root:Applied processor reduces input query to empty string, all comparisons will have score 0. [Query: '․ ․ ․ ․ ․ ․ ․ ․ ․ ․']\n"
          ],
          "name": "stderr"
        },
        {
          "output_type": "stream",
          "text": [
            "02:09:36.09 95.62 percent complete\n",
            "02:09:55.25 95.86 percent complete\n",
            "02:10:14.43 96.10 percent complete\n",
            "02:10:34.19 96.34 percent complete\n",
            "02:10:53.38 96.57 percent complete\n",
            "02:11:12.67 96.81 percent complete\n",
            "02:11:32.19 97.05 percent complete\n",
            "02:11:51.43 97.29 percent complete\n"
          ],
          "name": "stdout"
        },
        {
          "output_type": "stream",
          "text": [
            "WARNING:root:Applied processor reduces input query to empty string, all comparisons will have score 0. [Query: '']\n"
          ],
          "name": "stderr"
        },
        {
          "output_type": "stream",
          "text": [
            "02:12:11.22 97.53 percent complete\n",
            "02:12:31.26 97.77 percent complete\n",
            "02:12:50.80 98.01 percent complete\n",
            "02:13:10.16 98.25 percent complete\n",
            "02:13:29.41 98.49 percent complete\n",
            "02:13:48.66 98.73 percent complete\n",
            "02:14:08.34 98.96 percent complete\n",
            "02:14:27.76 99.20 percent complete\n",
            "02:14:48.28 99.44 percent complete\n",
            "02:15:08.40 99.68 percent complete\n",
            "02:15:28.13 99.92 percent complete\n"
          ],
          "name": "stdout"
        }
      ]
    },
    {
      "cell_type": "code",
      "metadata": {
        "colab_type": "code",
        "id": "hxxBOCA-xXhy",
        "outputId": "d764afe7-2675-4fc3-80f0-bad7dcad720a",
        "colab": {
          "base_uri": "https://localhost:8080/",
          "height": 865
        }
      },
      "source": [
        "#TODO: Skip for retrain\n",
        "# This section does the split between train/dev for the parallel corpora then saves them as separate files\n",
        "# We use 1000 dev test and the given test set.\n",
        "import csv\n",
        "\n",
        "# Do the split between dev/train and create parallel corpora\n",
        "num_dev_patterns = 1000\n",
        "\n",
        "# Optional: lower case the corpora - this will make it easier to generalize, but without proper casing.\n",
        "if lc:  # Julia: making lowercasing optional\n",
        "    df_pp[\"source_sentence\"] = df_pp[\"source_sentence\"].str.lower()\n",
        "    df_pp[\"target_sentence\"] = df_pp[\"target_sentence\"].str.lower()\n",
        "\n",
        "# Julia: test sets are already generated\n",
        "dev = df_pp.tail(num_dev_patterns) # Herman: Error in original\n",
        "stripped = df_pp.drop(df_pp.tail(num_dev_patterns).index)\n",
        "\n",
        "with open(\"train.\"+source_language, \"w\") as src_file, open(\"train.\"+target_language, \"w\") as trg_file:\n",
        "  for index, row in stripped.iterrows():\n",
        "    src_file.write(row[\"source_sentence\"]+\"\\n\")\n",
        "    trg_file.write(row[\"target_sentence\"]+\"\\n\")\n",
        "    \n",
        "with open(\"dev.\"+source_language, \"w\") as src_file, open(\"dev.\"+target_language, \"w\") as trg_file:\n",
        "  for index, row in dev.iterrows():\n",
        "    src_file.write(row[\"source_sentence\"]+\"\\n\")\n",
        "    trg_file.write(row[\"target_sentence\"]+\"\\n\")\n",
        "\n",
        "#stripped[[\"source_sentence\"]].to_csv(\"train.\"+source_language, header=False, index=False)  # Herman: Added `header=False` everywhere\n",
        "#stripped[[\"target_sentence\"]].to_csv(\"train.\"+target_language, header=False, index=False)  # Julia: Problematic handling of quotation marks.\n",
        "\n",
        "#dev[[\"source_sentence\"]].to_csv(\"dev.\"+source_language, header=False, index=False)\n",
        "#dev[[\"target_sentence\"]].to_csv(\"dev.\"+target_language, header=False, index=False)\n",
        "\n",
        "# Doublecheck the format below. There should be no extra quotation marks or weird characters.\n",
        "! head train.*\n",
        "! head dev.*"
      ],
      "execution_count": 0,
      "outputs": [
        {
          "output_type": "stream",
          "text": [
            "==> train.en <==\n",
            "TRAIN YOUR CHILDREN : “ I teach my children to check the expiration date of any packaged food items , such as snacks , before they buy them . ” ​ — Ruth , Nigeria\n",
            "When she replied that she was , he explained that he and his mother were trying to assist his sister with a school report on Canadians .\n",
            "Through the prophet Zephaniah , Jehovah answers : “ That day is a day of fury , a day of distress and of anguish , a day of storm and of desolation , a day of darkness and of gloominess , a day of clouds and of thick gloom . ”\n",
            "We do not require that people simply do as we tell them , but we give them convincing reasons to obey Christ’s command .\n",
            "Still , Jehovah can annihilate any rebel in the lake of fire , denying him any hope of a resurrection .\n",
            "Lucaris was arrested , and on July 27 , 1638 , he was taken on board a small boat as if for banishment .\n",
            "Yes , Jehovah remembered their faithful course .\n",
            "□ To appear tough\n",
            "During the ensuing confrontation , we Witnesses had to make our position clear to the agitated rebels and also explain our stand to the military guards .\n",
            "( See opening image . ) ( c ) Why should this Bible account about Samuel be of special interest to elders today ?\n",
            "\n",
            "==> train.yo <==\n",
            "KỌ́ ÀWỌN ỌMỌ RẸ : “ Mo kọ́ àwọn ọmọ mi pé kí wọ́n tó ra oúnjẹ bí ìpápánu , tó wà nínú agolo , ike , bébà , tàbí ọ̀rá , kí wọ́n máa yẹ ara oúnjẹ náà wò kí wọ́n lè mọ déètì tó máa bà jẹ́ . ” — Ruth , Nàìjíríà\n",
            "Nígbà tó sọ fún ọ̀dọ́kùnrin náà pé Kánádà lòun ti wá , ọ̀dọ́kùnrin náà sọ fún un pé òun àti màmá òun fẹ́ ran àbúrò òun obìnrin kan lọ́wọ́ láti kó ọ̀rọ̀ kan jọ nípa àwọn ará Kánádà , èyí tó fẹ́ mu lọ sílé ìwé .\n",
            "Jèhófà gbẹnu wòlíì Sefanáyà sọ ìdí rẹ̀ fún wa , ó ní : “ Ọjọ́ yẹn jẹ́ ọjọ́ ìbínú kíkan , ọjọ́ wàhálà àti làásìgbò , ọjọ́ ìjì àti ìsọdahoro , ọjọ́ òkùnkùn àti ìṣúdùdù , ọjọ́ àwọsánmà àti ìṣúdùdù tí ó nípọn . ”\n",
            "A ò fẹ́ káwọn èèyàn wulẹ̀ ṣe ohun tá a sọ fún wọn nìkan , àmọ́ à tún ń fún wọn ní ẹ̀rí tó dájú nípa ìdí tó fi yẹ kí wọ́n ṣègbọràn sí àṣẹ Kristi .\n",
            "Síbẹ̀ , Jèhófà lè pa ọlọ̀tẹ̀ èyíkéyìí run nípa sísọ ọ sínú adágún iná , tó túmọ̀ sí pé onítọ̀hún máa kú láìsí ìrètí kankan láti tún jíǹde .\n",
            "Ní wọ́n bá fi ọlọ́pàá mú Lucaris , nígbà tó sì di July 27 , 1638 , wọ́n fi ọkọ̀ ojú omi wà á lọ bí ẹni pé wọ́n fẹ́ gbé e lọ sí ilẹ̀ mìíràn .\n",
            "Bẹ́ẹ̀ ni o , Jèhófà kò gbàgbé ìṣòtítọ́ wọn .\n",
            "□ Kí wọ́n má bàa fojú ọ̀dẹ̀ wò mí\n",
            "Lákòókò tí àríyànjiyàn náà ń lọ lọ́wọ́ , àwa Ẹlẹ́rìí jẹ́ káwọn ọlọ̀tẹ̀ tínú ń bí yìí mọ̀ pé a ò lọ́wọ́ sí nǹkan tí wọ́n ń ṣe , a sì tún ṣàlàyé irú ẹni tá a jẹ́ fáwọn ológun tó ń ṣọ́ ọgbà ẹ̀wọ̀n náà .\n",
            "( Wo àwòrán tó wà níbẹ̀rẹ̀ àpilẹ̀kọ yìí . ) ( d ) Kí nìdí tó fi yẹ kí àwọn alàgbà lóde òní fún àkọsílẹ̀ Bíbélì yìí nípa Sámúẹ́lì láfiyèsí àrà ọ̀tọ̀ ?\n",
            "==> dev.en <==\n",
            "He is the Source of life , the One giving it as an undeserved gift through Christ .\n",
            "Now I had to find a legitimate line of work .\n",
            "Do I value material things more than my relationship with Jehovah and with people ?\n",
            "He has far more experience and stamina than you do , but he patiently walks near you .\n",
            "According to Harkavy’s Students ’ Hebrew and Chaldee Dictionary , ʽadh means “ duration , everlastingness , eternity , for ever . ”\n",
            "Why is rendering proper honor to elders a concern ?\n",
            "Jeremiah would rather be alone than be corrupted by bad companions .\n",
            "In years gone by , we believed that Jehovah became displeased with his people because they did not have a zealous share in the preaching work during World War I .\n",
            "Rather , they need to use a translation of the Bible in their own language .\n",
            "On a more personal level , showing honor to those to whom it is due keeps us from becoming self - centered .\n",
            "\n",
            "==> dev.yo <==\n",
            "Òun ni Orísun ìyè , Ẹni tí ń fi ìyè fúnni gẹ́gẹ́ bí ẹbùn tí a kò lẹ́tọ̀ọ́ sí nípasẹ̀ Kristi .\n",
            "Torí náà , mo ní láti wá iṣẹ́ gidi .\n",
            "Ṣé àwọn nǹkan tara ló jẹ mí lógún jù àbí àjọṣe mi pẹ̀lú Jèhófà àtàwọn èèyàn ?\n",
            "Ẹni tẹ́ ẹ jọ ń lọ yìí mọ ọ̀nà yẹn dáadáa .\n",
            "Gẹ́gẹ́ bí Harkavy’s Students ’ Hebrew and Chaldee Dictionary ṣe sọ , ʽadh túmọ̀ sí “ àkókò gígùn , àìnípẹ̀kun , títí gbére , títí láé . ”\n",
            "Kí nìdí tí kò fi yẹ ká máa gbé àwọn alàgbà gẹ̀gẹ̀ ju bó ṣe yẹ lọ ?\n",
            "Jeremáyà gbà kóun dá wà ju pé káwọn ọ̀rẹ́ burúkú wá kéèràn ran òun .\n",
            "Láwọn ọdún mélòó kan sẹ́yìn , a gbà pé inú Jèhófà ò dùn sáwọn èèyàn rẹ̀ torí pé wọn ò fìtara wàásù lásìkò Ogun Àgbáyé Kìíní .\n",
            "Àfi kí wọ́n ka Bíbélì tí wọ́n tú sí èdè wọn .\n",
            "Tó bá ti mọ́ wa lára láti máa bọlá fáwọn míì , a ò ní máa ro tara wa nìkan .\n"
          ],
          "name": "stdout"
        }
      ]
    },
    {
      "cell_type": "markdown",
      "metadata": {
        "colab_type": "text",
        "id": "epeCydmCyS8X"
      },
      "source": [
        "\n",
        "\n",
        "---\n",
        "\n",
        "\n",
        "## Installation of JoeyNMT\n",
        "\n",
        "JoeyNMT is a simple, minimalist NMT package which is useful for learning and teaching. Check out the documentation for JoeyNMT [here](https://joeynmt.readthedocs.io)  "
      ]
    },
    {
      "cell_type": "code",
      "metadata": {
        "colab_type": "code",
        "id": "iBRMm4kMxZ8L",
        "outputId": "6cd58945-4935-4bfb-b392-c15b49e937ad",
        "colab": {
          "base_uri": "https://localhost:8080/",
          "height": 1000
        }
      },
      "source": [
        "# Install JoeyNMT\n",
        "! git clone https://github.com/joeynmt/joeynmt.git\n",
        "! cd joeynmt; pip3 install ."
      ],
      "execution_count": 0,
      "outputs": [
        {
          "output_type": "stream",
          "text": [
            "Cloning into 'joeynmt'...\n",
            "remote: Enumerating objects: 3, done.\u001b[K\n",
            "remote: Counting objects: 100% (3/3), done.\u001b[K\n",
            "remote: Compressing objects: 100% (3/3), done.\u001b[K\n",
            "remote: Total 2380 (delta 0), reused 0 (delta 0), pack-reused 2377\u001b[K\n",
            "Receiving objects: 100% (2380/2380), 2.60 MiB | 4.24 MiB/s, done.\n",
            "Resolving deltas: 100% (1670/1670), done.\n",
            "Processing /content/joeynmt\n",
            "Requirement already satisfied: future in /usr/local/lib/python3.6/dist-packages (from joeynmt==0.0.1) (0.16.0)\n",
            "Requirement already satisfied: pillow in /usr/local/lib/python3.6/dist-packages (from joeynmt==0.0.1) (7.0.0)\n",
            "Requirement already satisfied: numpy<2.0,>=1.14.5 in /usr/local/lib/python3.6/dist-packages (from joeynmt==0.0.1) (1.18.2)\n",
            "Requirement already satisfied: setuptools>=41.0.0 in /usr/local/lib/python3.6/dist-packages (from joeynmt==0.0.1) (46.1.3)\n",
            "Requirement already satisfied: torch>=1.1 in /usr/local/lib/python3.6/dist-packages (from joeynmt==0.0.1) (1.4.0)\n",
            "Requirement already satisfied: tensorflow>=1.14 in /usr/local/lib/python3.6/dist-packages (from joeynmt==0.0.1) (2.2.0rc2)\n",
            "Requirement already satisfied: torchtext in /usr/local/lib/python3.6/dist-packages (from joeynmt==0.0.1) (0.3.1)\n",
            "Collecting sacrebleu>=1.3.6\n",
            "\u001b[?25l  Downloading https://files.pythonhosted.org/packages/f5/58/5c6cc352ea6271125325950715cf8b59b77abe5e93cf29f6e60b491a31d9/sacrebleu-1.4.6-py3-none-any.whl (59kB)\n",
            "\u001b[K     |████████████████████████████████| 61kB 4.3MB/s \n",
            "\u001b[?25hCollecting subword-nmt\n",
            "  Downloading https://files.pythonhosted.org/packages/74/60/6600a7bc09e7ab38bc53a48a20d8cae49b837f93f5842a41fe513a694912/subword_nmt-0.3.7-py2.py3-none-any.whl\n",
            "Requirement already satisfied: matplotlib in /usr/local/lib/python3.6/dist-packages (from joeynmt==0.0.1) (3.2.1)\n",
            "Requirement already satisfied: seaborn in /usr/local/lib/python3.6/dist-packages (from joeynmt==0.0.1) (0.10.0)\n",
            "Collecting pyyaml>=5.1\n",
            "\u001b[?25l  Downloading https://files.pythonhosted.org/packages/64/c2/b80047c7ac2478f9501676c988a5411ed5572f35d1beff9cae07d321512c/PyYAML-5.3.1.tar.gz (269kB)\n",
            "\u001b[K     |████████████████████████████████| 276kB 24.4MB/s \n",
            "\u001b[?25hCollecting pylint\n",
            "\u001b[?25l  Downloading https://files.pythonhosted.org/packages/e9/59/43fc36c5ee316bb9aeb7cf5329cdbdca89e5749c34d5602753827c0aa2dc/pylint-2.4.4-py3-none-any.whl (302kB)\n",
            "\u001b[K     |████████████████████████████████| 307kB 55.1MB/s \n",
            "\u001b[?25hRequirement already satisfied: six==1.12 in /usr/local/lib/python3.6/dist-packages (from joeynmt==0.0.1) (1.12.0)\n",
            "Collecting wrapt==1.11.1\n",
            "  Downloading https://files.pythonhosted.org/packages/67/b2/0f71ca90b0ade7fad27e3d20327c996c6252a2ffe88f50a95bba7434eda9/wrapt-1.11.1.tar.gz\n",
            "Requirement already satisfied: gast==0.3.3 in /usr/local/lib/python3.6/dist-packages (from tensorflow>=1.14->joeynmt==0.0.1) (0.3.3)\n",
            "Requirement already satisfied: tensorflow-estimator<2.3.0,>=2.2.0rc0 in /usr/local/lib/python3.6/dist-packages (from tensorflow>=1.14->joeynmt==0.0.1) (2.2.0rc0)\n",
            "Requirement already satisfied: keras-preprocessing>=1.1.0 in /usr/local/lib/python3.6/dist-packages (from tensorflow>=1.14->joeynmt==0.0.1) (1.1.0)\n",
            "Requirement already satisfied: tensorboard<2.3.0,>=2.2.0 in /usr/local/lib/python3.6/dist-packages (from tensorflow>=1.14->joeynmt==0.0.1) (2.2.0)\n",
            "Requirement already satisfied: scipy==1.4.1; python_version >= \"3\" in /usr/local/lib/python3.6/dist-packages (from tensorflow>=1.14->joeynmt==0.0.1) (1.4.1)\n",
            "Requirement already satisfied: protobuf>=3.8.0 in /usr/local/lib/python3.6/dist-packages (from tensorflow>=1.14->joeynmt==0.0.1) (3.10.0)\n",
            "Requirement already satisfied: opt-einsum>=2.3.2 in /usr/local/lib/python3.6/dist-packages (from tensorflow>=1.14->joeynmt==0.0.1) (3.2.0)\n",
            "Requirement already satisfied: absl-py>=0.7.0 in /usr/local/lib/python3.6/dist-packages (from tensorflow>=1.14->joeynmt==0.0.1) (0.9.0)\n",
            "Requirement already satisfied: wheel>=0.26; python_version >= \"3\" in /usr/local/lib/python3.6/dist-packages (from tensorflow>=1.14->joeynmt==0.0.1) (0.34.2)\n",
            "Requirement already satisfied: termcolor>=1.1.0 in /usr/local/lib/python3.6/dist-packages (from tensorflow>=1.14->joeynmt==0.0.1) (1.1.0)\n",
            "Requirement already satisfied: astunparse==1.6.3 in /usr/local/lib/python3.6/dist-packages (from tensorflow>=1.14->joeynmt==0.0.1) (1.6.3)\n",
            "Requirement already satisfied: h5py<2.11.0,>=2.10.0 in /usr/local/lib/python3.6/dist-packages (from tensorflow>=1.14->joeynmt==0.0.1) (2.10.0)\n",
            "Requirement already satisfied: google-pasta>=0.1.8 in /usr/local/lib/python3.6/dist-packages (from tensorflow>=1.14->joeynmt==0.0.1) (0.2.0)\n",
            "Requirement already satisfied: grpcio>=1.8.6 in /usr/local/lib/python3.6/dist-packages (from tensorflow>=1.14->joeynmt==0.0.1) (1.28.1)\n",
            "Requirement already satisfied: tqdm in /usr/local/lib/python3.6/dist-packages (from torchtext->joeynmt==0.0.1) (4.38.0)\n",
            "Requirement already satisfied: requests in /usr/local/lib/python3.6/dist-packages (from torchtext->joeynmt==0.0.1) (2.21.0)\n",
            "Collecting mecab-python3\n",
            "\u001b[?25l  Downloading https://files.pythonhosted.org/packages/18/49/b55a839a77189042960bf96490640c44816073f917d489acbc5d79fa5cc3/mecab_python3-0.996.5-cp36-cp36m-manylinux2010_x86_64.whl (17.1MB)\n",
            "\u001b[K     |████████████████████████████████| 17.1MB 201kB/s \n",
            "\u001b[?25hCollecting portalocker\n",
            "  Downloading https://files.pythonhosted.org/packages/64/03/9abfb3374d67838daf24f1a388528714bec1debb1d13749f0abd7fb07cfb/portalocker-1.6.0-py2.py3-none-any.whl\n",
            "Requirement already satisfied: typing in /usr/local/lib/python3.6/dist-packages (from sacrebleu>=1.3.6->joeynmt==0.0.1) (3.6.6)\n",
            "Requirement already satisfied: cycler>=0.10 in /usr/local/lib/python3.6/dist-packages (from matplotlib->joeynmt==0.0.1) (0.10.0)\n",
            "Requirement already satisfied: python-dateutil>=2.1 in /usr/local/lib/python3.6/dist-packages (from matplotlib->joeynmt==0.0.1) (2.8.1)\n",
            "Requirement already satisfied: kiwisolver>=1.0.1 in /usr/local/lib/python3.6/dist-packages (from matplotlib->joeynmt==0.0.1) (1.2.0)\n",
            "Requirement already satisfied: pyparsing!=2.0.4,!=2.1.2,!=2.1.6,>=2.0.1 in /usr/local/lib/python3.6/dist-packages (from matplotlib->joeynmt==0.0.1) (2.4.7)\n",
            "Requirement already satisfied: pandas>=0.22.0 in /usr/local/lib/python3.6/dist-packages (from seaborn->joeynmt==0.0.1) (1.0.3)\n",
            "Collecting isort<5,>=4.2.5\n",
            "\u001b[?25l  Downloading https://files.pythonhosted.org/packages/e5/b0/c121fd1fa3419ea9bfd55c7f9c4fedfec5143208d8c7ad3ce3db6c623c21/isort-4.3.21-py2.py3-none-any.whl (42kB)\n",
            "\u001b[K     |████████████████████████████████| 51kB 7.6MB/s \n",
            "\u001b[?25hCollecting mccabe<0.7,>=0.6\n",
            "  Downloading https://files.pythonhosted.org/packages/87/89/479dc97e18549e21354893e4ee4ef36db1d237534982482c3681ee6e7b57/mccabe-0.6.1-py2.py3-none-any.whl\n",
            "Collecting astroid<2.4,>=2.3.0\n",
            "\u001b[?25l  Downloading https://files.pythonhosted.org/packages/ad/ae/86734823047962e7b8c8529186a1ac4a7ca19aaf1aa0c7713c022ef593fd/astroid-2.3.3-py3-none-any.whl (205kB)\n",
            "\u001b[K     |████████████████████████████████| 215kB 54.1MB/s \n",
            "\u001b[?25hRequirement already satisfied: markdown>=2.6.8 in /usr/local/lib/python3.6/dist-packages (from tensorboard<2.3.0,>=2.2.0->tensorflow>=1.14->joeynmt==0.0.1) (3.2.1)\n",
            "Requirement already satisfied: werkzeug>=0.11.15 in /usr/local/lib/python3.6/dist-packages (from tensorboard<2.3.0,>=2.2.0->tensorflow>=1.14->joeynmt==0.0.1) (1.0.1)\n",
            "Requirement already satisfied: tensorboard-plugin-wit>=1.6.0 in /usr/local/lib/python3.6/dist-packages (from tensorboard<2.3.0,>=2.2.0->tensorflow>=1.14->joeynmt==0.0.1) (1.6.0.post3)\n",
            "Requirement already satisfied: google-auth-oauthlib<0.5,>=0.4.1 in /usr/local/lib/python3.6/dist-packages (from tensorboard<2.3.0,>=2.2.0->tensorflow>=1.14->joeynmt==0.0.1) (0.4.1)\n",
            "Requirement already satisfied: google-auth<2,>=1.6.3 in /usr/local/lib/python3.6/dist-packages (from tensorboard<2.3.0,>=2.2.0->tensorflow>=1.14->joeynmt==0.0.1) (1.7.2)\n",
            "Requirement already satisfied: certifi>=2017.4.17 in /usr/local/lib/python3.6/dist-packages (from requests->torchtext->joeynmt==0.0.1) (2020.4.5.1)\n",
            "Requirement already satisfied: urllib3<1.25,>=1.21.1 in /usr/local/lib/python3.6/dist-packages (from requests->torchtext->joeynmt==0.0.1) (1.24.3)\n",
            "Requirement already satisfied: chardet<3.1.0,>=3.0.2 in /usr/local/lib/python3.6/dist-packages (from requests->torchtext->joeynmt==0.0.1) (3.0.4)\n",
            "Requirement already satisfied: idna<2.9,>=2.5 in /usr/local/lib/python3.6/dist-packages (from requests->torchtext->joeynmt==0.0.1) (2.8)\n",
            "Requirement already satisfied: pytz>=2017.2 in /usr/local/lib/python3.6/dist-packages (from pandas>=0.22.0->seaborn->joeynmt==0.0.1) (2018.9)\n",
            "Collecting lazy-object-proxy==1.4.*\n",
            "\u001b[?25l  Downloading https://files.pythonhosted.org/packages/0b/dd/b1e3407e9e6913cf178e506cd0dee818e58694d9a5cd1984e3f6a8b9a10f/lazy_object_proxy-1.4.3-cp36-cp36m-manylinux1_x86_64.whl (55kB)\n",
            "\u001b[K     |████████████████████████████████| 61kB 8.1MB/s \n",
            "\u001b[?25hCollecting typed-ast<1.5,>=1.4.0; implementation_name == \"cpython\" and python_version < \"3.8\"\n",
            "\u001b[?25l  Downloading https://files.pythonhosted.org/packages/90/ed/5459080d95eb87a02fe860d447197be63b6e2b5e9ff73c2b0a85622994f4/typed_ast-1.4.1-cp36-cp36m-manylinux1_x86_64.whl (737kB)\n",
            "\u001b[K     |████████████████████████████████| 747kB 54.4MB/s \n",
            "\u001b[?25hRequirement already satisfied: requests-oauthlib>=0.7.0 in /usr/local/lib/python3.6/dist-packages (from google-auth-oauthlib<0.5,>=0.4.1->tensorboard<2.3.0,>=2.2.0->tensorflow>=1.14->joeynmt==0.0.1) (1.3.0)\n",
            "Requirement already satisfied: pyasn1-modules>=0.2.1 in /usr/local/lib/python3.6/dist-packages (from google-auth<2,>=1.6.3->tensorboard<2.3.0,>=2.2.0->tensorflow>=1.14->joeynmt==0.0.1) (0.2.8)\n",
            "Requirement already satisfied: cachetools<3.2,>=2.0.0 in /usr/local/lib/python3.6/dist-packages (from google-auth<2,>=1.6.3->tensorboard<2.3.0,>=2.2.0->tensorflow>=1.14->joeynmt==0.0.1) (3.1.1)\n",
            "Requirement already satisfied: rsa<4.1,>=3.1.4 in /usr/local/lib/python3.6/dist-packages (from google-auth<2,>=1.6.3->tensorboard<2.3.0,>=2.2.0->tensorflow>=1.14->joeynmt==0.0.1) (4.0)\n",
            "Requirement already satisfied: oauthlib>=3.0.0 in /usr/local/lib/python3.6/dist-packages (from requests-oauthlib>=0.7.0->google-auth-oauthlib<0.5,>=0.4.1->tensorboard<2.3.0,>=2.2.0->tensorflow>=1.14->joeynmt==0.0.1) (3.1.0)\n",
            "Requirement already satisfied: pyasn1<0.5.0,>=0.4.6 in /usr/local/lib/python3.6/dist-packages (from pyasn1-modules>=0.2.1->google-auth<2,>=1.6.3->tensorboard<2.3.0,>=2.2.0->tensorflow>=1.14->joeynmt==0.0.1) (0.4.8)\n",
            "Building wheels for collected packages: joeynmt, pyyaml, wrapt\n",
            "  Building wheel for joeynmt (setup.py) ... \u001b[?25l\u001b[?25hdone\n",
            "  Created wheel for joeynmt: filename=joeynmt-0.0.1-cp36-none-any.whl size=73768 sha256=09642adb3c413596b594cde12da531b842bf2007c75f258d0eed07fa3b152a3d\n",
            "  Stored in directory: /tmp/pip-ephem-wheel-cache-5ss0uo8b/wheels/db/01/db/751cc9f3e7f6faec127c43644ba250a3ea7ad200594aeda70a\n",
            "  Building wheel for pyyaml (setup.py) ... \u001b[?25l\u001b[?25hdone\n",
            "  Created wheel for pyyaml: filename=PyYAML-5.3.1-cp36-cp36m-linux_x86_64.whl size=44621 sha256=326c10062d3be997e2721f4a455fa10fb95cb616ebf9d6957aac343e4fc9e7b7\n",
            "  Stored in directory: /root/.cache/pip/wheels/a7/c1/ea/cf5bd31012e735dc1dfea3131a2d5eae7978b251083d6247bd\n",
            "  Building wheel for wrapt (setup.py) ... \u001b[?25l\u001b[?25hdone\n",
            "  Created wheel for wrapt: filename=wrapt-1.11.1-cp36-cp36m-linux_x86_64.whl size=67435 sha256=ce4852f0ad71dc23caee5cfbf233c9da664c3e4716f81b23348701d716acff35\n",
            "  Stored in directory: /root/.cache/pip/wheels/89/67/41/63cbf0f6ac0a6156588b9587be4db5565f8c6d8ccef98202fc\n",
            "Successfully built joeynmt pyyaml wrapt\n",
            "Installing collected packages: mecab-python3, portalocker, sacrebleu, subword-nmt, pyyaml, isort, mccabe, wrapt, lazy-object-proxy, typed-ast, astroid, pylint, joeynmt\n",
            "  Found existing installation: PyYAML 3.13\n",
            "    Uninstalling PyYAML-3.13:\n",
            "      Successfully uninstalled PyYAML-3.13\n",
            "  Found existing installation: wrapt 1.12.1\n",
            "    Uninstalling wrapt-1.12.1:\n",
            "      Successfully uninstalled wrapt-1.12.1\n",
            "Successfully installed astroid-2.3.3 isort-4.3.21 joeynmt-0.0.1 lazy-object-proxy-1.4.3 mccabe-0.6.1 mecab-python3-0.996.5 portalocker-1.6.0 pylint-2.4.4 pyyaml-5.3.1 sacrebleu-1.4.6 subword-nmt-0.3.7 typed-ast-1.4.1 wrapt-1.11.1\n"
          ],
          "name": "stdout"
        }
      ]
    },
    {
      "cell_type": "markdown",
      "metadata": {
        "colab_type": "text",
        "id": "AaE77Tcppex9"
      },
      "source": [
        "# Preprocessing the Data into Subword BPE Tokens\n",
        "\n",
        "- One of the most powerful improvements for agglutinative languages (a feature of most Bantu languages) is using BPE tokenization [ (Sennrich, 2015) ](https://arxiv.org/abs/1508.07909).\n",
        "\n",
        "- It was also shown that by optimizing the umber of BPE codes we significantly improve results for low-resourced languages [(Sennrich, 2019)](https://www.aclweb.org/anthology/P19-1021) [(Martinus, 2019)](https://arxiv.org/abs/1906.05685)\n",
        "\n",
        "- Below we have the scripts for doing BPE tokenization of our data. We use 4000 tokens as recommended by [(Sennrich, 2019)](https://www.aclweb.org/anthology/P19-1021). You do not need to change anything. Simply running the below will be suitable. "
      ]
    },
    {
      "cell_type": "code",
      "metadata": {
        "colab_type": "code",
        "id": "H-TyjtmXB1mL",
        "outputId": "6a7b3ce9-239a-4a21-cc63-37107d521733",
        "colab": {
          "base_uri": "https://localhost:8080/",
          "height": 431
        }
      },
      "source": [
        "#TODO: Skip for retrain\n",
        "# One of the huge boosts in NMT performance was to use a different method of tokenizing. \n",
        "# Usually, NMT would tokenize by words. However, using a method called BPE gave amazing boosts to performance\n",
        "\n",
        "# Do subword NMT\n",
        "from os import path\n",
        "os.environ[\"src\"] = source_language # Sets them in bash as well, since we often use bash scripts\n",
        "os.environ[\"tgt\"] = target_language\n",
        "\n",
        "# Learn BPEs on the training data.\n",
        "os.environ[\"data_path\"] = path.join(\"joeynmt\", \"data\", source_language + target_language) # Herman! \n",
        "! subword-nmt learn-joint-bpe-and-vocab --input train.$src train.$tgt -s 4000 -o bpe.codes.4000 --write-vocabulary vocab.$src vocab.$tgt\n",
        "\n",
        "# Apply BPE splits to the development and test data.\n",
        "! subword-nmt apply-bpe -c bpe.codes.4000 --vocabulary vocab.$src < train.$src > train.bpe.$src\n",
        "! subword-nmt apply-bpe -c bpe.codes.4000 --vocabulary vocab.$tgt < train.$tgt > train.bpe.$tgt\n",
        "\n",
        "! subword-nmt apply-bpe -c bpe.codes.4000 --vocabulary vocab.$src < dev.$src > dev.bpe.$src\n",
        "! subword-nmt apply-bpe -c bpe.codes.4000 --vocabulary vocab.$tgt < dev.$tgt > dev.bpe.$tgt\n",
        "! subword-nmt apply-bpe -c bpe.codes.4000 --vocabulary vocab.$src < test.$src > test.bpe.$src\n",
        "! subword-nmt apply-bpe -c bpe.codes.4000 --vocabulary vocab.$tgt < test.$tgt > test.bpe.$tgt\n",
        "\n",
        "# Create directory, move everyone we care about to the correct location\n",
        "! mkdir -p $data_path\n",
        "! cp train.* $data_path\n",
        "! cp test.* $data_path\n",
        "! cp dev.* $data_path\n",
        "! cp bpe.codes.4000 $data_path\n",
        "! ls $data_path\n",
        "\n",
        "# Also move everything we care about to a mounted location in google drive (relevant if running in colab) at gdrive_path\n",
        "! cp train.* \"$gdrive_path\"\n",
        "! cp test.* \"$gdrive_path\"\n",
        "! cp dev.* \"$gdrive_path\"\n",
        "! cp bpe.codes.4000 \"$gdrive_path\"\n",
        "! ls \"$gdrive_path\"\n",
        "\n",
        "# Create that vocab using build_vocab\n",
        "! sudo chmod 777 joeynmt/scripts/build_vocab.py\n",
        "! joeynmt/scripts/build_vocab.py joeynmt/data/$src$tgt/train.bpe.$src joeynmt/data/$src$tgt/train.bpe.$tgt --output_path \"$gdrive_path/vocab.txt\"\n",
        "\n",
        "# Some output\n",
        "! echo \"BPE Xhosa Sentences\"\n",
        "! tail -n 5 test.bpe.$tgt\n",
        "! echo \"Combined BPE Vocab\"\n",
        "! tail -n 10 \"$gdrive_path/vocab.txt\"  # Herman"
      ],
      "execution_count": 0,
      "outputs": [
        {
          "output_type": "stream",
          "text": [
            "bpe.codes.4000\tdev.en\t     test.bpe.yo     test.yo\t   train.en\n",
            "dev.bpe.en\tdev.yo\t     test.en\t     train.bpe.en  train.yo\n",
            "dev.bpe.yo\ttest.bpe.en  test.en-any.en  train.bpe.yo\n",
            "bpe.codes.4000\tdev.en\ttest.bpe.en  test.en-any.en  train.bpe.yo  vocab.txt\n",
            "dev.bpe.en\tdev.yo\ttest.bpe.yo  test.yo\t     train.en\n",
            "dev.bpe.yo\tmodels\ttest.en      train.bpe.en    train.yo\n",
            "BPE Xhosa Sentences\n",
            "A@@ p@@ at@@ a ńlá ti ìgbàgbọ́ ( Wo ìpín@@ rọ̀ 12 - 14 )\n",
            "À@@ ṣí@@ borí ìgb@@ àlà ( Wo ìpín@@ rọ̀ 15 - 18 )\n",
            "Mo ti rí i pé àwọn èèyàn máa ń fẹ́ gb@@ ọ́@@ rọ̀ wa tí wọ́n bá rí i pé a lóye Bíbélì dáadáa , a sì fẹ́ ran àwọn lọ́wọ́ . ”\n",
            "I@@ dà ẹ̀mí ( Wo ìpín@@ rọ̀ 19 - 20 )\n",
            "Ó dájú pé lọ́@@ lá ìt@@ ì@@ lẹ́yìn Jèhófà , a máa dúró gb@@ ọ@@ in - in , Èṣù ò sì ní rí wa gbé ṣe .\n",
            "Combined BPE Vocab\n",
            "œ@@\n",
            "Ísír@@\n",
            "Isra@@\n",
            "̃\n",
            "×\n",
            "ô\n",
            "ʺ\n",
            "bítì\n",
            "Pété@@\n",
            "Jóò@@\n"
          ],
          "name": "stdout"
        }
      ]
    },
    {
      "cell_type": "markdown",
      "metadata": {
        "colab_type": "text",
        "id": "Ixmzi60WsUZ8"
      },
      "source": [
        "# Creating the JoeyNMT Config\n",
        "\n",
        "JoeyNMT requires a yaml config. We provide a template below. We've also set a number of defaults with it, that you may play with!\n",
        "\n",
        "- We used Transformer architecture \n",
        "- We set our dropout to reasonably high: 0.3 (recommended in  [(Sennrich, 2019)](https://www.aclweb.org/anthology/P19-1021))\n",
        "\n",
        "Things worth playing with:\n",
        "- The batch size (also recommended to change for low-resourced languages)\n",
        "- The number of epochs (we've set it at 30 just so it runs in about an hour, for testing purposes)\n",
        "- The decoder options (beam_size, alpha)\n",
        "- Evaluation metrics (BLEU versus Crhf4)"
      ]
    },
    {
      "cell_type": "code",
      "metadata": {
        "id": "Wc47fvWqyxbd",
        "colab_type": "code",
        "colab": {}
      },
      "source": [
        "def get_last_checkpoint(directory):\n",
        "  last_checkpoint = ''\n",
        "  try:\n",
        "    for filename in os.listdir(directory):\n",
        "      if 'best' in filename and filename.endswith(\".ckpt\"):\n",
        "        return filename\n",
        "      if not 'best' in filename and filename.endswith(\".ckpt\"):\n",
        "          if not last_checkpoint or int(filename.split('.')[0]) > int(last_checkpoint.split('.')[0]):\n",
        "            last_checkpoint = filename\n",
        "  except FileNotFoundError as e:\n",
        "    print('Error Occur ', e)\n",
        "  return last_checkpoint"
      ],
      "execution_count": 0,
      "outputs": []
    },
    {
      "cell_type": "code",
      "metadata": {
        "id": "x_ffEoFdy1Qo",
        "colab_type": "code",
        "outputId": "03eca8de-dd2b-4a95-d43e-4b6456f62294",
        "colab": {
          "base_uri": "https://localhost:8080/",
          "height": 35
        }
      },
      "source": [
        "# Copy the created models from the temporary storage to main storage on google drive for persistant storage \n",
        "# the content of te folder will be overwrite when you start trainin\n",
        "# !cp -r \"/content/drive/My Drive/masakhane/model-temp/\"* \"$gdrive_path/models/${src}${tgt}_transformer/\"\n",
        "last_checkpoint = get_last_checkpoint(models_path)\n",
        "print('Last checkpoint :',last_checkpoint)"
      ],
      "execution_count": 0,
      "outputs": [
        {
          "output_type": "stream",
          "text": [
            "Last checkpoint : best.ckpt\n"
          ],
          "name": "stdout"
        }
      ]
    },
    {
      "cell_type": "code",
      "metadata": {
        "colab_type": "code",
        "id": "PIs1lY2hxMsl",
        "colab": {}
      },
      "source": [
        "# This creates the config file for our JoeyNMT system. It might seem overwhelming so we've provided a couple of useful parameters you'll need to update\n",
        "# (You can of course play with all the parameters if you'd like!)\n",
        "\n",
        "name = '%s%s' % (source_language, target_language)\n",
        "gdrive_path = os.environ[\"gdrive_path\"]\n",
        "\n",
        "# Create the config\n",
        "config = \"\"\"\n",
        "name: \"{name}_transformer\"\n",
        "\n",
        "data:\n",
        "    src: \"{source_language}\"\n",
        "    trg: \"{target_language}\"\n",
        "    train: \"{gdrive_path}/train.bpe\"\n",
        "    dev:   \"{gdrive_path}/dev.bpe\"\n",
        "    test:  \"{gdrive_path}/test.bpe\"\n",
        "    level: \"bpe\"\n",
        "    lowercase: False\n",
        "    max_sent_length: 100\n",
        "    src_vocab: \"{gdrive_path}/vocab.txt\"\n",
        "    trg_vocab: \"{gdrive_path}/vocab.txt\"\n",
        "\n",
        "testing:\n",
        "    beam_size: 5\n",
        "    alpha: 1.0\n",
        "\n",
        "training:\n",
        "    load_model: \"{gdrive_path}/models/{name}_transformer/{last_checkpoint}\" # uncommented to load a pre-trained model from last checkpoint\n",
        "    random_seed: 42\n",
        "    optimizer: \"adam\"\n",
        "    normalization: \"tokens\"\n",
        "    adam_betas: [0.9, 0.999] \n",
        "    scheduling: \"plateau\"           # TODO: try switching from plateau to Noam scheduling\n",
        "    patience: 5                     # For plateau: decrease learning rate by decrease_factor if validation score has not improved for this many validation rounds.\n",
        "    learning_rate_factor: 0.5       # factor for Noam scheduler (used with Transformer)\n",
        "    learning_rate_warmup: 1000      # warmup steps for Noam scheduler (used with Transformer)\n",
        "    decrease_factor: 0.7\n",
        "    loss: \"crossentropy\"\n",
        "    learning_rate: 0.0003\n",
        "    learning_rate_min: 0.00000001\n",
        "    weight_decay: 0.0\n",
        "    label_smoothing: 0.1\n",
        "    batch_size: 4096\n",
        "    batch_type: \"token\"\n",
        "    eval_batch_size: 3600\n",
        "    eval_batch_type: \"token\"\n",
        "    batch_multiplier: 1\n",
        "    early_stopping_metric: \"ppl\"\n",
        "    epochs: 2                     # TODO: Decrease for when playing around and checking of working. Around 30 is sufficient to check if its working at all\n",
        "    validation_freq: 1000          # TODO: Set to at least once per epoch.\n",
        "    logging_freq: 100\n",
        "    eval_metric: \"bleu\"\n",
        "    model_dir: \"{model_temp_dir}\"\n",
        "    overwrite: True               # TODO: Set to True if you want to overwrite possibly existing models. \n",
        "    shuffle: True\n",
        "    use_cuda: True\n",
        "    max_output_length: 100\n",
        "    print_valid_sents: [0, 1, 2, 3]\n",
        "    keep_last_ckpts: 3\n",
        "\n",
        "model:\n",
        "    initializer: \"xavier\"\n",
        "    bias_initializer: \"zeros\"\n",
        "    init_gain: 1.0\n",
        "    embed_initializer: \"xavier\"\n",
        "    embed_init_gain: 1.0\n",
        "    tied_embeddings: True\n",
        "    tied_softmax: True\n",
        "    encoder:\n",
        "        type: \"transformer\"\n",
        "        num_layers: 6\n",
        "        num_heads: 4             # TODO: Increase to 8 for larger data.\n",
        "        embeddings:\n",
        "            embedding_dim: 256   # TODO: Increase to 512 for larger data.\n",
        "            scale: True\n",
        "            dropout: 0.2\n",
        "        # typically ff_size = 4 x hidden_size\n",
        "        hidden_size: 256         # TODO: Increase to 512 for larger data.\n",
        "        ff_size: 1024            # TODO: Increase to 2048 for larger data.\n",
        "        dropout: 0.3\n",
        "    decoder:\n",
        "        type: \"transformer\"\n",
        "        num_layers: 6\n",
        "        num_heads: 4              # TODO: Increase to 8 for larger data.\n",
        "        embeddings:\n",
        "            embedding_dim: 256    # TODO: Increase to 512 for larger data.\n",
        "            scale: True\n",
        "            dropout: 0.2\n",
        "        # typically ff_size = 4 x hidden_size\n",
        "        hidden_size: 256         # TODO: Increase to 512 for larger data.\n",
        "        ff_size: 1024            # TODO: Increase to 2048 for larger data.\n",
        "        dropout: 0.3\n",
        "\"\"\".format(name=name, gdrive_path=os.environ[\"gdrive_path\"], source_language=source_language, target_language=target_language, model_temp_dir=model_temp_dir, last_checkpoint=last_checkpoint)\n",
        "with open(\"joeynmt/configs/transformer_{name}.yaml\".format(name=name),'w') as f:\n",
        "    f.write(config)"
      ],
      "execution_count": 0,
      "outputs": []
    },
    {
      "cell_type": "markdown",
      "metadata": {
        "colab_type": "text",
        "id": "pIifxE3Qzuvs"
      },
      "source": [
        "# Train the Model\n",
        "\n",
        "This single line of joeynmt runs the training using the config we made above"
      ]
    },
    {
      "cell_type": "code",
      "metadata": {
        "colab_type": "code",
        "id": "6ZBPFwT94WpI",
        "outputId": "842c925f-2f1a-4b4e-a6d1-f8439360c81f",
        "colab": {
          "base_uri": "https://localhost:8080/",
          "height": 1000
        }
      },
      "source": [
        "# Train the model\n",
        "# You can press Ctrl-C to stop. And then run the next cell to save your checkpoints! \n",
        "!cd joeynmt; python3 -m joeynmt train configs/transformer_$src$tgt.yaml"
      ],
      "execution_count": 0,
      "outputs": [
        {
          "output_type": "stream",
          "text": [
            "2020-04-12 14:27:14,687 Hello! This is Joey-NMT.\n",
            "2020-04-12 14:27:14.845045: I tensorflow/stream_executor/platform/default/dso_loader.cc:44] Successfully opened dynamic library libcudart.so.10.1\n",
            "2020-04-12 14:27:16,195 Total params: 12188160\n",
            "2020-04-12 14:27:16,197 Trainable parameters: ['decoder.layer_norm.bias', 'decoder.layer_norm.weight', 'decoder.layers.0.dec_layer_norm.bias', 'decoder.layers.0.dec_layer_norm.weight', 'decoder.layers.0.feed_forward.layer_norm.bias', 'decoder.layers.0.feed_forward.layer_norm.weight', 'decoder.layers.0.feed_forward.pwff_layer.0.bias', 'decoder.layers.0.feed_forward.pwff_layer.0.weight', 'decoder.layers.0.feed_forward.pwff_layer.3.bias', 'decoder.layers.0.feed_forward.pwff_layer.3.weight', 'decoder.layers.0.src_trg_att.k_layer.bias', 'decoder.layers.0.src_trg_att.k_layer.weight', 'decoder.layers.0.src_trg_att.output_layer.bias', 'decoder.layers.0.src_trg_att.output_layer.weight', 'decoder.layers.0.src_trg_att.q_layer.bias', 'decoder.layers.0.src_trg_att.q_layer.weight', 'decoder.layers.0.src_trg_att.v_layer.bias', 'decoder.layers.0.src_trg_att.v_layer.weight', 'decoder.layers.0.trg_trg_att.k_layer.bias', 'decoder.layers.0.trg_trg_att.k_layer.weight', 'decoder.layers.0.trg_trg_att.output_layer.bias', 'decoder.layers.0.trg_trg_att.output_layer.weight', 'decoder.layers.0.trg_trg_att.q_layer.bias', 'decoder.layers.0.trg_trg_att.q_layer.weight', 'decoder.layers.0.trg_trg_att.v_layer.bias', 'decoder.layers.0.trg_trg_att.v_layer.weight', 'decoder.layers.0.x_layer_norm.bias', 'decoder.layers.0.x_layer_norm.weight', 'decoder.layers.1.dec_layer_norm.bias', 'decoder.layers.1.dec_layer_norm.weight', 'decoder.layers.1.feed_forward.layer_norm.bias', 'decoder.layers.1.feed_forward.layer_norm.weight', 'decoder.layers.1.feed_forward.pwff_layer.0.bias', 'decoder.layers.1.feed_forward.pwff_layer.0.weight', 'decoder.layers.1.feed_forward.pwff_layer.3.bias', 'decoder.layers.1.feed_forward.pwff_layer.3.weight', 'decoder.layers.1.src_trg_att.k_layer.bias', 'decoder.layers.1.src_trg_att.k_layer.weight', 'decoder.layers.1.src_trg_att.output_layer.bias', 'decoder.layers.1.src_trg_att.output_layer.weight', 'decoder.layers.1.src_trg_att.q_layer.bias', 'decoder.layers.1.src_trg_att.q_layer.weight', 'decoder.layers.1.src_trg_att.v_layer.bias', 'decoder.layers.1.src_trg_att.v_layer.weight', 'decoder.layers.1.trg_trg_att.k_layer.bias', 'decoder.layers.1.trg_trg_att.k_layer.weight', 'decoder.layers.1.trg_trg_att.output_layer.bias', 'decoder.layers.1.trg_trg_att.output_layer.weight', 'decoder.layers.1.trg_trg_att.q_layer.bias', 'decoder.layers.1.trg_trg_att.q_layer.weight', 'decoder.layers.1.trg_trg_att.v_layer.bias', 'decoder.layers.1.trg_trg_att.v_layer.weight', 'decoder.layers.1.x_layer_norm.bias', 'decoder.layers.1.x_layer_norm.weight', 'decoder.layers.2.dec_layer_norm.bias', 'decoder.layers.2.dec_layer_norm.weight', 'decoder.layers.2.feed_forward.layer_norm.bias', 'decoder.layers.2.feed_forward.layer_norm.weight', 'decoder.layers.2.feed_forward.pwff_layer.0.bias', 'decoder.layers.2.feed_forward.pwff_layer.0.weight', 'decoder.layers.2.feed_forward.pwff_layer.3.bias', 'decoder.layers.2.feed_forward.pwff_layer.3.weight', 'decoder.layers.2.src_trg_att.k_layer.bias', 'decoder.layers.2.src_trg_att.k_layer.weight', 'decoder.layers.2.src_trg_att.output_layer.bias', 'decoder.layers.2.src_trg_att.output_layer.weight', 'decoder.layers.2.src_trg_att.q_layer.bias', 'decoder.layers.2.src_trg_att.q_layer.weight', 'decoder.layers.2.src_trg_att.v_layer.bias', 'decoder.layers.2.src_trg_att.v_layer.weight', 'decoder.layers.2.trg_trg_att.k_layer.bias', 'decoder.layers.2.trg_trg_att.k_layer.weight', 'decoder.layers.2.trg_trg_att.output_layer.bias', 'decoder.layers.2.trg_trg_att.output_layer.weight', 'decoder.layers.2.trg_trg_att.q_layer.bias', 'decoder.layers.2.trg_trg_att.q_layer.weight', 'decoder.layers.2.trg_trg_att.v_layer.bias', 'decoder.layers.2.trg_trg_att.v_layer.weight', 'decoder.layers.2.x_layer_norm.bias', 'decoder.layers.2.x_layer_norm.weight', 'decoder.layers.3.dec_layer_norm.bias', 'decoder.layers.3.dec_layer_norm.weight', 'decoder.layers.3.feed_forward.layer_norm.bias', 'decoder.layers.3.feed_forward.layer_norm.weight', 'decoder.layers.3.feed_forward.pwff_layer.0.bias', 'decoder.layers.3.feed_forward.pwff_layer.0.weight', 'decoder.layers.3.feed_forward.pwff_layer.3.bias', 'decoder.layers.3.feed_forward.pwff_layer.3.weight', 'decoder.layers.3.src_trg_att.k_layer.bias', 'decoder.layers.3.src_trg_att.k_layer.weight', 'decoder.layers.3.src_trg_att.output_layer.bias', 'decoder.layers.3.src_trg_att.output_layer.weight', 'decoder.layers.3.src_trg_att.q_layer.bias', 'decoder.layers.3.src_trg_att.q_layer.weight', 'decoder.layers.3.src_trg_att.v_layer.bias', 'decoder.layers.3.src_trg_att.v_layer.weight', 'decoder.layers.3.trg_trg_att.k_layer.bias', 'decoder.layers.3.trg_trg_att.k_layer.weight', 'decoder.layers.3.trg_trg_att.output_layer.bias', 'decoder.layers.3.trg_trg_att.output_layer.weight', 'decoder.layers.3.trg_trg_att.q_layer.bias', 'decoder.layers.3.trg_trg_att.q_layer.weight', 'decoder.layers.3.trg_trg_att.v_layer.bias', 'decoder.layers.3.trg_trg_att.v_layer.weight', 'decoder.layers.3.x_layer_norm.bias', 'decoder.layers.3.x_layer_norm.weight', 'decoder.layers.4.dec_layer_norm.bias', 'decoder.layers.4.dec_layer_norm.weight', 'decoder.layers.4.feed_forward.layer_norm.bias', 'decoder.layers.4.feed_forward.layer_norm.weight', 'decoder.layers.4.feed_forward.pwff_layer.0.bias', 'decoder.layers.4.feed_forward.pwff_layer.0.weight', 'decoder.layers.4.feed_forward.pwff_layer.3.bias', 'decoder.layers.4.feed_forward.pwff_layer.3.weight', 'decoder.layers.4.src_trg_att.k_layer.bias', 'decoder.layers.4.src_trg_att.k_layer.weight', 'decoder.layers.4.src_trg_att.output_layer.bias', 'decoder.layers.4.src_trg_att.output_layer.weight', 'decoder.layers.4.src_trg_att.q_layer.bias', 'decoder.layers.4.src_trg_att.q_layer.weight', 'decoder.layers.4.src_trg_att.v_layer.bias', 'decoder.layers.4.src_trg_att.v_layer.weight', 'decoder.layers.4.trg_trg_att.k_layer.bias', 'decoder.layers.4.trg_trg_att.k_layer.weight', 'decoder.layers.4.trg_trg_att.output_layer.bias', 'decoder.layers.4.trg_trg_att.output_layer.weight', 'decoder.layers.4.trg_trg_att.q_layer.bias', 'decoder.layers.4.trg_trg_att.q_layer.weight', 'decoder.layers.4.trg_trg_att.v_layer.bias', 'decoder.layers.4.trg_trg_att.v_layer.weight', 'decoder.layers.4.x_layer_norm.bias', 'decoder.layers.4.x_layer_norm.weight', 'decoder.layers.5.dec_layer_norm.bias', 'decoder.layers.5.dec_layer_norm.weight', 'decoder.layers.5.feed_forward.layer_norm.bias', 'decoder.layers.5.feed_forward.layer_norm.weight', 'decoder.layers.5.feed_forward.pwff_layer.0.bias', 'decoder.layers.5.feed_forward.pwff_layer.0.weight', 'decoder.layers.5.feed_forward.pwff_layer.3.bias', 'decoder.layers.5.feed_forward.pwff_layer.3.weight', 'decoder.layers.5.src_trg_att.k_layer.bias', 'decoder.layers.5.src_trg_att.k_layer.weight', 'decoder.layers.5.src_trg_att.output_layer.bias', 'decoder.layers.5.src_trg_att.output_layer.weight', 'decoder.layers.5.src_trg_att.q_layer.bias', 'decoder.layers.5.src_trg_att.q_layer.weight', 'decoder.layers.5.src_trg_att.v_layer.bias', 'decoder.layers.5.src_trg_att.v_layer.weight', 'decoder.layers.5.trg_trg_att.k_layer.bias', 'decoder.layers.5.trg_trg_att.k_layer.weight', 'decoder.layers.5.trg_trg_att.output_layer.bias', 'decoder.layers.5.trg_trg_att.output_layer.weight', 'decoder.layers.5.trg_trg_att.q_layer.bias', 'decoder.layers.5.trg_trg_att.q_layer.weight', 'decoder.layers.5.trg_trg_att.v_layer.bias', 'decoder.layers.5.trg_trg_att.v_layer.weight', 'decoder.layers.5.x_layer_norm.bias', 'decoder.layers.5.x_layer_norm.weight', 'encoder.layer_norm.bias', 'encoder.layer_norm.weight', 'encoder.layers.0.feed_forward.layer_norm.bias', 'encoder.layers.0.feed_forward.layer_norm.weight', 'encoder.layers.0.feed_forward.pwff_layer.0.bias', 'encoder.layers.0.feed_forward.pwff_layer.0.weight', 'encoder.layers.0.feed_forward.pwff_layer.3.bias', 'encoder.layers.0.feed_forward.pwff_layer.3.weight', 'encoder.layers.0.layer_norm.bias', 'encoder.layers.0.layer_norm.weight', 'encoder.layers.0.src_src_att.k_layer.bias', 'encoder.layers.0.src_src_att.k_layer.weight', 'encoder.layers.0.src_src_att.output_layer.bias', 'encoder.layers.0.src_src_att.output_layer.weight', 'encoder.layers.0.src_src_att.q_layer.bias', 'encoder.layers.0.src_src_att.q_layer.weight', 'encoder.layers.0.src_src_att.v_layer.bias', 'encoder.layers.0.src_src_att.v_layer.weight', 'encoder.layers.1.feed_forward.layer_norm.bias', 'encoder.layers.1.feed_forward.layer_norm.weight', 'encoder.layers.1.feed_forward.pwff_layer.0.bias', 'encoder.layers.1.feed_forward.pwff_layer.0.weight', 'encoder.layers.1.feed_forward.pwff_layer.3.bias', 'encoder.layers.1.feed_forward.pwff_layer.3.weight', 'encoder.layers.1.layer_norm.bias', 'encoder.layers.1.layer_norm.weight', 'encoder.layers.1.src_src_att.k_layer.bias', 'encoder.layers.1.src_src_att.k_layer.weight', 'encoder.layers.1.src_src_att.output_layer.bias', 'encoder.layers.1.src_src_att.output_layer.weight', 'encoder.layers.1.src_src_att.q_layer.bias', 'encoder.layers.1.src_src_att.q_layer.weight', 'encoder.layers.1.src_src_att.v_layer.bias', 'encoder.layers.1.src_src_att.v_layer.weight', 'encoder.layers.2.feed_forward.layer_norm.bias', 'encoder.layers.2.feed_forward.layer_norm.weight', 'encoder.layers.2.feed_forward.pwff_layer.0.bias', 'encoder.layers.2.feed_forward.pwff_layer.0.weight', 'encoder.layers.2.feed_forward.pwff_layer.3.bias', 'encoder.layers.2.feed_forward.pwff_layer.3.weight', 'encoder.layers.2.layer_norm.bias', 'encoder.layers.2.layer_norm.weight', 'encoder.layers.2.src_src_att.k_layer.bias', 'encoder.layers.2.src_src_att.k_layer.weight', 'encoder.layers.2.src_src_att.output_layer.bias', 'encoder.layers.2.src_src_att.output_layer.weight', 'encoder.layers.2.src_src_att.q_layer.bias', 'encoder.layers.2.src_src_att.q_layer.weight', 'encoder.layers.2.src_src_att.v_layer.bias', 'encoder.layers.2.src_src_att.v_layer.weight', 'encoder.layers.3.feed_forward.layer_norm.bias', 'encoder.layers.3.feed_forward.layer_norm.weight', 'encoder.layers.3.feed_forward.pwff_layer.0.bias', 'encoder.layers.3.feed_forward.pwff_layer.0.weight', 'encoder.layers.3.feed_forward.pwff_layer.3.bias', 'encoder.layers.3.feed_forward.pwff_layer.3.weight', 'encoder.layers.3.layer_norm.bias', 'encoder.layers.3.layer_norm.weight', 'encoder.layers.3.src_src_att.k_layer.bias', 'encoder.layers.3.src_src_att.k_layer.weight', 'encoder.layers.3.src_src_att.output_layer.bias', 'encoder.layers.3.src_src_att.output_layer.weight', 'encoder.layers.3.src_src_att.q_layer.bias', 'encoder.layers.3.src_src_att.q_layer.weight', 'encoder.layers.3.src_src_att.v_layer.bias', 'encoder.layers.3.src_src_att.v_layer.weight', 'encoder.layers.4.feed_forward.layer_norm.bias', 'encoder.layers.4.feed_forward.layer_norm.weight', 'encoder.layers.4.feed_forward.pwff_layer.0.bias', 'encoder.layers.4.feed_forward.pwff_layer.0.weight', 'encoder.layers.4.feed_forward.pwff_layer.3.bias', 'encoder.layers.4.feed_forward.pwff_layer.3.weight', 'encoder.layers.4.layer_norm.bias', 'encoder.layers.4.layer_norm.weight', 'encoder.layers.4.src_src_att.k_layer.bias', 'encoder.layers.4.src_src_att.k_layer.weight', 'encoder.layers.4.src_src_att.output_layer.bias', 'encoder.layers.4.src_src_att.output_layer.weight', 'encoder.layers.4.src_src_att.q_layer.bias', 'encoder.layers.4.src_src_att.q_layer.weight', 'encoder.layers.4.src_src_att.v_layer.bias', 'encoder.layers.4.src_src_att.v_layer.weight', 'encoder.layers.5.feed_forward.layer_norm.bias', 'encoder.layers.5.feed_forward.layer_norm.weight', 'encoder.layers.5.feed_forward.pwff_layer.0.bias', 'encoder.layers.5.feed_forward.pwff_layer.0.weight', 'encoder.layers.5.feed_forward.pwff_layer.3.bias', 'encoder.layers.5.feed_forward.pwff_layer.3.weight', 'encoder.layers.5.layer_norm.bias', 'encoder.layers.5.layer_norm.weight', 'encoder.layers.5.src_src_att.k_layer.bias', 'encoder.layers.5.src_src_att.k_layer.weight', 'encoder.layers.5.src_src_att.output_layer.bias', 'encoder.layers.5.src_src_att.output_layer.weight', 'encoder.layers.5.src_src_att.q_layer.bias', 'encoder.layers.5.src_src_att.q_layer.weight', 'encoder.layers.5.src_src_att.v_layer.bias', 'encoder.layers.5.src_src_att.v_layer.weight', 'src_embed.lut.weight']\n",
            "2020-04-12 14:27:19,825 Loading model from /content/drive/My Drive/masakhane/en-yo-baseline/models/enyo_transformer/best.ckpt\n",
            "2020-04-12 14:27:20,177 cfg.name                           : enyo_transformer\n",
            "2020-04-12 14:27:20,178 cfg.data.src                       : en\n",
            "2020-04-12 14:27:20,178 cfg.data.trg                       : yo\n",
            "2020-04-12 14:27:20,178 cfg.data.train                     : /content/drive/My Drive/masakhane/en-yo-baseline/train.bpe\n",
            "2020-04-12 14:27:20,178 cfg.data.dev                       : /content/drive/My Drive/masakhane/en-yo-baseline/dev.bpe\n",
            "2020-04-12 14:27:20,178 cfg.data.test                      : /content/drive/My Drive/masakhane/en-yo-baseline/test.bpe\n",
            "2020-04-12 14:27:20,178 cfg.data.level                     : bpe\n",
            "2020-04-12 14:27:20,179 cfg.data.lowercase                 : False\n",
            "2020-04-12 14:27:20,179 cfg.data.max_sent_length           : 100\n",
            "2020-04-12 14:27:20,179 cfg.data.src_vocab                 : /content/drive/My Drive/masakhane/en-yo-baseline/vocab.txt\n",
            "2020-04-12 14:27:20,179 cfg.data.trg_vocab                 : /content/drive/My Drive/masakhane/en-yo-baseline/vocab.txt\n",
            "2020-04-12 14:27:20,179 cfg.testing.beam_size              : 5\n",
            "2020-04-12 14:27:20,179 cfg.testing.alpha                  : 1.0\n",
            "2020-04-12 14:27:20,179 cfg.training.load_model            : /content/drive/My Drive/masakhane/en-yo-baseline/models/enyo_transformer/best.ckpt\n",
            "2020-04-12 14:27:20,180 cfg.training.random_seed           : 42\n",
            "2020-04-12 14:27:20,180 cfg.training.optimizer             : adam\n",
            "2020-04-12 14:27:20,180 cfg.training.normalization         : tokens\n",
            "2020-04-12 14:27:20,180 cfg.training.adam_betas            : [0.9, 0.999]\n",
            "2020-04-12 14:27:20,180 cfg.training.scheduling            : plateau\n",
            "2020-04-12 14:27:20,180 cfg.training.patience              : 5\n",
            "2020-04-12 14:27:20,180 cfg.training.learning_rate_factor  : 0.5\n",
            "2020-04-12 14:27:20,180 cfg.training.learning_rate_warmup  : 1000\n",
            "2020-04-12 14:27:20,180 cfg.training.decrease_factor       : 0.7\n",
            "2020-04-12 14:27:20,181 cfg.training.loss                  : crossentropy\n",
            "2020-04-12 14:27:20,181 cfg.training.learning_rate         : 0.0003\n",
            "2020-04-12 14:27:20,181 cfg.training.learning_rate_min     : 1e-08\n",
            "2020-04-12 14:27:20,181 cfg.training.weight_decay          : 0.0\n",
            "2020-04-12 14:27:20,181 cfg.training.label_smoothing       : 0.1\n",
            "2020-04-12 14:27:20,181 cfg.training.batch_size            : 4096\n",
            "2020-04-12 14:27:20,181 cfg.training.batch_type            : token\n",
            "2020-04-12 14:27:20,181 cfg.training.eval_batch_size       : 3600\n",
            "2020-04-12 14:27:20,182 cfg.training.eval_batch_type       : token\n",
            "2020-04-12 14:27:20,182 cfg.training.batch_multiplier      : 1\n",
            "2020-04-12 14:27:20,182 cfg.training.early_stopping_metric : ppl\n",
            "2020-04-12 14:27:20,182 cfg.training.epochs                : 2\n",
            "2020-04-12 14:27:20,182 cfg.training.validation_freq       : 1000\n",
            "2020-04-12 14:27:20,182 cfg.training.logging_freq          : 100\n",
            "2020-04-12 14:27:20,182 cfg.training.eval_metric           : bleu\n",
            "2020-04-12 14:27:20,183 cfg.training.model_dir             : /content/drive/My Drive/masakhane/model-temp\n",
            "2020-04-12 14:27:20,183 cfg.training.overwrite             : True\n",
            "2020-04-12 14:27:20,183 cfg.training.shuffle               : True\n",
            "2020-04-12 14:27:20,183 cfg.training.use_cuda              : True\n",
            "2020-04-12 14:27:20,183 cfg.training.max_output_length     : 100\n",
            "2020-04-12 14:27:20,183 cfg.training.print_valid_sents     : [0, 1, 2, 3]\n",
            "2020-04-12 14:27:20,183 cfg.training.keep_last_ckpts       : 3\n",
            "2020-04-12 14:27:20,183 cfg.model.initializer              : xavier\n",
            "2020-04-12 14:27:20,184 cfg.model.bias_initializer         : zeros\n",
            "2020-04-12 14:27:20,184 cfg.model.init_gain                : 1.0\n",
            "2020-04-12 14:27:20,184 cfg.model.embed_initializer        : xavier\n",
            "2020-04-12 14:27:20,184 cfg.model.embed_init_gain          : 1.0\n",
            "2020-04-12 14:27:20,184 cfg.model.tied_embeddings          : True\n",
            "2020-04-12 14:27:20,184 cfg.model.tied_softmax             : True\n",
            "2020-04-12 14:27:20,184 cfg.model.encoder.type             : transformer\n",
            "2020-04-12 14:27:20,185 cfg.model.encoder.num_layers       : 6\n",
            "2020-04-12 14:27:20,185 cfg.model.encoder.num_heads        : 4\n",
            "2020-04-12 14:27:20,185 cfg.model.encoder.embeddings.embedding_dim : 256\n",
            "2020-04-12 14:27:20,185 cfg.model.encoder.embeddings.scale : True\n",
            "2020-04-12 14:27:20,185 cfg.model.encoder.embeddings.dropout : 0.2\n",
            "2020-04-12 14:27:20,185 cfg.model.encoder.hidden_size      : 256\n",
            "2020-04-12 14:27:20,185 cfg.model.encoder.ff_size          : 1024\n",
            "2020-04-12 14:27:20,185 cfg.model.encoder.dropout          : 0.3\n",
            "2020-04-12 14:27:20,186 cfg.model.decoder.type             : transformer\n",
            "2020-04-12 14:27:20,186 cfg.model.decoder.num_layers       : 6\n",
            "2020-04-12 14:27:20,186 cfg.model.decoder.num_heads        : 4\n",
            "2020-04-12 14:27:20,186 cfg.model.decoder.embeddings.embedding_dim : 256\n",
            "2020-04-12 14:27:20,186 cfg.model.decoder.embeddings.scale : True\n",
            "2020-04-12 14:27:20,186 cfg.model.decoder.embeddings.dropout : 0.2\n",
            "2020-04-12 14:27:20,186 cfg.model.decoder.hidden_size      : 256\n",
            "2020-04-12 14:27:20,186 cfg.model.decoder.ff_size          : 1024\n",
            "2020-04-12 14:27:20,187 cfg.model.decoder.dropout          : 0.3\n",
            "2020-04-12 14:27:20,187 Data set sizes: \n",
            "\ttrain 415100,\n",
            "\tvalid 1000,\n",
            "\ttest 2662\n",
            "2020-04-12 14:27:20,187 First training example:\n",
            "\t[SRC] T@@ R@@ A@@ IN Y@@ O@@ U@@ R C@@ H@@ I@@ L@@ D@@ R@@ E@@ N : “ I teach my children to ch@@ ec@@ k the exp@@ ir@@ ation d@@ ate of any p@@ ack@@ aged food it@@ em@@ s , such as s@@ n@@ ac@@ ks , before they bu@@ y them . ” ​ — Ru@@ th , N@@ ig@@ er@@ ia\n",
            "\t[TRG] K@@ Ọ́ ÀWỌN Ọ@@ M@@ Ọ R@@ Ẹ : “ Mo kọ́ àwọn ọmọ mi pé kí wọ́n tó ra oúnjẹ bí ìp@@ á@@ p@@ án@@ u , tó wà nínú ag@@ ol@@ o , i@@ ke , bé@@ bà , tàbí ọ̀r@@ á , kí wọ́n máa yẹ ara oúnjẹ náà wò kí wọ́n lè mọ dé@@ è@@ tì tó máa bà jẹ́ . ” — Ru@@ th , N@@ àì@@ jí@@ ríà\n",
            "2020-04-12 14:27:20,187 First 10 words (src): (0) <unk> (1) <pad> (2) <s> (3) </s> (4) , (5) . (6) the (7) tó (8) a (9) to\n",
            "2020-04-12 14:27:20,187 First 10 words (trg): (0) <unk> (1) <pad> (2) <s> (3) </s> (4) , (5) . (6) the (7) tó (8) a (9) to\n",
            "2020-04-12 14:27:20,187 Number of Src words (types): 4406\n",
            "2020-04-12 14:27:20,188 Number of Trg words (types): 4406\n",
            "2020-04-12 14:27:20,188 Model(\n",
            "\tencoder=TransformerEncoder(num_layers=6, num_heads=4),\n",
            "\tdecoder=TransformerDecoder(num_layers=6, num_heads=4),\n",
            "\tsrc_embed=Embeddings(embedding_dim=256, vocab_size=4406),\n",
            "\ttrg_embed=Embeddings(embedding_dim=256, vocab_size=4406))\n",
            "2020-04-12 14:27:20,198 EPOCH 1\n",
            "2020-04-12 14:27:31,916 Epoch   1 Step:   384100 Batch Loss:     2.240336 Tokens per Sec:    19764, Lr: 0.000004\n",
            "2020-04-12 14:27:42,982 Epoch   1 Step:   384200 Batch Loss:     1.883319 Tokens per Sec:    20576, Lr: 0.000004\n",
            "2020-04-12 14:27:54,021 Epoch   1 Step:   384300 Batch Loss:     1.927691 Tokens per Sec:    20939, Lr: 0.000004\n",
            "2020-04-12 14:28:05,130 Epoch   1 Step:   384400 Batch Loss:     1.918795 Tokens per Sec:    21147, Lr: 0.000004\n",
            "2020-04-12 14:28:16,247 Epoch   1 Step:   384500 Batch Loss:     2.029218 Tokens per Sec:    20929, Lr: 0.000004\n",
            "2020-04-12 14:28:27,333 Epoch   1 Step:   384600 Batch Loss:     1.894163 Tokens per Sec:    20946, Lr: 0.000004\n",
            "2020-04-12 14:28:38,420 Epoch   1 Step:   384700 Batch Loss:     1.838998 Tokens per Sec:    20906, Lr: 0.000004\n",
            "2020-04-12 14:28:49,432 Epoch   1 Step:   384800 Batch Loss:     1.793913 Tokens per Sec:    21056, Lr: 0.000004\n",
            "2020-04-12 14:29:00,482 Epoch   1 Step:   384900 Batch Loss:     1.827213 Tokens per Sec:    20679, Lr: 0.000004\n",
            "2020-04-12 14:29:11,456 Epoch   1 Step:   385000 Batch Loss:     1.768281 Tokens per Sec:    21078, Lr: 0.000004\n",
            "2020-04-12 14:29:28,421 Example #0\n",
            "2020-04-12 14:29:28,422 \tSource:     He is the Source of life , the One giving it as an undeserved gift through Christ .\n",
            "2020-04-12 14:29:28,422 \tReference:  Òun ni Orísun ìyè , Ẹni tí ń fi ìyè fúnni gẹ́gẹ́ bí ẹbùn tí a kò lẹ́tọ̀ọ́ sí nípasẹ̀ Kristi .\n",
            "2020-04-12 14:29:28,422 \tHypothesis: Òun ni Orísun ìyè , Ẹni tí ń fi í fúnni gẹ́gẹ́ bí ẹ̀bùn àìlẹ́tọ̀ọ́sí nípasẹ̀ Kristi .\n",
            "2020-04-12 14:29:28,422 Example #1\n",
            "2020-04-12 14:29:28,423 \tSource:     Now I had to find a legitimate line of work .\n",
            "2020-04-12 14:29:28,423 \tReference:  Torí náà , mo ní láti wá iṣẹ́ gidi .\n",
            "2020-04-12 14:29:28,423 \tHypothesis: Ní báyìí , mo ní láti wá iṣẹ́ tó yẹ kí n ṣe .\n",
            "2020-04-12 14:29:28,423 Example #2\n",
            "2020-04-12 14:29:28,424 \tSource:     Do I value material things more than my relationship with Jehovah and with people ?\n",
            "2020-04-12 14:29:28,424 \tReference:  Ṣé àwọn nǹkan tara ló jẹ mí lógún jù àbí àjọṣe mi pẹ̀lú Jèhófà àtàwọn èèyàn ?\n",
            "2020-04-12 14:29:28,424 \tHypothesis: Ǹjẹ́ mo mọyì àwọn nǹkan tara ju àjọṣe mi pẹ̀lú Jèhófà àti pẹ̀lú àwọn èèyàn lọ ?\n",
            "2020-04-12 14:29:28,424 Example #3\n",
            "2020-04-12 14:29:28,424 \tSource:     He has far more experience and stamina than you do , but he patiently walks near you .\n",
            "2020-04-12 14:29:28,424 \tReference:  Ẹni tẹ́ ẹ jọ ń lọ yìí mọ ọ̀nà yẹn dáadáa .\n",
            "2020-04-12 14:29:28,425 \tHypothesis: Ó ní ìrírí tó pọ̀ gan - an , ó sì tún ní ìrírí tó ju tìẹ lọ , àmọ́ ó fi sùúrù rìn nítòsí rẹ .\n",
            "2020-04-12 14:29:28,425 Validation result (greedy) at epoch   1, step   385000: bleu:  30.04, loss: 41967.2539, ppl:   4.0905, duration: 16.9679s\n",
            "2020-04-12 14:29:39,582 Epoch   1 Step:   385100 Batch Loss:     2.121287 Tokens per Sec:    21098, Lr: 0.000004\n",
            "2020-04-12 14:29:50,538 Epoch   1 Step:   385200 Batch Loss:     1.998006 Tokens per Sec:    20587, Lr: 0.000004\n",
            "2020-04-12 14:30:01,615 Epoch   1 Step:   385300 Batch Loss:     1.912782 Tokens per Sec:    21209, Lr: 0.000004\n",
            "2020-04-12 14:30:12,660 Epoch   1 Step:   385400 Batch Loss:     1.806685 Tokens per Sec:    20871, Lr: 0.000004\n",
            "2020-04-12 14:30:23,759 Epoch   1 Step:   385500 Batch Loss:     2.052587 Tokens per Sec:    21211, Lr: 0.000004\n",
            "2020-04-12 14:30:34,653 Epoch   1 Step:   385600 Batch Loss:     1.783153 Tokens per Sec:    20515, Lr: 0.000004\n",
            "2020-04-12 14:30:45,723 Epoch   1 Step:   385700 Batch Loss:     1.835905 Tokens per Sec:    21566, Lr: 0.000004\n",
            "2020-04-12 14:30:56,709 Epoch   1 Step:   385800 Batch Loss:     1.911717 Tokens per Sec:    20845, Lr: 0.000004\n",
            "2020-04-12 14:31:07,630 Epoch   1 Step:   385900 Batch Loss:     1.921858 Tokens per Sec:    21159, Lr: 0.000004\n",
            "2020-04-12 14:31:18,512 Epoch   1 Step:   386000 Batch Loss:     1.973545 Tokens per Sec:    20908, Lr: 0.000004\n",
            "2020-04-12 14:31:35,396 Example #0\n",
            "2020-04-12 14:31:35,397 \tSource:     He is the Source of life , the One giving it as an undeserved gift through Christ .\n",
            "2020-04-12 14:31:35,397 \tReference:  Òun ni Orísun ìyè , Ẹni tí ń fi ìyè fúnni gẹ́gẹ́ bí ẹbùn tí a kò lẹ́tọ̀ọ́ sí nípasẹ̀ Kristi .\n",
            "2020-04-12 14:31:35,397 \tHypothesis: Òun ni Orísun ìyè , Ẹni tí ń fi í fúnni gẹ́gẹ́ bí ẹ̀bùn àìlẹ́tọ̀ọ́sí nípasẹ̀ Kristi .\n",
            "2020-04-12 14:31:35,397 Example #1\n",
            "2020-04-12 14:31:35,398 \tSource:     Now I had to find a legitimate line of work .\n",
            "2020-04-12 14:31:35,398 \tReference:  Torí náà , mo ní láti wá iṣẹ́ gidi .\n",
            "2020-04-12 14:31:35,398 \tHypothesis: Ní báyìí , mo ní láti wá iṣẹ́ tó yẹ kí n ṣe .\n",
            "2020-04-12 14:31:35,398 Example #2\n",
            "2020-04-12 14:31:35,399 \tSource:     Do I value material things more than my relationship with Jehovah and with people ?\n",
            "2020-04-12 14:31:35,399 \tReference:  Ṣé àwọn nǹkan tara ló jẹ mí lógún jù àbí àjọṣe mi pẹ̀lú Jèhófà àtàwọn èèyàn ?\n",
            "2020-04-12 14:31:35,399 \tHypothesis: Ǹjẹ́ mo mọyì àwọn nǹkan tara ju àjọṣe mi pẹ̀lú Jèhófà àti pẹ̀lú àwọn èèyàn lọ ?\n",
            "2020-04-12 14:31:35,399 Example #3\n",
            "2020-04-12 14:31:35,400 \tSource:     He has far more experience and stamina than you do , but he patiently walks near you .\n",
            "2020-04-12 14:31:35,400 \tReference:  Ẹni tẹ́ ẹ jọ ń lọ yìí mọ ọ̀nà yẹn dáadáa .\n",
            "2020-04-12 14:31:35,400 \tHypothesis: Ó ní ìrírí tó pọ̀ gan - an , ó sì tún ní ìrírí tó ju tìẹ lọ , àmọ́ ó fi sùúrù rìn nítòsí rẹ .\n",
            "2020-04-12 14:31:35,400 Validation result (greedy) at epoch   1, step   386000: bleu:  29.92, loss: 42548.0859, ppl:   4.1711, duration: 16.8875s\n",
            "2020-04-12 14:31:46,453 Epoch   1 Step:   386100 Batch Loss:     2.060577 Tokens per Sec:    21051, Lr: 0.000004\n",
            "2020-04-12 14:31:57,360 Epoch   1 Step:   386200 Batch Loss:     1.789646 Tokens per Sec:    20830, Lr: 0.000004\n",
            "2020-04-12 14:32:08,332 Epoch   1 Step:   386300 Batch Loss:     1.944916 Tokens per Sec:    21407, Lr: 0.000004\n",
            "2020-04-12 14:32:19,253 Epoch   1 Step:   386400 Batch Loss:     1.973574 Tokens per Sec:    21195, Lr: 0.000004\n",
            "2020-04-12 14:32:30,182 Epoch   1 Step:   386500 Batch Loss:     1.965004 Tokens per Sec:    21150, Lr: 0.000004\n",
            "2020-04-12 14:32:41,084 Epoch   1 Step:   386600 Batch Loss:     1.814785 Tokens per Sec:    20966, Lr: 0.000004\n",
            "2020-04-12 14:32:52,090 Epoch   1 Step:   386700 Batch Loss:     2.025830 Tokens per Sec:    20638, Lr: 0.000004\n",
            "2020-04-12 14:33:03,165 Epoch   1 Step:   386800 Batch Loss:     1.706421 Tokens per Sec:    21197, Lr: 0.000004\n",
            "2020-04-12 14:33:14,067 Epoch   1 Step:   386900 Batch Loss:     1.815666 Tokens per Sec:    20733, Lr: 0.000004\n",
            "2020-04-12 14:33:24,980 Epoch   1 Step:   387000 Batch Loss:     1.893143 Tokens per Sec:    21026, Lr: 0.000004\n",
            "2020-04-12 14:33:41,969 Example #0\n",
            "2020-04-12 14:33:41,969 \tSource:     He is the Source of life , the One giving it as an undeserved gift through Christ .\n",
            "2020-04-12 14:33:41,969 \tReference:  Òun ni Orísun ìyè , Ẹni tí ń fi ìyè fúnni gẹ́gẹ́ bí ẹbùn tí a kò lẹ́tọ̀ọ́ sí nípasẹ̀ Kristi .\n",
            "2020-04-12 14:33:41,970 \tHypothesis: Òun ni Orísun ìyè , Ẹni tí ń fi í fúnni gẹ́gẹ́ bí ẹ̀bùn àìlẹ́tọ̀ọ́sí nípasẹ̀ Kristi .\n",
            "2020-04-12 14:33:41,970 Example #1\n",
            "2020-04-12 14:33:41,970 \tSource:     Now I had to find a legitimate line of work .\n",
            "2020-04-12 14:33:41,970 \tReference:  Torí náà , mo ní láti wá iṣẹ́ gidi .\n",
            "2020-04-12 14:33:41,971 \tHypothesis: Ní báyìí , mo ní láti wá iṣẹ́ tó dára .\n",
            "2020-04-12 14:33:41,971 Example #2\n",
            "2020-04-12 14:33:41,972 \tSource:     Do I value material things more than my relationship with Jehovah and with people ?\n",
            "2020-04-12 14:33:41,972 \tReference:  Ṣé àwọn nǹkan tara ló jẹ mí lógún jù àbí àjọṣe mi pẹ̀lú Jèhófà àtàwọn èèyàn ?\n",
            "2020-04-12 14:33:41,972 \tHypothesis: Ǹjẹ́ mo mọyì àwọn nǹkan tara ju àjọṣe mi pẹ̀lú Jèhófà àti pẹ̀lú àwọn èèyàn lọ ?\n",
            "2020-04-12 14:33:41,972 Example #3\n",
            "2020-04-12 14:33:41,973 \tSource:     He has far more experience and stamina than you do , but he patiently walks near you .\n",
            "2020-04-12 14:33:41,973 \tReference:  Ẹni tẹ́ ẹ jọ ń lọ yìí mọ ọ̀nà yẹn dáadáa .\n",
            "2020-04-12 14:33:41,973 \tHypothesis: Ó ní ìrírí tó pọ̀ gan - an , ó sì tún ní ìrírí tó ju tìẹ lọ , àmọ́ ó fi sùúrù rìn nítòsí rẹ .\n",
            "2020-04-12 14:33:41,973 Validation result (greedy) at epoch   1, step   387000: bleu:  29.87, loss: 42807.0391, ppl:   4.2075, duration: 16.9932s\n",
            "2020-04-12 14:33:52,943 Epoch   1 Step:   387100 Batch Loss:     1.831305 Tokens per Sec:    20895, Lr: 0.000004\n",
            "2020-04-12 14:34:03,745 Epoch   1 Step:   387200 Batch Loss:     1.805957 Tokens per Sec:    20377, Lr: 0.000004\n",
            "2020-04-12 14:34:14,840 Epoch   1 Step:   387300 Batch Loss:     1.742952 Tokens per Sec:    21086, Lr: 0.000004\n",
            "2020-04-12 14:34:25,757 Epoch   1 Step:   387400 Batch Loss:     2.395472 Tokens per Sec:    21045, Lr: 0.000004\n",
            "2020-04-12 14:34:36,705 Epoch   1 Step:   387500 Batch Loss:     1.808187 Tokens per Sec:    20949, Lr: 0.000004\n",
            "2020-04-12 14:34:47,693 Epoch   1 Step:   387600 Batch Loss:     1.924356 Tokens per Sec:    21305, Lr: 0.000004\n",
            "2020-04-12 14:34:58,665 Epoch   1 Step:   387700 Batch Loss:     1.883427 Tokens per Sec:    20812, Lr: 0.000004\n",
            "2020-04-12 14:35:09,662 Epoch   1 Step:   387800 Batch Loss:     1.921607 Tokens per Sec:    21186, Lr: 0.000004\n",
            "2020-04-12 14:35:20,718 Epoch   1 Step:   387900 Batch Loss:     1.909007 Tokens per Sec:    21307, Lr: 0.000004\n",
            "2020-04-12 14:35:31,647 Epoch   1 Step:   388000 Batch Loss:     1.892324 Tokens per Sec:    20464, Lr: 0.000004\n",
            "2020-04-12 14:35:48,532 Example #0\n",
            "2020-04-12 14:35:48,533 \tSource:     He is the Source of life , the One giving it as an undeserved gift through Christ .\n",
            "2020-04-12 14:35:48,533 \tReference:  Òun ni Orísun ìyè , Ẹni tí ń fi ìyè fúnni gẹ́gẹ́ bí ẹbùn tí a kò lẹ́tọ̀ọ́ sí nípasẹ̀ Kristi .\n",
            "2020-04-12 14:35:48,533 \tHypothesis: Òun ni Orísun ìyè , Ẹni tí ń fi í fúnni gẹ́gẹ́ bí ẹ̀bùn àìlẹ́tọ̀ọ́sí nípasẹ̀ Kristi .\n",
            "2020-04-12 14:35:48,533 Example #1\n",
            "2020-04-12 14:35:48,533 \tSource:     Now I had to find a legitimate line of work .\n",
            "2020-04-12 14:35:48,534 \tReference:  Torí náà , mo ní láti wá iṣẹ́ gidi .\n",
            "2020-04-12 14:35:48,534 \tHypothesis: Ní báyìí , mo ní láti wá iṣẹ́ tó dára .\n",
            "2020-04-12 14:35:48,534 Example #2\n",
            "2020-04-12 14:35:48,534 \tSource:     Do I value material things more than my relationship with Jehovah and with people ?\n",
            "2020-04-12 14:35:48,534 \tReference:  Ṣé àwọn nǹkan tara ló jẹ mí lógún jù àbí àjọṣe mi pẹ̀lú Jèhófà àtàwọn èèyàn ?\n",
            "2020-04-12 14:35:48,534 \tHypothesis: Ǹjẹ́ mo mọyì àwọn nǹkan tara ju àjọṣe mi pẹ̀lú Jèhófà àti pẹ̀lú àwọn èèyàn lọ ?\n",
            "2020-04-12 14:35:48,535 Example #3\n",
            "2020-04-12 14:35:48,535 \tSource:     He has far more experience and stamina than you do , but he patiently walks near you .\n",
            "2020-04-12 14:35:48,535 \tReference:  Ẹni tẹ́ ẹ jọ ń lọ yìí mọ ọ̀nà yẹn dáadáa .\n",
            "2020-04-12 14:35:48,535 \tHypothesis: Ó ní ìrírí tó pọ̀ gan - an , ó sì tún ní ìrírí tó ju tìẹ lọ , àmọ́ ó fi sùúrù rìn nítòsí rẹ .\n",
            "2020-04-12 14:35:48,535 Validation result (greedy) at epoch   1, step   388000: bleu:  29.81, loss: 42958.7578, ppl:   4.2290, duration: 16.8883s\n",
            "2020-04-12 14:35:59,503 Epoch   1 Step:   388100 Batch Loss:     1.835913 Tokens per Sec:    21177, Lr: 0.000004\n",
            "2020-04-12 14:36:10,367 Epoch   1 Step:   388200 Batch Loss:     1.863079 Tokens per Sec:    21249, Lr: 0.000004\n",
            "2020-04-12 14:36:21,399 Epoch   1 Step:   388300 Batch Loss:     1.825538 Tokens per Sec:    20914, Lr: 0.000004\n",
            "2020-04-12 14:36:32,421 Epoch   1 Step:   388400 Batch Loss:     1.788421 Tokens per Sec:    21343, Lr: 0.000004\n",
            "2020-04-12 14:36:43,501 Epoch   1 Step:   388500 Batch Loss:     2.025025 Tokens per Sec:    21474, Lr: 0.000004\n",
            "2020-04-12 14:36:54,499 Epoch   1 Step:   388600 Batch Loss:     1.974475 Tokens per Sec:    20873, Lr: 0.000004\n",
            "2020-04-12 14:37:05,496 Epoch   1 Step:   388700 Batch Loss:     1.740090 Tokens per Sec:    20847, Lr: 0.000004\n",
            "2020-04-12 14:37:16,508 Epoch   1 Step:   388800 Batch Loss:     1.982534 Tokens per Sec:    21475, Lr: 0.000004\n",
            "2020-04-12 14:37:27,535 Epoch   1 Step:   388900 Batch Loss:     1.769454 Tokens per Sec:    21121, Lr: 0.000004\n",
            "2020-04-12 14:37:38,498 Epoch   1 Step:   389000 Batch Loss:     2.170954 Tokens per Sec:    21243, Lr: 0.000004\n",
            "2020-04-12 14:37:55,188 Example #0\n",
            "2020-04-12 14:37:55,189 \tSource:     He is the Source of life , the One giving it as an undeserved gift through Christ .\n",
            "2020-04-12 14:37:55,189 \tReference:  Òun ni Orísun ìyè , Ẹni tí ń fi ìyè fúnni gẹ́gẹ́ bí ẹbùn tí a kò lẹ́tọ̀ọ́ sí nípasẹ̀ Kristi .\n",
            "2020-04-12 14:37:55,189 \tHypothesis: Òun ni Orísun ìyè , Ẹni tí ń fi í fúnni gẹ́gẹ́ bí ẹ̀bùn àìlẹ́tọ̀ọ́sí nípasẹ̀ Kristi .\n",
            "2020-04-12 14:37:55,189 Example #1\n",
            "2020-04-12 14:37:55,190 \tSource:     Now I had to find a legitimate line of work .\n",
            "2020-04-12 14:37:55,190 \tReference:  Torí náà , mo ní láti wá iṣẹ́ gidi .\n",
            "2020-04-12 14:37:55,190 \tHypothesis: Ní báyìí , mo ní láti wá iṣẹ́ tó dára .\n",
            "2020-04-12 14:37:55,190 Example #2\n",
            "2020-04-12 14:37:55,190 \tSource:     Do I value material things more than my relationship with Jehovah and with people ?\n",
            "2020-04-12 14:37:55,190 \tReference:  Ṣé àwọn nǹkan tara ló jẹ mí lógún jù àbí àjọṣe mi pẹ̀lú Jèhófà àtàwọn èèyàn ?\n",
            "2020-04-12 14:37:55,191 \tHypothesis: Ǹjẹ́ mo mọyì àwọn nǹkan tara ju àjọṣe mi pẹ̀lú Jèhófà àti pẹ̀lú àwọn èèyàn lọ ?\n",
            "2020-04-12 14:37:55,191 Example #3\n",
            "2020-04-12 14:37:55,191 \tSource:     He has far more experience and stamina than you do , but he patiently walks near you .\n",
            "2020-04-12 14:37:55,191 \tReference:  Ẹni tẹ́ ẹ jọ ń lọ yìí mọ ọ̀nà yẹn dáadáa .\n",
            "2020-04-12 14:37:55,191 \tHypothesis: Ó ní ìrírí tó pọ̀ gan - an , ó sì tún ní ìrírí tó ju tìẹ lọ , àmọ́ ó fi sùúrù rìn nítòsí rẹ .\n",
            "2020-04-12 14:37:55,192 Validation result (greedy) at epoch   1, step   389000: bleu:  29.81, loss: 43055.4961, ppl:   4.2427, duration: 16.6934s\n",
            "2020-04-12 14:38:06,145 Epoch   1 Step:   389100 Batch Loss:     2.074862 Tokens per Sec:    20912, Lr: 0.000004\n",
            "2020-04-12 14:38:17,133 Epoch   1 Step:   389200 Batch Loss:     1.827384 Tokens per Sec:    21191, Lr: 0.000004\n",
            "2020-04-12 14:38:22,901 Epoch   1: total training loss 9948.21\n",
            "2020-04-12 14:38:22,901 EPOCH 2\n",
            "2020-04-12 14:38:28,719 Epoch   2 Step:   389300 Batch Loss:     1.760182 Tokens per Sec:    18760, Lr: 0.000004\n",
            "2020-04-12 14:38:39,664 Epoch   2 Step:   389400 Batch Loss:     1.873315 Tokens per Sec:    21172, Lr: 0.000004\n",
            "2020-04-12 14:38:50,639 Epoch   2 Step:   389500 Batch Loss:     1.902953 Tokens per Sec:    20788, Lr: 0.000004\n",
            "2020-04-12 14:39:01,574 Epoch   2 Step:   389600 Batch Loss:     1.809665 Tokens per Sec:    21479, Lr: 0.000004\n",
            "2020-04-12 14:39:12,512 Epoch   2 Step:   389700 Batch Loss:     1.766662 Tokens per Sec:    20945, Lr: 0.000004\n",
            "2020-04-12 14:39:23,531 Epoch   2 Step:   389800 Batch Loss:     1.920965 Tokens per Sec:    21257, Lr: 0.000004\n",
            "2020-04-12 14:39:34,589 Epoch   2 Step:   389900 Batch Loss:     1.631354 Tokens per Sec:    20831, Lr: 0.000004\n",
            "2020-04-12 14:39:45,624 Epoch   2 Step:   390000 Batch Loss:     1.987037 Tokens per Sec:    21283, Lr: 0.000004\n",
            "2020-04-12 14:40:02,345 Example #0\n",
            "2020-04-12 14:40:02,346 \tSource:     He is the Source of life , the One giving it as an undeserved gift through Christ .\n",
            "2020-04-12 14:40:02,346 \tReference:  Òun ni Orísun ìyè , Ẹni tí ń fi ìyè fúnni gẹ́gẹ́ bí ẹbùn tí a kò lẹ́tọ̀ọ́ sí nípasẹ̀ Kristi .\n",
            "2020-04-12 14:40:02,346 \tHypothesis: Òun ni Orísun ìyè , Ẹni tí ń fi í fúnni gẹ́gẹ́ bí ẹ̀bùn àìlẹ́tọ̀ọ́sí nípasẹ̀ Kristi .\n",
            "2020-04-12 14:40:02,346 Example #1\n",
            "2020-04-12 14:40:02,347 \tSource:     Now I had to find a legitimate line of work .\n",
            "2020-04-12 14:40:02,347 \tReference:  Torí náà , mo ní láti wá iṣẹ́ gidi .\n",
            "2020-04-12 14:40:02,347 \tHypothesis: Ní báyìí , mo ní láti wá iṣẹ́ tó dára .\n",
            "2020-04-12 14:40:02,347 Example #2\n",
            "2020-04-12 14:40:02,348 \tSource:     Do I value material things more than my relationship with Jehovah and with people ?\n",
            "2020-04-12 14:40:02,348 \tReference:  Ṣé àwọn nǹkan tara ló jẹ mí lógún jù àbí àjọṣe mi pẹ̀lú Jèhófà àtàwọn èèyàn ?\n",
            "2020-04-12 14:40:02,348 \tHypothesis: Ǹjẹ́ mo mọyì àwọn nǹkan tara ju àjọṣe mi pẹ̀lú Jèhófà àti pẹ̀lú àwọn èèyàn lọ ?\n",
            "2020-04-12 14:40:02,348 Example #3\n",
            "2020-04-12 14:40:02,348 \tSource:     He has far more experience and stamina than you do , but he patiently walks near you .\n",
            "2020-04-12 14:40:02,348 \tReference:  Ẹni tẹ́ ẹ jọ ń lọ yìí mọ ọ̀nà yẹn dáadáa .\n",
            "2020-04-12 14:40:02,349 \tHypothesis: Ó ní ìrírí tó pọ̀ gan - an , ó sì tún ní ìrírí tó ju tìẹ lọ , àmọ́ ó fi sùúrù rìn nítòsí rẹ .\n",
            "2020-04-12 14:40:02,349 Validation result (greedy) at epoch   2, step   390000: bleu:  29.73, loss: 43157.8398, ppl:   4.2573, duration: 16.7243s\n",
            "2020-04-12 14:40:13,342 Epoch   2 Step:   390100 Batch Loss:     1.877792 Tokens per Sec:    21187, Lr: 0.000003\n",
            "2020-04-12 14:40:24,329 Epoch   2 Step:   390200 Batch Loss:     2.167672 Tokens per Sec:    21032, Lr: 0.000003\n",
            "2020-04-12 14:40:35,294 Epoch   2 Step:   390300 Batch Loss:     1.830189 Tokens per Sec:    21334, Lr: 0.000003\n",
            "2020-04-12 14:40:46,276 Epoch   2 Step:   390400 Batch Loss:     1.821566 Tokens per Sec:    21062, Lr: 0.000003\n",
            "2020-04-12 14:40:57,227 Epoch   2 Step:   390500 Batch Loss:     1.758496 Tokens per Sec:    20903, Lr: 0.000003\n",
            "2020-04-12 14:41:08,233 Epoch   2 Step:   390600 Batch Loss:     1.762770 Tokens per Sec:    21055, Lr: 0.000003\n",
            "2020-04-12 14:41:19,211 Epoch   2 Step:   390700 Batch Loss:     1.878187 Tokens per Sec:    21310, Lr: 0.000003\n",
            "2020-04-12 14:41:30,212 Epoch   2 Step:   390800 Batch Loss:     1.967181 Tokens per Sec:    21377, Lr: 0.000003\n",
            "2020-04-12 14:41:41,199 Epoch   2 Step:   390900 Batch Loss:     1.863368 Tokens per Sec:    21242, Lr: 0.000003\n",
            "2020-04-12 14:41:52,307 Epoch   2 Step:   391000 Batch Loss:     1.980855 Tokens per Sec:    20991, Lr: 0.000003\n",
            "2020-04-12 14:42:08,885 Example #0\n",
            "2020-04-12 14:42:08,885 \tSource:     He is the Source of life , the One giving it as an undeserved gift through Christ .\n",
            "2020-04-12 14:42:08,886 \tReference:  Òun ni Orísun ìyè , Ẹni tí ń fi ìyè fúnni gẹ́gẹ́ bí ẹbùn tí a kò lẹ́tọ̀ọ́ sí nípasẹ̀ Kristi .\n",
            "2020-04-12 14:42:08,886 \tHypothesis: Òun ni Orísun ìyè , Ẹni tí ń fi í fúnni gẹ́gẹ́ bí ẹ̀bùn àìlẹ́tọ̀ọ́sí nípasẹ̀ Kristi .\n",
            "2020-04-12 14:42:08,886 Example #1\n",
            "2020-04-12 14:42:08,886 \tSource:     Now I had to find a legitimate line of work .\n",
            "2020-04-12 14:42:08,886 \tReference:  Torí náà , mo ní láti wá iṣẹ́ gidi .\n",
            "2020-04-12 14:42:08,887 \tHypothesis: Ní báyìí , mo ní láti wá iṣẹ́ tó dára .\n",
            "2020-04-12 14:42:08,887 Example #2\n",
            "2020-04-12 14:42:08,887 \tSource:     Do I value material things more than my relationship with Jehovah and with people ?\n",
            "2020-04-12 14:42:08,887 \tReference:  Ṣé àwọn nǹkan tara ló jẹ mí lógún jù àbí àjọṣe mi pẹ̀lú Jèhófà àtàwọn èèyàn ?\n",
            "2020-04-12 14:42:08,887 \tHypothesis: Ǹjẹ́ mo mọyì àwọn nǹkan tara ju àjọṣe mi pẹ̀lú Jèhófà àti pẹ̀lú àwọn èèyàn lọ ?\n",
            "2020-04-12 14:42:08,887 Example #3\n",
            "2020-04-12 14:42:08,888 \tSource:     He has far more experience and stamina than you do , but he patiently walks near you .\n",
            "2020-04-12 14:42:08,888 \tReference:  Ẹni tẹ́ ẹ jọ ń lọ yìí mọ ọ̀nà yẹn dáadáa .\n",
            "2020-04-12 14:42:08,888 \tHypothesis: Ó ní ìrírí tó pọ̀ gan - an , ó sì tún ní ìrírí tó ju tìẹ lọ , àmọ́ ó fi sùúrù rìn nítòsí rẹ .\n",
            "2020-04-12 14:42:08,888 Validation result (greedy) at epoch   2, step   391000: bleu:  29.64, loss: 43197.9961, ppl:   4.2631, duration: 16.5808s\n",
            "2020-04-12 14:42:19,715 Epoch   2 Step:   391100 Batch Loss:     1.730690 Tokens per Sec:    20686, Lr: 0.000003\n",
            "2020-04-12 14:42:30,694 Epoch   2 Step:   391200 Batch Loss:     1.928249 Tokens per Sec:    21463, Lr: 0.000003\n",
            "2020-04-12 14:42:41,529 Epoch   2 Step:   391300 Batch Loss:     1.834248 Tokens per Sec:    21164, Lr: 0.000003\n",
            "2020-04-12 14:42:52,423 Epoch   2 Step:   391400 Batch Loss:     1.513258 Tokens per Sec:    21443, Lr: 0.000003\n",
            "2020-04-12 14:43:03,189 Epoch   2 Step:   391500 Batch Loss:     1.757843 Tokens per Sec:    21456, Lr: 0.000003\n",
            "2020-04-12 14:43:14,143 Epoch   2 Step:   391600 Batch Loss:     1.844177 Tokens per Sec:    21430, Lr: 0.000003\n",
            "2020-04-12 14:43:25,018 Epoch   2 Step:   391700 Batch Loss:     1.996000 Tokens per Sec:    21009, Lr: 0.000003\n",
            "2020-04-12 14:43:35,837 Epoch   2 Step:   391800 Batch Loss:     1.765452 Tokens per Sec:    21162, Lr: 0.000003\n",
            "2020-04-12 14:43:46,803 Epoch   2 Step:   391900 Batch Loss:     1.766898 Tokens per Sec:    21112, Lr: 0.000003\n",
            "2020-04-12 14:43:57,670 Epoch   2 Step:   392000 Batch Loss:     1.725068 Tokens per Sec:    21219, Lr: 0.000003\n",
            "2020-04-12 14:44:14,024 Example #0\n",
            "2020-04-12 14:44:14,025 \tSource:     He is the Source of life , the One giving it as an undeserved gift through Christ .\n",
            "2020-04-12 14:44:14,025 \tReference:  Òun ni Orísun ìyè , Ẹni tí ń fi ìyè fúnni gẹ́gẹ́ bí ẹbùn tí a kò lẹ́tọ̀ọ́ sí nípasẹ̀ Kristi .\n",
            "2020-04-12 14:44:14,025 \tHypothesis: Òun ni Orísun ìyè , Ẹni tí ń fi í fúnni gẹ́gẹ́ bí ẹ̀bùn àìlẹ́tọ̀ọ́sí nípasẹ̀ Kristi .\n",
            "2020-04-12 14:44:14,025 Example #1\n",
            "2020-04-12 14:44:14,026 \tSource:     Now I had to find a legitimate line of work .\n",
            "2020-04-12 14:44:14,026 \tReference:  Torí náà , mo ní láti wá iṣẹ́ gidi .\n",
            "2020-04-12 14:44:14,026 \tHypothesis: Ní báyìí , mo ní láti wá iṣẹ́ tó dára .\n",
            "2020-04-12 14:44:14,026 Example #2\n",
            "2020-04-12 14:44:14,026 \tSource:     Do I value material things more than my relationship with Jehovah and with people ?\n",
            "2020-04-12 14:44:14,026 \tReference:  Ṣé àwọn nǹkan tara ló jẹ mí lógún jù àbí àjọṣe mi pẹ̀lú Jèhófà àtàwọn èèyàn ?\n",
            "2020-04-12 14:44:14,027 \tHypothesis: Ǹjẹ́ mo mọyì àwọn nǹkan tara ju àjọṣe mi pẹ̀lú Jèhófà àti pẹ̀lú àwọn èèyàn lọ ?\n",
            "2020-04-12 14:44:14,027 Example #3\n",
            "2020-04-12 14:44:14,027 \tSource:     He has far more experience and stamina than you do , but he patiently walks near you .\n",
            "2020-04-12 14:44:14,027 \tReference:  Ẹni tẹ́ ẹ jọ ń lọ yìí mọ ọ̀nà yẹn dáadáa .\n",
            "2020-04-12 14:44:14,027 \tHypothesis: Ó ní ìrírí tó pọ̀ gan - an , ó sì tún ní ìrírí tó ju tìẹ lọ , àmọ́ ó fi sùúrù rìn nítòsí rẹ .\n",
            "2020-04-12 14:44:14,028 Validation result (greedy) at epoch   2, step   392000: bleu:  29.65, loss: 43272.7344, ppl:   4.2738, duration: 16.3569s\n",
            "2020-04-12 14:44:24,889 Epoch   2 Step:   392100 Batch Loss:     1.622569 Tokens per Sec:    21533, Lr: 0.000003\n",
            "2020-04-12 14:44:35,730 Epoch   2 Step:   392200 Batch Loss:     1.807818 Tokens per Sec:    21542, Lr: 0.000003\n",
            "2020-04-12 14:44:46,584 Epoch   2 Step:   392300 Batch Loss:     1.841716 Tokens per Sec:    21313, Lr: 0.000003\n",
            "2020-04-12 14:44:57,337 Epoch   2 Step:   392400 Batch Loss:     1.885677 Tokens per Sec:    20886, Lr: 0.000003\n",
            "2020-04-12 14:45:08,321 Epoch   2 Step:   392500 Batch Loss:     1.964448 Tokens per Sec:    21317, Lr: 0.000003\n",
            "2020-04-12 14:45:19,193 Epoch   2 Step:   392600 Batch Loss:     2.000385 Tokens per Sec:    21782, Lr: 0.000003\n",
            "2020-04-12 14:45:29,962 Epoch   2 Step:   392700 Batch Loss:     1.820094 Tokens per Sec:    21302, Lr: 0.000003\n",
            "2020-04-12 14:45:40,818 Epoch   2 Step:   392800 Batch Loss:     1.933245 Tokens per Sec:    21218, Lr: 0.000003\n",
            "2020-04-12 14:45:51,841 Epoch   2 Step:   392900 Batch Loss:     1.811371 Tokens per Sec:    21688, Lr: 0.000003\n",
            "2020-04-12 14:46:02,880 Epoch   2 Step:   393000 Batch Loss:     1.792009 Tokens per Sec:    20785, Lr: 0.000003\n",
            "2020-04-12 14:46:19,547 Example #0\n",
            "2020-04-12 14:46:19,548 \tSource:     He is the Source of life , the One giving it as an undeserved gift through Christ .\n",
            "2020-04-12 14:46:19,548 \tReference:  Òun ni Orísun ìyè , Ẹni tí ń fi ìyè fúnni gẹ́gẹ́ bí ẹbùn tí a kò lẹ́tọ̀ọ́ sí nípasẹ̀ Kristi .\n",
            "2020-04-12 14:46:19,548 \tHypothesis: Òun ni Orísun ìyè , Ẹni tí ń fi í fúnni gẹ́gẹ́ bí ẹ̀bùn àìlẹ́tọ̀ọ́sí nípasẹ̀ Kristi .\n",
            "2020-04-12 14:46:19,548 Example #1\n",
            "2020-04-12 14:46:19,548 \tSource:     Now I had to find a legitimate line of work .\n",
            "2020-04-12 14:46:19,549 \tReference:  Torí náà , mo ní láti wá iṣẹ́ gidi .\n",
            "2020-04-12 14:46:19,549 \tHypothesis: Ní báyìí , mo ní láti wá iṣẹ́ tó dára .\n",
            "2020-04-12 14:46:19,549 Example #2\n",
            "2020-04-12 14:46:19,549 \tSource:     Do I value material things more than my relationship with Jehovah and with people ?\n",
            "2020-04-12 14:46:19,550 \tReference:  Ṣé àwọn nǹkan tara ló jẹ mí lógún jù àbí àjọṣe mi pẹ̀lú Jèhófà àtàwọn èèyàn ?\n",
            "2020-04-12 14:46:19,550 \tHypothesis: Ǹjẹ́ mo mọyì àwọn nǹkan tara ju àjọṣe mi pẹ̀lú Jèhófà àti pẹ̀lú àwọn èèyàn lọ ?\n",
            "2020-04-12 14:46:19,550 Example #3\n",
            "2020-04-12 14:46:19,550 \tSource:     He has far more experience and stamina than you do , but he patiently walks near you .\n",
            "2020-04-12 14:46:19,550 \tReference:  Ẹni tẹ́ ẹ jọ ń lọ yìí mọ ọ̀nà yẹn dáadáa .\n",
            "2020-04-12 14:46:19,551 \tHypothesis: Ó ní ìrírí tó pọ̀ gan - an , ó sì tún ní ìrírí tó ju tìẹ lọ , àmọ́ ó fi sùúrù rìn nítòsí rẹ .\n",
            "2020-04-12 14:46:19,551 Validation result (greedy) at epoch   2, step   393000: bleu:  29.67, loss: 43318.9180, ppl:   4.2804, duration: 16.6700s\n",
            "2020-04-12 14:46:30,459 Epoch   2 Step:   393100 Batch Loss:     2.018415 Tokens per Sec:    21103, Lr: 0.000003\n",
            "2020-04-12 14:46:41,361 Epoch   2 Step:   393200 Batch Loss:     1.778643 Tokens per Sec:    21226, Lr: 0.000003\n",
            "2020-04-12 14:46:52,245 Epoch   2 Step:   393300 Batch Loss:     1.754664 Tokens per Sec:    21062, Lr: 0.000003\n",
            "2020-04-12 14:47:03,210 Epoch   2 Step:   393400 Batch Loss:     1.905242 Tokens per Sec:    20484, Lr: 0.000003\n",
            "2020-04-12 14:47:14,073 Epoch   2 Step:   393500 Batch Loss:     1.560444 Tokens per Sec:    21002, Lr: 0.000003\n",
            "2020-04-12 14:47:24,945 Epoch   2 Step:   393600 Batch Loss:     1.909894 Tokens per Sec:    21049, Lr: 0.000003\n",
            "2020-04-12 14:47:35,814 Epoch   2 Step:   393700 Batch Loss:     1.815693 Tokens per Sec:    21220, Lr: 0.000003\n",
            "2020-04-12 14:47:46,909 Epoch   2 Step:   393800 Batch Loss:     1.723883 Tokens per Sec:    20311, Lr: 0.000003\n",
            "2020-04-12 14:47:58,384 Epoch   2 Step:   393900 Batch Loss:     1.734728 Tokens per Sec:    21223, Lr: 0.000003\n",
            "2020-04-12 14:48:09,625 Epoch   2 Step:   394000 Batch Loss:     1.688648 Tokens per Sec:    20607, Lr: 0.000003\n",
            "2020-04-12 14:48:26,520 Example #0\n",
            "2020-04-12 14:48:26,521 \tSource:     He is the Source of life , the One giving it as an undeserved gift through Christ .\n",
            "2020-04-12 14:48:26,521 \tReference:  Òun ni Orísun ìyè , Ẹni tí ń fi ìyè fúnni gẹ́gẹ́ bí ẹbùn tí a kò lẹ́tọ̀ọ́ sí nípasẹ̀ Kristi .\n",
            "2020-04-12 14:48:26,521 \tHypothesis: Òun ni Orísun ìyè , Ẹni tí ń fi í fúnni gẹ́gẹ́ bí ẹ̀bùn àìlẹ́tọ̀ọ́sí nípasẹ̀ Kristi .\n",
            "2020-04-12 14:48:26,521 Example #1\n",
            "2020-04-12 14:48:26,522 \tSource:     Now I had to find a legitimate line of work .\n",
            "2020-04-12 14:48:26,522 \tReference:  Torí náà , mo ní láti wá iṣẹ́ gidi .\n",
            "2020-04-12 14:48:26,522 \tHypothesis: Ní báyìí , mo ní láti wá iṣẹ́ tó dára .\n",
            "2020-04-12 14:48:26,522 Example #2\n",
            "2020-04-12 14:48:26,522 \tSource:     Do I value material things more than my relationship with Jehovah and with people ?\n",
            "2020-04-12 14:48:26,523 \tReference:  Ṣé àwọn nǹkan tara ló jẹ mí lógún jù àbí àjọṣe mi pẹ̀lú Jèhófà àtàwọn èèyàn ?\n",
            "2020-04-12 14:48:26,523 \tHypothesis: Ǹjẹ́ mo mọyì àwọn nǹkan tara ju àjọṣe mi pẹ̀lú Jèhófà àti pẹ̀lú àwọn èèyàn lọ ?\n",
            "2020-04-12 14:48:26,523 Example #3\n",
            "2020-04-12 14:48:26,523 \tSource:     He has far more experience and stamina than you do , but he patiently walks near you .\n",
            "2020-04-12 14:48:26,523 \tReference:  Ẹni tẹ́ ẹ jọ ń lọ yìí mọ ọ̀nà yẹn dáadáa .\n",
            "2020-04-12 14:48:26,523 \tHypothesis: Ó ní ìrírí tó pọ̀ gan - an , ó sì tún ní ìrírí tó ju tìẹ lọ , àmọ́ ó fi sùúrù rìn nítòsí rẹ .\n",
            "2020-04-12 14:48:26,524 Validation result (greedy) at epoch   2, step   394000: bleu:  29.73, loss: 43349.5234, ppl:   4.2848, duration: 16.8980s\n",
            "2020-04-12 14:48:37,605 Epoch   2 Step:   394100 Batch Loss:     1.800462 Tokens per Sec:    20434, Lr: 0.000003\n",
            "2020-04-12 14:48:48,705 Epoch   2 Step:   394200 Batch Loss:     1.878787 Tokens per Sec:    20894, Lr: 0.000003\n",
            "2020-04-12 14:48:59,810 Epoch   2 Step:   394300 Batch Loss:     1.908489 Tokens per Sec:    20646, Lr: 0.000003\n",
            "2020-04-12 14:49:10,987 Epoch   2 Step:   394400 Batch Loss:     1.732751 Tokens per Sec:    20868, Lr: 0.000003\n",
            "2020-04-12 14:49:21,863 Epoch   2 Step:   394500 Batch Loss:     1.677493 Tokens per Sec:    20701, Lr: 0.000003\n",
            "2020-04-12 14:49:21,877 Epoch   2: total training loss 9712.73\n",
            "2020-04-12 14:49:21,878 Training ended after   2 epochs.\n",
            "2020-04-12 14:49:21,878 Best validation result (greedy) at step   384000:   3.72 ppl.\n",
            "2020-04-12 14:49:53,303  dev bleu:  31.03 [Beam search decoding with beam size = 5 and alpha = 1.0]\n",
            "2020-04-12 14:49:53,328 Translations saved to: /content/drive/My Drive/masakhane/model-temp/00384000.hyps.dev\n",
            "2020-04-12 14:50:31,869 test bleu:  38.62 [Beam search decoding with beam size = 5 and alpha = 1.0]\n",
            "2020-04-12 14:50:31,876 Translations saved to: /content/drive/My Drive/masakhane/model-temp/00384000.hyps.test\n"
          ],
          "name": "stdout"
        }
      ]
    },
    {
      "cell_type": "code",
      "metadata": {
        "colab_type": "code",
        "id": "MBoDS09JM807",
        "colab": {}
      },
      "source": [
        "# Copy the created models from the temporary storage to main storage on google drive for persistant storage \n",
        "!cp -r \"/content/drive/My Drive/masakhane/model-temp/\"* \"$gdrive_path/models/${src}${tgt}_transformer/\""
      ],
      "execution_count": 0,
      "outputs": []
    },
    {
      "cell_type": "code",
      "metadata": {
        "colab_type": "code",
        "id": "n94wlrCjVc17",
        "outputId": "90442631-4be7-4089-ac2d-18119a640d17",
        "colab": {
          "base_uri": "https://localhost:8080/",
          "height": 197
        }
      },
      "source": [
        "# Output our validation accuracy\n",
        "! cat \"$gdrive_path/models/${src}${tgt}_transformer/validations.txt\""
      ],
      "execution_count": 0,
      "outputs": [
        {
          "output_type": "stream",
          "text": [
            "Steps: 385000\tLoss: 41967.25391\tPPL: 4.09053\tbleu: 30.03572\tLR: 0.00000415\t\n",
            "Steps: 386000\tLoss: 42548.08594\tPPL: 4.17107\tbleu: 29.91872\tLR: 0.00000415\t\n",
            "Steps: 387000\tLoss: 42807.03906\tPPL: 4.20748\tbleu: 29.87333\tLR: 0.00000415\t\n",
            "Steps: 388000\tLoss: 42958.75781\tPPL: 4.22896\tbleu: 29.81204\tLR: 0.00000415\t\n",
            "Steps: 389000\tLoss: 43055.49609\tPPL: 4.24271\tbleu: 29.80630\tLR: 0.00000415\t\n",
            "Steps: 390000\tLoss: 43157.83984\tPPL: 4.25731\tbleu: 29.72661\tLR: 0.00000291\t\n",
            "Steps: 391000\tLoss: 43197.99609\tPPL: 4.26306\tbleu: 29.64012\tLR: 0.00000291\t\n",
            "Steps: 392000\tLoss: 43272.73438\tPPL: 4.27376\tbleu: 29.64561\tLR: 0.00000291\t\n",
            "Steps: 393000\tLoss: 43318.91797\tPPL: 4.28040\tbleu: 29.66845\tLR: 0.00000291\t\n",
            "Steps: 394000\tLoss: 43349.52344\tPPL: 4.28479\tbleu: 29.72774\tLR: 0.00000291\t\n"
          ],
          "name": "stdout"
        }
      ]
    },
    {
      "cell_type": "code",
      "metadata": {
        "colab_type": "code",
        "id": "66WhRE9lIhoD",
        "outputId": "16aacfc5-552a-4b2c-c264-198ac5b1d7a7",
        "colab": {
          "base_uri": "https://localhost:8080/",
          "height": 71
        }
      },
      "source": [
        "# Test our model\n",
        "! cd joeynmt; python3 -m joeynmt test \"$gdrive_path/models/${src}${tgt}_transformer/config.yaml\""
      ],
      "execution_count": 0,
      "outputs": [
        {
          "output_type": "stream",
          "text": [
            "2020-04-12 14:54:41,810 Hello! This is Joey-NMT.\n",
            "2020-04-12 14:55:15,182  dev bleu:  31.03 [Beam search decoding with beam size = 5 and alpha = 1.0]\n",
            "2020-04-12 14:55:53,503 test bleu:  38.62 [Beam search decoding with beam size = 5 and alpha = 1.0]\n"
          ],
          "name": "stdout"
        }
      ]
    },
    {
      "cell_type": "code",
      "metadata": {
        "id": "KaXDFfm-zgjK",
        "colab_type": "code",
        "colab": {}
      },
      "source": [
        ""
      ],
      "execution_count": 0,
      "outputs": []
    }
  ]
}