File size: 147,169 Bytes
78aa4ee |
1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27 28 29 30 31 32 33 34 35 36 37 38 39 40 41 42 43 44 45 46 47 48 49 50 51 52 53 54 55 56 57 58 59 60 61 62 63 64 65 66 67 68 69 70 71 72 73 74 75 76 77 78 79 80 81 82 83 84 85 86 87 88 89 90 91 92 93 94 95 96 97 98 99 100 101 102 103 104 105 106 107 108 109 110 111 112 113 114 115 116 117 118 119 120 121 122 123 124 125 126 127 128 129 130 131 132 133 134 135 136 137 138 139 140 141 142 143 144 145 146 147 148 149 150 151 152 153 154 155 156 157 158 159 160 161 162 163 164 165 166 167 168 169 170 171 172 173 174 175 176 177 178 179 180 181 182 183 184 185 186 187 188 189 190 191 192 193 194 195 196 197 198 199 200 201 202 203 204 205 206 207 208 209 210 211 212 213 214 215 216 217 218 219 220 221 222 223 224 225 226 227 228 229 230 231 232 233 234 235 236 237 238 239 240 241 242 243 244 245 246 247 248 249 250 251 252 253 254 255 256 257 258 259 260 261 262 263 264 265 266 267 268 269 270 271 272 273 274 275 276 277 278 279 280 281 282 283 284 285 286 287 288 289 290 291 292 293 294 295 296 297 298 299 300 301 302 303 304 305 306 307 308 309 310 311 312 313 314 315 316 317 318 319 320 321 322 323 324 325 326 327 328 329 330 331 332 333 334 335 336 337 338 339 340 341 342 343 344 345 346 347 348 349 350 351 352 353 354 355 356 357 358 359 360 361 362 363 364 365 366 367 368 369 370 371 372 373 374 375 376 377 378 379 380 381 382 383 384 385 386 387 388 389 390 391 392 393 394 395 396 397 398 399 400 401 402 403 404 405 406 407 408 409 410 411 412 413 414 415 416 417 418 419 420 421 422 423 424 425 426 427 428 429 430 431 432 433 434 435 436 437 438 439 440 441 442 443 444 445 446 447 448 449 450 451 452 453 454 455 456 457 458 459 460 461 462 463 464 465 466 467 468 469 470 471 472 473 474 475 476 477 478 479 480 481 482 483 484 485 486 487 488 489 490 491 492 493 494 495 496 497 498 499 500 501 502 503 504 505 506 507 508 509 510 511 512 513 514 515 516 517 518 519 520 521 522 523 524 525 526 527 528 529 530 531 532 533 534 535 536 537 538 539 540 541 542 543 544 545 546 547 548 549 550 551 552 553 554 555 556 557 558 559 560 561 562 563 564 565 566 567 568 569 570 571 572 573 574 575 576 577 578 579 580 581 582 583 584 585 586 587 588 589 590 591 592 593 594 595 596 597 598 599 600 601 602 603 604 605 606 607 608 609 610 611 612 613 614 615 616 617 618 619 620 621 622 623 624 625 626 627 628 629 630 631 632 633 634 635 636 637 638 639 640 641 642 643 644 645 646 647 648 649 650 651 652 653 654 655 656 657 658 659 660 661 662 663 664 665 666 667 668 669 670 671 672 673 674 675 676 677 678 679 680 681 682 683 684 685 686 687 688 689 690 691 692 693 694 695 696 697 698 699 700 701 702 703 704 705 706 707 708 709 710 711 712 713 714 715 716 717 718 719 720 721 722 723 724 725 726 727 728 729 730 731 732 733 734 735 736 737 738 739 740 741 742 743 744 745 746 747 748 749 750 751 752 753 754 755 756 757 758 759 760 761 762 763 764 765 766 767 768 769 770 771 772 773 774 775 776 777 778 779 780 781 782 783 784 785 786 787 788 789 790 791 792 793 794 795 796 797 798 799 800 801 802 803 804 805 806 807 808 809 810 811 812 813 814 815 816 817 818 819 820 821 822 823 824 825 826 827 828 829 830 831 832 833 834 835 836 837 838 839 840 841 842 843 844 845 846 847 848 849 850 851 852 853 854 855 856 857 858 859 860 861 862 863 864 865 866 867 868 869 870 871 872 873 874 875 876 877 878 879 880 881 882 883 884 885 886 887 888 889 890 891 892 893 894 895 896 897 898 899 900 901 902 903 904 905 906 907 908 909 910 911 912 913 914 915 916 917 918 919 920 921 922 923 924 925 926 927 928 929 930 931 932 933 934 935 936 937 938 939 940 941 942 943 944 945 946 947 948 949 950 951 952 953 954 955 956 957 958 959 960 961 962 963 964 965 966 967 968 969 970 971 972 973 974 975 976 977 978 979 980 981 982 983 984 985 986 987 988 989 990 991 992 993 994 995 996 997 998 999 1000 1001 1002 1003 1004 1005 1006 1007 1008 1009 1010 1011 1012 1013 1014 1015 1016 1017 1018 1019 1020 1021 1022 1023 1024 1025 1026 1027 1028 1029 1030 1031 1032 1033 1034 1035 1036 1037 1038 1039 1040 1041 1042 1043 1044 1045 1046 1047 1048 1049 1050 1051 1052 1053 1054 1055 1056 1057 1058 1059 1060 1061 1062 1063 1064 1065 1066 1067 1068 1069 1070 1071 1072 1073 1074 1075 1076 1077 1078 1079 1080 1081 1082 1083 1084 1085 1086 1087 1088 1089 1090 1091 1092 1093 1094 1095 1096 1097 1098 1099 1100 1101 1102 1103 1104 1105 1106 1107 1108 1109 1110 1111 1112 1113 1114 1115 1116 1117 1118 1119 1120 1121 1122 1123 1124 1125 1126 1127 1128 1129 1130 1131 1132 1133 1134 1135 1136 1137 1138 1139 1140 1141 1142 1143 1144 1145 1146 1147 1148 1149 1150 1151 1152 1153 1154 1155 1156 1157 1158 1159 1160 1161 1162 1163 1164 1165 1166 1167 1168 1169 1170 1171 1172 1173 1174 1175 1176 1177 1178 1179 1180 1181 1182 1183 1184 1185 1186 1187 1188 1189 1190 1191 1192 1193 1194 1195 1196 1197 1198 1199 1200 1201 1202 1203 1204 1205 1206 1207 1208 1209 1210 1211 1212 1213 1214 1215 1216 1217 1218 1219 1220 1221 1222 1223 1224 1225 1226 1227 1228 1229 1230 1231 1232 1233 1234 1235 1236 1237 1238 1239 1240 1241 1242 1243 1244 1245 1246 1247 1248 1249 1250 1251 1252 1253 1254 1255 1256 1257 1258 1259 1260 1261 1262 1263 1264 1265 1266 1267 1268 1269 1270 1271 1272 1273 1274 1275 1276 1277 1278 1279 1280 1281 1282 1283 1284 1285 1286 1287 1288 1289 1290 1291 1292 1293 1294 1295 1296 1297 1298 1299 1300 1301 1302 1303 1304 1305 1306 1307 1308 1309 1310 1311 1312 1313 1314 1315 1316 1317 1318 1319 1320 1321 1322 1323 1324 1325 1326 1327 1328 1329 1330 1331 1332 1333 1334 1335 1336 1337 1338 1339 1340 1341 1342 1343 1344 1345 1346 1347 1348 1349 1350 1351 1352 1353 1354 1355 1356 1357 1358 1359 1360 1361 1362 1363 1364 1365 1366 1367 1368 1369 1370 1371 1372 1373 1374 1375 1376 1377 1378 1379 1380 1381 1382 1383 1384 1385 1386 1387 1388 1389 1390 1391 1392 1393 1394 1395 1396 1397 1398 1399 1400 1401 1402 1403 1404 1405 1406 1407 1408 1409 1410 1411 1412 1413 1414 1415 1416 1417 1418 1419 1420 1421 1422 1423 1424 1425 1426 1427 1428 1429 1430 1431 1432 1433 1434 1435 1436 1437 1438 1439 1440 1441 1442 1443 1444 1445 1446 1447 1448 1449 1450 1451 1452 1453 1454 1455 1456 1457 1458 1459 1460 1461 1462 1463 1464 1465 1466 1467 1468 1469 1470 1471 1472 1473 1474 1475 1476 1477 1478 1479 1480 1481 1482 1483 1484 1485 1486 1487 1488 1489 1490 1491 1492 1493 1494 1495 1496 1497 1498 1499 1500 1501 1502 1503 1504 1505 1506 1507 1508 1509 1510 1511 1512 1513 1514 1515 1516 1517 1518 1519 1520 1521 1522 1523 1524 1525 1526 1527 1528 1529 1530 1531 1532 1533 1534 1535 1536 1537 1538 1539 1540 1541 1542 1543 1544 1545 1546 1547 1548 1549 1550 1551 1552 1553 1554 1555 1556 1557 1558 1559 1560 1561 1562 1563 1564 1565 1566 1567 1568 1569 1570 1571 1572 1573 1574 1575 1576 1577 1578 1579 1580 1581 1582 1583 1584 1585 1586 1587 1588 1589 1590 1591 1592 1593 1594 1595 1596 1597 1598 1599 1600 1601 1602 1603 1604 1605 1606 1607 1608 1609 1610 1611 1612 1613 1614 1615 1616 1617 1618 1619 1620 1621 1622 1623 1624 1625 1626 1627 1628 1629 1630 1631 1632 1633 1634 1635 1636 1637 1638 1639 1640 1641 1642 1643 1644 1645 1646 1647 1648 1649 1650 1651 1652 1653 1654 1655 1656 1657 1658 1659 1660 1661 1662 1663 1664 1665 1666 1667 1668 1669 1670 1671 1672 1673 1674 1675 1676 1677 1678 1679 1680 1681 1682 1683 1684 1685 1686 1687 1688 1689 1690 1691 1692 1693 1694 1695 1696 1697 1698 1699 1700 1701 1702 1703 1704 1705 1706 1707 1708 1709 1710 1711 1712 1713 1714 1715 1716 1717 1718 1719 1720 1721 1722 1723 1724 1725 1726 1727 1728 1729 1730 1731 1732 1733 1734 1735 1736 1737 1738 1739 1740 1741 1742 1743 1744 1745 1746 1747 1748 1749 1750 1751 1752 1753 1754 1755 1756 1757 1758 1759 1760 1761 1762 1763 1764 1765 1766 1767 1768 1769 1770 1771 1772 1773 1774 1775 1776 1777 1778 1779 1780 1781 1782 1783 1784 1785 1786 1787 1788 1789 1790 1791 1792 1793 1794 1795 1796 1797 1798 1799 1800 1801 1802 1803 1804 1805 1806 1807 1808 1809 1810 1811 1812 1813 1814 1815 1816 1817 1818 1819 1820 1821 1822 1823 1824 1825 1826 1827 1828 1829 1830 1831 1832 1833 1834 1835 1836 1837 1838 1839 1840 1841 1842 1843 1844 1845 1846 1847 1848 1849 1850 1851 1852 1853 1854 1855 1856 1857 1858 1859 1860 1861 1862 1863 1864 1865 1866 1867 1868 1869 1870 1871 1872 1873 1874 1875 1876 1877 1878 1879 1880 1881 1882 1883 1884 1885 1886 1887 1888 1889 1890 1891 1892 1893 1894 1895 1896 1897 1898 1899 1900 1901 1902 1903 1904 1905 1906 1907 1908 1909 1910 1911 1912 1913 1914 1915 1916 1917 1918 1919 1920 1921 1922 1923 1924 1925 1926 1927 1928 1929 1930 1931 1932 1933 1934 1935 1936 1937 1938 1939 1940 1941 1942 1943 1944 1945 1946 1947 1948 1949 1950 1951 1952 1953 1954 1955 1956 1957 1958 1959 1960 1961 1962 1963 1964 1965 1966 1967 1968 1969 1970 1971 1972 1973 1974 1975 1976 1977 1978 1979 1980 1981 1982 1983 1984 1985 1986 1987 1988 1989 1990 1991 1992 1993 1994 1995 1996 1997 1998 1999 2000 2001 2002 2003 2004 2005 2006 2007 2008 2009 2010 2011 2012 2013 2014 2015 2016 2017 2018 2019 2020 2021 2022 2023 2024 2025 2026 2027 2028 2029 2030 2031 2032 2033 2034 2035 2036 2037 2038 2039 2040 2041 2042 2043 2044 2045 2046 2047 2048 2049 2050 2051 2052 2053 2054 2055 2056 2057 2058 2059 2060 2061 2062 2063 2064 2065 2066 2067 2068 2069 2070 2071 2072 2073 2074 2075 2076 2077 2078 2079 2080 2081 2082 2083 2084 2085 2086 2087 2088 2089 2090 2091 2092 2093 2094 2095 2096 2097 2098 2099 2100 2101 2102 2103 2104 2105 2106 2107 2108 2109 2110 2111 2112 2113 2114 2115 2116 2117 2118 2119 2120 2121 2122 2123 2124 2125 2126 2127 2128 2129 2130 2131 2132 2133 2134 2135 2136 2137 2138 2139 2140 2141 2142 2143 2144 2145 2146 2147 2148 2149 2150 2151 2152 2153 2154 2155 2156 2157 2158 2159 2160 2161 2162 2163 2164 2165 2166 2167 2168 2169 2170 2171 2172 2173 2174 2175 2176 2177 2178 2179 2180 2181 2182 2183 2184 2185 2186 2187 2188 2189 2190 2191 2192 2193 2194 2195 2196 2197 2198 2199 2200 2201 2202 2203 2204 2205 2206 2207 2208 2209 2210 2211 2212 2213 2214 2215 2216 2217 2218 2219 2220 2221 2222 2223 2224 2225 2226 2227 2228 2229 2230 2231 2232 2233 2234 2235 2236 2237 2238 2239 2240 2241 2242 2243 2244 2245 2246 2247 2248 2249 2250 2251 2252 2253 2254 2255 2256 2257 2258 2259 2260 2261 2262 2263 2264 2265 2266 2267 2268 2269 2270 2271 2272 2273 2274 2275 2276 2277 2278 2279 2280 2281 2282 2283 2284 2285 2286 2287 2288 2289 2290 2291 2292 2293 2294 2295 2296 2297 2298 2299 2300 2301 2302 2303 2304 2305 2306 2307 2308 2309 2310 2311 2312 2313 2314 2315 2316 2317 2318 2319 2320 2321 2322 2323 2324 2325 2326 2327 2328 2329 2330 2331 2332 2333 2334 2335 2336 2337 2338 2339 2340 2341 2342 2343 2344 2345 2346 2347 2348 2349 2350 2351 2352 2353 2354 2355 2356 2357 2358 2359 2360 2361 2362 2363 2364 2365 2366 2367 2368 2369 2370 2371 2372 2373 2374 2375 2376 2377 2378 2379 2380 2381 2382 2383 2384 2385 2386 2387 2388 2389 2390 2391 2392 2393 2394 2395 2396 2397 2398 2399 2400 2401 2402 2403 2404 2405 2406 2407 2408 2409 2410 2411 2412 2413 2414 2415 2416 2417 2418 2419 2420 2421 2422 2423 2424 2425 |
{
"nbformat": 4,
"nbformat_minor": 0,
"metadata": {
"colab": {
"name": "ari_en_nso_JW300.ipynb",
"provenance": [],
"collapsed_sections": [
"1bM3_Zn34LGu"
],
"toc_visible": true
},
"kernelspec": {
"name": "python3",
"display_name": "Python 3"
},
"accelerator": "GPU"
},
"cells": [
{
"cell_type": "markdown",
"metadata": {
"id": "HlK7-onojaYL",
"colab_type": "text"
},
"source": [
"# <center>Masakhane - Machine Translation for African Languages (Using JoeyNMT)</center>\n",
"## <leftalign> Author : Ari Ramkilowan</leftalign>\n",
"## <leftalign> Language Pair : English - Sepedi</leftalign>\n",
"## <leftalign> Corpus : JW300 </leftalign>"
]
},
{
"cell_type": "markdown",
"metadata": {
"id": "rIzB5Yo6nugf",
"colab_type": "text"
},
"source": [
"<hr>"
]
},
{
"cell_type": "markdown",
"metadata": {
"id": "jPmely-suPXt",
"colab_type": "text"
},
"source": [
"## Install JoeyNMT"
]
},
{
"cell_type": "code",
"metadata": {
"id": "K00EyOQ3ubNH",
"colab_type": "code",
"outputId": "cd78988b-26d5-480c-c09b-1abfd9e7a37f",
"colab": {
"base_uri": "https://localhost:8080/",
"height": 1000
}
},
"source": [
"! git clone https://github.com/joeynmt/joeynmt.git\n",
"! cd joeynmt; pip3 install ."
],
"execution_count": 1,
"outputs": [
{
"output_type": "stream",
"text": [
"Cloning into 'joeynmt'...\n",
"remote: Enumerating objects: 149, done.\u001b[K\n",
"remote: Counting objects: 0% (1/149)\u001b[K\rremote: Counting objects: 1% (2/149)\u001b[K\rremote: Counting objects: 2% (3/149)\u001b[K\rremote: Counting objects: 3% (5/149)\u001b[K\rremote: Counting objects: 4% (6/149)\u001b[K\rremote: Counting objects: 5% (8/149)\u001b[K\rremote: Counting objects: 6% (9/149)\u001b[K\rremote: Counting objects: 7% (11/149)\u001b[K\rremote: Counting objects: 8% (12/149)\u001b[K\rremote: Counting objects: 9% (14/149)\u001b[K\rremote: Counting objects: 10% (15/149)\u001b[K\rremote: Counting objects: 11% (17/149)\u001b[K\rremote: Counting objects: 12% (18/149)\u001b[K\rremote: Counting objects: 13% (20/149)\u001b[K\rremote: Counting objects: 14% (21/149)\u001b[K\rremote: Counting objects: 15% (23/149)\u001b[K\rremote: Counting objects: 16% (24/149)\u001b[K\rremote: Counting objects: 17% (26/149)\u001b[K\rremote: Counting objects: 18% (27/149)\u001b[K\rremote: Counting objects: 19% (29/149)\u001b[K\rremote: Counting objects: 20% (30/149)\u001b[K\rremote: Counting objects: 21% (32/149)\u001b[K\rremote: Counting objects: 22% (33/149)\u001b[K\rremote: Counting objects: 23% (35/149)\u001b[K\rremote: Counting objects: 24% (36/149)\u001b[K\rremote: Counting objects: 25% (38/149)\u001b[K\rremote: Counting objects: 26% (39/149)\u001b[K\rremote: Counting objects: 27% (41/149)\u001b[K\rremote: Counting objects: 28% (42/149)\u001b[K\rremote: Counting objects: 29% (44/149)\u001b[K\rremote: Counting objects: 30% (45/149)\u001b[K\rremote: Counting objects: 31% (47/149)\u001b[K\rremote: Counting objects: 32% (48/149)\u001b[K\rremote: Counting objects: 33% (50/149)\u001b[K\rremote: Counting objects: 34% (51/149)\u001b[K\rremote: Counting objects: 35% (53/149)\u001b[K\rremote: Counting objects: 36% (54/149)\u001b[K\rremote: Counting objects: 37% (56/149)\u001b[K\rremote: Counting objects: 38% (57/149)\u001b[K\rremote: Counting objects: 39% (59/149)\u001b[K\rremote: Counting objects: 40% (60/149)\u001b[K\rremote: Counting objects: 41% (62/149)\u001b[K\rremote: Counting objects: 42% (63/149)\u001b[K\rremote: Counting objects: 43% (65/149)\u001b[K\rremote: Counting objects: 44% (66/149)\u001b[K\rremote: Counting objects: 45% (68/149)\u001b[K\rremote: Counting objects: 46% (69/149)\u001b[K\rremote: Counting objects: 47% (71/149)\u001b[K\rremote: Counting objects: 48% (72/149)\u001b[K\rremote: Counting objects: 49% (74/149)\u001b[K\rremote: Counting objects: 50% (75/149)\u001b[K\rremote: Counting objects: 51% (76/149)\u001b[K\rremote: Counting objects: 52% (78/149)\u001b[K\rremote: Counting objects: 53% (79/149)\u001b[K\rremote: Counting objects: 54% (81/149)\u001b[K\rremote: Counting objects: 55% (82/149)\u001b[K\rremote: Counting objects: 56% (84/149)\u001b[K\rremote: Counting objects: 57% (85/149)\u001b[K\rremote: Counting objects: 58% (87/149)\u001b[K\rremote: Counting objects: 59% (88/149)\u001b[K\rremote: Counting objects: 60% (90/149)\u001b[K\rremote: Counting objects: 61% (91/149)\u001b[K\rremote: Counting objects: 62% (93/149)\u001b[K\rremote: Counting objects: 63% (94/149)\u001b[K\rremote: Counting objects: 64% (96/149)\u001b[K\rremote: Counting objects: 65% (97/149)\u001b[K\rremote: Counting objects: 66% (99/149)\u001b[K\rremote: Counting objects: 67% (100/149)\u001b[K\rremote: Counting objects: 68% (102/149)\u001b[K\rremote: Counting objects: 69% (103/149)\u001b[K\rremote: Counting objects: 70% (105/149)\u001b[K\rremote: Counting objects: 71% (106/149)\u001b[K\rremote: Counting objects: 72% (108/149)\u001b[K\rremote: Counting objects: 73% (109/149)\u001b[K\rremote: Counting objects: 74% (111/149)\u001b[K\rremote: Counting objects: 75% (112/149)\u001b[K\rremote: Counting objects: 76% (114/149)\u001b[K\rremote: Counting objects: 77% (115/149)\u001b[K\rremote: Counting objects: 78% (117/149)\u001b[K\rremote: Counting objects: 79% (118/149)\u001b[K\rremote: Counting objects: 80% (120/149)\u001b[K\rremote: Counting objects: 81% (121/149)\u001b[K\rremote: Counting objects: 82% (123/149)\u001b[K\rremote: Counting objects: 83% (124/149)\u001b[K\rremote: Counting objects: 84% (126/149)\u001b[K\rremote: Counting objects: 85% (127/149)\u001b[K\rremote: Counting objects: 86% (129/149)\u001b[K\rremote: Counting objects: 87% (130/149)\u001b[K\rremote: Counting objects: 88% (132/149)\u001b[K\rremote: Counting objects: 89% (133/149)\u001b[K\rremote: Counting objects: 90% (135/149)\u001b[K\rremote: Counting objects: 91% (136/149)\u001b[K\rremote: Counting objects: 92% (138/149)\u001b[K\rremote: Counting objects: 93% (139/149)\u001b[K\rremote: Counting objects: 94% (141/149)\u001b[K\rremote: Counting objects: 95% (142/149)\u001b[K\rremote: Counting objects: 96% (144/149)\u001b[K\rremote: Counting objects: 97% (145/149)\u001b[K\rremote: Counting objects: 98% (147/149)\u001b[K\rremote: Counting objects: 99% (148/149)\u001b[K\rremote: Counting objects: 100% (149/149)\u001b[K\rremote: Counting objects: 100% (149/149), done.\u001b[K\n",
"remote: Compressing objects: 0% (1/104)\u001b[K\rremote: Compressing objects: 1% (2/104)\u001b[K\rremote: Compressing objects: 2% (3/104)\u001b[K\rremote: Compressing objects: 3% (4/104)\u001b[K\rremote: Compressing objects: 4% (5/104)\u001b[K\rremote: Compressing objects: 5% (6/104)\u001b[K\rremote: Compressing objects: 6% (7/104)\u001b[K\rremote: Compressing objects: 7% (8/104)\u001b[K\rremote: Compressing objects: 8% (9/104)\u001b[K\rremote: Compressing objects: 9% (10/104)\u001b[K\rremote: Compressing objects: 10% (11/104)\u001b[K\rremote: Compressing objects: 11% (12/104)\u001b[K\rremote: Compressing objects: 12% (13/104)\u001b[K\rremote: Compressing objects: 13% (14/104)\u001b[K\rremote: Compressing objects: 14% (15/104)\u001b[K\rremote: Compressing objects: 15% (16/104)\u001b[K\rremote: Compressing objects: 16% (17/104)\u001b[K\rremote: Compressing objects: 17% (18/104)\u001b[K\rremote: Compressing objects: 18% (19/104)\u001b[K\rremote: Compressing objects: 19% (20/104)\u001b[K\rremote: Compressing objects: 20% (21/104)\u001b[K\rremote: Compressing objects: 21% (22/104)\u001b[K\rremote: Compressing objects: 22% (23/104)\u001b[K\rremote: Compressing objects: 23% (24/104)\u001b[K\rremote: Compressing objects: 24% (25/104)\u001b[K\rremote: Compressing objects: 25% (26/104)\u001b[K\rremote: Compressing objects: 26% (28/104)\u001b[K\rremote: Compressing objects: 27% (29/104)\u001b[K\rremote: Compressing objects: 28% (30/104)\u001b[K\rremote: Compressing objects: 29% (31/104)\u001b[K\rremote: Compressing objects: 30% (32/104)\u001b[K\rremote: Compressing objects: 31% (33/104)\u001b[K\rremote: Compressing objects: 32% (34/104)\u001b[K\rremote: Compressing objects: 33% (35/104)\u001b[K\rremote: Compressing objects: 34% (36/104)\u001b[K\rremote: Compressing objects: 35% (37/104)\u001b[K\rremote: Compressing objects: 36% (38/104)\u001b[K\rremote: Compressing objects: 37% (39/104)\u001b[K\rremote: Compressing objects: 38% (40/104)\u001b[K\rremote: Compressing objects: 39% (41/104)\u001b[K\rremote: Compressing objects: 40% (42/104)\u001b[K\rremote: Compressing objects: 41% (43/104)\u001b[K\rremote: Compressing objects: 42% (44/104)\u001b[K\rremote: Compressing objects: 43% (45/104)\u001b[K\rremote: Compressing objects: 44% (46/104)\u001b[K\rremote: Compressing objects: 45% (47/104)\u001b[K\rremote: Compressing objects: 46% (48/104)\u001b[K\rremote: Compressing objects: 47% (49/104)\u001b[K\rremote: Compressing objects: 48% (50/104)\u001b[K\rremote: Compressing objects: 49% (51/104)\u001b[K\rremote: Compressing objects: 50% (52/104)\u001b[K\rremote: Compressing objects: 51% (54/104)\u001b[K\rremote: Compressing objects: 52% (55/104)\u001b[K\rremote: Compressing objects: 53% (56/104)\u001b[K\rremote: Compressing objects: 54% (57/104)\u001b[K\rremote: Compressing objects: 55% (58/104)\u001b[K\rremote: Compressing objects: 56% (59/104)\u001b[K\rremote: Compressing objects: 57% (60/104)\u001b[K\rremote: Compressing objects: 58% (61/104)\u001b[K\rremote: Compressing objects: 59% (62/104)\u001b[K\rremote: Compressing objects: 60% (63/104)\u001b[K\rremote: Compressing objects: 61% (64/104)\u001b[K\rremote: Compressing objects: 62% (65/104)\u001b[K\rremote: Compressing objects: 63% (66/104)\u001b[K\rremote: Compressing objects: 64% (67/104)\u001b[K\rremote: Compressing objects: 65% (68/104)\u001b[K\rremote: Compressing objects: 66% (69/104)\u001b[K\rremote: Compressing objects: 67% (70/104)\u001b[K\rremote: Compressing objects: 68% (71/104)\u001b[K\rremote: Compressing objects: 69% (72/104)\u001b[K\rremote: Compressing objects: 70% (73/104)\u001b[K\rremote: Compressing objects: 71% (74/104)\u001b[K\rremote: Compressing objects: 72% (75/104)\u001b[K\rremote: Compressing objects: 73% (76/104)\u001b[K\rremote: Compressing objects: 74% (77/104)\u001b[K\rremote: Compressing objects: 75% (78/104)\u001b[K\rremote: Compressing objects: 76% (80/104)\u001b[K\rremote: Compressing objects: 77% (81/104)\u001b[K\rremote: Compressing objects: 78% (82/104)\u001b[K\rremote: Compressing objects: 79% (83/104)\u001b[K\rremote: Compressing objects: 80% (84/104)\u001b[K\rremote: Compressing objects: 81% (85/104)\u001b[K\rremote: Compressing objects: 82% (86/104)\u001b[K\rremote: Compressing objects: 83% (87/104)\u001b[K\rremote: Compressing objects: 84% (88/104)\u001b[K\rremote: Compressing objects: 85% (89/104)\u001b[K\rremote: Compressing objects: 86% (90/104)\u001b[K\rremote: Compressing objects: 87% (91/104)\u001b[K\rremote: Compressing objects: 88% (92/104)\u001b[K\rremote: Compressing objects: 89% (93/104)\u001b[K\rremote: Compressing objects: 90% (94/104)\u001b[K\rremote: Compressing objects: 91% (95/104)\u001b[K\rremote: Compressing objects: 92% (96/104)\u001b[K\rremote: Compressing objects: 93% (97/104)\u001b[K\rremote: Compressing objects: 94% (98/104)\u001b[K\rremote: Compressing objects: 95% (99/104)\u001b[K\rremote: Compressing objects: 96% (100/104)\u001b[K\rremote: Compressing objects: 97% (101/104)\u001b[K\rremote: Compressing objects: 98% (102/104)\u001b[K\rremote: Compressing objects: 99% (103/104)\u001b[K\rremote: Compressing objects: 100% (104/104)\u001b[K\rremote: Compressing objects: 100% (104/104), done.\u001b[K\n",
"Receiving objects: 0% (1/2333) \rReceiving objects: 1% (24/2333) \rReceiving objects: 2% (47/2333) \rReceiving objects: 3% (70/2333) \rReceiving objects: 4% (94/2333) \rReceiving objects: 5% (117/2333) \rReceiving objects: 6% (140/2333) \rReceiving objects: 7% (164/2333) \rReceiving objects: 8% (187/2333) \rReceiving objects: 9% (210/2333) \rReceiving objects: 10% (234/2333) \rReceiving objects: 11% (257/2333) \rReceiving objects: 12% (280/2333) \rReceiving objects: 13% (304/2333) \rReceiving objects: 14% (327/2333) \rReceiving objects: 15% (350/2333) \rReceiving objects: 16% (374/2333) \rReceiving objects: 17% (397/2333) \rReceiving objects: 18% (420/2333) \rReceiving objects: 19% (444/2333) \rReceiving objects: 20% (467/2333) \rReceiving objects: 21% (490/2333) \rReceiving objects: 22% (514/2333) \rReceiving objects: 23% (537/2333) \rReceiving objects: 24% (560/2333) \rReceiving objects: 25% (584/2333) \rReceiving objects: 26% (607/2333) \rReceiving objects: 27% (630/2333) \rReceiving objects: 28% (654/2333) \rReceiving objects: 29% (677/2333) \rReceiving objects: 30% (700/2333) \rReceiving objects: 31% (724/2333) \rReceiving objects: 32% (747/2333) \rReceiving objects: 33% (770/2333) \rReceiving objects: 34% (794/2333) \rReceiving objects: 35% (817/2333) \rReceiving objects: 36% (840/2333) \rReceiving objects: 37% (864/2333) \rReceiving objects: 38% (887/2333) \rReceiving objects: 39% (910/2333) \rReceiving objects: 40% (934/2333) \rReceiving objects: 41% (957/2333) \rReceiving objects: 42% (980/2333) \rReceiving objects: 43% (1004/2333) \rReceiving objects: 44% (1027/2333) \rReceiving objects: 45% (1050/2333) \rReceiving objects: 46% (1074/2333) \rReceiving objects: 47% (1097/2333) \rReceiving objects: 48% (1120/2333) \rReceiving objects: 49% (1144/2333) \rReceiving objects: 50% (1167/2333) \rReceiving objects: 51% (1190/2333) \rReceiving objects: 52% (1214/2333) \rReceiving objects: 53% (1237/2333) \rReceiving objects: 54% (1260/2333) \rReceiving objects: 55% (1284/2333) \rReceiving objects: 56% (1307/2333) \rReceiving objects: 57% (1330/2333) \rReceiving objects: 58% (1354/2333) \rReceiving objects: 59% (1377/2333) \rReceiving objects: 60% (1400/2333) \rReceiving objects: 61% (1424/2333) \rReceiving objects: 62% (1447/2333) \rReceiving objects: 63% (1470/2333) \rReceiving objects: 64% (1494/2333) \rReceiving objects: 65% (1517/2333), 2.36 MiB | 4.58 MiB/s \rReceiving objects: 66% (1540/2333), 2.36 MiB | 4.58 MiB/s \rReceiving objects: 67% (1564/2333), 2.36 MiB | 4.58 MiB/s \rReceiving objects: 68% (1587/2333), 2.36 MiB | 4.58 MiB/s \rReceiving objects: 69% (1610/2333), 2.36 MiB | 4.58 MiB/s \rReceiving objects: 70% (1634/2333), 2.36 MiB | 4.58 MiB/s \rReceiving objects: 71% (1657/2333), 2.36 MiB | 4.58 MiB/s \rReceiving objects: 72% (1680/2333), 2.36 MiB | 4.58 MiB/s \rReceiving objects: 73% (1704/2333), 2.36 MiB | 4.58 MiB/s \rReceiving objects: 74% (1727/2333), 2.36 MiB | 4.58 MiB/s \rReceiving objects: 75% (1750/2333), 2.36 MiB | 4.58 MiB/s \rReceiving objects: 76% (1774/2333), 2.36 MiB | 4.58 MiB/s \rReceiving objects: 77% (1797/2333), 2.36 MiB | 4.58 MiB/s \rReceiving objects: 78% (1820/2333), 2.36 MiB | 4.58 MiB/s \rReceiving objects: 79% (1844/2333), 2.36 MiB | 4.58 MiB/s \rReceiving objects: 80% (1867/2333), 2.36 MiB | 4.58 MiB/s \rReceiving objects: 81% (1890/2333), 2.36 MiB | 4.58 MiB/s \rReceiving objects: 82% (1914/2333), 2.36 MiB | 4.58 MiB/s \rReceiving objects: 83% (1937/2333), 2.36 MiB | 4.58 MiB/s \rReceiving objects: 84% (1960/2333), 2.36 MiB | 4.58 MiB/s \rReceiving objects: 85% (1984/2333), 2.36 MiB | 4.58 MiB/s \rReceiving objects: 86% (2007/2333), 2.36 MiB | 4.58 MiB/s \rReceiving objects: 87% (2030/2333), 2.36 MiB | 4.58 MiB/s \rReceiving objects: 88% (2054/2333), 2.36 MiB | 4.58 MiB/s \rReceiving objects: 89% (2077/2333), 2.36 MiB | 4.58 MiB/s \rReceiving objects: 90% (2100/2333), 2.36 MiB | 4.58 MiB/s \rremote: Total 2333 (delta 98), reused 72 (delta 45), pack-reused 2184\u001b[K\n",
"Receiving objects: 91% (2124/2333), 2.36 MiB | 4.58 MiB/s \rReceiving objects: 92% (2147/2333), 2.36 MiB | 4.58 MiB/s \rReceiving objects: 93% (2170/2333), 2.36 MiB | 4.58 MiB/s \rReceiving objects: 94% (2194/2333), 2.36 MiB | 4.58 MiB/s \rReceiving objects: 95% (2217/2333), 2.36 MiB | 4.58 MiB/s \rReceiving objects: 96% (2240/2333), 2.36 MiB | 4.58 MiB/s \rReceiving objects: 97% (2264/2333), 2.36 MiB | 4.58 MiB/s \rReceiving objects: 98% (2287/2333), 2.36 MiB | 4.58 MiB/s \rReceiving objects: 99% (2310/2333), 2.36 MiB | 4.58 MiB/s \rReceiving objects: 100% (2333/2333), 2.36 MiB | 4.58 MiB/s \rReceiving objects: 100% (2333/2333), 2.64 MiB | 5.03 MiB/s, done.\n",
"Resolving deltas: 100% (1619/1619), done.\n",
"Processing /content/joeynmt\n",
"Requirement already satisfied: future in /usr/local/lib/python3.6/dist-packages (from joeynmt==0.0.1) (0.16.0)\n",
"Requirement already satisfied: pillow in /usr/local/lib/python3.6/dist-packages (from joeynmt==0.0.1) (6.2.2)\n",
"Requirement already satisfied: numpy<2.0,>=1.14.5 in /usr/local/lib/python3.6/dist-packages (from joeynmt==0.0.1) (1.17.5)\n",
"Requirement already satisfied: setuptools>=41.0.0 in /usr/local/lib/python3.6/dist-packages (from joeynmt==0.0.1) (45.1.0)\n",
"Requirement already satisfied: torch>=1.1 in /usr/local/lib/python3.6/dist-packages (from joeynmt==0.0.1) (1.4.0)\n",
"Requirement already satisfied: tensorflow>=1.14 in /usr/local/lib/python3.6/dist-packages (from joeynmt==0.0.1) (1.15.0)\n",
"Requirement already satisfied: torchtext in /usr/local/lib/python3.6/dist-packages (from joeynmt==0.0.1) (0.3.1)\n",
"Collecting sacrebleu>=1.3.6\n",
" Downloading https://files.pythonhosted.org/packages/45/31/1a135b964c169984b27fb2f7a50280fa7f8e6d9d404d8a9e596180487fd1/sacrebleu-1.4.3-py3-none-any.whl\n",
"Collecting subword-nmt\n",
" Downloading https://files.pythonhosted.org/packages/74/60/6600a7bc09e7ab38bc53a48a20d8cae49b837f93f5842a41fe513a694912/subword_nmt-0.3.7-py2.py3-none-any.whl\n",
"Requirement already satisfied: matplotlib in /usr/local/lib/python3.6/dist-packages (from joeynmt==0.0.1) (3.1.3)\n",
"Requirement already satisfied: seaborn in /usr/local/lib/python3.6/dist-packages (from joeynmt==0.0.1) (0.10.0)\n",
"Collecting pyyaml>=5.1\n",
"\u001b[?25l Downloading https://files.pythonhosted.org/packages/3d/d9/ea9816aea31beeadccd03f1f8b625ecf8f645bd66744484d162d84803ce5/PyYAML-5.3.tar.gz (268kB)\n",
"\u001b[K |████████████████████████████████| 276kB 24.8MB/s \n",
"\u001b[?25hCollecting pylint\n",
"\u001b[?25l Downloading https://files.pythonhosted.org/packages/e9/59/43fc36c5ee316bb9aeb7cf5329cdbdca89e5749c34d5602753827c0aa2dc/pylint-2.4.4-py3-none-any.whl (302kB)\n",
"\u001b[K |████████████████████████████████| 307kB 67.8MB/s \n",
"\u001b[?25hRequirement already satisfied: six==1.12 in /usr/local/lib/python3.6/dist-packages (from joeynmt==0.0.1) (1.12.0)\n",
"Requirement already satisfied: wheel>=0.26 in /usr/local/lib/python3.6/dist-packages (from tensorflow>=1.14->joeynmt==0.0.1) (0.34.2)\n",
"Requirement already satisfied: opt-einsum>=2.3.2 in /usr/local/lib/python3.6/dist-packages (from tensorflow>=1.14->joeynmt==0.0.1) (3.1.0)\n",
"Requirement already satisfied: absl-py>=0.7.0 in /usr/local/lib/python3.6/dist-packages (from tensorflow>=1.14->joeynmt==0.0.1) (0.9.0)\n",
"Requirement already satisfied: grpcio>=1.8.6 in /usr/local/lib/python3.6/dist-packages (from tensorflow>=1.14->joeynmt==0.0.1) (1.27.1)\n",
"Requirement already satisfied: termcolor>=1.1.0 in /usr/local/lib/python3.6/dist-packages (from tensorflow>=1.14->joeynmt==0.0.1) (1.1.0)\n",
"Requirement already satisfied: protobuf>=3.6.1 in /usr/local/lib/python3.6/dist-packages (from tensorflow>=1.14->joeynmt==0.0.1) (3.10.0)\n",
"Requirement already satisfied: wrapt>=1.11.1 in /usr/local/lib/python3.6/dist-packages (from tensorflow>=1.14->joeynmt==0.0.1) (1.11.2)\n",
"Requirement already satisfied: astor>=0.6.0 in /usr/local/lib/python3.6/dist-packages (from tensorflow>=1.14->joeynmt==0.0.1) (0.8.1)\n",
"Requirement already satisfied: google-pasta>=0.1.6 in /usr/local/lib/python3.6/dist-packages (from tensorflow>=1.14->joeynmt==0.0.1) (0.1.8)\n",
"Requirement already satisfied: keras-preprocessing>=1.0.5 in /usr/local/lib/python3.6/dist-packages (from tensorflow>=1.14->joeynmt==0.0.1) (1.1.0)\n",
"Requirement already satisfied: tensorboard<1.16.0,>=1.15.0 in /usr/local/lib/python3.6/dist-packages (from tensorflow>=1.14->joeynmt==0.0.1) (1.15.0)\n",
"Requirement already satisfied: tensorflow-estimator==1.15.1 in /usr/local/lib/python3.6/dist-packages (from tensorflow>=1.14->joeynmt==0.0.1) (1.15.1)\n",
"Requirement already satisfied: keras-applications>=1.0.8 in /usr/local/lib/python3.6/dist-packages (from tensorflow>=1.14->joeynmt==0.0.1) (1.0.8)\n",
"Requirement already satisfied: gast==0.2.2 in /usr/local/lib/python3.6/dist-packages (from tensorflow>=1.14->joeynmt==0.0.1) (0.2.2)\n",
"Requirement already satisfied: requests in /usr/local/lib/python3.6/dist-packages (from torchtext->joeynmt==0.0.1) (2.21.0)\n",
"Requirement already satisfied: tqdm in /usr/local/lib/python3.6/dist-packages (from torchtext->joeynmt==0.0.1) (4.28.1)\n",
"Collecting portalocker\n",
" Downloading https://files.pythonhosted.org/packages/91/db/7bc703c0760df726839e0699b7f78a4d8217fdc9c7fcb1b51b39c5a22a4e/portalocker-1.5.2-py2.py3-none-any.whl\n",
"Requirement already satisfied: typing in /usr/local/lib/python3.6/dist-packages (from sacrebleu>=1.3.6->joeynmt==0.0.1) (3.6.6)\n",
"Requirement already satisfied: pyparsing!=2.0.4,!=2.1.2,!=2.1.6,>=2.0.1 in /usr/local/lib/python3.6/dist-packages (from matplotlib->joeynmt==0.0.1) (2.4.6)\n",
"Requirement already satisfied: kiwisolver>=1.0.1 in /usr/local/lib/python3.6/dist-packages (from matplotlib->joeynmt==0.0.1) (1.1.0)\n",
"Requirement already satisfied: python-dateutil>=2.1 in /usr/local/lib/python3.6/dist-packages (from matplotlib->joeynmt==0.0.1) (2.6.1)\n",
"Requirement already satisfied: cycler>=0.10 in /usr/local/lib/python3.6/dist-packages (from matplotlib->joeynmt==0.0.1) (0.10.0)\n",
"Requirement already satisfied: scipy>=1.0.1 in /usr/local/lib/python3.6/dist-packages (from seaborn->joeynmt==0.0.1) (1.4.1)\n",
"Requirement already satisfied: pandas>=0.22.0 in /usr/local/lib/python3.6/dist-packages (from seaborn->joeynmt==0.0.1) (0.25.3)\n",
"Collecting astroid<2.4,>=2.3.0\n",
"\u001b[?25l Downloading https://files.pythonhosted.org/packages/ad/ae/86734823047962e7b8c8529186a1ac4a7ca19aaf1aa0c7713c022ef593fd/astroid-2.3.3-py3-none-any.whl (205kB)\n",
"\u001b[K |████████████████████████████████| 215kB 36.6MB/s \n",
"\u001b[?25hCollecting isort<5,>=4.2.5\n",
"\u001b[?25l Downloading https://files.pythonhosted.org/packages/e5/b0/c121fd1fa3419ea9bfd55c7f9c4fedfec5143208d8c7ad3ce3db6c623c21/isort-4.3.21-py2.py3-none-any.whl (42kB)\n",
"\u001b[K |████████████████████████████████| 51kB 7.6MB/s \n",
"\u001b[?25hCollecting mccabe<0.7,>=0.6\n",
" Downloading https://files.pythonhosted.org/packages/87/89/479dc97e18549e21354893e4ee4ef36db1d237534982482c3681ee6e7b57/mccabe-0.6.1-py2.py3-none-any.whl\n",
"Requirement already satisfied: markdown>=2.6.8 in /usr/local/lib/python3.6/dist-packages (from tensorboard<1.16.0,>=1.15.0->tensorflow>=1.14->joeynmt==0.0.1) (3.2)\n",
"Requirement already satisfied: werkzeug>=0.11.15 in /usr/local/lib/python3.6/dist-packages (from tensorboard<1.16.0,>=1.15.0->tensorflow>=1.14->joeynmt==0.0.1) (1.0.0)\n",
"Requirement already satisfied: h5py in /usr/local/lib/python3.6/dist-packages (from keras-applications>=1.0.8->tensorflow>=1.14->joeynmt==0.0.1) (2.8.0)\n",
"Requirement already satisfied: certifi>=2017.4.17 in /usr/local/lib/python3.6/dist-packages (from requests->torchtext->joeynmt==0.0.1) (2019.11.28)\n",
"Requirement already satisfied: urllib3<1.25,>=1.21.1 in /usr/local/lib/python3.6/dist-packages (from requests->torchtext->joeynmt==0.0.1) (1.24.3)\n",
"Requirement already satisfied: idna<2.9,>=2.5 in /usr/local/lib/python3.6/dist-packages (from requests->torchtext->joeynmt==0.0.1) (2.8)\n",
"Requirement already satisfied: chardet<3.1.0,>=3.0.2 in /usr/local/lib/python3.6/dist-packages (from requests->torchtext->joeynmt==0.0.1) (3.0.4)\n",
"Requirement already satisfied: pytz>=2017.2 in /usr/local/lib/python3.6/dist-packages (from pandas>=0.22.0->seaborn->joeynmt==0.0.1) (2018.9)\n",
"Collecting typed-ast<1.5,>=1.4.0; implementation_name == \"cpython\" and python_version < \"3.8\"\n",
"\u001b[?25l Downloading https://files.pythonhosted.org/packages/90/ed/5459080d95eb87a02fe860d447197be63b6e2b5e9ff73c2b0a85622994f4/typed_ast-1.4.1-cp36-cp36m-manylinux1_x86_64.whl (737kB)\n",
"\u001b[K |████████████████████████████████| 747kB 69.7MB/s \n",
"\u001b[?25hCollecting lazy-object-proxy==1.4.*\n",
"\u001b[?25l Downloading https://files.pythonhosted.org/packages/0b/dd/b1e3407e9e6913cf178e506cd0dee818e58694d9a5cd1984e3f6a8b9a10f/lazy_object_proxy-1.4.3-cp36-cp36m-manylinux1_x86_64.whl (55kB)\n",
"\u001b[K |████████████████████████████████| 61kB 9.8MB/s \n",
"\u001b[?25hBuilding wheels for collected packages: joeynmt, pyyaml\n",
" Building wheel for joeynmt (setup.py) ... \u001b[?25l\u001b[?25hdone\n",
" Created wheel for joeynmt: filename=joeynmt-0.0.1-cp36-none-any.whl size=73467 sha256=5e896def4c67279e034c19c21caeb2ec5567599582c93bb52abe938e59ec6f3d\n",
" Stored in directory: /tmp/pip-ephem-wheel-cache-sgho47kl/wheels/db/01/db/751cc9f3e7f6faec127c43644ba250a3ea7ad200594aeda70a\n",
" Building wheel for pyyaml (setup.py) ... \u001b[?25l\u001b[?25hdone\n",
" Created wheel for pyyaml: filename=PyYAML-5.3-cp36-cp36m-linux_x86_64.whl size=44229 sha256=ed83f142725ff5dba14f0f4dc7f30ea5cdba2a766ba1ebedc49fc88365c2bdec\n",
" Stored in directory: /root/.cache/pip/wheels/e4/76/4d/a95b8dd7b452b69e8ed4f68b69e1b55e12c9c9624dd962b191\n",
"Successfully built joeynmt pyyaml\n",
"Installing collected packages: portalocker, sacrebleu, subword-nmt, pyyaml, typed-ast, lazy-object-proxy, astroid, isort, mccabe, pylint, joeynmt\n",
" Found existing installation: PyYAML 3.13\n",
" Uninstalling PyYAML-3.13:\n",
" Successfully uninstalled PyYAML-3.13\n",
"Successfully installed astroid-2.3.3 isort-4.3.21 joeynmt-0.0.1 lazy-object-proxy-1.4.3 mccabe-0.6.1 portalocker-1.5.2 pylint-2.4.4 pyyaml-5.3 sacrebleu-1.4.3 subword-nmt-0.3.7 typed-ast-1.4.1\n"
],
"name": "stdout"
}
]
},
{
"cell_type": "markdown",
"metadata": {
"id": "ZX77ylHfjtY0",
"colab_type": "text"
},
"source": [
"## Mount Google Drive\n",
"\n"
]
},
{
"cell_type": "code",
"metadata": {
"id": "Gg_9x3FloWuU",
"colab_type": "code",
"outputId": "98fd36dc-645d-4e64-ad41-b7a1acd29365",
"colab": {
"base_uri": "https://localhost:8080/",
"height": 124
}
},
"source": [
"# If running on Google Colab - mount google drive\n",
"\n",
"from google.colab import drive\n",
"drive.mount('/content/drive')"
],
"execution_count": 2,
"outputs": [
{
"output_type": "stream",
"text": [
"Go to this URL in a browser: https://accounts.google.com/o/oauth2/auth?client_id=947318989803-6bn6qk8qdgf4n4g3pfee6491hc0brc4i.apps.googleusercontent.com&redirect_uri=urn%3aietf%3awg%3aoauth%3a2.0%3aoob&response_type=code&scope=email%20https%3a%2f%2fwww.googleapis.com%2fauth%2fdocs.test%20https%3a%2f%2fwww.googleapis.com%2fauth%2fdrive%20https%3a%2f%2fwww.googleapis.com%2fauth%2fdrive.photos.readonly%20https%3a%2f%2fwww.googleapis.com%2fauth%2fpeopleapi.readonly\n",
"\n",
"Enter your authorization code:\n",
"··········\n",
"Mounted at /content/drive\n"
],
"name": "stdout"
}
]
},
{
"cell_type": "code",
"metadata": {
"id": "yhkiqqjt0fV9",
"colab_type": "code",
"colab": {}
},
"source": [
""
],
"execution_count": 0,
"outputs": []
},
{
"cell_type": "code",
"metadata": {
"id": "441Z4I3rn7DB",
"colab_type": "code",
"colab": {}
},
"source": [
"# TODO : access data on kaggle kernels"
],
"execution_count": 0,
"outputs": []
},
{
"cell_type": "code",
"metadata": {
"id": "ufEVGDe_okx3",
"colab_type": "code",
"colab": {}
},
"source": [
"# TODO : Access data on paperspace"
],
"execution_count": 0,
"outputs": []
},
{
"cell_type": "code",
"metadata": {
"id": "5Roa6jIMov3V",
"colab_type": "code",
"colab": {}
},
"source": [
"# TODo : Access data on GCP"
],
"execution_count": 0,
"outputs": []
},
{
"cell_type": "markdown",
"metadata": {
"id": "mPElaQv_oy5q",
"colab_type": "text"
},
"source": [
"## Set your source and target languages\n"
]
},
{
"cell_type": "code",
"metadata": {
"id": "3Dj54KjZ2wal",
"colab_type": "code",
"colab": {}
},
"source": [
"\n",
"import os\n",
"import numpy as np\n",
"import pandas as pd\n",
"\n",
"source_language = \"en\"\n",
"target_language = \"nso\" \n",
"lc = True # If True, lowercase the data.\n",
"seed = 42 # Random seed for shuffling.\n",
"tag = \"baseline\" # Give a unique name to your folder - this is to ensure you don't rewrite any models you've already submitted\n",
"# aggressive : more attention and more dropout\n",
"vocab_size=4000\n",
"corpus = \"JW300\"\n",
"\n",
"os.environ[\"src\"] = source_language # Sets them in bash as well, since we often use bash scripts\n",
"os.environ[\"trg\"] = target_language\n",
"os.environ[\"tag\"] = tag\n",
"os.environ[\"vocab_size\"] = str(vocab_size)\n",
"os.environ[\"corpus\"] = corpus"
],
"execution_count": 0,
"outputs": []
},
{
"cell_type": "code",
"metadata": {
"id": "5YcHw7PW3Tvb",
"colab_type": "code",
"outputId": "2cdfaf6d-cb35-40c5-a906-3c81b2a03d92",
"colab": {
"base_uri": "https://localhost:8080/",
"height": 34
}
},
"source": [
"# This will save it to a folder in our gdrive instead!\n",
"# !mkdir -p \"/content/drive/My Drive/masakhane/$src-$trg-$tag\"\n",
"gdrive_path = f\"/content/drive/My Drive/masakhane/{source_language}-{target_language}-{tag}/\"\n",
"os.environ[\"gdrive_path\"] = gdrive_path\n",
"! echo $gdrive_path"
],
"execution_count": 4,
"outputs": [
{
"output_type": "stream",
"text": [
"/content/drive/My Drive/masakhane/en-nso-baseline/\n"
],
"name": "stdout"
}
]
},
{
"cell_type": "code",
"metadata": {
"id": "Y99OKT00fnrO",
"colab_type": "code",
"outputId": "48b57d43-7c91-433f-b81d-b7c628a93a86",
"colab": {
"base_uri": "https://localhost:8080/",
"height": 156
}
},
"source": [
"# create path to joeynmt executables scripts, configs etc\n",
"\n",
"joey_path = f\"/content/joeynmt\"\n",
"os.environ[\"joey_path\"] = joey_path\n",
"! ls $joey_path/configs"
],
"execution_count": 5,
"outputs": [
{
"output_type": "stream",
"text": [
"iwslt14_deen_bpe.yaml\t\t transformer_reverse.yaml\n",
"iwslt_deen_bahdanau.yaml\t transformer_small.yaml\n",
"iwslt_envi_luong.yaml\t\t transformer_wmt17_ende.yaml\n",
"iwslt_envi_xnmt.yaml\t\t transformer_wmt17_lven.yaml\n",
"reverse.yaml\t\t\t wmt_ende_best.yaml\n",
"small.yaml\t\t\t wmt_ende_default.yaml\n",
"transformer_copy.yaml\t\t wmt_lven_best.yaml\n",
"transformer_iwslt14_deen_bpe.yaml wmt_lven_default.yaml\n"
],
"name": "stdout"
}
]
},
{
"cell_type": "markdown",
"metadata": {
"id": "1bM3_Zn34LGu",
"colab_type": "text"
},
"source": [
"## Download the global test set.\n",
" **(This changes from time to time, do this just to make sure you have the most recent version)**\n"
]
},
{
"cell_type": "code",
"metadata": {
"id": "36X7RKhb4a7P",
"colab_type": "code",
"outputId": "ddd9a636-1563-40b1-dbdc-38b740bf0ad7",
"colab": {
"base_uri": "https://localhost:8080/",
"height": 610
}
},
"source": [
"! wget https://raw.githubusercontent.com/juliakreutzer/masakhane/master/jw300_utils/test/test.en-any.en\n",
" \n",
"! wget https://raw.githubusercontent.com/juliakreutzer/masakhane/master/jw300_utils/test/test.en-$trg.en\n",
"! mv test.en-$trg.en test.en\n",
"\n",
"! wget https://raw.githubusercontent.com/juliakreutzer/masakhane/master/jw300_utils/test/test.en-$trg.$trg \n",
"! mv test.en-$trg.$trg test.$trg"
],
"execution_count": 0,
"outputs": [
{
"output_type": "stream",
"text": [
"--2019-11-03 20:36:39-- https://raw.githubusercontent.com/juliakreutzer/masakhane/master/jw300_utils/test/test.en-any.en\n",
"Resolving raw.githubusercontent.com (raw.githubusercontent.com)... 151.101.0.133, 151.101.64.133, 151.101.128.133, ...\n",
"Connecting to raw.githubusercontent.com (raw.githubusercontent.com)|151.101.0.133|:443... connected.\n",
"HTTP request sent, awaiting response... 200 OK\n",
"Length: 277791 (271K) [text/plain]\n",
"Saving to: ‘test.en-any.en.1’\n",
"\n",
"\rtest.en-any.en.1 0%[ ] 0 --.-KB/s \rtest.en-any.en.1 100%[===================>] 271.28K --.-KB/s in 0.05s \n",
"\n",
"2019-11-03 20:36:40 (5.35 MB/s) - ‘test.en-any.en.1’ saved [277791/277791]\n",
"\n",
"--2019-11-03 20:36:42-- https://raw.githubusercontent.com/juliakreutzer/masakhane/master/jw300_utils/test/test.en-nso.en\n",
"Resolving raw.githubusercontent.com (raw.githubusercontent.com)... 151.101.0.133, 151.101.64.133, 151.101.128.133, ...\n",
"Connecting to raw.githubusercontent.com (raw.githubusercontent.com)|151.101.0.133|:443... connected.\n",
"HTTP request sent, awaiting response... 200 OK\n",
"Length: 205401 (201K) [text/plain]\n",
"Saving to: ‘test.en-nso.en’\n",
"\n",
"test.en-nso.en 100%[===================>] 200.59K --.-KB/s in 0.04s \n",
"\n",
"2019-11-03 20:36:42 (5.22 MB/s) - ‘test.en-nso.en’ saved [205401/205401]\n",
"\n",
"--2019-11-03 20:36:47-- https://raw.githubusercontent.com/juliakreutzer/masakhane/master/jw300_utils/test/test.en-nso.nso\n",
"Resolving raw.githubusercontent.com (raw.githubusercontent.com)... 151.101.0.133, 151.101.64.133, 151.101.128.133, ...\n",
"Connecting to raw.githubusercontent.com (raw.githubusercontent.com)|151.101.0.133|:443... connected.\n",
"HTTP request sent, awaiting response... 200 OK\n",
"Length: 244175 (238K) [text/plain]\n",
"Saving to: ‘test.en-nso.nso’\n",
"\n",
"test.en-nso.nso 100%[===================>] 238.45K --.-KB/s in 0.05s \n",
"\n",
"2019-11-03 20:36:48 (4.69 MB/s) - ‘test.en-nso.nso’ saved [244175/244175]\n",
"\n"
],
"name": "stdout"
}
]
},
{
"cell_type": "code",
"metadata": {
"id": "DQjxBMQu4AbK",
"colab_type": "code",
"outputId": "10236c38-b28e-4e67-c3ff-ed11f2a502a0",
"colab": {
"base_uri": "https://localhost:8080/",
"height": 237
}
},
"source": [
"# Read the test data to filter from train and dev splits.\n",
"# Store english portion in set for quick filtering checks.\n",
"en_test_sents = set()\n",
"filter_test_sents = \"test.en-any.en\"\n",
"j = 0\n",
"blanks=[]\n",
"with open(filter_test_sents) as f:\n",
" for line in f:\n",
" en_test_sents.add(line.strip())\n",
" if len(line)<=1:\n",
" blanks.append(j)\n",
" j += 1\n",
"print('Loaded {} global test sentences to filter from the training/dev data.'.format(j))"
],
"execution_count": 0,
"outputs": [
{
"output_type": "error",
"ename": "FileNotFoundError",
"evalue": "ignored",
"traceback": [
"\u001b[0;31m---------------------------------------------------------------------------\u001b[0m",
"\u001b[0;31mFileNotFoundError\u001b[0m Traceback (most recent call last)",
"\u001b[0;32m<ipython-input-7-55e9942919fa>\u001b[0m in \u001b[0;36m<module>\u001b[0;34m()\u001b[0m\n\u001b[1;32m 3\u001b[0m \u001b[0mj\u001b[0m \u001b[0;34m=\u001b[0m \u001b[0;36m0\u001b[0m\u001b[0;34m\u001b[0m\u001b[0;34m\u001b[0m\u001b[0m\n\u001b[1;32m 4\u001b[0m \u001b[0mblanks\u001b[0m\u001b[0;34m=\u001b[0m\u001b[0;34m[\u001b[0m\u001b[0;34m]\u001b[0m\u001b[0;34m\u001b[0m\u001b[0;34m\u001b[0m\u001b[0m\n\u001b[0;32m----> 5\u001b[0;31m \u001b[0;32mwith\u001b[0m \u001b[0mopen\u001b[0m\u001b[0;34m(\u001b[0m\u001b[0mfilter_test_sents\u001b[0m\u001b[0;34m)\u001b[0m \u001b[0;32mas\u001b[0m \u001b[0mf\u001b[0m\u001b[0;34m:\u001b[0m\u001b[0;34m\u001b[0m\u001b[0;34m\u001b[0m\u001b[0m\n\u001b[0m\u001b[1;32m 6\u001b[0m \u001b[0;32mfor\u001b[0m \u001b[0mline\u001b[0m \u001b[0;32min\u001b[0m \u001b[0mf\u001b[0m\u001b[0;34m:\u001b[0m\u001b[0;34m\u001b[0m\u001b[0;34m\u001b[0m\u001b[0m\n\u001b[1;32m 7\u001b[0m \u001b[0men_test_sents\u001b[0m\u001b[0;34m.\u001b[0m\u001b[0madd\u001b[0m\u001b[0;34m(\u001b[0m\u001b[0mline\u001b[0m\u001b[0;34m.\u001b[0m\u001b[0mstrip\u001b[0m\u001b[0;34m(\u001b[0m\u001b[0;34m)\u001b[0m\u001b[0;34m)\u001b[0m\u001b[0;34m\u001b[0m\u001b[0;34m\u001b[0m\u001b[0m\n",
"\u001b[0;31mFileNotFoundError\u001b[0m: [Errno 2] No such file or directory: 'test.en-any.en'"
]
}
]
},
{
"cell_type": "code",
"metadata": {
"id": "kKr8Kma8oB1u",
"colab_type": "code",
"colab": {}
},
"source": [
"# filter test set\n",
"\n",
"source_file = f\"test.{source_language}\"\n",
"target_file = f\"test.{target_language}\"\n",
"\n",
"source = []\n",
"target = []\n",
"\n",
"with open(source_file) as f:\n",
" source = f.readlines()\n",
" \n",
"with open(target_file) as f:\n",
" target = f.readlines()\n",
"\n",
"df = pd.DataFrame(zip(source, target), columns=['source_sentence', 'target_sentence'])\n",
"\n",
"# remove trailing newline chars\n",
"df['source_sentence'] = df['source_sentence'].str.rstrip('\" \\n')\n",
"df['target_sentence'] = df['target_sentence'].str.rstrip('\" \\n')\n",
"\n",
"# remove leading newline chars\n",
"df['source_sentence'] = df['source_sentence'].str.lstrip('\"')\n",
"df['target_sentence'] = df['target_sentence'].str.lstrip('\"')\n",
"\n",
"# remove rows with really short sentences\n",
"df = df[~(df['source_sentence'].str.len() <8)] # remove rows wher esource text len <8 characters\n",
"df = df[~(df['target_sentence'].str.len() <8)] # remove rows wher esource text len <8 characters\n",
"\n",
"# save the filtered test set\n",
"df['source_sentence'].to_csv(f'{source_file}', index=False, header=False, doublequote=False)\n",
"df['target_sentence'].to_csv(f'{target_file}', index=False, header=False, doublequote=False)"
],
"execution_count": 0,
"outputs": []
},
{
"cell_type": "code",
"metadata": {
"id": "_BQ_g1o3gUHD",
"colab_type": "code",
"colab": {}
},
"source": [
"# copy test sets to gdrive\n",
"! cp test.$src \"$gdrive_path\"\n",
"! cp test.$trg \"$gdrive_path\"\n",
"! cp test.$src-any.$src \"$gdrive_path\""
],
"execution_count": 0,
"outputs": []
},
{
"cell_type": "markdown",
"metadata": {
"id": "LY9LrzQp5BOC",
"colab_type": "text"
},
"source": [
"## Import prepared dataset"
]
},
{
"cell_type": "code",
"metadata": {
"id": "1faMfeV45M9A",
"colab_type": "code",
"colab": {}
},
"source": [
"import pandas as pd\n",
"from IPython.core.interactiveshell import InteractiveShell\n",
"InteractiveShell.ast_node_interactivity = \"all\""
],
"execution_count": 0,
"outputs": []
},
{
"cell_type": "code",
"metadata": {
"id": "OgtN5iU95BKe",
"colab_type": "code",
"colab": {}
},
"source": [
"# This csv has extra columns added but no preprocessing done. all preprocessing should be captured in the NMT modelling notebook\n",
"\n",
"input_file = f\"{gdrive_path}/{source_language}-{target_language}-{corpus}-new.csv\"\n",
"df = pd.read_csv(input_file)"
],
"execution_count": 0,
"outputs": []
},
{
"cell_type": "code",
"metadata": {
"id": "7mVDMOgsA2L1",
"colab_type": "code",
"outputId": "0715d9cb-e0fb-4ef8-dbb9-4ea068053951",
"colab": {
"base_uri": "https://localhost:8080/",
"height": 206
}
},
"source": [
"df.head()"
],
"execution_count": 8,
"outputs": [
{
"output_type": "execute_result",
"data": {
"text/html": [
"<div>\n",
"<style scoped>\n",
" .dataframe tbody tr th:only-of-type {\n",
" vertical-align: middle;\n",
" }\n",
"\n",
" .dataframe tbody tr th {\n",
" vertical-align: top;\n",
" }\n",
"\n",
" .dataframe thead th {\n",
" text-align: right;\n",
" }\n",
"</style>\n",
"<table border=\"1\" class=\"dataframe\">\n",
" <thead>\n",
" <tr style=\"text-align: right;\">\n",
" <th></th>\n",
" <th>source_sentence</th>\n",
" <th>target_sentence</th>\n",
" </tr>\n",
" </thead>\n",
" <tbody>\n",
" <tr>\n",
" <th>0</th>\n",
" <td>They Rejoiced in Eastern Europe</td>\n",
" <td>Ba Ile Ba Thaba Ka Bohlabela Bja Yuropa</td>\n",
" </tr>\n",
" <tr>\n",
" <th>1</th>\n",
" <td>THIS past summer tens of thousands of people f...</td>\n",
" <td>SELEMONG se se se fetilego batho ba masome a d...</td>\n",
" </tr>\n",
" <tr>\n",
" <th>2</th>\n",
" <td>The streets of beautiful Budapest , Prague , Z...</td>\n",
" <td>Ditarata tša Budapest e botse , Prague , Zagre...</td>\n",
" </tr>\n",
" <tr>\n",
" <th>3</th>\n",
" <td>These identified them as lovers of godly freed...</td>\n",
" <td>Tše di be di ba hlaola e le barati ba tokologo...</td>\n",
" </tr>\n",
" <tr>\n",
" <th>4</th>\n",
" <td>For the first time ever , conventions were fre...</td>\n",
" <td>Ka lekga la mathomo - thomo , dikopano di ile ...</td>\n",
" </tr>\n",
" </tbody>\n",
"</table>\n",
"</div>"
],
"text/plain": [
" source_sentence target_sentence\n",
"0 They Rejoiced in Eastern Europe Ba Ile Ba Thaba Ka Bohlabela Bja Yuropa\n",
"1 THIS past summer tens of thousands of people f... SELEMONG se se se fetilego batho ba masome a d...\n",
"2 The streets of beautiful Budapest , Prague , Z... Ditarata tša Budapest e botse , Prague , Zagre...\n",
"3 These identified them as lovers of godly freed... Tše di be di ba hlaola e le barati ba tokologo...\n",
"4 For the first time ever , conventions were fre... Ka lekga la mathomo - thomo , dikopano di ile ..."
]
},
"metadata": {
"tags": []
},
"execution_count": 8
}
]
},
{
"cell_type": "code",
"metadata": {
"id": "94Oq1C-YAkKz",
"colab_type": "code",
"outputId": "62356727-32a0-4016-a0b6-e93eb1bfab6e",
"colab": {
"base_uri": "https://localhost:8080/",
"height": 52
}
},
"source": [
"# How many samples\n",
"size = len(df)\n",
"print(f\"\\n {size} samples in original text\")\n",
" "
],
"execution_count": 9,
"outputs": [
{
"output_type": "stream",
"text": [
"\n",
" 622966 samples in original text\n"
],
"name": "stdout"
}
]
},
{
"cell_type": "markdown",
"metadata": {
"id": "XC0KJNbsZz-z",
"colab_type": "text"
},
"source": [
"## Preprocess input data"
]
},
{
"cell_type": "code",
"metadata": {
"id": "RNWGwHE-6tHQ",
"colab_type": "code",
"outputId": "e86ca1fe-0bd5-4d47-c293-8a4cc143a19c",
"colab": {
"base_uri": "https://localhost:8080/",
"height": 173
}
},
"source": [
"## Preprocessing - Step 1 : Drop NaNs\n",
"\n",
"df_pp = df.dropna()\n",
"df_pp.info(memory_usage='deep')\n",
"new_size = len(df_pp)\n",
"print(f\"\\n {size-new_size}({100*(size-new_size)/size :.2f} %) samples removed by dropping all NaNs\")\n",
"size = new_size"
],
"execution_count": 10,
"outputs": [
{
"output_type": "stream",
"text": [
"<class 'pandas.core.frame.DataFrame'>\n",
"Int64Index: 613348 entries, 0 to 622965\n",
"Data columns (total 2 columns):\n",
"source_sentence 613348 non-null object\n",
"target_sentence 613348 non-null object\n",
"dtypes: object(2)\n",
"memory usage: 285.1 MB\n",
"\n",
" 9618(1.54 %) samples removed by dropping all NaNs\n"
],
"name": "stdout"
}
]
},
{
"cell_type": "code",
"metadata": {
"id": "R-CAf05t67va",
"colab_type": "code",
"outputId": "590bca3b-0060-4e6b-8b30-2b8dd3c1827a",
"colab": {
"base_uri": "https://localhost:8080/",
"height": 173
}
},
"source": [
"## Preprocessing - Step 2a : Drop all duplicates in Source (en) text\n",
"\n",
"df_pp = df_pp.drop_duplicates(subset='source_sentence')\n",
"df_pp.info(memory_usage='deep')\n",
"new_size = len(df_pp)\n",
"print(f\"\\n {size-new_size}({100*(size-new_size)/size :.2f} %) samples removed by dropping Source sentence duplicates\")\n",
"size = new_size"
],
"execution_count": 11,
"outputs": [
{
"output_type": "stream",
"text": [
"<class 'pandas.core.frame.DataFrame'>\n",
"Int64Index: 570881 entries, 0 to 622965\n",
"Data columns (total 2 columns):\n",
"source_sentence 570881 non-null object\n",
"target_sentence 570881 non-null object\n",
"dtypes: object(2)\n",
"memory usage: 302.1 MB\n",
"\n",
" 42467(6.92 %) samples removed by dropping Source sentence duplicates\n"
],
"name": "stdout"
}
]
},
{
"cell_type": "code",
"metadata": {
"id": "IoPGdLI_n6_L",
"colab_type": "code",
"outputId": "e6872b32-cfd0-465f-b18c-4092bd4b01f9",
"colab": {
"base_uri": "https://localhost:8080/",
"height": 173
}
},
"source": [
"## Preprocessing - Step 2b : Drop all duplicates in Target (zu) text\n",
"\n",
"df_pp = df_pp.drop_duplicates(subset='target_sentence')\n",
"df_pp.info(memory_usage='deep')\n",
"new_size = len(df_pp)\n",
"print(f\"\\n {size-new_size}({100*(size-new_size)/size :.2f} %) samples removed by dropping Target sentence duplicates\")\n",
"size = new_size"
],
"execution_count": 12,
"outputs": [
{
"output_type": "stream",
"text": [
"<class 'pandas.core.frame.DataFrame'>\n",
"Int64Index: 567792 entries, 0 to 622965\n",
"Data columns (total 2 columns):\n",
"source_sentence 567792 non-null object\n",
"target_sentence 567792 non-null object\n",
"dtypes: object(2)\n",
"memory usage: 359.6 MB\n",
"\n",
" 3089(0.54 %) samples removed by dropping Target sentence duplicates\n"
],
"name": "stdout"
}
]
},
{
"cell_type": "code",
"metadata": {
"id": "q0vDJborInA_",
"colab_type": "code",
"colab": {}
},
"source": [
"## Preprocessing - Step 3 : Remove all numeric entries\n",
"\n",
"pattern = r\"([0-9]*\\.?[0-9]*)\" # catch integers and decimals\n",
"import re\n",
"r = re.compile(pattern)"
],
"execution_count": 0,
"outputs": []
},
{
"cell_type": "code",
"metadata": {
"id": "n0OvHiNFL-8z",
"colab_type": "code",
"outputId": "c1b29cb2-c081-43f5-e69b-226a8a3b2854",
"colab": {
"base_uri": "https://localhost:8080/",
"height": 208
}
},
"source": [
"%%time\n",
"## Preprocessing - Step 3a : Remove all numeric entries - Source text\n",
"\n",
"df_pp['source_sentence'] = df_pp['source_sentence'].str.replace(pattern,\"\")\n",
"df_pp['source_sentence'] = df_pp['source_sentence'].replace(\"\",np.nan)\n",
"\n",
"df_pp = df_pp.dropna()\n",
"df_pp.info(memory_usage='deep')\n",
"new_size = len(df_pp)\n",
"\n",
"print(f\"\\n {size-new_size}({100*(size-new_size)/size :.2f} %) samples removed by dropping nummeric entries from source text\")\n",
"size = new_size"
],
"execution_count": 14,
"outputs": [
{
"output_type": "stream",
"text": [
"<class 'pandas.core.frame.DataFrame'>\n",
"Int64Index: 567720 entries, 0 to 622965\n",
"Data columns (total 2 columns):\n",
"source_sentence 567720 non-null object\n",
"target_sentence 567720 non-null object\n",
"dtypes: object(2)\n",
"memory usage: 331.8 MB\n",
"\n",
" 72(0.01 %) samples removed by dropping nummeric entries from source text\n",
"CPU times: user 9.93 s, sys: 62 ms, total: 9.99 s\n",
"Wall time: 10 s\n"
],
"name": "stdout"
}
]
},
{
"cell_type": "code",
"metadata": {
"id": "DlVWfIVJQ_Tn",
"colab_type": "code",
"outputId": "db6c9bd0-23f1-4d85-aae4-58d3d8572e63",
"colab": {
"base_uri": "https://localhost:8080/",
"height": 208
}
},
"source": [
"%%time\n",
"## Preprocessing - Step 3b : Remove all numeric entries - Target text\n",
"\n",
"df_pp['target_sentence'] = df_pp['target_sentence'].str.replace(r,\"\")\n",
"df_pp['target_sentence'] = df_pp['target_sentence'].replace(\"\",np.nan)\n",
"\n",
"df_pp = df_pp.dropna()\n",
"df_pp.info(memory_usage='deep')\n",
"new_size = len(df_pp)\n",
"\n",
"print(f\"\\n {size-new_size}({100*(size-new_size)/size :.2f} %) samples removed by dropping nummeric entries from target text\")\n",
"size = new_size"
],
"execution_count": 15,
"outputs": [
{
"output_type": "stream",
"text": [
"<class 'pandas.core.frame.DataFrame'>\n",
"Int64Index: 567699 entries, 0 to 622965\n",
"Data columns (total 2 columns):\n",
"source_sentence 567699 non-null object\n",
"target_sentence 567699 non-null object\n",
"dtypes: object(2)\n",
"memory usage: 271.9 MB\n",
"\n",
" 21(0.00 %) samples removed by dropping nummeric entries from target text\n",
"CPU times: user 11.9 s, sys: 99.8 ms, total: 12 s\n",
"Wall time: 12 s\n"
],
"name": "stdout"
}
]
},
{
"cell_type": "markdown",
"metadata": {
"id": "4dZI2WM78oCO",
"colab_type": "text"
},
"source": [
"#### Preprocessing - Step 4 :Get length of sentences and then drop really short sentences\n"
]
},
{
"cell_type": "code",
"metadata": {
"colab_type": "code",
"outputId": "28086ea5-6fe9-44de-bc81-78e3aeeb0ef4",
"id": "zb6yGGDJAZ5H",
"colab": {
"base_uri": "https://localhost:8080/",
"height": 243
}
},
"source": [
"%%time\n",
"# add length columns\n",
"\n",
"\n",
"df_pp['source_ch_len'] = df_pp['source_sentence'].str.len()\n",
"df_pp['source_w_len'] = [len(text.split()) for text in df_pp['source_sentence']] \n",
"df_pp['target_ch_len'] = df_pp['target_sentence'].str.len()\n",
"df_pp['target_w_len'] = [len(text.split()) for text in df_pp['target_sentence']] \n",
"df_pp.info(memory_usage='deep')"
],
"execution_count": 16,
"outputs": [
{
"output_type": "stream",
"text": [
"<class 'pandas.core.frame.DataFrame'>\n",
"Int64Index: 567699 entries, 0 to 622965\n",
"Data columns (total 6 columns):\n",
"source_sentence 567699 non-null object\n",
"target_sentence 567699 non-null object\n",
"source_ch_len 567699 non-null int64\n",
"source_w_len 567699 non-null int64\n",
"target_ch_len 567699 non-null int64\n",
"target_w_len 567699 non-null int64\n",
"dtypes: int64(4), object(2)\n",
"memory usage: 289.2 MB\n",
"CPU times: user 3.07 s, sys: 22.3 ms, total: 3.09 s\n",
"Wall time: 3.09 s\n"
],
"name": "stdout"
}
]
},
{
"cell_type": "code",
"metadata": {
"id": "M6SecEMNBkC7",
"colab_type": "code",
"colab": {}
},
"source": [
"# # character len distrn - source text - \n",
"# df_pp['source_ch_len'].value_counts().sort_index()"
],
"execution_count": 0,
"outputs": []
},
{
"cell_type": "code",
"metadata": {
"id": "A9TFizHyVWKO",
"colab_type": "code",
"colab": {}
},
"source": [
"# # character len distrn - target text\n",
"# df_pp['target_ch_len'].value_counts().sort_index()"
],
"execution_count": 0,
"outputs": []
},
{
"cell_type": "code",
"metadata": {
"id": "9ArLyuzIwtLq",
"colab_type": "code",
"colab": {}
},
"source": [
"## how many rows with source text <=2chars and what do they look like ?"
],
"execution_count": 0,
"outputs": []
},
{
"cell_type": "code",
"metadata": {
"id": "t-e7zGtV-eyq",
"colab_type": "code",
"colab": {}
},
"source": [
"# # how many single character sentences from source ?\n",
"# f\"{df_pp['source_ch_len'].value_counts()[1]} single character source sentences\"\n",
"\n",
"# df_pp[df_pp['source_ch_len']<=1]"
],
"execution_count": 0,
"outputs": []
},
{
"cell_type": "code",
"metadata": {
"id": "qDe_eeocuBDw",
"colab_type": "code",
"colab": {}
},
"source": [
"# # how many 2-character sentences from source ?\n",
"# f\"{df_pp['source_ch_len'].value_counts()[2]} 2-character source sentences\"\n",
"\n",
"# df_pp[df_pp['source_ch_len']==2]"
],
"execution_count": 0,
"outputs": []
},
{
"cell_type": "code",
"metadata": {
"id": "agiL0pRVyOEz",
"colab_type": "code",
"colab": {}
},
"source": [
""
],
"execution_count": 0,
"outputs": []
},
{
"cell_type": "code",
"metadata": {
"id": "sPTL3nKqyWjv",
"colab_type": "code",
"outputId": "73e4484e-2117-4e60-a017-769a5b26d41d",
"colab": {
"base_uri": "https://localhost:8080/",
"height": 243
}
},
"source": [
"## Preprocessing - Step 4a : drop everything where the ch_len <=2 in source text\n",
"\n",
"df_pp = df_pp[~(df_pp['source_ch_len'] <=2) ]\n",
"\n",
"df_pp.info(memory_usage='deep')\n",
"new_size = len(df_pp)\n",
"print(f\"\\n {size-new_size}({100*(size-new_size)/size :.2f} %) samples removed by dropping rows with source sentences <= 2 characters\")\n",
"size = new_size"
],
"execution_count": 17,
"outputs": [
{
"output_type": "stream",
"text": [
"<class 'pandas.core.frame.DataFrame'>\n",
"Int64Index: 567486 entries, 0 to 622965\n",
"Data columns (total 6 columns):\n",
"source_sentence 567486 non-null object\n",
"target_sentence 567486 non-null object\n",
"source_ch_len 567486 non-null int64\n",
"source_w_len 567486 non-null int64\n",
"target_ch_len 567486 non-null int64\n",
"target_w_len 567486 non-null int64\n",
"dtypes: int64(4), object(2)\n",
"memory usage: 289.2 MB\n",
"\n",
" 213(0.04 %) samples removed by dropping rows with source sentences <= 2 characters\n"
],
"name": "stdout"
}
]
},
{
"cell_type": "code",
"metadata": {
"id": "_gnkwkS11rHW",
"colab_type": "code",
"outputId": "d274e25a-68df-4b85-e405-8a8e37f8349e",
"colab": {
"base_uri": "https://localhost:8080/",
"height": 243
}
},
"source": [
"## Preprocessing - Step 4b : drop everything where the ch_len <=2 in target text\n",
"\n",
"df_pp = df_pp[~(df_pp['target_ch_len'] <=2) ]\n",
"\n",
"df_pp.info(memory_usage='deep')\n",
"new_size = len(df_pp)\n",
"print(f\"\\n {size-new_size}({100*(size-new_size)/size :.2f} %) samples removed by dropping rows with target sentences <= 2 characters\")\n",
"size = new_size"
],
"execution_count": 18,
"outputs": [
{
"output_type": "stream",
"text": [
"<class 'pandas.core.frame.DataFrame'>\n",
"Int64Index: 567470 entries, 0 to 622965\n",
"Data columns (total 6 columns):\n",
"source_sentence 567470 non-null object\n",
"target_sentence 567470 non-null object\n",
"source_ch_len 567470 non-null int64\n",
"source_w_len 567470 non-null int64\n",
"target_ch_len 567470 non-null int64\n",
"target_w_len 567470 non-null int64\n",
"dtypes: int64(4), object(2)\n",
"memory usage: 289.2 MB\n",
"\n",
" 16(0.00 %) samples removed by dropping rows with target sentences <= 2 characters\n"
],
"name": "stdout"
}
]
},
{
"cell_type": "code",
"metadata": {
"id": "tYgL_BspMu8t",
"colab_type": "code",
"outputId": "69c61591-2950-4c1b-c80e-531ebb7092ea",
"colab": {
"base_uri": "https://localhost:8080/",
"height": 278
}
},
"source": [
"%%time\n",
"## Preprocessing - Step 5 : remove text from test set\n",
"\n",
"with open(f\"{gdrive_path}/test.en-any.en\") as f:\n",
" rows = f.readlines()\n",
"test_set_en = [row.strip() for row in rows]\n",
"\n",
"\n",
"df_pp = df_pp[~df_pp['source_sentence'].str.strip().isin(test_set_en)]\n",
"\n",
"df_pp.info(memory_usage='deep')\n",
"new_size = len(df_pp)\n",
"print(f\"\\n {size-new_size}({100*(size-new_size)/size :.2f} %) samples removed by dropping rows from test set\")\n",
"size = new_size"
],
"execution_count": 19,
"outputs": [
{
"output_type": "stream",
"text": [
"<class 'pandas.core.frame.DataFrame'>\n",
"Int64Index: 566404 entries, 0 to 622965\n",
"Data columns (total 6 columns):\n",
"source_sentence 566404 non-null object\n",
"target_sentence 566404 non-null object\n",
"source_ch_len 566404 non-null int64\n",
"source_w_len 566404 non-null int64\n",
"target_ch_len 566404 non-null int64\n",
"target_w_len 566404 non-null int64\n",
"dtypes: int64(4), object(2)\n",
"memory usage: 288.7 MB\n",
"\n",
" 1066(0.19 %) samples removed by dropping rows from test set\n",
"CPU times: user 1.36 s, sys: 34 ms, total: 1.39 s\n",
"Wall time: 2.05 s\n"
],
"name": "stdout"
}
]
},
{
"cell_type": "code",
"metadata": {
"id": "6IvLGPZg--pK",
"colab_type": "code",
"outputId": "a7c8053f-0561-46e4-8f5d-b4fe11152f79",
"colab": {
"base_uri": "https://localhost:8080/",
"height": 278
}
},
"source": [
"%%time\n",
"## Preprocessing - Step 6 : remove the extra \"\n",
"df_pp['source_sentence'] = df_pp['source_sentence'].map(lambda x: x.lstrip('\"').rstrip('\"'))\n",
"df_pp['target_sentence'] = df_pp['target_sentence'].map(lambda x: x.lstrip('\"').rstrip('\"'))\n",
"\n",
"\n",
"df_pp.info(memory_usage='deep')\n",
"new_size = len(df_pp)\n",
"print(f\"\\n {size-new_size}({100*(size-new_size)/size :.2f} %) samples removed by dropping rows with extra quotes\")\n",
"size = new_size"
],
"execution_count": 20,
"outputs": [
{
"output_type": "stream",
"text": [
"<class 'pandas.core.frame.DataFrame'>\n",
"Int64Index: 566404 entries, 0 to 622965\n",
"Data columns (total 6 columns):\n",
"source_sentence 566404 non-null object\n",
"target_sentence 566404 non-null object\n",
"source_ch_len 566404 non-null int64\n",
"source_w_len 566404 non-null int64\n",
"target_ch_len 566404 non-null int64\n",
"target_w_len 566404 non-null int64\n",
"dtypes: int64(4), object(2)\n",
"memory usage: 288.7 MB\n",
"\n",
" 0(0.00 %) samples removed by dropping rows with extra quotes\n",
"CPU times: user 1.34 s, sys: 3.74 ms, total: 1.35 s\n",
"Wall time: 1.35 s\n"
],
"name": "stdout"
}
]
},
{
"cell_type": "markdown",
"metadata": {
"id": "RWj_Eh9W5IbD",
"colab_type": "text"
},
"source": [
"## create dev df "
]
},
{
"cell_type": "code",
"metadata": {
"id": "V30zP0cCNn5Y",
"colab_type": "code",
"outputId": "095543ed-6f90-4e13-9ef7-62c18f301b51",
"colab": {
"base_uri": "https://localhost:8080/",
"height": 139
}
},
"source": [
"df_dev = df_pp[['source_sentence', 'target_sentence']]\n",
"# Shuffle the data to remove bias in dev set selection.\n",
"seed=42\n",
"df_dev = df_dev.sample(frac=1, random_state=seed).reset_index(drop=True)\n",
"df_dev.info()"
],
"execution_count": 21,
"outputs": [
{
"output_type": "stream",
"text": [
"<class 'pandas.core.frame.DataFrame'>\n",
"RangeIndex: 566404 entries, 0 to 566403\n",
"Data columns (total 2 columns):\n",
"source_sentence 566404 non-null object\n",
"target_sentence 566404 non-null object\n",
"dtypes: object(2)\n",
"memory usage: 8.6+ MB\n"
],
"name": "stdout"
}
]
},
{
"cell_type": "markdown",
"metadata": {
"id": "rMdFKCgBq-Hp",
"colab_type": "text"
},
"source": [
"## Create train and dev sets"
]
},
{
"cell_type": "code",
"metadata": {
"id": "k5ddIOazEJlF",
"colab_type": "code",
"outputId": "677c5087-07fc-4ea3-9c36-25e3217b4cbd",
"colab": {
"base_uri": "https://localhost:8080/",
"height": 52
}
},
"source": [
"%%time\n",
"# This section does the split between train/dev for the parallel corpora then saves them as separate files\n",
"# We use 1000 dev test and the given test set.\n",
"\n",
"# Do the split between dev/train and create parallel corpora\n",
"num_dev_patterns = 1000\n",
"\n",
"# Optional: lower case the corpora - this will make it easier to generalize, but without proper casing.\n",
"if lc: # Julia: making lowercasing optional\n",
" df_dev[\"source_sentence\"] = df_dev[\"source_sentence\"].str.lower()\n",
" df_dev[\"target_sentence\"] = df_dev[\"target_sentence\"].str.lower()\n",
"\n",
"# Julia: test sets are already generated\n",
"dev = df_dev.tail(num_dev_patterns) # Herman: Error in original\n",
"stripped = df_dev.drop(df_dev.tail(num_dev_patterns).index)\n",
"\n",
"with open(f\"{gdrive_path}/train.\"+source_language, \"w\") as src_file, open(f\"{gdrive_path}/train.\"+target_language, \"w\") as trg_file:\n",
" for index, row in stripped.iterrows():\n",
" src_file.write(row[\"source_sentence\"]+\"\\n\")\n",
" trg_file.write(row[\"target_sentence\"]+\"\\n\")\n",
" \n",
"with open(f\"{gdrive_path}/dev.\"+source_language, \"w\") as src_file, open(f\"{gdrive_path}/dev.\"+target_language, \"w\") as trg_file:\n",
" for index, row in dev.iterrows():\n",
" src_file.write(row[\"source_sentence\"]+\"\\n\")\n",
" trg_file.write(row[\"target_sentence\"]+\"\\n\")"
],
"execution_count": 0,
"outputs": [
{
"output_type": "stream",
"text": [
"CPU times: user 1min 26s, sys: 284 ms, total: 1min 26s\n",
"Wall time: 1min 27s\n"
],
"name": "stdout"
}
]
},
{
"cell_type": "code",
"metadata": {
"id": "3YuVeEAY-Pzk",
"colab_type": "code",
"outputId": "53c9f643-4863-4cb7-fea3-b6f24a737e65",
"colab": {
"base_uri": "https://localhost:8080/",
"height": 593
}
},
"source": [
"# Doublecheck the format below. There should be no extra quotation marks or weird characters.\n",
"! head \"$gdrive_path/train.$src\"\n",
"! echo \"=================================\"\n",
"! head \"$gdrive_path/dev.$src\"\n",
"! echo \"=================================\"\n",
"! head \"$gdrive_path/test.$src\" "
],
"execution_count": 22,
"outputs": [
{
"output_type": "stream",
"text": [
"name some of god’s gifts that we can enjoy while awaiting future blessings \n",
"mark states that soldiers “ would hit him on the head with a reed and spit upon him and , bending their knees [ in mockery ] , they would do obeisance to him ”\n",
"instead , our faith will be strengthened if we rely on god , show love for him , and keep his commandments \n",
"another person decides that all days are the same \n",
"there were mice and cockroaches to keep us company at night \n",
"my feelings of failure were such that it was often too depressing for me to read the life - story articles , which often recount extraordinary accomplishments of jehovah’s people \n",
"nevertheless , jesus said those surprising words for good reason \n",
"especially where children are involved , many parents prefer to use the services of a professional who is not adversarial \n",
"why has the number of children adopted in britain dropped drastically during the last years ?\n",
"how important it is to recognize that satan and his demons want us to feel that what we do is not good enough for god !\n",
"=================================\n",
"a $ - million contract is signed by a leading hockey player for six years \n",
"meanwhile , he had given two talks in the theocratic ministry school and had become an unbaptized publisher \n",
" : — what vow did paul make ?\n",
"christian wives too can make their feelings known \n",
"jehovah had already foretold that pharaoh’s heart would be obstinate \n",
"he squints into the setting sun and then smiles broadly as he recognizes us , the light glinting off the fashionable gold facings on his front teeth \n",
"unlike those faithless israelites , jesus christ lived up to his dedication to the finish \n",
"the watchtower , december , , pages - \n",
"the churches add to the confusion by promoting the use of bible translations that omit god’s personal name , jehovah , from the text \n",
"these divinely inspired words made sense to the lady , who said that everyone was in mourning \n",
"=================================\n",
"Jesus said : “ You must love your neighbor as yourself . ”\n",
"For day and night your hand was heavy upon me . ”\n",
"Some of the names in this article have been changed .\n",
"Some names in this article have been changed .\n",
"This is the greatest and first commandment . ”\n",
"Published by Jehovah’s Witnesses but now out of print .\n",
"( Look under BIBLE TEACHINGS > BIBLE QUESTIONS ANSWERED )\n",
"Jehovah is the name of God as revealed in the Bible .\n",
"\"Let your will take place , as in heaven , also on earth . ”\"\n",
"The Bible says that “ foolishness is bound up in the heart of a child . ”\n"
],
"name": "stdout"
}
]
},
{
"cell_type": "code",
"metadata": {
"id": "Ypai27iMCoJS",
"colab_type": "code",
"outputId": "15421dd0-5dea-4d66-fe82-44bb8ce72e14",
"colab": {
"base_uri": "https://localhost:8080/",
"height": 593
}
},
"source": [
"! head \"$gdrive_path/train.$trg\"\n",
"! echo \"=================================\"\n",
"! head \"$gdrive_path/dev.$trg\"\n",
"! echo \"=================================\"\n",
"! head \"$gdrive_path/test.$trg\""
],
"execution_count": 23,
"outputs": [
{
"output_type": "stream",
"text": [
"hlalosa dimpho tše dingwe tša modimo tšeo re ka di thabelago ge re dutše re letetše ditšhegofatšo tša nakong e tlago \n",
"mareka o bolela gore bahlabani “ ba be ba mo itia hlogo ka lehlaka , ba mo tshwela ka mare gomme ba [ mo kwera ka go ] thinya matolo pele ga gagwe ba mo khunamela ”\n",
"go e na le moo , tumelo ya rena e tla matlafala ge e ba re ithekga ka modimo , re bontšha gore re a mo rata e bile re boloka melao ya gagwe \n",
"motho yo mongwe o phetha ka gore matšatši ka moka a a swana \n",
"go be go e - na le magotlo le maphene a go re tloša bodutu bošego \n",
"go ikwa ga - ka ke paletšwe gantši go be go ntira gore ke nyame kudu ge ke bala diphihlelo , tšeo gantši di bego di hlalosa dilo tše di makatšago tšeo di fihleletšwego ke batho ba jehofa \n",
"lega go le bjalo , go na le lebaka le le kwagalago leo le dirilego gore jesu a bolele mantšu ao a makatšago \n",
"batswadi ba bantši ba kgetha go diriša ditirelo tša setsebi seo se sa tšeego lehlakore , kudu - kudu moo bana ba akaretšwago \n",
"ke ka baka la’ng palo ya bana bao ba thwalwago kua brithania e ile ya fokotšega ka lebelo nywageng e e fetilego ?\n",
"ruri e tloga e le gabohlokwa go lemoga gore sathane le batemona ba gagwe ba nyaka gore re nagane gore ga go na selo seo re ka se dirago seo se ka kgahlago modimo !\n",
"=================================\n",
"sebapadi sa maemo a godimo sa hockey se saenetše tumelelano ya ditolara tše dimilione tše bakeng sa go bapala ka nywaga e tshelelago \n",
"go sa dutše go le bjalo , o be a šetše a neile dipolelo tše pedi sekolong sa bodiredi sa pušo ya modimo e bile e le mogoeledi yo a sa kolobetšwago \n",
" : — ke keno efe yeo e dirilwego ke paulo ?\n",
"basadi ba bakriste le bona ba ka bolela maikwelo a bona \n",
"jehofa o be a šetše a boletše e sa le pele gore pelo ya farao e be e tla thatafala \n",
"o a bodulala ge a lebane le letšatši leo le dikelago ke moka o myemyela ge a bona gore ke rena , seetša se dira gore gauta e botse yeo e lego menong a gagwe a ka pele e phadime \n",
"ka go se swane le ba - isiraele bao ba bego ba hloka tumelo , jesu kriste o ile a phelela boineelo bja gagwe go fihla mafelelong \n",
"morokami wa january , , matlakala - \n",
"dikereke di hlakahlakanya batho le go feta ka go kgothaletša go diriša diphetolelo tša beibele tšeo di ntšhitšego leina la modimo e lego jehofa ka mangwalong \n",
"mantšu a a buduletšwego ke modimo a ile a kwagala a e - na le tlhaologanyo go mosadi yoo a ilego a bolela gore yo mongwe le yo mongwe o be a nyamile \n",
"=================================\n",
"Jesu o itše : “ Wa xeno O mo ratê ka mokxwa wo O ithataxo ka wôna . ”\n",
"Ka xo imêlwa ke ’ atla sa xaxo mosexare le bošexo . ”\n",
"A mangwe a maina sehlogong se a fetotšwe .\n",
"Maina a mangwe a dirišitšwego sehlogong se a fetotšwe .\n",
"\"Ké yôna taêlô ya pele , yôna e kxolo . ”\"\n",
"E gatišitšwe ke Dihlatse tša Jehofa eupša ga bjale ga e sa gatišwa .\n",
"( Lebelela ka tlase ga DITHUTO TŠA BEIBELE > DIPOTŠIŠO TŠA BEIBELE DI A ARABJA )\n",
"Jehofa ke leina la Modimo bjalo ka ge le utolotšwe ka Beibeleng .\n",
"Thato ya gago a e direge le mo lefaseng bjalo ka ge e direga legodimong . ”\n",
"\"Beibele e re , “ bošilo bo kgokeletšwe pelong ya mošemane [ goba ngwana ] . ”\"\n"
],
"name": "stdout"
}
]
},
{
"cell_type": "markdown",
"metadata": {
"id": "bWV-5a34rdsK",
"colab_type": "text"
},
"source": [
"## Preprocessing the Data into Subword BPE Tokens\n",
"\n",
"- One of the most powerful improvements for agglutinative languages (a feature of most Bantu languages) is using BPE tokenization [ (Sennrich, 2015) ](https://arxiv.org/abs/1508.07909).\n",
"\n",
"- It was also shown that by optimizing the umber of BPE codes we significantly improve results for low-resourced languages [(Sennrich, 2019)](https://www.aclweb.org/anthology/P19-1021) [(Martinus, 2019)](https://arxiv.org/abs/1906.05685)\n",
"\n",
"- Below we have the scripts for doing BPE tokenization of our data. We use 4000 tokens as recommended by [(Sennrich, 2019)](https://www.aclweb.org/anthology/P19-1021). You do not need to change anything. Simply running the below will be suitable. "
]
},
{
"cell_type": "code",
"metadata": {
"id": "Bi5fyp1LsLv7",
"colab_type": "code",
"outputId": "e730151b-4552-40dc-ef1b-7f0df5fd6c87",
"colab": {
"base_uri": "https://localhost:8080/",
"height": 52
}
},
"source": [
"%%time\n",
"! subword-nmt learn-joint-bpe-and-vocab --input \"$gdrive_path\"train.$src \"$gdrive_path\"train.$trg -s $vocab_size -o \"$gdrive_path\"bpe.codes.$vocab_size --write-vocabulary \"$gdrive_path\"vocab.$src \"$gdrive_path\"vocab.$trg\n",
"\n",
"# Apply BPE splits to the train, development and test data.\n",
"! subword-nmt apply-bpe -c \"$gdrive_path\"bpe.codes.$vocab_size --vocabulary \"$gdrive_path\"vocab.$src < \"$gdrive_path\"train.$src > \"$gdrive_path\"train.bpe.$src\n",
"! subword-nmt apply-bpe -c \"$gdrive_path\"bpe.codes.$vocab_size --vocabulary \"$gdrive_path\"vocab.$trg < \"$gdrive_path\"train.$trg > \"$gdrive_path\"train.bpe.$trg\n",
"\n",
"! subword-nmt apply-bpe -c \"$gdrive_path\"bpe.codes.$vocab_size --vocabulary \"$gdrive_path\"vocab.$src < \"$gdrive_path\"dev.$src > \"$gdrive_path\"dev.bpe.$src\n",
"! subword-nmt apply-bpe -c \"$gdrive_path\"bpe.codes.$vocab_size --vocabulary \"$gdrive_path\"vocab.$trg < \"$gdrive_path\"dev.$trg > \"$gdrive_path\"dev.bpe.$trg\n",
"\n",
"! subword-nmt apply-bpe -c \"$gdrive_path\"bpe.codes.$vocab_size --vocabulary \"$gdrive_path\"vocab.$src < \"$gdrive_path\"test.$src > \"$gdrive_path\"test.bpe.$src\n",
"! subword-nmt apply-bpe -c \"$gdrive_path\"bpe.codes.$vocab_size --vocabulary \"$gdrive_path\"vocab.$trg < \"$gdrive_path\"test.$trg > \"$gdrive_path\"test.bpe.$trg\n"
],
"execution_count": 0,
"outputs": [
{
"output_type": "stream",
"text": [
"CPU times: user 1.27 s, sys: 231 ms, total: 1.5 s\n",
"Wall time: 3min 27s\n"
],
"name": "stdout"
}
]
},
{
"cell_type": "code",
"metadata": {
"id": "jCmdlJLPMiv7",
"colab_type": "code",
"colab": {}
},
"source": [
"# Create that vocab using build_vocab\n",
"! sudo chmod 777 joeynmt/scripts/build_vocab.py\n",
"! joeynmt/scripts/build_vocab.py \"$gdrive_path\"train.bpe.\"$src\" \"$gdrive_path\"train.bpe.\"$trg\" --output_path \"$gdrive_path\"vocab.txt"
],
"execution_count": 0,
"outputs": []
},
{
"cell_type": "code",
"metadata": {
"id": "lm1CNAQvGZGy",
"colab_type": "code",
"outputId": "a9ec9d03-1c9c-4d6e-ce32-d94cec8acee2",
"colab": {
"base_uri": "https://localhost:8080/",
"height": 350
}
},
"source": [
"\n",
"# Some output\n",
"! echo \"BPE Sotho Sentences\"\n",
"! tail -n 5 \"$gdrive_path\"test.bpe.$trg\n",
"! echo \"===========================================================================\"\n",
"! echo \"Combined BPE Vocab\"\n",
"! tail -n 10 \"$gdrive_path\"vocab.txt # Herman\n",
"\n",
"# !cp joeynmt/data/$src$tgt$vocab_size/vocab.txt \"$gdrive_path\""
],
"execution_count": 0,
"outputs": [
{
"output_type": "stream",
"text": [
"BPE Sotho Sentences\n",
"M@@ a@@ fe@@ lelong ke ile ka tu@@ ma ka go se bote@@ ge .\n",
"\"@@ K@@ a morago ga gore ke ithu@@ te therešo , ke ile ka gana go tšwela pele ke dira seo , gaešita le ge mošomo woo o be o le@@ fa gabotse .@@ \"\n",
"\"@@ K@@ e mohlala o mobotse go barwa ba ka ba babedi , e bile ke ne@@ ilwe di@@ tokelo ka phuthegong .@@ \"\n",
"G@@ ona bjale ke tu@@ mile ka go botega gare ga ba@@ hlahlo@@ bi ba ma@@ kgetho le bao ke dirago kgwebo le bona . ”\n",
"\"@@ R@@ u@@ the o ile a hudu@@ gela I@@ si@@ rae@@ le , moo a bego a ka rapela M@@ o@@ dimo wa therešo .@@ \"\n",
"===========================================================================\n",
"Combined BPE Vocab\n",
"swantšho\n",
"̀@@\n",
"ė\n",
"▲\n",
"ể@@\n",
"kots@@\n",
"̱@@\n",
"heber@@\n",
"̆\n",
"]@@\n"
],
"name": "stdout"
}
]
},
{
"cell_type": "markdown",
"metadata": {
"id": "0P_JpDK7v2e8",
"colab_type": "text"
},
"source": [
"## Creating the JoeyNMT Config\n",
"\n",
"JoeyNMT requires a yaml config. We provide a template below. We've also set a number of defaults with it, that you may play with!\n",
"\n",
"- We used Transformer architecture \n",
"- We set our dropout to reasonably high: 0.3 (recommended in [(Sennrich, 2019)](https://www.aclweb.org/anthology/P19-1021))\n",
"\n",
"Things worth playing with:\n",
"- The batch size (also recommended to change for low-resourced languages)\n",
"- The number of epochs (we've set it at 30 just so it runs in about an hour, for testing purposes)\n",
"- The decoder options (beam_size, alpha)\n",
"- Evaluation metrics (BLEU versus Crhf4)"
]
},
{
"cell_type": "code",
"metadata": {
"id": "4G_GWs_E0N1v",
"colab_type": "code",
"outputId": "b9e610f3-185d-4d85-f168-dc2a8a6ea502",
"colab": {
"base_uri": "https://localhost:8080/",
"height": 34
}
},
"source": [
"name = '%s%s%s%s' % (source_language, target_language, str(vocab_size),tag)\n",
"name"
],
"execution_count": 24,
"outputs": [
{
"output_type": "execute_result",
"data": {
"text/plain": [
"'ennso4000baseline'"
]
},
"metadata": {
"tags": []
},
"execution_count": 24
}
]
},
{
"cell_type": "code",
"metadata": {
"id": "o-7TTovtKnF7",
"colab_type": "code",
"colab": {}
},
"source": [
"# Create this dir before we run for the first time so we store check points\n",
"# !mkdir -p \"$gdrive_path/pretrained/$src$trg$vocab_size$tag/\" # Herman"
],
"execution_count": 0,
"outputs": []
},
{
"cell_type": "code",
"metadata": {
"id": "nVq7B1IYv2hd",
"colab_type": "code",
"colab": {
"base_uri": "https://localhost:8080/",
"height": 34
},
"outputId": "b7bb2076-42d5-42ab-e778-d34813104288"
},
"source": [
"# This creates the config file for our JoeyNMT system. It might seem overwhelming so we've provided a couple of useful parameters you'll need to update\n",
"# (You can of course play with all the parameters if you'd like!)\n",
"\n",
"name = '%s%s%s%s' % (source_language, target_language, str(vocab_size),tag)\n",
"gdrive_path = os.environ[\"gdrive_path\"]\n",
"\n",
"# Create the config\n",
"config = \"\"\"\n",
"name: \"{name}\"\n",
"\n",
"data:\n",
" src: \"{source_language}\"\n",
" trg: \"{target_language}\"\n",
" train: \"{gdrive_path}train.bpe\"\n",
" dev: \"{gdrive_path}dev.bpe\"\n",
" test: \"{gdrive_path}test.bpe\"\n",
" level: \"bpe\"\n",
" lowercase: False\n",
" max_sent_length: 100\n",
" src_vocab: \"{gdrive_path}vocab.txt\"\n",
" trg_vocab: \"{gdrive_path}vocab.txt\"\n",
"\n",
"testing:\n",
" beam_size: 5\n",
" alpha: 1.0\n",
"\n",
"training:\n",
" load_model: \"{gdrive_path}pretrained/{name}/best.ckpt\" # if uncommented, load a pre-trained model from this checkpoint\n",
" random_seed: 42\n",
" optimizer: \"adam\"\n",
" normalization: \"tokens\"\n",
" adam_betas: [0.9, 0.999] \n",
" scheduling: \"plateau\" # TODO: try switching from plateau to Noam scheduling\n",
" patience: 5 # For plateau: decrease learning rate by decrease_factor if validation score has not improved for this many validation rounds.\n",
" learning_rate_factor: 0.5 # factor for Noam scheduler (used with Transformer)\n",
" learning_rate_warmup: 1000 # warmup steps for Noam scheduler (used with Transformer)\n",
" decrease_factor: 0.7\n",
" loss: \"crossentropy\"\n",
" learning_rate: 0.0003\n",
" learning_rate_min: 0.00000001\n",
" weight_decay: 0.0\n",
" label_smoothing: 0.1\n",
" batch_size: 4096\n",
" batch_type: \"token\"\n",
" eval_batch_size: 3600\n",
" eval_batch_type: \"token\"\n",
" batch_multiplier: 1\n",
" early_stopping_metric: \"ppl\"\n",
" epochs: 10 # TODO: Decrease for when playing around and checking of working. Around 30 is sufficient to check if its working at all\n",
" validation_freq: 1000 # TODO: Set to at least once per epoch.\n",
" logging_freq: 100\n",
" eval_metric: \"bleu\"\n",
" model_dir: \"models/{name}_transformer\"\n",
" overwrite: True # TODO: Set to True if you want to overwrite possibly existing models. \n",
" shuffle: True\n",
" use_cuda: True\n",
" max_output_length: 100\n",
" print_valid_sents: [0, 1, 2, 3]\n",
" keep_last_ckpts: 3\n",
"\n",
"model:\n",
" initializer: \"xavier\"\n",
" bias_initializer: \"zeros\"\n",
" init_gain: 1.0\n",
" embed_initializer: \"xavier\"\n",
" embed_init_gain: 1.0\n",
" tied_embeddings: True\n",
" tied_softmax: True\n",
" encoder:\n",
" type: \"transformer\"\n",
" num_layers: 6\n",
" num_heads: 4 # TODO: Increase to 8 for larger data.\n",
" embeddings:\n",
" embedding_dim: 256 # TODO: Increase to 512 for larger data.\n",
" scale: True\n",
" dropout: 0.3\n",
" # typically ff_size = 4 x hidden_size\n",
" hidden_size: 256 # TODO: Increase to 512 for larger data.\n",
" ff_size: 1024 # TODO: Increase to 2048 for larger data.\n",
" dropout: 0.4\n",
" decoder:\n",
" type: \"transformer\"\n",
" num_layers: 6\n",
" num_heads: 8 # TODO: Increase to 8 for larger data.\n",
" embeddings:\n",
" embedding_dim: 256 # TODO: Increase to 512 for larger data.\n",
" scale: True\n",
" dropout: 0.3\n",
" # typically ff_size = 4 x hidden_size\n",
" hidden_size: 256 # TODO: Increase to 512 for larger data.\n",
" ff_size: 1024 # TODO: Increase to 2048 for larger data.\n",
" dropout: 0.4\n",
"\"\"\".format(name=name,\n",
" gdrive_path=os.environ[\"gdrive_path\"],\n",
" source_language=source_language,\n",
" target_language=target_language\n",
" )\n",
"\n",
"with open(\"joeynmt/configs/transformer_{name}.yaml\".format(name=name),'w') as f:\n",
" f.write(config)"
],
"execution_count": 25,
"outputs": [
{
"output_type": "execute_result",
"data": {
"text/plain": [
"3308"
]
},
"metadata": {
"tags": []
},
"execution_count": 25
}
]
},
{
"cell_type": "markdown",
"metadata": {
"id": "nr9b-FiGv2j9",
"colab_type": "text"
},
"source": [
"# Train the Model\n",
"\n",
"This single line of joeynmt runs the training using the config we made above"
]
},
{
"cell_type": "code",
"metadata": {
"id": "NfW_lJhwe6gD",
"colab_type": "code",
"outputId": "4da52cae-a1c5-47a0-b1b5-349815796db4",
"colab": {
"base_uri": "https://localhost:8080/",
"height": 173
}
},
"source": [
"! cd joeynmt/configs; ls\n",
"! cp joeynmt/configs/transformer_$src$trg$vocab_size$tag.yaml \"$gdrive_path/\""
],
"execution_count": 26,
"outputs": [
{
"output_type": "stream",
"text": [
"iwslt14_deen_bpe.yaml\t\t transformer_reverse.yaml\n",
"iwslt_deen_bahdanau.yaml\t transformer_small.yaml\n",
"iwslt_envi_luong.yaml\t\t transformer_wmt17_ende.yaml\n",
"iwslt_envi_xnmt.yaml\t\t transformer_wmt17_lven.yaml\n",
"reverse.yaml\t\t\t wmt_ende_best.yaml\n",
"small.yaml\t\t\t wmt_ende_default.yaml\n",
"transformer_copy.yaml\t\t wmt_lven_best.yaml\n",
"transformer_ennso4000baseline.yaml wmt_lven_default.yaml\n",
"transformer_iwslt14_deen_bpe.yaml\n"
],
"name": "stdout"
}
]
},
{
"cell_type": "code",
"metadata": {
"id": "WiwUQaqPv2mz",
"colab_type": "code",
"outputId": "ac8310a5-84ad-4d8d-b6b5-12951a2f51d2",
"colab": {
"base_uri": "https://localhost:8080/",
"height": 1000
}
},
"source": [
"%%time\n",
"# Train the model\n",
"# You can press Ctrl-C to stop. And then run the next cell to save your checkpoints! \n",
"! cd joeynmt; python3 -m joeynmt train configs/transformer_$src$trg$vocab_size$tag.yaml"
],
"execution_count": 27,
"outputs": [
{
"output_type": "stream",
"text": [
"2020-02-14 09:06:08,970 Hello! This is Joey-NMT.\n",
"2020-02-14 09:06:10,079 Total params: 12158720\n",
"2020-02-14 09:06:10,081 Trainable parameters: ['decoder.layer_norm.bias', 'decoder.layer_norm.weight', 'decoder.layers.0.dec_layer_norm.bias', 'decoder.layers.0.dec_layer_norm.weight', 'decoder.layers.0.feed_forward.layer_norm.bias', 'decoder.layers.0.feed_forward.layer_norm.weight', 'decoder.layers.0.feed_forward.pwff_layer.0.bias', 'decoder.layers.0.feed_forward.pwff_layer.0.weight', 'decoder.layers.0.feed_forward.pwff_layer.3.bias', 'decoder.layers.0.feed_forward.pwff_layer.3.weight', 'decoder.layers.0.src_trg_att.k_layer.bias', 'decoder.layers.0.src_trg_att.k_layer.weight', 'decoder.layers.0.src_trg_att.output_layer.bias', 'decoder.layers.0.src_trg_att.output_layer.weight', 'decoder.layers.0.src_trg_att.q_layer.bias', 'decoder.layers.0.src_trg_att.q_layer.weight', 'decoder.layers.0.src_trg_att.v_layer.bias', 'decoder.layers.0.src_trg_att.v_layer.weight', 'decoder.layers.0.trg_trg_att.k_layer.bias', 'decoder.layers.0.trg_trg_att.k_layer.weight', 'decoder.layers.0.trg_trg_att.output_layer.bias', 'decoder.layers.0.trg_trg_att.output_layer.weight', 'decoder.layers.0.trg_trg_att.q_layer.bias', 'decoder.layers.0.trg_trg_att.q_layer.weight', 'decoder.layers.0.trg_trg_att.v_layer.bias', 'decoder.layers.0.trg_trg_att.v_layer.weight', 'decoder.layers.0.x_layer_norm.bias', 'decoder.layers.0.x_layer_norm.weight', 'decoder.layers.1.dec_layer_norm.bias', 'decoder.layers.1.dec_layer_norm.weight', 'decoder.layers.1.feed_forward.layer_norm.bias', 'decoder.layers.1.feed_forward.layer_norm.weight', 'decoder.layers.1.feed_forward.pwff_layer.0.bias', 'decoder.layers.1.feed_forward.pwff_layer.0.weight', 'decoder.layers.1.feed_forward.pwff_layer.3.bias', 'decoder.layers.1.feed_forward.pwff_layer.3.weight', 'decoder.layers.1.src_trg_att.k_layer.bias', 'decoder.layers.1.src_trg_att.k_layer.weight', 'decoder.layers.1.src_trg_att.output_layer.bias', 'decoder.layers.1.src_trg_att.output_layer.weight', 'decoder.layers.1.src_trg_att.q_layer.bias', 'decoder.layers.1.src_trg_att.q_layer.weight', 'decoder.layers.1.src_trg_att.v_layer.bias', 'decoder.layers.1.src_trg_att.v_layer.weight', 'decoder.layers.1.trg_trg_att.k_layer.bias', 'decoder.layers.1.trg_trg_att.k_layer.weight', 'decoder.layers.1.trg_trg_att.output_layer.bias', 'decoder.layers.1.trg_trg_att.output_layer.weight', 'decoder.layers.1.trg_trg_att.q_layer.bias', 'decoder.layers.1.trg_trg_att.q_layer.weight', 'decoder.layers.1.trg_trg_att.v_layer.bias', 'decoder.layers.1.trg_trg_att.v_layer.weight', 'decoder.layers.1.x_layer_norm.bias', 'decoder.layers.1.x_layer_norm.weight', 'decoder.layers.2.dec_layer_norm.bias', 'decoder.layers.2.dec_layer_norm.weight', 'decoder.layers.2.feed_forward.layer_norm.bias', 'decoder.layers.2.feed_forward.layer_norm.weight', 'decoder.layers.2.feed_forward.pwff_layer.0.bias', 'decoder.layers.2.feed_forward.pwff_layer.0.weight', 'decoder.layers.2.feed_forward.pwff_layer.3.bias', 'decoder.layers.2.feed_forward.pwff_layer.3.weight', 'decoder.layers.2.src_trg_att.k_layer.bias', 'decoder.layers.2.src_trg_att.k_layer.weight', 'decoder.layers.2.src_trg_att.output_layer.bias', 'decoder.layers.2.src_trg_att.output_layer.weight', 'decoder.layers.2.src_trg_att.q_layer.bias', 'decoder.layers.2.src_trg_att.q_layer.weight', 'decoder.layers.2.src_trg_att.v_layer.bias', 'decoder.layers.2.src_trg_att.v_layer.weight', 'decoder.layers.2.trg_trg_att.k_layer.bias', 'decoder.layers.2.trg_trg_att.k_layer.weight', 'decoder.layers.2.trg_trg_att.output_layer.bias', 'decoder.layers.2.trg_trg_att.output_layer.weight', 'decoder.layers.2.trg_trg_att.q_layer.bias', 'decoder.layers.2.trg_trg_att.q_layer.weight', 'decoder.layers.2.trg_trg_att.v_layer.bias', 'decoder.layers.2.trg_trg_att.v_layer.weight', 'decoder.layers.2.x_layer_norm.bias', 'decoder.layers.2.x_layer_norm.weight', 'decoder.layers.3.dec_layer_norm.bias', 'decoder.layers.3.dec_layer_norm.weight', 'decoder.layers.3.feed_forward.layer_norm.bias', 'decoder.layers.3.feed_forward.layer_norm.weight', 'decoder.layers.3.feed_forward.pwff_layer.0.bias', 'decoder.layers.3.feed_forward.pwff_layer.0.weight', 'decoder.layers.3.feed_forward.pwff_layer.3.bias', 'decoder.layers.3.feed_forward.pwff_layer.3.weight', 'decoder.layers.3.src_trg_att.k_layer.bias', 'decoder.layers.3.src_trg_att.k_layer.weight', 'decoder.layers.3.src_trg_att.output_layer.bias', 'decoder.layers.3.src_trg_att.output_layer.weight', 'decoder.layers.3.src_trg_att.q_layer.bias', 'decoder.layers.3.src_trg_att.q_layer.weight', 'decoder.layers.3.src_trg_att.v_layer.bias', 'decoder.layers.3.src_trg_att.v_layer.weight', 'decoder.layers.3.trg_trg_att.k_layer.bias', 'decoder.layers.3.trg_trg_att.k_layer.weight', 'decoder.layers.3.trg_trg_att.output_layer.bias', 'decoder.layers.3.trg_trg_att.output_layer.weight', 'decoder.layers.3.trg_trg_att.q_layer.bias', 'decoder.layers.3.trg_trg_att.q_layer.weight', 'decoder.layers.3.trg_trg_att.v_layer.bias', 'decoder.layers.3.trg_trg_att.v_layer.weight', 'decoder.layers.3.x_layer_norm.bias', 'decoder.layers.3.x_layer_norm.weight', 'decoder.layers.4.dec_layer_norm.bias', 'decoder.layers.4.dec_layer_norm.weight', 'decoder.layers.4.feed_forward.layer_norm.bias', 'decoder.layers.4.feed_forward.layer_norm.weight', 'decoder.layers.4.feed_forward.pwff_layer.0.bias', 'decoder.layers.4.feed_forward.pwff_layer.0.weight', 'decoder.layers.4.feed_forward.pwff_layer.3.bias', 'decoder.layers.4.feed_forward.pwff_layer.3.weight', 'decoder.layers.4.src_trg_att.k_layer.bias', 'decoder.layers.4.src_trg_att.k_layer.weight', 'decoder.layers.4.src_trg_att.output_layer.bias', 'decoder.layers.4.src_trg_att.output_layer.weight', 'decoder.layers.4.src_trg_att.q_layer.bias', 'decoder.layers.4.src_trg_att.q_layer.weight', 'decoder.layers.4.src_trg_att.v_layer.bias', 'decoder.layers.4.src_trg_att.v_layer.weight', 'decoder.layers.4.trg_trg_att.k_layer.bias', 'decoder.layers.4.trg_trg_att.k_layer.weight', 'decoder.layers.4.trg_trg_att.output_layer.bias', 'decoder.layers.4.trg_trg_att.output_layer.weight', 'decoder.layers.4.trg_trg_att.q_layer.bias', 'decoder.layers.4.trg_trg_att.q_layer.weight', 'decoder.layers.4.trg_trg_att.v_layer.bias', 'decoder.layers.4.trg_trg_att.v_layer.weight', 'decoder.layers.4.x_layer_norm.bias', 'decoder.layers.4.x_layer_norm.weight', 'decoder.layers.5.dec_layer_norm.bias', 'decoder.layers.5.dec_layer_norm.weight', 'decoder.layers.5.feed_forward.layer_norm.bias', 'decoder.layers.5.feed_forward.layer_norm.weight', 'decoder.layers.5.feed_forward.pwff_layer.0.bias', 'decoder.layers.5.feed_forward.pwff_layer.0.weight', 'decoder.layers.5.feed_forward.pwff_layer.3.bias', 'decoder.layers.5.feed_forward.pwff_layer.3.weight', 'decoder.layers.5.src_trg_att.k_layer.bias', 'decoder.layers.5.src_trg_att.k_layer.weight', 'decoder.layers.5.src_trg_att.output_layer.bias', 'decoder.layers.5.src_trg_att.output_layer.weight', 'decoder.layers.5.src_trg_att.q_layer.bias', 'decoder.layers.5.src_trg_att.q_layer.weight', 'decoder.layers.5.src_trg_att.v_layer.bias', 'decoder.layers.5.src_trg_att.v_layer.weight', 'decoder.layers.5.trg_trg_att.k_layer.bias', 'decoder.layers.5.trg_trg_att.k_layer.weight', 'decoder.layers.5.trg_trg_att.output_layer.bias', 'decoder.layers.5.trg_trg_att.output_layer.weight', 'decoder.layers.5.trg_trg_att.q_layer.bias', 'decoder.layers.5.trg_trg_att.q_layer.weight', 'decoder.layers.5.trg_trg_att.v_layer.bias', 'decoder.layers.5.trg_trg_att.v_layer.weight', 'decoder.layers.5.x_layer_norm.bias', 'decoder.layers.5.x_layer_norm.weight', 'encoder.layer_norm.bias', 'encoder.layer_norm.weight', 'encoder.layers.0.feed_forward.layer_norm.bias', 'encoder.layers.0.feed_forward.layer_norm.weight', 'encoder.layers.0.feed_forward.pwff_layer.0.bias', 'encoder.layers.0.feed_forward.pwff_layer.0.weight', 'encoder.layers.0.feed_forward.pwff_layer.3.bias', 'encoder.layers.0.feed_forward.pwff_layer.3.weight', 'encoder.layers.0.layer_norm.bias', 'encoder.layers.0.layer_norm.weight', 'encoder.layers.0.src_src_att.k_layer.bias', 'encoder.layers.0.src_src_att.k_layer.weight', 'encoder.layers.0.src_src_att.output_layer.bias', 'encoder.layers.0.src_src_att.output_layer.weight', 'encoder.layers.0.src_src_att.q_layer.bias', 'encoder.layers.0.src_src_att.q_layer.weight', 'encoder.layers.0.src_src_att.v_layer.bias', 'encoder.layers.0.src_src_att.v_layer.weight', 'encoder.layers.1.feed_forward.layer_norm.bias', 'encoder.layers.1.feed_forward.layer_norm.weight', 'encoder.layers.1.feed_forward.pwff_layer.0.bias', 'encoder.layers.1.feed_forward.pwff_layer.0.weight', 'encoder.layers.1.feed_forward.pwff_layer.3.bias', 'encoder.layers.1.feed_forward.pwff_layer.3.weight', 'encoder.layers.1.layer_norm.bias', 'encoder.layers.1.layer_norm.weight', 'encoder.layers.1.src_src_att.k_layer.bias', 'encoder.layers.1.src_src_att.k_layer.weight', 'encoder.layers.1.src_src_att.output_layer.bias', 'encoder.layers.1.src_src_att.output_layer.weight', 'encoder.layers.1.src_src_att.q_layer.bias', 'encoder.layers.1.src_src_att.q_layer.weight', 'encoder.layers.1.src_src_att.v_layer.bias', 'encoder.layers.1.src_src_att.v_layer.weight', 'encoder.layers.2.feed_forward.layer_norm.bias', 'encoder.layers.2.feed_forward.layer_norm.weight', 'encoder.layers.2.feed_forward.pwff_layer.0.bias', 'encoder.layers.2.feed_forward.pwff_layer.0.weight', 'encoder.layers.2.feed_forward.pwff_layer.3.bias', 'encoder.layers.2.feed_forward.pwff_layer.3.weight', 'encoder.layers.2.layer_norm.bias', 'encoder.layers.2.layer_norm.weight', 'encoder.layers.2.src_src_att.k_layer.bias', 'encoder.layers.2.src_src_att.k_layer.weight', 'encoder.layers.2.src_src_att.output_layer.bias', 'encoder.layers.2.src_src_att.output_layer.weight', 'encoder.layers.2.src_src_att.q_layer.bias', 'encoder.layers.2.src_src_att.q_layer.weight', 'encoder.layers.2.src_src_att.v_layer.bias', 'encoder.layers.2.src_src_att.v_layer.weight', 'encoder.layers.3.feed_forward.layer_norm.bias', 'encoder.layers.3.feed_forward.layer_norm.weight', 'encoder.layers.3.feed_forward.pwff_layer.0.bias', 'encoder.layers.3.feed_forward.pwff_layer.0.weight', 'encoder.layers.3.feed_forward.pwff_layer.3.bias', 'encoder.layers.3.feed_forward.pwff_layer.3.weight', 'encoder.layers.3.layer_norm.bias', 'encoder.layers.3.layer_norm.weight', 'encoder.layers.3.src_src_att.k_layer.bias', 'encoder.layers.3.src_src_att.k_layer.weight', 'encoder.layers.3.src_src_att.output_layer.bias', 'encoder.layers.3.src_src_att.output_layer.weight', 'encoder.layers.3.src_src_att.q_layer.bias', 'encoder.layers.3.src_src_att.q_layer.weight', 'encoder.layers.3.src_src_att.v_layer.bias', 'encoder.layers.3.src_src_att.v_layer.weight', 'encoder.layers.4.feed_forward.layer_norm.bias', 'encoder.layers.4.feed_forward.layer_norm.weight', 'encoder.layers.4.feed_forward.pwff_layer.0.bias', 'encoder.layers.4.feed_forward.pwff_layer.0.weight', 'encoder.layers.4.feed_forward.pwff_layer.3.bias', 'encoder.layers.4.feed_forward.pwff_layer.3.weight', 'encoder.layers.4.layer_norm.bias', 'encoder.layers.4.layer_norm.weight', 'encoder.layers.4.src_src_att.k_layer.bias', 'encoder.layers.4.src_src_att.k_layer.weight', 'encoder.layers.4.src_src_att.output_layer.bias', 'encoder.layers.4.src_src_att.output_layer.weight', 'encoder.layers.4.src_src_att.q_layer.bias', 'encoder.layers.4.src_src_att.q_layer.weight', 'encoder.layers.4.src_src_att.v_layer.bias', 'encoder.layers.4.src_src_att.v_layer.weight', 'encoder.layers.5.feed_forward.layer_norm.bias', 'encoder.layers.5.feed_forward.layer_norm.weight', 'encoder.layers.5.feed_forward.pwff_layer.0.bias', 'encoder.layers.5.feed_forward.pwff_layer.0.weight', 'encoder.layers.5.feed_forward.pwff_layer.3.bias', 'encoder.layers.5.feed_forward.pwff_layer.3.weight', 'encoder.layers.5.layer_norm.bias', 'encoder.layers.5.layer_norm.weight', 'encoder.layers.5.src_src_att.k_layer.bias', 'encoder.layers.5.src_src_att.k_layer.weight', 'encoder.layers.5.src_src_att.output_layer.bias', 'encoder.layers.5.src_src_att.output_layer.weight', 'encoder.layers.5.src_src_att.q_layer.bias', 'encoder.layers.5.src_src_att.q_layer.weight', 'encoder.layers.5.src_src_att.v_layer.bias', 'encoder.layers.5.src_src_att.v_layer.weight', 'src_embed.lut.weight']\n",
"2020-02-14 09:06:19,008 Loading model from /content/drive/My Drive/masakhane/en-nso-baseline/pretrained/ennso4000baseline/best.ckpt\n",
"2020-02-14 09:06:31,181 cfg.name : ennso4000baseline\n",
"2020-02-14 09:06:31,181 cfg.data.src : en\n",
"2020-02-14 09:06:31,181 cfg.data.trg : nso\n",
"2020-02-14 09:06:31,181 cfg.data.train : /content/drive/My Drive/masakhane/en-nso-baseline/train.bpe\n",
"2020-02-14 09:06:31,181 cfg.data.dev : /content/drive/My Drive/masakhane/en-nso-baseline/dev.bpe\n",
"2020-02-14 09:06:31,181 cfg.data.test : /content/drive/My Drive/masakhane/en-nso-baseline/test.bpe\n",
"2020-02-14 09:06:31,181 cfg.data.level : bpe\n",
"2020-02-14 09:06:31,181 cfg.data.lowercase : False\n",
"2020-02-14 09:06:31,181 cfg.data.max_sent_length : 100\n",
"2020-02-14 09:06:31,182 cfg.data.src_vocab : /content/drive/My Drive/masakhane/en-nso-baseline/vocab.txt\n",
"2020-02-14 09:06:31,182 cfg.data.trg_vocab : /content/drive/My Drive/masakhane/en-nso-baseline/vocab.txt\n",
"2020-02-14 09:06:31,182 cfg.testing.beam_size : 5\n",
"2020-02-14 09:06:31,182 cfg.testing.alpha : 1.0\n",
"2020-02-14 09:06:31,182 cfg.training.load_model : /content/drive/My Drive/masakhane/en-nso-baseline/pretrained/ennso4000baseline/best.ckpt\n",
"2020-02-14 09:06:31,182 cfg.training.random_seed : 42\n",
"2020-02-14 09:06:31,182 cfg.training.optimizer : adam\n",
"2020-02-14 09:06:31,182 cfg.training.normalization : tokens\n",
"2020-02-14 09:06:31,182 cfg.training.adam_betas : [0.9, 0.999]\n",
"2020-02-14 09:06:31,182 cfg.training.scheduling : plateau\n",
"2020-02-14 09:06:31,182 cfg.training.patience : 5\n",
"2020-02-14 09:06:31,182 cfg.training.learning_rate_factor : 0.5\n",
"2020-02-14 09:06:31,182 cfg.training.learning_rate_warmup : 1000\n",
"2020-02-14 09:06:31,182 cfg.training.decrease_factor : 0.7\n",
"2020-02-14 09:06:31,182 cfg.training.loss : crossentropy\n",
"2020-02-14 09:06:31,182 cfg.training.learning_rate : 0.0003\n",
"2020-02-14 09:06:31,182 cfg.training.learning_rate_min : 1e-08\n",
"2020-02-14 09:06:31,182 cfg.training.weight_decay : 0.0\n",
"2020-02-14 09:06:31,182 cfg.training.label_smoothing : 0.1\n",
"2020-02-14 09:06:31,182 cfg.training.batch_size : 4096\n",
"2020-02-14 09:06:31,182 cfg.training.batch_type : token\n",
"2020-02-14 09:06:31,182 cfg.training.eval_batch_size : 3600\n",
"2020-02-14 09:06:31,182 cfg.training.eval_batch_type : token\n",
"2020-02-14 09:06:31,182 cfg.training.batch_multiplier : 1\n",
"2020-02-14 09:06:31,182 cfg.training.early_stopping_metric : ppl\n",
"2020-02-14 09:06:31,182 cfg.training.epochs : 10\n",
"2020-02-14 09:06:31,182 cfg.training.validation_freq : 1000\n",
"2020-02-14 09:06:31,182 cfg.training.logging_freq : 100\n",
"2020-02-14 09:06:31,182 cfg.training.eval_metric : bleu\n",
"2020-02-14 09:06:31,183 cfg.training.model_dir : models/ennso4000baseline_transformer\n",
"2020-02-14 09:06:31,183 cfg.training.overwrite : True\n",
"2020-02-14 09:06:31,183 cfg.training.shuffle : True\n",
"2020-02-14 09:06:31,183 cfg.training.use_cuda : True\n",
"2020-02-14 09:06:31,183 cfg.training.max_output_length : 100\n",
"2020-02-14 09:06:31,183 cfg.training.print_valid_sents : [0, 1, 2, 3]\n",
"2020-02-14 09:06:31,183 cfg.training.keep_last_ckpts : 3\n",
"2020-02-14 09:06:31,183 cfg.model.initializer : xavier\n",
"2020-02-14 09:06:31,183 cfg.model.bias_initializer : zeros\n",
"2020-02-14 09:06:31,183 cfg.model.init_gain : 1.0\n",
"2020-02-14 09:06:31,183 cfg.model.embed_initializer : xavier\n",
"2020-02-14 09:06:31,183 cfg.model.embed_init_gain : 1.0\n",
"2020-02-14 09:06:31,183 cfg.model.tied_embeddings : True\n",
"2020-02-14 09:06:31,183 cfg.model.tied_softmax : True\n",
"2020-02-14 09:06:31,183 cfg.model.encoder.type : transformer\n",
"2020-02-14 09:06:31,183 cfg.model.encoder.num_layers : 6\n",
"2020-02-14 09:06:31,183 cfg.model.encoder.num_heads : 4\n",
"2020-02-14 09:06:31,183 cfg.model.encoder.embeddings.embedding_dim : 256\n",
"2020-02-14 09:06:31,183 cfg.model.encoder.embeddings.scale : True\n",
"2020-02-14 09:06:31,183 cfg.model.encoder.embeddings.dropout : 0.3\n",
"2020-02-14 09:06:31,183 cfg.model.encoder.hidden_size : 256\n",
"2020-02-14 09:06:31,183 cfg.model.encoder.ff_size : 1024\n",
"2020-02-14 09:06:31,183 cfg.model.encoder.dropout : 0.4\n",
"2020-02-14 09:06:31,183 cfg.model.decoder.type : transformer\n",
"2020-02-14 09:06:31,183 cfg.model.decoder.num_layers : 6\n",
"2020-02-14 09:06:31,184 cfg.model.decoder.num_heads : 8\n",
"2020-02-14 09:06:31,184 cfg.model.decoder.embeddings.embedding_dim : 256\n",
"2020-02-14 09:06:31,184 cfg.model.decoder.embeddings.scale : True\n",
"2020-02-14 09:06:31,184 cfg.model.decoder.embeddings.dropout : 0.3\n",
"2020-02-14 09:06:31,184 cfg.model.decoder.hidden_size : 256\n",
"2020-02-14 09:06:31,184 cfg.model.decoder.ff_size : 1024\n",
"2020-02-14 09:06:31,184 cfg.model.decoder.dropout : 0.4\n",
"2020-02-14 09:06:31,184 Data set sizes: \n",
"\ttrain 563849,\n",
"\tvalid 1000,\n",
"\ttest 2705\n",
"2020-02-14 09:06:31,184 First training example:\n",
"\t[SRC] name some of god’s gi@@ f@@ ts that we can enjoy while awa@@ iting future blessings\n",
"\t[TRG] hlalosa di@@ mpho tše dingwe tša modimo tšeo re ka di thabe@@ lago ge re dutše re lete@@ tše ditšhegofatšo tša nakong e tlago\n",
"2020-02-14 09:06:31,184 First 10 words (src): (0) <unk> (1) <pad> (2) <s> (3) </s> (4) , (5) a (6) go (7) le (8) ka (9) ba\n",
"2020-02-14 09:06:31,184 First 10 words (trg): (0) <unk> (1) <pad> (2) <s> (3) </s> (4) , (5) a (6) go (7) le (8) ka (9) ba\n",
"2020-02-14 09:06:31,184 Number of Src words (types): 4291\n",
"2020-02-14 09:06:31,184 Number of Trg words (types): 4291\n",
"2020-02-14 09:06:31,184 Model(\n",
"\tencoder=TransformerEncoder(num_layers=6, num_heads=4),\n",
"\tdecoder=TransformerDecoder(num_layers=6, num_heads=8),\n",
"\tsrc_embed=Embeddings(embedding_dim=256, vocab_size=4291),\n",
"\ttrg_embed=Embeddings(embedding_dim=256, vocab_size=4291))\n",
"2020-02-14 09:06:31,188 EPOCH 1\n",
"2020-02-14 09:06:43,691 Epoch 1 Step: 177100 Batch Loss: 1.554556 Tokens per Sec: 19776, Lr: 0.000300\n",
"2020-02-14 09:06:55,166 Epoch 1 Step: 177200 Batch Loss: 1.402975 Tokens per Sec: 21350, Lr: 0.000300\n",
"2020-02-14 09:07:06,709 Epoch 1 Step: 177300 Batch Loss: 1.653110 Tokens per Sec: 21384, Lr: 0.000300\n",
"2020-02-14 09:07:18,071 Epoch 1 Step: 177400 Batch Loss: 1.119401 Tokens per Sec: 22436, Lr: 0.000300\n",
"2020-02-14 09:07:29,449 Epoch 1 Step: 177500 Batch Loss: 1.342238 Tokens per Sec: 21814, Lr: 0.000300\n",
"2020-02-14 09:07:40,775 Epoch 1 Step: 177600 Batch Loss: 1.005374 Tokens per Sec: 22137, Lr: 0.000300\n",
"2020-02-14 09:07:52,247 Epoch 1 Step: 177700 Batch Loss: 1.039695 Tokens per Sec: 21775, Lr: 0.000300\n",
"2020-02-14 09:08:03,578 Epoch 1 Step: 177800 Batch Loss: 1.083479 Tokens per Sec: 21844, Lr: 0.000300\n",
"2020-02-14 09:08:15,032 Epoch 1 Step: 177900 Batch Loss: 0.867756 Tokens per Sec: 21840, Lr: 0.000300\n",
"2020-02-14 09:08:26,289 Epoch 1 Step: 178000 Batch Loss: 0.963311 Tokens per Sec: 21865, Lr: 0.000300\n",
"2020-02-14 09:08:45,948 Example #0\n",
"2020-02-14 09:08:45,950 \tSource: a $ - million contract is signed by a leading hockey player for six years\n",
"2020-02-14 09:08:45,950 \tReference: sebapadi sa maemo a godimo sa hockey se saenetše tumelelano ya ditolara tše dimilione tše bakeng sa go bapala ka nywaga e tshelelago\n",
"2020-02-14 09:08:45,950 \tHypothesis: konteraka ya diranta tše dimilione tše , e saenwa ke sebapadi se se išago gae ka nywaga e tshelelago\n",
"2020-02-14 09:08:45,950 Example #1\n",
"2020-02-14 09:08:45,950 \tSource: meanwhile , he had given two talks in the theocratic ministry school and had become an unbaptized publisher\n",
"2020-02-14 09:08:45,950 \tReference: go sa dutše go le bjalo , o be a šetše a neile dipolelo tše pedi sekolong sa bodiredi sa pušo ya modimo e bile e le mogoeledi yo a sa kolobetšwago\n",
"2020-02-14 09:08:45,950 \tHypothesis: ka nako e swanago , o be a neile dipolelo tše pedi sekolong sa bodiredi sa pušo ya modimo gomme o be a fetogile mogoeledi yo a sa kolobetšwago\n",
"2020-02-14 09:08:45,950 Example #2\n",
"2020-02-14 09:08:45,951 \tSource: : — what vow did paul make ?\n",
"2020-02-14 09:08:45,951 \tReference: : — ke keno efe yeo e dirilwego ke paulo ?\n",
"2020-02-14 09:08:45,951 \tHypothesis: : — paulo o ile a dira keno efe ?\n",
"2020-02-14 09:08:45,951 Example #3\n",
"2020-02-14 09:08:45,951 \tSource: christian wives too can make their feelings known\n",
"2020-02-14 09:08:45,951 \tReference: basadi ba bakriste le bona ba ka bolela maikwelo a bona\n",
"2020-02-14 09:08:45,951 \tHypothesis: basadi ba bakriste le bona ba ka dira gore maikwelo a bona a tsebje\n",
"2020-02-14 09:08:45,951 Validation result (greedy) at epoch 1, step 178000: bleu: 44.47, loss: 28279.8086, ppl: 2.6200, duration: 19.6613s\n",
"2020-02-14 09:08:57,396 Epoch 1 Step: 178100 Batch Loss: 1.112401 Tokens per Sec: 21992, Lr: 0.000300\n",
"2020-02-14 09:09:08,812 Epoch 1 Step: 178200 Batch Loss: 1.278881 Tokens per Sec: 21910, Lr: 0.000300\n",
"2020-02-14 09:09:20,012 Epoch 1 Step: 178300 Batch Loss: 1.090895 Tokens per Sec: 21676, Lr: 0.000300\n",
"2020-02-14 09:09:31,492 Epoch 1 Step: 178400 Batch Loss: 1.226156 Tokens per Sec: 21744, Lr: 0.000300\n",
"2020-02-14 09:09:43,081 Epoch 1 Step: 178500 Batch Loss: 1.531641 Tokens per Sec: 22043, Lr: 0.000300\n",
"2020-02-14 09:09:54,564 Epoch 1 Step: 178600 Batch Loss: 1.068074 Tokens per Sec: 21602, Lr: 0.000300\n",
"2020-02-14 09:10:05,926 Epoch 1 Step: 178700 Batch Loss: 1.207614 Tokens per Sec: 21339, Lr: 0.000300\n",
"2020-02-14 09:10:17,262 Epoch 1 Step: 178800 Batch Loss: 1.301371 Tokens per Sec: 22283, Lr: 0.000300\n",
"2020-02-14 09:10:28,581 Epoch 1 Step: 178900 Batch Loss: 1.306410 Tokens per Sec: 21812, Lr: 0.000300\n",
"2020-02-14 09:10:39,891 Epoch 1 Step: 179000 Batch Loss: 1.399729 Tokens per Sec: 22232, Lr: 0.000300\n",
"2020-02-14 09:10:58,367 Example #0\n",
"2020-02-14 09:10:58,367 \tSource: a $ - million contract is signed by a leading hockey player for six years\n",
"2020-02-14 09:10:58,367 \tReference: sebapadi sa maemo a godimo sa hockey se saenetše tumelelano ya ditolara tše dimilione tše bakeng sa go bapala ka nywaga e tshelelago\n",
"2020-02-14 09:10:58,367 \tHypothesis: konteraka ya diranta tše dimilione tše , e saenwa ke molaodi wa hockey ka nywaga e tshelelago\n",
"2020-02-14 09:10:58,367 Example #1\n",
"2020-02-14 09:10:58,367 \tSource: meanwhile , he had given two talks in the theocratic ministry school and had become an unbaptized publisher\n",
"2020-02-14 09:10:58,367 \tReference: go sa dutše go le bjalo , o be a šetše a neile dipolelo tše pedi sekolong sa bodiredi sa pušo ya modimo e bile e le mogoeledi yo a sa kolobetšwago\n",
"2020-02-14 09:10:58,367 \tHypothesis: ka nako e swanago , o be a neile dipolelo tše pedi sekolong sa bodiredi sa pušo ya modimo gomme a ba mogoeledi yo a sa kolobetšwago\n",
"2020-02-14 09:10:58,367 Example #2\n",
"2020-02-14 09:10:58,367 \tSource: : — what vow did paul make ?\n",
"2020-02-14 09:10:58,368 \tReference: : — ke keno efe yeo e dirilwego ke paulo ?\n",
"2020-02-14 09:10:58,368 \tHypothesis: : — paulo o dirile keno efe ?\n",
"2020-02-14 09:10:58,368 Example #3\n",
"2020-02-14 09:10:58,368 \tSource: christian wives too can make their feelings known\n",
"2020-02-14 09:10:58,368 \tReference: basadi ba bakriste le bona ba ka bolela maikwelo a bona\n",
"2020-02-14 09:10:58,368 \tHypothesis: basadi ba bakriste le bona ba ka dira gore maikwelo a bona a tsebje\n",
"2020-02-14 09:10:58,368 Validation result (greedy) at epoch 1, step 179000: bleu: 44.50, loss: 28167.1602, ppl: 2.6100, duration: 18.4767s\n",
"2020-02-14 09:11:09,852 Epoch 1 Step: 179100 Batch Loss: 1.129381 Tokens per Sec: 21899, Lr: 0.000300\n",
"2020-02-14 09:11:21,217 Epoch 1 Step: 179200 Batch Loss: 1.389105 Tokens per Sec: 22531, Lr: 0.000300\n",
"2020-02-14 09:11:32,553 Epoch 1 Step: 179300 Batch Loss: 1.237211 Tokens per Sec: 21578, Lr: 0.000300\n",
"2020-02-14 09:11:44,079 Epoch 1 Step: 179400 Batch Loss: 1.298432 Tokens per Sec: 21921, Lr: 0.000300\n",
"2020-02-14 09:11:55,498 Epoch 1 Step: 179500 Batch Loss: 1.340777 Tokens per Sec: 21460, Lr: 0.000300\n",
"2020-02-14 09:12:06,984 Epoch 1 Step: 179600 Batch Loss: 1.040521 Tokens per Sec: 21952, Lr: 0.000300\n",
"2020-02-14 09:12:18,255 Epoch 1 Step: 179700 Batch Loss: 1.265535 Tokens per Sec: 21871, Lr: 0.000300\n",
"2020-02-14 09:12:29,780 Epoch 1 Step: 179800 Batch Loss: 1.098928 Tokens per Sec: 22026, Lr: 0.000300\n",
"2020-02-14 09:12:41,191 Epoch 1 Step: 179900 Batch Loss: 1.009815 Tokens per Sec: 21883, Lr: 0.000300\n",
"2020-02-14 09:12:52,558 Epoch 1 Step: 180000 Batch Loss: 1.302110 Tokens per Sec: 21565, Lr: 0.000300\n",
"2020-02-14 09:13:11,606 Example #0\n",
"2020-02-14 09:13:11,606 \tSource: a $ - million contract is signed by a leading hockey player for six years\n",
"2020-02-14 09:13:11,606 \tReference: sebapadi sa maemo a godimo sa hockey se saenetše tumelelano ya ditolara tše dimilione tše bakeng sa go bapala ka nywaga e tshelelago\n",
"2020-02-14 09:13:11,606 \tHypothesis: konteraka ya diranta tše dimilione tše e saenwa ke molaodi wa hockey ka nywaga e tshela\n",
"2020-02-14 09:13:11,606 Example #1\n",
"2020-02-14 09:13:11,607 \tSource: meanwhile , he had given two talks in the theocratic ministry school and had become an unbaptized publisher\n",
"2020-02-14 09:13:11,607 \tReference: go sa dutše go le bjalo , o be a šetše a neile dipolelo tše pedi sekolong sa bodiredi sa pušo ya modimo e bile e le mogoeledi yo a sa kolobetšwago\n",
"2020-02-14 09:13:11,607 \tHypothesis: ka nako e swanago , o be a neile dipolelo tše pedi sekolong sa bodiredi sa pušo ya modimo gomme o be a fetogile mogoeledi yo a sa kolobetšwago\n",
"2020-02-14 09:13:11,607 Example #2\n",
"2020-02-14 09:13:11,607 \tSource: : — what vow did paul make ?\n",
"2020-02-14 09:13:11,607 \tReference: : — ke keno efe yeo e dirilwego ke paulo ?\n",
"2020-02-14 09:13:11,607 \tHypothesis: : — paulo o ile a dira keno efe ?\n",
"2020-02-14 09:13:11,607 Example #3\n",
"2020-02-14 09:13:11,607 \tSource: christian wives too can make their feelings known\n",
"2020-02-14 09:13:11,607 \tReference: basadi ba bakriste le bona ba ka bolela maikwelo a bona\n",
"2020-02-14 09:13:11,607 \tHypothesis: basadi ba bakriste le bona ba ka dira gore maikwelo a bona a tsebje\n",
"2020-02-14 09:13:11,607 Validation result (greedy) at epoch 1, step 180000: bleu: 44.55, loss: 28018.4434, ppl: 2.5968, duration: 19.0487s\n",
"2020-02-14 09:13:23,021 Epoch 1 Step: 180100 Batch Loss: 0.914520 Tokens per Sec: 22192, Lr: 0.000300\n",
"2020-02-14 09:13:34,476 Epoch 1 Step: 180200 Batch Loss: 1.122637 Tokens per Sec: 22254, Lr: 0.000300\n",
"2020-02-14 09:13:45,941 Epoch 1 Step: 180300 Batch Loss: 1.204203 Tokens per Sec: 21537, Lr: 0.000300\n",
"2020-02-14 09:13:57,253 Epoch 1 Step: 180400 Batch Loss: 1.120760 Tokens per Sec: 21585, Lr: 0.000300\n",
"2020-02-14 09:14:08,787 Epoch 1 Step: 180500 Batch Loss: 1.044424 Tokens per Sec: 21421, Lr: 0.000300\n",
"2020-02-14 09:14:20,074 Epoch 1 Step: 180600 Batch Loss: 1.145219 Tokens per Sec: 21999, Lr: 0.000300\n",
"2020-02-14 09:14:31,628 Epoch 1 Step: 180700 Batch Loss: 1.191535 Tokens per Sec: 21569, Lr: 0.000300\n",
"2020-02-14 09:14:43,038 Epoch 1 Step: 180800 Batch Loss: 1.038063 Tokens per Sec: 21578, Lr: 0.000300\n",
"2020-02-14 09:14:54,427 Epoch 1 Step: 180900 Batch Loss: 1.098899 Tokens per Sec: 21418, Lr: 0.000300\n",
"2020-02-14 09:15:05,954 Epoch 1 Step: 181000 Batch Loss: 1.252185 Tokens per Sec: 22024, Lr: 0.000300\n",
"2020-02-14 09:15:24,396 Example #0\n",
"2020-02-14 09:15:24,397 \tSource: a $ - million contract is signed by a leading hockey player for six years\n",
"2020-02-14 09:15:24,397 \tReference: sebapadi sa maemo a godimo sa hockey se saenetše tumelelano ya ditolara tše dimilione tše bakeng sa go bapala ka nywaga e tshelelago\n",
"2020-02-14 09:15:24,397 \tHypothesis: konteraka ya diranta tše dimilione tše e hlamilwe ke morekiši yo a etelelago pele wa hockey ka nywaga e tshelelago\n",
"2020-02-14 09:15:24,397 Example #1\n",
"2020-02-14 09:15:24,397 \tSource: meanwhile , he had given two talks in the theocratic ministry school and had become an unbaptized publisher\n",
"2020-02-14 09:15:24,397 \tReference: go sa dutše go le bjalo , o be a šetše a neile dipolelo tše pedi sekolong sa bodiredi sa pušo ya modimo e bile e le mogoeledi yo a sa kolobetšwago\n",
"2020-02-14 09:15:24,397 \tHypothesis: go sa dutše go le bjalo , o be a neile dipolelo tše pedi sekolong sa bodiredi sa pušo ya modimo gomme o be a fetogile mogoeledi yo a sa kolobetšwago\n",
"2020-02-14 09:15:24,397 Example #2\n",
"2020-02-14 09:15:24,397 \tSource: : — what vow did paul make ?\n",
"2020-02-14 09:15:24,397 \tReference: : — ke keno efe yeo e dirilwego ke paulo ?\n",
"2020-02-14 09:15:24,397 \tHypothesis: : — paulo o ile a dira keno efe ?\n",
"2020-02-14 09:15:24,397 Example #3\n",
"2020-02-14 09:15:24,397 \tSource: christian wives too can make their feelings known\n",
"2020-02-14 09:15:24,398 \tReference: basadi ba bakriste le bona ba ka bolela maikwelo a bona\n",
"2020-02-14 09:15:24,398 \tHypothesis: basadi ba bakriste le bona ba ka dira gore maikwelo a bona a tsebje\n",
"2020-02-14 09:15:24,398 Validation result (greedy) at epoch 1, step 181000: bleu: 44.40, loss: 28150.8887, ppl: 2.6085, duration: 18.4431s\n",
"2020-02-14 09:15:35,872 Epoch 1 Step: 181100 Batch Loss: 1.101133 Tokens per Sec: 22088, Lr: 0.000300\n",
"2020-02-14 09:15:47,473 Epoch 1 Step: 181200 Batch Loss: 0.925666 Tokens per Sec: 21603, Lr: 0.000300\n",
"2020-02-14 09:15:58,986 Epoch 1 Step: 181300 Batch Loss: 1.190559 Tokens per Sec: 22333, Lr: 0.000300\n",
"2020-02-14 09:16:10,460 Epoch 1 Step: 181400 Batch Loss: 1.071086 Tokens per Sec: 21886, Lr: 0.000300\n",
"2020-02-14 09:16:21,860 Epoch 1 Step: 181500 Batch Loss: 1.023793 Tokens per Sec: 21589, Lr: 0.000300\n",
"2020-02-14 09:16:33,330 Epoch 1 Step: 181600 Batch Loss: 1.284564 Tokens per Sec: 21820, Lr: 0.000300\n",
"2020-02-14 09:16:44,830 Epoch 1 Step: 181700 Batch Loss: 1.678303 Tokens per Sec: 21612, Lr: 0.000300\n",
"2020-02-14 09:16:56,234 Epoch 1 Step: 181800 Batch Loss: 1.165438 Tokens per Sec: 21669, Lr: 0.000300\n",
"2020-02-14 09:17:07,638 Epoch 1 Step: 181900 Batch Loss: 1.083315 Tokens per Sec: 21741, Lr: 0.000300\n",
"2020-02-14 09:17:18,956 Epoch 1 Step: 182000 Batch Loss: 1.040282 Tokens per Sec: 22058, Lr: 0.000300\n",
"2020-02-14 09:17:37,373 Example #0\n",
"2020-02-14 09:17:37,374 \tSource: a $ - million contract is signed by a leading hockey player for six years\n",
"2020-02-14 09:17:37,374 \tReference: sebapadi sa maemo a godimo sa hockey se saenetše tumelelano ya ditolara tše dimilione tše bakeng sa go bapala ka nywaga e tshelelago\n",
"2020-02-14 09:17:37,374 \tHypothesis: tumelelano ya diranta tše dimilione tše e hlamilwe ke molaodi yo a etelelago pele wa hockey ka nywaga e tshelelago\n",
"2020-02-14 09:17:37,374 Example #1\n",
"2020-02-14 09:17:37,374 \tSource: meanwhile , he had given two talks in the theocratic ministry school and had become an unbaptized publisher\n",
"2020-02-14 09:17:37,374 \tReference: go sa dutše go le bjalo , o be a šetše a neile dipolelo tše pedi sekolong sa bodiredi sa pušo ya modimo e bile e le mogoeledi yo a sa kolobetšwago\n",
"2020-02-14 09:17:37,374 \tHypothesis: ka nako yeo , o be a neile dipolelo tše pedi sekolong sa bodiredi sa pušo ya modimo gomme o be a fetogile mogoeledi yo a sa kolobetšwago\n",
"2020-02-14 09:17:37,374 Example #2\n",
"2020-02-14 09:17:37,375 \tSource: : — what vow did paul make ?\n",
"2020-02-14 09:17:37,375 \tReference: : — ke keno efe yeo e dirilwego ke paulo ?\n",
"2020-02-14 09:17:37,375 \tHypothesis: : — paulo o ile a dira keno efe ?\n",
"2020-02-14 09:17:37,375 Example #3\n",
"2020-02-14 09:17:37,375 \tSource: christian wives too can make their feelings known\n",
"2020-02-14 09:17:37,375 \tReference: basadi ba bakriste le bona ba ka bolela maikwelo a bona\n",
"2020-02-14 09:17:37,375 \tHypothesis: basadi ba bakriste le bona ba ka dira gore maikwelo a bona a tsebje\n",
"2020-02-14 09:17:37,375 Validation result (greedy) at epoch 1, step 182000: bleu: 44.51, loss: 27877.4551, ppl: 2.5843, duration: 18.4183s\n",
"2020-02-14 09:17:48,878 Epoch 1 Step: 182100 Batch Loss: 1.658979 Tokens per Sec: 21147, Lr: 0.000300\n",
"2020-02-14 09:18:00,337 Epoch 1 Step: 182200 Batch Loss: 1.074214 Tokens per Sec: 22047, Lr: 0.000300\n",
"2020-02-14 09:18:11,786 Epoch 1 Step: 182300 Batch Loss: 1.030178 Tokens per Sec: 21561, Lr: 0.000300\n",
"2020-02-14 09:18:23,139 Epoch 1 Step: 182400 Batch Loss: 1.033017 Tokens per Sec: 21445, Lr: 0.000300\n",
"2020-02-14 09:18:34,574 Epoch 1 Step: 182500 Batch Loss: 1.106261 Tokens per Sec: 21178, Lr: 0.000300\n",
"2020-02-14 09:18:46,055 Epoch 1 Step: 182600 Batch Loss: 1.240107 Tokens per Sec: 21443, Lr: 0.000300\n",
"2020-02-14 09:18:57,477 Epoch 1 Step: 182700 Batch Loss: 1.132737 Tokens per Sec: 22105, Lr: 0.000300\n",
"2020-02-14 09:19:09,169 Epoch 1 Step: 182800 Batch Loss: 1.024013 Tokens per Sec: 21172, Lr: 0.000300\n",
"2020-02-14 09:19:20,582 Epoch 1 Step: 182900 Batch Loss: 1.141237 Tokens per Sec: 21745, Lr: 0.000300\n",
"2020-02-14 09:19:31,839 Epoch 1 Step: 183000 Batch Loss: 1.113522 Tokens per Sec: 21353, Lr: 0.000300\n",
"2020-02-14 09:19:50,302 Example #0\n",
"2020-02-14 09:19:50,302 \tSource: a $ - million contract is signed by a leading hockey player for six years\n",
"2020-02-14 09:19:50,302 \tReference: sebapadi sa maemo a godimo sa hockey se saenetše tumelelano ya ditolara tše dimilione tše bakeng sa go bapala ka nywaga e tshelelago\n",
"2020-02-14 09:19:50,302 \tHypothesis: konteraka ya diranta tše dimilione tše e hlamilwe ke morekiši yo a etelelago pele wa hockey ka nywaga e tshelelago\n",
"2020-02-14 09:19:50,302 Example #1\n",
"2020-02-14 09:19:50,302 \tSource: meanwhile , he had given two talks in the theocratic ministry school and had become an unbaptized publisher\n",
"2020-02-14 09:19:50,302 \tReference: go sa dutše go le bjalo , o be a šetše a neile dipolelo tše pedi sekolong sa bodiredi sa pušo ya modimo e bile e le mogoeledi yo a sa kolobetšwago\n",
"2020-02-14 09:19:50,303 \tHypothesis: ka nako e swanago , o be a neile dipolelo tše pedi sekolong sa bodiredi sa pušo ya modimo gomme o bile mogoeledi yo a sa kolobetšwago\n",
"2020-02-14 09:19:50,303 Example #2\n",
"2020-02-14 09:19:50,303 \tSource: : — what vow did paul make ?\n",
"2020-02-14 09:19:50,303 \tReference: : — ke keno efe yeo e dirilwego ke paulo ?\n",
"2020-02-14 09:19:50,303 \tHypothesis: : — paulo o dirile keno efe ?\n",
"2020-02-14 09:19:50,303 Example #3\n",
"2020-02-14 09:19:50,303 \tSource: christian wives too can make their feelings known\n",
"2020-02-14 09:19:50,303 \tReference: basadi ba bakriste le bona ba ka bolela maikwelo a bona\n",
"2020-02-14 09:19:50,303 \tHypothesis: basadi ba bakriste le bona ba ka dira gore maikwelo a bona a tsebje\n",
"2020-02-14 09:19:50,303 Validation result (greedy) at epoch 1, step 183000: bleu: 44.49, loss: 27877.2988, ppl: 2.5843, duration: 18.4640s\n",
"2020-02-14 09:20:01,618 Epoch 1 Step: 183100 Batch Loss: 1.130584 Tokens per Sec: 21325, Lr: 0.000210\n",
"2020-02-14 09:20:13,197 Epoch 1 Step: 183200 Batch Loss: 1.291446 Tokens per Sec: 21131, Lr: 0.000210\n",
"2020-02-14 09:20:24,581 Epoch 1 Step: 183300 Batch Loss: 1.460803 Tokens per Sec: 22206, Lr: 0.000210\n",
"2020-02-14 09:20:35,873 Epoch 1 Step: 183400 Batch Loss: 1.178174 Tokens per Sec: 21599, Lr: 0.000210\n",
"2020-02-14 09:20:47,458 Epoch 1 Step: 183500 Batch Loss: 0.976318 Tokens per Sec: 21957, Lr: 0.000210\n",
"2020-02-14 09:20:49,345 Epoch 1: total training loss 7535.66\n",
"2020-02-14 09:20:49,345 EPOCH 2\n",
"2020-02-14 09:20:59,477 Epoch 2 Step: 183600 Batch Loss: 0.988506 Tokens per Sec: 20447, Lr: 0.000210\n",
"2020-02-14 09:21:10,938 Epoch 2 Step: 183700 Batch Loss: 1.338627 Tokens per Sec: 21641, Lr: 0.000210\n",
"2020-02-14 09:21:22,338 Epoch 2 Step: 183800 Batch Loss: 0.985906 Tokens per Sec: 22275, Lr: 0.000210\n",
"2020-02-14 09:21:33,631 Epoch 2 Step: 183900 Batch Loss: 0.931342 Tokens per Sec: 21354, Lr: 0.000210\n",
"2020-02-14 09:21:45,179 Epoch 2 Step: 184000 Batch Loss: 1.144215 Tokens per Sec: 21685, Lr: 0.000210\n",
"2020-02-14 09:22:03,891 Example #0\n",
"2020-02-14 09:22:03,891 \tSource: a $ - million contract is signed by a leading hockey player for six years\n",
"2020-02-14 09:22:03,891 \tReference: sebapadi sa maemo a godimo sa hockey se saenetše tumelelano ya ditolara tše dimilione tše bakeng sa go bapala ka nywaga e tshelelago\n",
"2020-02-14 09:22:03,891 \tHypothesis: konteraka ya milione e saentšwe ke sebapadi se se etelelago pele sa go hloma magae ka nywaga e tshelelago\n",
"2020-02-14 09:22:03,891 Example #1\n",
"2020-02-14 09:22:03,892 \tSource: meanwhile , he had given two talks in the theocratic ministry school and had become an unbaptized publisher\n",
"2020-02-14 09:22:03,892 \tReference: go sa dutše go le bjalo , o be a šetše a neile dipolelo tše pedi sekolong sa bodiredi sa pušo ya modimo e bile e le mogoeledi yo a sa kolobetšwago\n",
"2020-02-14 09:22:03,892 \tHypothesis: ka nako yeo , o be a neile dipolelo tše pedi sekolong sa bodiredi sa pušo ya modimo gomme a ba mogoeledi yo a sa kolobetšwago\n",
"2020-02-14 09:22:03,892 Example #2\n",
"2020-02-14 09:22:03,892 \tSource: : — what vow did paul make ?\n",
"2020-02-14 09:22:03,892 \tReference: : — ke keno efe yeo e dirilwego ke paulo ?\n",
"2020-02-14 09:22:03,892 \tHypothesis: : — paulo o ile a dira keno efe ?\n",
"2020-02-14 09:22:03,892 Example #3\n",
"2020-02-14 09:22:03,892 \tSource: christian wives too can make their feelings known\n",
"2020-02-14 09:22:03,892 \tReference: basadi ba bakriste le bona ba ka bolela maikwelo a bona\n",
"2020-02-14 09:22:03,892 \tHypothesis: basadi ba bakriste le bona ba ka dira gore maikwelo a bona a tsebje\n",
"2020-02-14 09:22:03,892 Validation result (greedy) at epoch 2, step 184000: bleu: 44.62, loss: 27950.6074, ppl: 2.5908, duration: 18.7134s\n",
"2020-02-14 09:22:15,249 Epoch 2 Step: 184100 Batch Loss: 1.069055 Tokens per Sec: 21314, Lr: 0.000210\n",
"2020-02-14 09:22:26,663 Epoch 2 Step: 184200 Batch Loss: 0.996049 Tokens per Sec: 22156, Lr: 0.000210\n",
"2020-02-14 09:22:38,107 Epoch 2 Step: 184300 Batch Loss: 1.425717 Tokens per Sec: 21802, Lr: 0.000210\n",
"Traceback (most recent call last):\n",
" File \"/usr/lib/python3.6/runpy.py\", line 193, in _run_module_as_main\n",
" \"__main__\", mod_spec)\n",
" File \"/usr/lib/python3.6/runpy.py\", line 85, in _run_code\n",
" exec(code, run_globals)\n",
" File \"/content/joeynmt/joeynmt/__main__.py\", line 41, in <module>\n",
" main()\n",
" File \"/content/joeynmt/joeynmt/__main__.py\", line 29, in main\n",
" train(cfg_file=args.config_path)\n",
" File \"/content/joeynmt/joeynmt/training.py\", line 650, in train\n",
" trainer.train_and_validate(train_data=train_data, valid_data=dev_data)\n",
" File \"/content/joeynmt/joeynmt/training.py\", line 326, in train_and_validate\n",
" batch, update=update, count=count)\n",
" File \"/content/joeynmt/joeynmt/training.py\", line 500, in _train_batch\n",
" norm_batch_loss.backward()\n",
" File \"/usr/local/lib/python3.6/dist-packages/torch/tensor.py\", line 195, in backward\n",
" torch.autograd.backward(self, gradient, retain_graph, create_graph)\n",
" File \"/usr/local/lib/python3.6/dist-packages/torch/autograd/__init__.py\", line 99, in backward\n",
" allow_unreachable=True) # allow_unreachable flag\n",
"KeyboardInterrupt\n",
"CPU times: user 2.47 s, sys: 336 ms, total: 2.81 s\n",
"Wall time: 17min 3s\n"
],
"name": "stdout"
}
]
},
{
"cell_type": "code",
"metadata": {
"id": "WSnJkoDCRtTY",
"colab_type": "code",
"colab": {}
},
"source": [
""
],
"execution_count": 0,
"outputs": []
},
{
"cell_type": "code",
"metadata": {
"id": "UPMK6siVv2pt",
"colab_type": "code",
"colab": {}
},
"source": [
"# Copy the created models from the notebook storage to google drive for persistant storage \n",
"# !cp -r joeynmt/models/${src}${trg}${vocab_size}${tag}_transformer/* \"$gdrive_path\"\"pretrained/$src$trg$vocab_size$tag/\"\n",
"!cp joeynmt/models/${src}${trg}${vocab_size}${tag}_transformer/*.ckpt \"$gdrive_path\"\"pretrained/$src$trg$vocab_size$tag\""
],
"execution_count": 0,
"outputs": []
},
{
"cell_type": "code",
"metadata": {
"id": "f38OFR8rJgUb",
"colab_type": "code",
"colab": {}
},
"source": [
"# copy across the config file\n",
"!cp joeynmt/configs/transformer_${src}${trg}${vocab_size}${tag}.yaml \"$gdrive_path\""
],
"execution_count": 0,
"outputs": []
},
{
"cell_type": "code",
"metadata": {
"id": "Tqc7ELUUyrMk",
"colab_type": "code",
"outputId": "f9db0597-2f1e-49c0-90d8-f51df6061a10",
"colab": {
"base_uri": "https://localhost:8080/",
"height": 34
}
},
"source": [
"!ls joeynmt/models"
],
"execution_count": 35,
"outputs": [
{
"output_type": "stream",
"text": [
"ennso4000baseline_transformer\n"
],
"name": "stdout"
}
]
},
{
"cell_type": "code",
"metadata": {
"id": "a7Xj4vk2yKvz",
"colab_type": "code",
"outputId": "0ba26359-199f-4ed7-c432-0ced593f2e95",
"colab": {
"base_uri": "https://localhost:8080/",
"height": 69
}
},
"source": [
"# Test our model\n",
"# ! cd joeynmt; python3 -m joeynmt test \"$gdrive_path\"\"transformer_${src}${trg}${vocab_size}${tag}.yaml\"\n",
"! cd joeynmt; python3 -m joeynmt test \"$gdrive_path\"\"pretrained/$src$trg$vocab_size$tag/config.yaml\""
],
"execution_count": 38,
"outputs": [
{
"output_type": "stream",
"text": [
"2020-02-14 09:31:35,938 Hello! This is Joey-NMT.\n",
"2020-02-14 09:32:14,148 dev bleu: 44.43 [Beam search decoding with beam size = 5 and alpha = 1.0]\n",
"2020-02-14 09:33:21,929 test bleu: 15.40 [Beam search decoding with beam size = 5 and alpha = 1.0]\n"
],
"name": "stdout"
}
]
},
{
"cell_type": "code",
"metadata": {
"id": "HBQ0vkOuLmCo",
"colab_type": "code",
"colab": {}
},
"source": [
"# plot losses\n",
"# ! cd joeynmt; python3 scripts/plot_validations.py \"$gdrive_path\"\"pretrained/$src$trg$vocab_size$tag/\" --plot_values bleu PPL --output bleu2-ppl.png"
],
"execution_count": 0,
"outputs": []
},
{
"cell_type": "code",
"metadata": {
"id": "nep_QVw9iwmo",
"colab_type": "code",
"outputId": "6339b68c-a0aa-49f2-e61a-e6773debcc4b",
"colab": {
"base_uri": "https://localhost:8080/",
"height": 54
}
},
"source": [
"# ! cat \"$gdrive_path\"\"pretrained/$src$trg$vocab_size$tag/config5_tok.yaml\""
],
"execution_count": 0,
"outputs": [
{
"output_type": "stream",
"text": [
"cat: '/content/drive/My Drive/masakhane/en-nso-baseline/pretrained/ennso4000baseline/config5_tok.yaml': No such file or directory\n"
],
"name": "stdout"
}
]
},
{
"cell_type": "code",
"metadata": {
"id": "3Ms5xKfbv2tc",
"colab_type": "code",
"colab": {}
},
"source": [
""
],
"execution_count": 0,
"outputs": []
},
{
"cell_type": "code",
"metadata": {
"id": "KBXt6BKvfOAE",
"colab_type": "code",
"outputId": "b8ffcaf7-3750-423a-92d0-5774b18d5887",
"colab": {
"base_uri": "https://localhost:8080/",
"height": 245
}
},
"source": [
"# Translate mode is mopre interactive but almsot the same as running in test mode\n",
"! cd joeynmt; python3 -m joeynmt translate \"$gdrive_path\"\"pretrained/$src$trg$vocab_size$tag/config_5sent.yaml\""
],
"execution_count": 0,
"outputs": [
{
"output_type": "stream",
"text": [
"\n",
"Please enter a source sentence (pre-processed): \n",
" J@@ e@@ sus said : \" Y@@ o@@ u must love your neighbo@@ r as yourself . \n",
"JoeyNMT: ▶ esus o itše : seou se swanetše go rata moagišani wa gago bjalo ka ge o ithata\n",
"\n",
"Please enter a source sentence (pre-processed): \n",
" J@@ e@@ sus said : \" Y@@ o@@ u must love your neighbo@@ r as yourself . \n",
"JoeyNMT: ▶ esus o itše : seou se swanetše go rata moagišani wa gago bjalo ka ge o ithata\n",
"\n",
"Please enter a source sentence (pre-processed): \n",
"\n",
"Bye.\n"
],
"name": "stdout"
}
]
},
{
"cell_type": "code",
"metadata": {
"id": "puYoLngf4aCZ",
"colab_type": "code",
"colab": {}
},
"source": [
"# ! cat \"$gdrive_path\"\"pretrained/$src$trg$vocab_size$tag/config_5tok.yaml\""
],
"execution_count": 0,
"outputs": []
},
{
"cell_type": "code",
"metadata": {
"id": "rB9NAs2MhnVI",
"colab_type": "code",
"colab": {}
},
"source": [
"# ! cat test.nso \n",
"# ! echo \"=================================================\"\n",
"# ! cat test.en"
],
"execution_count": 0,
"outputs": []
},
{
"cell_type": "code",
"metadata": {
"id": "Pc2xgodBv2ys",
"colab_type": "code",
"colab": {}
},
"source": [
"!# Output our validation accuracy\n",
"# /content/drive/My Drive/masakhane/en-nso-baseline/train.nso\n",
"# ! cat \"$gdrive_path\"\"pretrained/$src$trg$vocab_size$tag/validations.txt\""
],
"execution_count": 0,
"outputs": []
},
{
"cell_type": "code",
"metadata": {
"id": "N4qv69Ec0D0v",
"colab_type": "code",
"colab": {}
},
"source": [
""
],
"execution_count": 0,
"outputs": []
}
]
} |