File size: 176,579 Bytes
78aa4ee
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
211
212
213
214
215
216
217
218
219
220
221
222
223
224
225
226
227
228
229
230
231
232
233
234
235
236
237
238
239
240
241
242
243
244
245
246
247
248
249
250
251
252
253
254
255
256
257
258
259
260
261
262
263
264
265
266
267
268
269
270
271
272
273
274
275
276
277
278
279
280
281
282
283
284
285
286
287
288
289
290
291
292
293
294
295
296
297
298
299
300
301
302
303
304
305
306
307
308
309
310
311
312
313
314
315
316
317
318
319
320
321
322
323
324
325
326
327
328
329
330
331
332
333
334
335
336
337
338
339
340
341
342
343
344
345
346
347
348
349
350
351
352
353
354
355
356
357
358
359
360
361
362
363
364
365
366
367
368
369
370
371
372
373
374
375
376
377
378
379
380
381
382
383
384
385
386
387
388
389
390
391
392
393
394
395
396
397
398
399
400
401
402
403
404
405
406
407
408
409
410
411
412
413
414
415
416
417
418
419
420
421
422
423
424
425
426
427
428
429
430
431
432
433
434
435
436
437
438
439
440
441
442
443
444
445
446
447
448
449
450
451
452
453
454
455
456
457
458
459
460
461
462
463
464
465
466
467
468
469
470
471
472
473
474
475
476
477
478
479
480
481
482
483
484
485
486
487
488
489
490
491
492
493
494
495
496
497
498
499
500
501
502
503
504
505
506
507
508
509
510
511
512
513
514
515
516
517
518
519
520
521
522
523
524
525
526
527
528
529
530
531
532
533
534
535
536
537
538
539
540
541
542
543
544
545
546
547
548
549
550
551
552
553
554
555
556
557
558
559
560
561
562
563
564
565
566
567
568
569
570
571
572
573
574
575
576
577
578
579
580
581
582
583
584
585
586
587
588
589
590
591
592
593
594
595
596
597
598
599
600
601
602
603
604
605
606
607
608
609
610
611
612
613
614
615
616
617
618
619
620
621
622
623
624
625
626
627
628
629
630
631
632
633
634
635
636
637
638
639
640
641
642
643
644
645
646
647
648
649
650
651
652
653
654
655
656
657
658
659
660
661
662
663
664
665
666
667
668
669
670
671
672
673
674
675
676
677
678
679
680
681
682
683
684
685
686
687
688
689
690
691
692
693
694
695
696
697
698
699
700
701
702
703
704
705
706
707
708
709
710
711
712
713
714
715
716
717
718
719
720
721
722
723
724
725
726
727
728
729
730
731
732
733
734
735
736
737
738
739
740
741
742
743
744
745
746
747
748
749
750
751
752
753
754
755
756
757
758
759
760
761
762
763
764
765
766
767
768
769
770
771
772
773
774
775
776
777
778
779
780
781
782
783
784
785
786
787
788
789
790
791
792
793
794
795
796
797
798
799
800
801
802
803
804
805
806
807
808
809
810
811
812
813
814
815
816
817
818
819
820
821
822
823
824
825
826
827
828
829
830
831
832
833
834
835
836
837
838
839
840
841
842
843
844
845
846
847
848
849
850
851
852
853
854
855
856
857
858
859
860
861
862
863
864
865
866
867
868
869
870
871
872
873
874
875
876
877
878
879
880
881
882
883
884
885
886
887
888
889
890
891
892
893
894
895
896
897
898
899
900
901
902
903
904
905
906
907
908
909
910
911
912
913
914
915
916
917
918
919
920
921
922
923
924
925
926
927
928
929
930
931
932
933
934
935
936
937
938
939
940
941
942
943
944
945
946
947
948
949
950
951
952
953
954
955
956
957
958
959
960
961
962
963
964
965
966
967
968
969
970
971
972
973
974
975
976
977
978
979
980
981
982
983
984
985
986
987
988
989
990
991
992
993
994
995
996
997
998
999
1000
1001
1002
1003
1004
1005
1006
1007
1008
1009
1010
1011
1012
1013
1014
1015
1016
1017
1018
1019
1020
1021
1022
1023
1024
1025
1026
1027
1028
1029
1030
1031
1032
1033
1034
1035
1036
1037
1038
1039
1040
1041
1042
1043
1044
1045
1046
1047
1048
1049
1050
1051
1052
1053
1054
1055
1056
1057
1058
1059
1060
1061
1062
1063
1064
1065
1066
1067
1068
1069
1070
1071
1072
1073
1074
1075
1076
1077
1078
1079
1080
1081
1082
1083
1084
1085
1086
1087
1088
1089
1090
1091
1092
1093
1094
1095
1096
1097
1098
1099
1100
1101
1102
1103
1104
1105
1106
1107
1108
1109
1110
1111
1112
1113
1114
1115
1116
1117
1118
1119
1120
1121
1122
1123
1124
1125
1126
1127
1128
1129
1130
1131
1132
1133
1134
1135
1136
1137
1138
1139
1140
1141
1142
1143
1144
1145
1146
1147
1148
1149
1150
1151
1152
1153
1154
1155
1156
1157
1158
1159
1160
1161
1162
1163
1164
1165
1166
1167
1168
1169
1170
1171
1172
1173
1174
1175
1176
1177
1178
1179
1180
1181
1182
1183
1184
1185
1186
1187
1188
1189
1190
1191
1192
1193
1194
1195
1196
1197
1198
1199
1200
1201
1202
1203
1204
1205
1206
1207
1208
1209
1210
1211
1212
1213
1214
1215
1216
1217
1218
1219
1220
1221
1222
1223
1224
1225
1226
1227
1228
1229
1230
1231
1232
1233
1234
1235
1236
1237
1238
1239
1240
1241
1242
1243
1244
1245
1246
1247
1248
1249
1250
1251
1252
1253
1254
1255
1256
1257
1258
1259
1260
1261
1262
1263
1264
1265
1266
1267
1268
1269
1270
1271
1272
1273
1274
1275
1276
1277
1278
1279
1280
1281
1282
1283
1284
1285
1286
1287
1288
1289
1290
1291
1292
1293
1294
1295
1296
1297
1298
1299
1300
1301
1302
1303
1304
1305
1306
1307
1308
1309
1310
1311
1312
1313
1314
1315
1316
1317
1318
1319
1320
1321
1322
1323
1324
1325
1326
1327
1328
1329
1330
1331
1332
1333
1334
1335
1336
1337
1338
1339
1340
1341
1342
1343
1344
1345
1346
1347
1348
1349
1350
1351
1352
1353
1354
1355
1356
1357
1358
1359
1360
1361
1362
1363
1364
1365
1366
1367
1368
1369
1370
1371
1372
1373
1374
1375
1376
1377
1378
1379
1380
1381
1382
1383
1384
1385
1386
1387
1388
1389
1390
1391
1392
1393
1394
1395
1396
1397
1398
1399
1400
1401
1402
1403
1404
1405
1406
1407
1408
1409
1410
1411
1412
1413
1414
1415
1416
1417
1418
1419
1420
1421
1422
1423
1424
1425
1426
1427
1428
1429
1430
1431
1432
1433
1434
1435
1436
1437
1438
1439
1440
1441
1442
1443
1444
1445
1446
1447
1448
1449
1450
1451
1452
1453
1454
1455
1456
1457
1458
1459
1460
1461
1462
1463
1464
1465
1466
1467
1468
1469
1470
1471
1472
1473
1474
1475
1476
1477
1478
1479
1480
1481
1482
1483
1484
1485
1486
1487
1488
1489
1490
1491
1492
1493
1494
1495
1496
1497
1498
1499
1500
1501
1502
1503
1504
1505
1506
1507
1508
1509
1510
1511
1512
1513
1514
1515
1516
1517
1518
1519
1520
1521
1522
1523
1524
1525
1526
1527
1528
1529
1530
1531
1532
1533
1534
1535
1536
1537
1538
1539
1540
1541
1542
1543
1544
1545
1546
1547
1548
1549
1550
1551
1552
1553
1554
1555
1556
1557
1558
1559
1560
1561
1562
1563
1564
1565
1566
1567
1568
1569
1570
1571
1572
1573
1574
1575
1576
1577
1578
1579
1580
1581
1582
1583
1584
1585
1586
1587
1588
1589
1590
1591
1592
1593
1594
1595
1596
1597
1598
1599
1600
1601
1602
1603
1604
1605
1606
1607
1608
1609
1610
1611
1612
1613
1614
1615
1616
1617
1618
1619
1620
1621
1622
1623
1624
1625
1626
1627
1628
1629
1630
1631
1632
1633
1634
1635
1636
1637
1638
1639
1640
1641
1642
1643
1644
1645
1646
1647
1648
1649
1650
1651
1652
1653
1654
1655
1656
1657
1658
1659
1660
1661
1662
1663
1664
1665
1666
1667
1668
1669
1670
1671
1672
1673
1674
1675
1676
1677
1678
1679
1680
1681
1682
1683
1684
1685
1686
1687
1688
1689
1690
1691
1692
1693
1694
1695
1696
1697
1698
1699
1700
1701
1702
1703
1704
1705
1706
1707
1708
1709
1710
1711
1712
1713
1714
1715
1716
1717
1718
1719
1720
1721
1722
1723
1724
1725
1726
1727
1728
1729
1730
1731
1732
1733
1734
1735
1736
1737
1738
1739
1740
1741
1742
1743
1744
1745
1746
1747
1748
1749
1750
1751
1752
1753
1754
1755
1756
1757
1758
1759
1760
1761
1762
1763
1764
1765
1766
1767
1768
1769
1770
1771
1772
1773
1774
1775
1776
1777
1778
1779
1780
1781
1782
1783
1784
1785
1786
1787
1788
1789
1790
1791
1792
1793
1794
1795
1796
1797
1798
1799
1800
1801
1802
1803
1804
1805
1806
1807
1808
1809
1810
1811
1812
1813
1814
1815
1816
1817
1818
1819
1820
1821
1822
1823
1824
1825
1826
1827
1828
1829
1830
1831
1832
1833
1834
1835
1836
1837
1838
1839
1840
1841
1842
1843
1844
1845
1846
1847
1848
1849
1850
1851
1852
1853
1854
1855
1856
1857
1858
1859
1860
1861
1862
1863
1864
1865
1866
1867
1868
1869
1870
1871
1872
1873
1874
1875
1876
1877
1878
1879
1880
1881
1882
1883
1884
1885
1886
1887
1888
1889
1890
1891
1892
1893
1894
1895
1896
1897
1898
1899
1900
1901
1902
1903
1904
1905
1906
1907
1908
1909
1910
1911
1912
1913
1914
1915
1916
1917
1918
1919
1920
1921
1922
1923
1924
1925
1926
1927
1928
1929
1930
1931
1932
1933
1934
1935
1936
1937
1938
1939
1940
1941
1942
1943
1944
1945
1946
1947
1948
1949
1950
1951
1952
1953
1954
1955
1956
1957
1958
1959
1960
1961
1962
1963
1964
1965
1966
1967
1968
1969
1970
1971
1972
1973
1974
1975
1976
1977
1978
1979
1980
1981
1982
1983
1984
1985
1986
1987
1988
1989
1990
1991
1992
1993
1994
1995
1996
1997
1998
1999
2000
2001
2002
2003
2004
2005
2006
2007
2008
2009
2010
2011
2012
2013
2014
2015
2016
2017
2018
2019
2020
2021
2022
2023
2024
2025
2026
2027
2028
2029
2030
2031
2032
2033
2034
2035
2036
2037
2038
2039
2040
2041
2042
2043
2044
2045
2046
2047
2048
2049
2050
2051
2052
2053
2054
2055
2056
2057
2058
2059
2060
2061
2062
2063
2064
2065
2066
2067
2068
2069
2070
2071
2072
2073
2074
2075
2076
2077
2078
2079
2080
2081
2082
2083
2084
2085
2086
2087
2088
2089
2090
2091
2092
2093
2094
2095
2096
2097
2098
2099
2100
2101
2102
2103
2104
2105
2106
2107
2108
2109
2110
2111
2112
2113
{
  "nbformat": 4,
  "nbformat_minor": 0,
  "metadata": {
    "accelerator": "GPU",
    "colab": {
      "name": "jw300_nr_starter_notebook.ipynb",
      "provenance": [],
      "collapsed_sections": [],
      "toc_visible": true
    },
    "kernelspec": {
      "display_name": "Python 3",
      "language": "python",
      "name": "python3"
    },
    "language_info": {
      "codemirror_mode": {
        "name": "ipython",
        "version": 3
      },
      "file_extension": ".py",
      "mimetype": "text/x-python",
      "name": "python",
      "nbconvert_exporter": "python",
      "pygments_lexer": "ipython3",
      "version": "3.5.8"
    }
  },
  "cells": [
    {
      "cell_type": "markdown",
      "metadata": {
        "colab_type": "text",
        "id": "Igc5itf-xMGj"
      },
      "source": [
        "# Masakhane - Machine Translation for African Languages (Using JoeyNMT)"
      ]
    },
    {
      "cell_type": "markdown",
      "metadata": {
        "colab_type": "text",
        "id": "x4fXCKCf36IK"
      },
      "source": [
        "## Note before beginning:\n",
        "### - The idea is that you should be able to make minimal changes to this in order to get SOME result for your own translation corpus. \n",
        "\n",
        "### - The tl;dr: Go to the **\"TODO\"** comments which will tell you what to update to get up and running\n",
        "\n",
        "### - If you actually want to have a clue what you're doing, read the text and peek at the links\n",
        "\n",
        "### - With 100 epochs, it should take around 7 hours to run in Google Colab\n",
        "\n",
        "### - Once you've gotten a result for your language, please attach and email your notebook that generated it to [email protected]\n",
        "\n",
        "### - If you care enough and get a chance, doing a brief background on your language would be amazing. See examples in  [(Martinus, 2019)](https://arxiv.org/abs/1906.05685)"
      ]
    },
    {
      "cell_type": "markdown",
      "metadata": {
        "colab_type": "text",
        "id": "l929HimrxS0a"
      },
      "source": [
        "## Retrieve your data & make a parallel corpus\n",
        "\n",
        "If you are wanting to use the JW300 data referenced on the Masakhane website or in our GitHub repo, you can use `opus-tools` to convert the data into a convenient format. `opus_read` from that package provides a convenient tool for reading the native aligned XML files and to convert them to TMX format. The tool can also be used to fetch relevant files from OPUS on the fly and to filter the data as necessary. [Read the documentation](https://pypi.org/project/opustools-pkg/) for more details.\n",
        "\n",
        "Once you have your corpus files in TMX format (an xml structure which will include the sentences in your target language and your source language in a single file), we recommend reading them into a pandas dataframe. Thankfully, Jade wrote a silly `tmx2dataframe` package which converts your tmx file to a pandas dataframe. "
      ]
    },
    {
      "cell_type": "code",
      "metadata": {
        "colab_type": "code",
        "id": "oGRmDELn7Az0",
        "outputId": "e9ec9df9-558a-4a0b-c1fd-cead0e0e6e51",
        "colab": {
          "base_uri": "https://localhost:8080/",
          "height": 121
        }
      },
      "source": [
        "from google.colab import drive\n",
        "drive.mount('/content/drive')"
      ],
      "execution_count": 1,
      "outputs": [
        {
          "output_type": "stream",
          "text": [
            "Go to this URL in a browser: https://accounts.google.com/o/oauth2/auth?client_id=947318989803-6bn6qk8qdgf4n4g3pfee6491hc0brc4i.apps.googleusercontent.com&redirect_uri=urn%3aietf%3awg%3aoauth%3a2.0%3aoob&response_type=code&scope=email%20https%3a%2f%2fwww.googleapis.com%2fauth%2fdocs.test%20https%3a%2f%2fwww.googleapis.com%2fauth%2fdrive%20https%3a%2f%2fwww.googleapis.com%2fauth%2fdrive.photos.readonly%20https%3a%2f%2fwww.googleapis.com%2fauth%2fpeopleapi.readonly\n",
            "\n",
            "Enter your authorization code:\n",
            "··········\n",
            "Mounted at /content/drive\n"
          ],
          "name": "stdout"
        }
      ]
    },
    {
      "cell_type": "code",
      "metadata": {
        "colab_type": "code",
        "id": "Cn3tgQLzUxwn",
        "colab": {}
      },
      "source": [
        "# TODO: Set your source and target languages. Keep in mind, these traditionally use language codes as found here:\n",
        "# These will also become the suffix's of all vocab and corpus files used throughout\n",
        "import os\n",
        "source_language = \"en\"\n",
        "target_language = \"nr\" \n",
        "lc = False  # If True, lowercase the data.\n",
        "seed = 42  # Random seed for shuffling.\n",
        "tag = \"baseline\" # Give a unique name to your folder - this is to ensure you don't rewrite any models you've already submitted\n",
        "\n",
        "os.environ[\"src\"] = source_language # Sets them in bash as well, since we often use bash scripts\n",
        "os.environ[\"tgt\"] = target_language\n",
        "os.environ[\"tag\"] = tag\n",
        "\n",
        "# This will save it to a folder in our gdrive instead!\n",
        "!mkdir -p \"/content/drive/My Drive/masakhane/$src-$tgt-$tag\"\n",
        "os.environ[\"gdrive_path\"] = \"/content/drive/My Drive/masakhane/%s-%s-%s\" % (source_language, target_language, tag)"
      ],
      "execution_count": 0,
      "outputs": []
    },
    {
      "cell_type": "code",
      "metadata": {
        "colab_type": "code",
        "id": "kBSgJHEw7Nvx",
        "outputId": "478895c4-0d83-44cb-fe90-2f07d60ba973",
        "colab": {
          "base_uri": "https://localhost:8080/",
          "height": 34
        }
      },
      "source": [
        "!echo $gdrive_path"
      ],
      "execution_count": 3,
      "outputs": [
        {
          "output_type": "stream",
          "text": [
            "/content/drive/My Drive/masakhane/en-nr-baseline\n"
          ],
          "name": "stdout"
        }
      ]
    },
    {
      "cell_type": "code",
      "metadata": {
        "colab_type": "code",
        "id": "gA75Fs9ys8Y9",
        "outputId": "1e009941-259e-4ec8-9bfd-4853d34c44b0",
        "colab": {
          "base_uri": "https://localhost:8080/",
          "height": 121
        }
      },
      "source": [
        "# Install opus-tools\n",
        "! pip install opustools-pkg"
      ],
      "execution_count": 4,
      "outputs": [
        {
          "output_type": "stream",
          "text": [
            "Collecting opustools-pkg\n",
            "\u001b[?25l  Downloading https://files.pythonhosted.org/packages/6c/9f/e829a0cceccc603450cd18e1ff80807b6237a88d9a8df2c0bb320796e900/opustools_pkg-0.0.52-py3-none-any.whl (80kB)\n",
            "\u001b[K     |████████████████████████████████| 81kB 2.0MB/s \n",
            "\u001b[?25hInstalling collected packages: opustools-pkg\n",
            "Successfully installed opustools-pkg-0.0.52\n"
          ],
          "name": "stdout"
        }
      ]
    },
    {
      "cell_type": "code",
      "metadata": {
        "colab_type": "code",
        "id": "xq-tDZVks7ZD",
        "outputId": "ca1cce63-f219-4049-9bb6-ce5c5a34ee12",
        "colab": {
          "base_uri": "https://localhost:8080/",
          "height": 202
        }
      },
      "source": [
        "# Downloading our corpus\n",
        "! opus_read -d JW300 -s $src -t $tgt -wm moses -w jw300.$src jw300.$tgt -q\n",
        "\n",
        "# extract the corpus file\n",
        "! gunzip JW300_latest_xml_$src-$tgt.xml.gz"
      ],
      "execution_count": 5,
      "outputs": [
        {
          "output_type": "stream",
          "text": [
            "\n",
            "Alignment file /proj/nlpl/data/OPUS/JW300/latest/xml/en-nr.xml.gz not found. The following files are available for downloading:\n",
            "\n",
            " 940 KB https://object.pouta.csc.fi/OPUS-JW300/v1/xml/en-nr.xml.gz\n",
            " 263 MB https://object.pouta.csc.fi/OPUS-JW300/v1/xml/en.zip\n",
            "   9 MB https://object.pouta.csc.fi/OPUS-JW300/v1/xml/nr.zip\n",
            "\n",
            " 273 MB Total size\n",
            "./JW300_latest_xml_en-nr.xml.gz ... 100% of 940 KB\n",
            "./JW300_latest_xml_en.zip ... 100% of 263 MB\n",
            "./JW300_latest_xml_nr.zip ... 100% of 9 MB\n"
          ],
          "name": "stdout"
        }
      ]
    },
    {
      "cell_type": "code",
      "metadata": {
        "colab_type": "code",
        "id": "n48GDRnP8y2G",
        "outputId": "1cfc86cf-c2b8-4c22-863c-3ce13c593e83",
        "colab": {
          "base_uri": "https://localhost:8080/",
          "height": 571
        }
      },
      "source": [
        "# Download the global test set.\n",
        "! wget https://raw.githubusercontent.com/juliakreutzer/masakhane/master/jw300_utils/test/test.en-any.en\n",
        "  \n",
        "# And the specific test set for this language pair.\n",
        "os.environ[\"trg\"] = target_language \n",
        "os.environ[\"src\"] = source_language \n",
        "\n",
        "! wget https://raw.githubusercontent.com/juliakreutzer/masakhane/master/jw300_utils/test/test.en-$trg.en \n",
        "! mv test.en-$trg.en test.en\n",
        "! wget https://raw.githubusercontent.com/juliakreutzer/masakhane/master/jw300_utils/test/test.en-$trg.$trg \n",
        "! mv test.en-$trg.$trg test.$trg"
      ],
      "execution_count": 6,
      "outputs": [
        {
          "output_type": "stream",
          "text": [
            "--2020-05-25 09:14:54--  https://raw.githubusercontent.com/juliakreutzer/masakhane/master/jw300_utils/test/test.en-any.en\n",
            "Resolving raw.githubusercontent.com (raw.githubusercontent.com)... 151.101.0.133, 151.101.64.133, 151.101.128.133, ...\n",
            "Connecting to raw.githubusercontent.com (raw.githubusercontent.com)|151.101.0.133|:443... connected.\n",
            "HTTP request sent, awaiting response... 200 OK\n",
            "Length: 277791 (271K) [text/plain]\n",
            "Saving to: ‘test.en-any.en’\n",
            "\n",
            "test.en-any.en      100%[===================>] 271.28K  --.-KB/s    in 0.06s   \n",
            "\n",
            "2020-05-25 09:14:55 (4.67 MB/s) - ‘test.en-any.en’ saved [277791/277791]\n",
            "\n",
            "--2020-05-25 09:14:57--  https://raw.githubusercontent.com/juliakreutzer/masakhane/master/jw300_utils/test/test.en-nr.en\n",
            "Resolving raw.githubusercontent.com (raw.githubusercontent.com)... 151.101.0.133, 151.101.64.133, 151.101.128.133, ...\n",
            "Connecting to raw.githubusercontent.com (raw.githubusercontent.com)|151.101.0.133|:443... connected.\n",
            "HTTP request sent, awaiting response... 200 OK\n",
            "Length: 203073 (198K) [text/plain]\n",
            "Saving to: ‘test.en-nr.en’\n",
            "\n",
            "test.en-nr.en       100%[===================>] 198.31K  --.-KB/s    in 0.04s   \n",
            "\n",
            "2020-05-25 09:14:58 (4.36 MB/s) - ‘test.en-nr.en’ saved [203073/203073]\n",
            "\n",
            "--2020-05-25 09:15:04--  https://raw.githubusercontent.com/juliakreutzer/masakhane/master/jw300_utils/test/test.en-nr.nr\n",
            "Resolving raw.githubusercontent.com (raw.githubusercontent.com)... 151.101.0.133, 151.101.64.133, 151.101.128.133, ...\n",
            "Connecting to raw.githubusercontent.com (raw.githubusercontent.com)|151.101.0.133|:443... connected.\n",
            "HTTP request sent, awaiting response... 200 OK\n",
            "Length: 214288 (209K) [text/plain]\n",
            "Saving to: ‘test.en-nr.nr’\n",
            "\n",
            "test.en-nr.nr       100%[===================>] 209.27K  --.-KB/s    in 0.05s   \n",
            "\n",
            "2020-05-25 09:15:04 (3.95 MB/s) - ‘test.en-nr.nr’ saved [214288/214288]\n",
            "\n"
          ],
          "name": "stdout"
        }
      ]
    },
    {
      "cell_type": "code",
      "metadata": {
        "colab_type": "code",
        "id": "NqDG-CI28y2L",
        "outputId": "27a34eea-3da6-47df-f695-cdd96b66a825",
        "colab": {
          "base_uri": "https://localhost:8080/",
          "height": 34
        }
      },
      "source": [
        "# Read the test data to filter from train and dev splits.\n",
        "# Store english portion in set for quick filtering checks.\n",
        "en_test_sents = set()\n",
        "filter_test_sents = \"test.en-any.en\"\n",
        "j = 0\n",
        "with open(filter_test_sents) as f:\n",
        "  for line in f:\n",
        "    en_test_sents.add(line.strip())\n",
        "    j += 1\n",
        "print('Loaded {} global test sentences to filter from the training/dev data.'.format(j))"
      ],
      "execution_count": 7,
      "outputs": [
        {
          "output_type": "stream",
          "text": [
            "Loaded 3571 global test sentences to filter from the training/dev data.\n"
          ],
          "name": "stdout"
        }
      ]
    },
    {
      "cell_type": "code",
      "metadata": {
        "colab_type": "code",
        "id": "3CNdwLBCfSIl",
        "outputId": "b20d4dcf-e754-4400-ef59-3863072ced7f",
        "colab": {
          "base_uri": "https://localhost:8080/",
          "height": 153
        }
      },
      "source": [
        "import pandas as pd\n",
        "\n",
        "# TMX file to dataframe\n",
        "source_file = 'jw300.' + source_language\n",
        "target_file = 'jw300.' + target_language\n",
        "\n",
        "source = []\n",
        "target = []\n",
        "skip_lines = []  # Collect the line numbers of the source portion to skip the same lines for the target portion.\n",
        "with open(source_file) as f:\n",
        "    for i, line in enumerate(f):\n",
        "        # Skip sentences that are contained in the test set.\n",
        "        if line.strip() not in en_test_sents:\n",
        "            source.append(line.strip())\n",
        "        else:\n",
        "            skip_lines.append(i)             \n",
        "with open(target_file) as f:\n",
        "    for j, line in enumerate(f):\n",
        "        # Only add to corpus if corresponding source was not skipped.\n",
        "        if j not in skip_lines:\n",
        "            target.append(line.strip())\n",
        "    \n",
        "print('Loaded data and skipped {}/{} lines since contained in test set.'.format(len(skip_lines), i))\n",
        "    \n",
        "df = pd.DataFrame(zip(source, target), columns=['source_sentence', 'target_sentence'])\n",
        "# if you get TypeError: data argument can't be an iterator is because of your zip version run this below\n",
        "#df = pd.DataFrame(list(zip(source, target)), columns=['source_sentence', 'target_sentence'])\n",
        "df.head(3)"
      ],
      "execution_count": 8,
      "outputs": [
        {
          "output_type": "stream",
          "text": [
            "Loaded data and skipped 4805/103982 lines since contained in test set.\n"
          ],
          "name": "stdout"
        },
        {
          "output_type": "execute_result",
          "data": {
            "text/html": [
              "<div>\n",
              "<style scoped>\n",
              "    .dataframe tbody tr th:only-of-type {\n",
              "        vertical-align: middle;\n",
              "    }\n",
              "\n",
              "    .dataframe tbody tr th {\n",
              "        vertical-align: top;\n",
              "    }\n",
              "\n",
              "    .dataframe thead th {\n",
              "        text-align: right;\n",
              "    }\n",
              "</style>\n",
              "<table border=\"1\" class=\"dataframe\">\n",
              "  <thead>\n",
              "    <tr style=\"text-align: right;\">\n",
              "      <th></th>\n",
              "      <th>source_sentence</th>\n",
              "      <th>target_sentence</th>\n",
              "    </tr>\n",
              "  </thead>\n",
              "  <tbody>\n",
              "    <tr>\n",
              "      <th>0</th>\n",
              "      <td>July 1 , 2010</td>\n",
              "      <td>Arhostosi 1 , 2010</td>\n",
              "    </tr>\n",
              "    <tr>\n",
              "      <th>1</th>\n",
              "      <td>Do You Know God by Name ?</td>\n",
              "      <td>Umazi Kuhle na UZimu ?</td>\n",
              "    </tr>\n",
              "    <tr>\n",
              "      <th>2</th>\n",
              "      <td>FROM OUR COVER</td>\n",
              "      <td>EZIKHAMBISANA NESIHLOKO ESINGAPHANDLE</td>\n",
              "    </tr>\n",
              "  </tbody>\n",
              "</table>\n",
              "</div>"
            ],
            "text/plain": [
              "             source_sentence                        target_sentence\n",
              "0              July 1 , 2010                     Arhostosi 1 , 2010\n",
              "1  Do You Know God by Name ?                 Umazi Kuhle na UZimu ?\n",
              "2             FROM OUR COVER  EZIKHAMBISANA NESIHLOKO ESINGAPHANDLE"
            ]
          },
          "metadata": {
            "tags": []
          },
          "execution_count": 8
        }
      ]
    },
    {
      "cell_type": "markdown",
      "metadata": {
        "colab_type": "text",
        "id": "YkuK3B4p2AkN"
      },
      "source": [
        "## Pre-processing and export\n",
        "\n",
        "It is generally a good idea to remove duplicate translations and conflicting translations from the corpus. In practice, these public corpora include some number of these that need to be cleaned.\n",
        "\n",
        "In addition we will split our data into dev/test/train and export to the filesystem."
      ]
    },
    {
      "cell_type": "code",
      "metadata": {
        "colab_type": "code",
        "id": "M_2ouEOH1_1q",
        "outputId": "de0346f2-1937-423f-b485-cad958d5afc4",
        "colab": {
          "base_uri": "https://localhost:8080/",
          "height": 185
        }
      },
      "source": [
        "# drop duplicate translations\n",
        "df_pp = df.drop_duplicates()\n",
        "\n",
        "# drop conflicting translations\n",
        "# (this is optional and something that you might want to comment out \n",
        "# depending on the size of your corpus)\n",
        "df_pp.drop_duplicates(subset='source_sentence', inplace=True)\n",
        "df_pp.drop_duplicates(subset='target_sentence', inplace=True)\n",
        "\n",
        "# Shuffle the data to remove bias in dev set selection.\n",
        "df_pp = df_pp.sample(frac=1, random_state=seed).reset_index(drop=True)"
      ],
      "execution_count": 9,
      "outputs": [
        {
          "output_type": "stream",
          "text": [
            "/usr/local/lib/python3.6/dist-packages/ipykernel_launcher.py:7: SettingWithCopyWarning: \n",
            "A value is trying to be set on a copy of a slice from a DataFrame\n",
            "\n",
            "See the caveats in the documentation: https://pandas.pydata.org/pandas-docs/stable/user_guide/indexing.html#returning-a-view-versus-a-copy\n",
            "  import sys\n",
            "/usr/local/lib/python3.6/dist-packages/ipykernel_launcher.py:8: SettingWithCopyWarning: \n",
            "A value is trying to be set on a copy of a slice from a DataFrame\n",
            "\n",
            "See the caveats in the documentation: https://pandas.pydata.org/pandas-docs/stable/user_guide/indexing.html#returning-a-view-versus-a-copy\n",
            "  \n"
          ],
          "name": "stderr"
        }
      ]
    },
    {
      "cell_type": "code",
      "metadata": {
        "colab_type": "code",
        "id": "Z_1BwAApEtMk",
        "outputId": "19088ed8-f527-4d9b-b664-fc63bdcbb065",
        "colab": {
          "base_uri": "https://localhost:8080/",
          "height": 289
        }
      },
      "source": [
        "# Install fuzzy wuzzy to remove \"almost duplicate\" sentences in the\n",
        "# test and training sets.\n",
        "! pip install fuzzywuzzy\n",
        "! pip install python-Levenshtein\n",
        "import time\n",
        "from fuzzywuzzy import process\n",
        "import numpy as np\n",
        "from os import cpu_count\n",
        "from functools import partial\n",
        "from multiprocessing import Pool\n",
        "\n",
        "\n",
        "# reset the index of the training set after previous filtering\n",
        "df_pp.reset_index(drop=False, inplace=True)\n",
        "\n",
        "# Remove samples from the training data set if they \"almost overlap\" with the\n",
        "# samples in the test set.\n",
        "\n",
        "# Filtering function. Adjust pad to narrow down the candidate matches to\n",
        "# within a certain length of characters of the given sample.\n",
        "def fuzzfilter(sample, candidates, pad):\n",
        "  candidates = [x for x in candidates if len(x) <= len(sample)+pad and len(x) >= len(sample)-pad] \n",
        "  if len(candidates) > 0:\n",
        "    return process.extractOne(sample, candidates)[1]\n",
        "  else:\n",
        "    return np.nan"
      ],
      "execution_count": 10,
      "outputs": [
        {
          "output_type": "stream",
          "text": [
            "Collecting fuzzywuzzy\n",
            "  Downloading https://files.pythonhosted.org/packages/43/ff/74f23998ad2f93b945c0309f825be92e04e0348e062026998b5eefef4c33/fuzzywuzzy-0.18.0-py2.py3-none-any.whl\n",
            "Installing collected packages: fuzzywuzzy\n",
            "Successfully installed fuzzywuzzy-0.18.0\n",
            "Collecting python-Levenshtein\n",
            "\u001b[?25l  Downloading https://files.pythonhosted.org/packages/42/a9/d1785c85ebf9b7dfacd08938dd028209c34a0ea3b1bcdb895208bd40a67d/python-Levenshtein-0.12.0.tar.gz (48kB)\n",
            "\u001b[K     |████████████████████████████████| 51kB 1.7MB/s \n",
            "\u001b[?25hRequirement already satisfied: setuptools in /usr/local/lib/python3.6/dist-packages (from python-Levenshtein) (46.3.0)\n",
            "Building wheels for collected packages: python-Levenshtein\n",
            "  Building wheel for python-Levenshtein (setup.py) ... \u001b[?25l\u001b[?25hdone\n",
            "  Created wheel for python-Levenshtein: filename=python_Levenshtein-0.12.0-cp36-cp36m-linux_x86_64.whl size=144790 sha256=5eb4cf12095d280b3add26009cbdea5ca779d1937901a45670b1535cb342e3a0\n",
            "  Stored in directory: /root/.cache/pip/wheels/de/c2/93/660fd5f7559049268ad2dc6d81c4e39e9e36518766eaf7e342\n",
            "Successfully built python-Levenshtein\n",
            "Installing collected packages: python-Levenshtein\n",
            "Successfully installed python-Levenshtein-0.12.0\n"
          ],
          "name": "stdout"
        }
      ]
    },
    {
      "cell_type": "code",
      "metadata": {
        "id": "5cCxB4ewIpMH",
        "colab_type": "code",
        "outputId": "f344d8dc-daf2-4526-888c-98d19bbd8629",
        "colab": {
          "base_uri": "https://localhost:8080/",
          "height": 84
        }
      },
      "source": [
        "start_time = time.time()\n",
        "### iterating over pandas dataframe rows is not recomended, let use multi processing to apply the function\n",
        "\n",
        "with Pool(cpu_count()-1) as pool:\n",
        "    scores = pool.map(partial(fuzzfilter, candidates=list(en_test_sents), pad=5), df_pp['source_sentence'])\n",
        "hours, rem = divmod(time.time() - start_time, 3600)\n",
        "minutes, seconds = divmod(rem, 60)\n",
        "print(\"done in {}h:{}min:{}seconds\".format(hours, minutes, seconds))\n",
        "\n",
        "# Filter out \"almost overlapping samples\"\n",
        "df_pp = df_pp.assign(scores=scores)\n",
        "df_pp = df_pp[df_pp['scores'] < 95]"
      ],
      "execution_count": 11,
      "outputs": [
        {
          "output_type": "stream",
          "text": [
            "WARNING:root:Applied processor reduces input query to empty string, all comparisons will have score 0. [Query: '']\n",
            "WARNING:root:Applied processor reduces input query to empty string, all comparisons will have score 0. [Query: '*']\n",
            "WARNING:root:Applied processor reduces input query to empty string, all comparisons will have score 0. [Query: '․ ․ ․ ․ ․']\n"
          ],
          "name": "stderr"
        },
        {
          "output_type": "stream",
          "text": [
            "done in 0.0h:36.0min:35.639527320861816seconds\n"
          ],
          "name": "stdout"
        }
      ]
    },
    {
      "cell_type": "code",
      "metadata": {
        "colab_type": "code",
        "id": "hxxBOCA-xXhy",
        "outputId": "c04fef30-6f3c-4ddd-8de9-9fb50d028e8e",
        "colab": {
          "base_uri": "https://localhost:8080/",
          "height": 810
        }
      },
      "source": [
        "# This section does the split between train/dev for the parallel corpora then saves them as separate files\n",
        "# We use 1000 dev test and the given test set.\n",
        "import csv\n",
        "\n",
        "# Do the split between dev/train and create parallel corpora\n",
        "num_dev_patterns = 1000\n",
        "\n",
        "# Optional: lower case the corpora - this will make it easier to generalize, but without proper casing.\n",
        "if lc:  # Julia: making lowercasing optional\n",
        "    df_pp[\"source_sentence\"] = df_pp[\"source_sentence\"].str.lower()\n",
        "    df_pp[\"target_sentence\"] = df_pp[\"target_sentence\"].str.lower()\n",
        "\n",
        "# Julia: test sets are already generated\n",
        "dev = df_pp.tail(num_dev_patterns) # Herman: Error in original\n",
        "stripped = df_pp.drop(df_pp.tail(num_dev_patterns).index)\n",
        "\n",
        "with open(\"train.\"+source_language, \"w\") as src_file, open(\"train.\"+target_language, \"w\") as trg_file:\n",
        "  for index, row in stripped.iterrows():\n",
        "    src_file.write(row[\"source_sentence\"]+\"\\n\")\n",
        "    trg_file.write(row[\"target_sentence\"]+\"\\n\")\n",
        "    \n",
        "with open(\"dev.\"+source_language, \"w\") as src_file, open(\"dev.\"+target_language, \"w\") as trg_file:\n",
        "  for index, row in dev.iterrows():\n",
        "    src_file.write(row[\"source_sentence\"]+\"\\n\")\n",
        "    trg_file.write(row[\"target_sentence\"]+\"\\n\")\n",
        "\n",
        "#stripped[[\"source_sentence\"]].to_csv(\"train.\"+source_language, header=False, index=False)  # Herman: Added `header=False` everywhere\n",
        "#stripped[[\"target_sentence\"]].to_csv(\"train.\"+target_language, header=False, index=False)  # Julia: Problematic handling of quotation marks.\n",
        "\n",
        "#dev[[\"source_sentence\"]].to_csv(\"dev.\"+source_language, header=False, index=False)\n",
        "#dev[[\"target_sentence\"]].to_csv(\"dev.\"+target_language, header=False, index=False)\n",
        "\n",
        "# Doublecheck the format below. There should be no extra quotation marks or weird characters.\n",
        "! head train.*\n",
        "! head dev.*"
      ],
      "execution_count": 12,
      "outputs": [
        {
          "output_type": "stream",
          "text": [
            "==> train.en <==\n",
            "Jehovah’s servants in the past set the pattern in their relationship with governments and officials .\n",
            "In that state , the insect resembles a berry , about the size and form of a pea , attached to the leaves and twigs of the kermes oak .\n",
            "( a ) What is the good news that we spread ?\n",
            "After all , “ a cheerful glance makes the heart rejoice . ”\n",
            "( b ) What questions can be helpful ?\n",
            "When a Loved One Is Terminally Ill , No .\n",
            "As they shared with him God’s promise that “ the lame one will climb up just as a stag does , ” the man responded with a wide smile . ​ — Isa .\n",
            "These men all had Greek names , which seems to indicate that the apostles wanted to ease any tensions over background that might have existed among the early Christians . ​ — Acts 6 : 2 - 6 .\n",
            "Religion Man - Made ?\n",
            "Do Not Let the Faults of Others Stumble You , June\n",
            "\n",
            "==> train.nr <==\n",
            "Iinceku zakaJehova zemandulo zisivulele umtlhala endleleni yokusebenzisana neenkhulu zakarhulumende .\n",
            "Ingogwana leyo neyinamaqanda , ifana nomomori ( berry ) , opheze ulingane begodu wakheke njengentanga yerhruni , enamathela emakarini nematakeni we - kermes oak .\n",
            "( a ) Ngiziphi iindaba ezimnandi esizirhatjhako ?\n",
            "“ Ubuso obuthokozileko buthabisa ihliziyo . ” ( IzA .\n",
            "( b ) Ngimiphi imibuzo engaba lisizo kithi ?\n",
            "U - Elias Hutter NamaBhayibhelakhe WesiHebheru , No .\n",
            "Bathi nabakhuluma nayo ngesithembiso sakaZimu sokuthi “ abarholopheleko bazakutjakadula njengehlangumataka , ” indoda leyo yabobotheka . ​ — Isa .\n",
            "Begodu woke amadoda akhethwako lawo bekanamagama wesiGirigi , lokhu kungenzeka ukuthi kwenzeka ngebanga lokuthi abapostoli bebafuna ukuqeda indaba yebandlululo le iphele nya . — IzE .\n",
            "Kuqakathekile Na Ukuba ngeweKolo ?\n",
            "Fumbelani Amatshwenyekwenu KuJehova , Dis .\n",
            "==> dev.en <==\n",
            "The king was already an apostate , the worst of Israel’s kings up to that point .\n",
            "When Esau belatedly realized what a foolish choice he had made , he begged Isaac : “ Bless me , even me too , my father ! . . .\n",
            "When he first learned that she was pregnant , he wanted to deal mercifully with her , even before God’s angel explained to him what had happened to Mary .\n",
            "Who was this Joseph of Arimathea ?\n",
            "Do you want to live in a world without Satan ?\n",
            "They are not suffering or in any kind of pain , for “ the dead know nothing at all . ”\n",
            "“ You are worthy , Jehovah our God , to receive the glory and the honor and the power , because you created all things . ” ​ — REV .\n",
            "You will also see that the Bible predicted such conditions for the period of time called “ the last days . ”\n",
            "Sophia : I never heard that part of the story before .\n",
            "Sílvia , a two - time cancer survivor , agrees . “ Having different friends drive me to another town daily for radiation was so relaxing and comforting !\n",
            "\n",
            "==> dev.nr <==\n",
            "Ikosi besele isihlubuki , iyimbi ukuwadlula woke amakhosi wakwa - Israyeli ngesikhatheso .\n",
            "U - Esewu nekalemuka ngemva kwesikhathi bona wenze isiqunto sobudlhayela , wancenga u - Isaka wathi : “ Nami ngibusisa baba ! . . .\n",
            "Indaba yokobana uMariya usidisi neyifika eendlebeni zakhe , wafuna ukumphatha ngomusa , ngitjho nangaphambi kobana ingilozi kaZimu imhlathululele okwenzeke kuMariya .\n",
            "Kanti ngubani uJosefa we - Arimathiya ?\n",
            "Uyafuna na ukuphila ephasini elinganaSathana ?\n",
            "Abe abukho nobuncani ubuhlungu ababuzwako , nganingoba “ abazi litho . ”\n",
            "“ Ufanele wena [ “ Jehova , ” NW ] Zimethu , ukwamukela idumo , ubukhosi namandla ngombana nguwe owabumba koke begodu koke okukhona kwadalwa ngentando yakho . ” — ISAM .\n",
            "Godu uzokubona nokobana iBhayibhili labikezela ngobujamo obunjalo njengesikhathi esibizwa ngokobana ‘ mimihla yokuphela . ’\n",
            "Lindiwe : Ngiyathoma ukuyizwa indaba le .\n",
            "U - Sílvia , okhe waphathwa yikankere kabili uvumelana nalokho , uthi : “ Ukuba nabangani abahlukahlukeneko abangisa kelinye idorobho nengiya emtjhinini wokutjhisa amaseli wekankere [ radiation ] bekungiqabula begodu kungiduduza !\n"
          ],
          "name": "stdout"
        }
      ]
    },
    {
      "cell_type": "markdown",
      "metadata": {
        "colab_type": "text",
        "id": "epeCydmCyS8X"
      },
      "source": [
        "\n",
        "\n",
        "---\n",
        "\n",
        "\n",
        "## Installation of JoeyNMT\n",
        "\n",
        "JoeyNMT is a simple, minimalist NMT package which is useful for learning and teaching. Check out the documentation for JoeyNMT [here](https://joeynmt.readthedocs.io)  "
      ]
    },
    {
      "cell_type": "code",
      "metadata": {
        "colab_type": "code",
        "id": "iBRMm4kMxZ8L",
        "outputId": "a7378b60-ff55-4ad0-943b-a372a15cefcd",
        "colab": {
          "base_uri": "https://localhost:8080/",
          "height": 1000
        }
      },
      "source": [
        "# Install JoeyNMT\n",
        "! git clone https://github.com/joeynmt/joeynmt.git\n",
        "! cd joeynmt; pip3 install ."
      ],
      "execution_count": 13,
      "outputs": [
        {
          "output_type": "stream",
          "text": [
            "Cloning into 'joeynmt'...\n",
            "remote: Enumerating objects: 28, done.\u001b[K\n",
            "remote: Counting objects: 100% (28/28), done.\u001b[K\n",
            "remote: Compressing objects: 100% (27/27), done.\u001b[K\n",
            "remote: Total 2423 (delta 9), reused 6 (delta 1), pack-reused 2395\u001b[K\n",
            "Receiving objects: 100% (2423/2423), 2.64 MiB | 2.48 MiB/s, done.\n",
            "Resolving deltas: 100% (1688/1688), done.\n",
            "Processing /content/joeynmt\n",
            "Requirement already satisfied: future in /usr/local/lib/python3.6/dist-packages (from joeynmt==0.0.1) (0.16.0)\n",
            "Requirement already satisfied: pillow in /usr/local/lib/python3.6/dist-packages (from joeynmt==0.0.1) (7.0.0)\n",
            "Requirement already satisfied: numpy<2.0,>=1.14.5 in /usr/local/lib/python3.6/dist-packages (from joeynmt==0.0.1) (1.18.4)\n",
            "Requirement already satisfied: setuptools>=41.0.0 in /usr/local/lib/python3.6/dist-packages (from joeynmt==0.0.1) (46.3.0)\n",
            "Requirement already satisfied: torch>=1.1 in /usr/local/lib/python3.6/dist-packages (from joeynmt==0.0.1) (1.5.0+cu101)\n",
            "Requirement already satisfied: tensorflow>=1.14 in /usr/local/lib/python3.6/dist-packages (from joeynmt==0.0.1) (2.2.0)\n",
            "Requirement already satisfied: torchtext in /usr/local/lib/python3.6/dist-packages (from joeynmt==0.0.1) (0.3.1)\n",
            "Collecting sacrebleu>=1.3.6\n",
            "\u001b[?25l  Downloading https://files.pythonhosted.org/packages/6e/9d/9846507837ca50ae20917f59d83b79246b8313bd19d4f5bf575ecb98132b/sacrebleu-1.4.9-py3-none-any.whl (60kB)\n",
            "\u001b[K     |████████████████████████████████| 61kB 1.7MB/s \n",
            "\u001b[?25hCollecting subword-nmt\n",
            "  Downloading https://files.pythonhosted.org/packages/74/60/6600a7bc09e7ab38bc53a48a20d8cae49b837f93f5842a41fe513a694912/subword_nmt-0.3.7-py2.py3-none-any.whl\n",
            "Requirement already satisfied: matplotlib in /usr/local/lib/python3.6/dist-packages (from joeynmt==0.0.1) (3.2.1)\n",
            "Requirement already satisfied: seaborn in /usr/local/lib/python3.6/dist-packages (from joeynmt==0.0.1) (0.10.1)\n",
            "Collecting pyyaml>=5.1\n",
            "\u001b[?25l  Downloading https://files.pythonhosted.org/packages/64/c2/b80047c7ac2478f9501676c988a5411ed5572f35d1beff9cae07d321512c/PyYAML-5.3.1.tar.gz (269kB)\n",
            "\u001b[K     |████████████████████████████████| 276kB 6.9MB/s \n",
            "\u001b[?25hCollecting pylint\n",
            "\u001b[?25l  Downloading https://files.pythonhosted.org/packages/37/6e/36419ec1bd2208e157dff7fc3e565b185394c0dc4901e9e2f983cb1d4b7f/pylint-2.5.2-py3-none-any.whl (324kB)\n",
            "\u001b[K     |████████████████████████████████| 327kB 20.2MB/s \n",
            "\u001b[?25hRequirement already satisfied: six==1.12 in /usr/local/lib/python3.6/dist-packages (from joeynmt==0.0.1) (1.12.0)\n",
            "Collecting wrapt==1.11.1\n",
            "  Downloading https://files.pythonhosted.org/packages/67/b2/0f71ca90b0ade7fad27e3d20327c996c6252a2ffe88f50a95bba7434eda9/wrapt-1.11.1.tar.gz\n",
            "Requirement already satisfied: absl-py>=0.7.0 in /usr/local/lib/python3.6/dist-packages (from tensorflow>=1.14->joeynmt==0.0.1) (0.9.0)\n",
            "Requirement already satisfied: tensorboard<2.3.0,>=2.2.0 in /usr/local/lib/python3.6/dist-packages (from tensorflow>=1.14->joeynmt==0.0.1) (2.2.1)\n",
            "Requirement already satisfied: tensorflow-estimator<2.3.0,>=2.2.0 in /usr/local/lib/python3.6/dist-packages (from tensorflow>=1.14->joeynmt==0.0.1) (2.2.0)\n",
            "Requirement already satisfied: h5py<2.11.0,>=2.10.0 in /usr/local/lib/python3.6/dist-packages (from tensorflow>=1.14->joeynmt==0.0.1) (2.10.0)\n",
            "Requirement already satisfied: gast==0.3.3 in /usr/local/lib/python3.6/dist-packages (from tensorflow>=1.14->joeynmt==0.0.1) (0.3.3)\n",
            "Requirement already satisfied: astunparse==1.6.3 in /usr/local/lib/python3.6/dist-packages (from tensorflow>=1.14->joeynmt==0.0.1) (1.6.3)\n",
            "Requirement already satisfied: opt-einsum>=2.3.2 in /usr/local/lib/python3.6/dist-packages (from tensorflow>=1.14->joeynmt==0.0.1) (3.2.1)\n",
            "Requirement already satisfied: protobuf>=3.8.0 in /usr/local/lib/python3.6/dist-packages (from tensorflow>=1.14->joeynmt==0.0.1) (3.10.0)\n",
            "Requirement already satisfied: termcolor>=1.1.0 in /usr/local/lib/python3.6/dist-packages (from tensorflow>=1.14->joeynmt==0.0.1) (1.1.0)\n",
            "Requirement already satisfied: grpcio>=1.8.6 in /usr/local/lib/python3.6/dist-packages (from tensorflow>=1.14->joeynmt==0.0.1) (1.29.0)\n",
            "Requirement already satisfied: wheel>=0.26; python_version >= \"3\" in /usr/local/lib/python3.6/dist-packages (from tensorflow>=1.14->joeynmt==0.0.1) (0.34.2)\n",
            "Requirement already satisfied: scipy==1.4.1; python_version >= \"3\" in /usr/local/lib/python3.6/dist-packages (from tensorflow>=1.14->joeynmt==0.0.1) (1.4.1)\n",
            "Requirement already satisfied: google-pasta>=0.1.8 in /usr/local/lib/python3.6/dist-packages (from tensorflow>=1.14->joeynmt==0.0.1) (0.2.0)\n",
            "Requirement already satisfied: keras-preprocessing>=1.1.0 in /usr/local/lib/python3.6/dist-packages (from tensorflow>=1.14->joeynmt==0.0.1) (1.1.2)\n",
            "Requirement already satisfied: tqdm in /usr/local/lib/python3.6/dist-packages (from torchtext->joeynmt==0.0.1) (4.41.1)\n",
            "Requirement already satisfied: requests in /usr/local/lib/python3.6/dist-packages (from torchtext->joeynmt==0.0.1) (2.23.0)\n",
            "Requirement already satisfied: typing in /usr/local/lib/python3.6/dist-packages (from sacrebleu>=1.3.6->joeynmt==0.0.1) (3.6.6)\n",
            "Collecting portalocker\n",
            "  Downloading https://files.pythonhosted.org/packages/53/84/7b3146ec6378d28abc73ab484f09f47dfa008ad6f03f33d90a369f880e25/portalocker-1.7.0-py2.py3-none-any.whl\n",
            "Requirement already satisfied: kiwisolver>=1.0.1 in /usr/local/lib/python3.6/dist-packages (from matplotlib->joeynmt==0.0.1) (1.2.0)\n",
            "Requirement already satisfied: pyparsing!=2.0.4,!=2.1.2,!=2.1.6,>=2.0.1 in /usr/local/lib/python3.6/dist-packages (from matplotlib->joeynmt==0.0.1) (2.4.7)\n",
            "Requirement already satisfied: cycler>=0.10 in /usr/local/lib/python3.6/dist-packages (from matplotlib->joeynmt==0.0.1) (0.10.0)\n",
            "Requirement already satisfied: python-dateutil>=2.1 in /usr/local/lib/python3.6/dist-packages (from matplotlib->joeynmt==0.0.1) (2.8.1)\n",
            "Requirement already satisfied: pandas>=0.22.0 in /usr/local/lib/python3.6/dist-packages (from seaborn->joeynmt==0.0.1) (1.0.3)\n",
            "Collecting isort<5,>=4.2.5\n",
            "\u001b[?25l  Downloading https://files.pythonhosted.org/packages/e5/b0/c121fd1fa3419ea9bfd55c7f9c4fedfec5143208d8c7ad3ce3db6c623c21/isort-4.3.21-py2.py3-none-any.whl (42kB)\n",
            "\u001b[K     |████████████████████████████████| 51kB 6.9MB/s \n",
            "\u001b[?25hCollecting astroid<=2.5,>=2.4.0\n",
            "\u001b[?25l  Downloading https://files.pythonhosted.org/packages/46/c9/e9c2642dfb169590fb8bdb395f9329da042ee559c2ae7c1e612a3e5f40b4/astroid-2.4.1-py3-none-any.whl (214kB)\n",
            "\u001b[K     |████████████████████████████████| 215kB 22.9MB/s \n",
            "\u001b[?25hCollecting toml>=0.7.1\n",
            "  Downloading https://files.pythonhosted.org/packages/9f/e1/1b40b80f2e1663a6b9f497123c11d7d988c0919abbf3c3f2688e448c5363/toml-0.10.1-py2.py3-none-any.whl\n",
            "Collecting mccabe<0.7,>=0.6\n",
            "  Downloading https://files.pythonhosted.org/packages/87/89/479dc97e18549e21354893e4ee4ef36db1d237534982482c3681ee6e7b57/mccabe-0.6.1-py2.py3-none-any.whl\n",
            "Requirement already satisfied: google-auth-oauthlib<0.5,>=0.4.1 in /usr/local/lib/python3.6/dist-packages (from tensorboard<2.3.0,>=2.2.0->tensorflow>=1.14->joeynmt==0.0.1) (0.4.1)\n",
            "Requirement already satisfied: google-auth<2,>=1.6.3 in /usr/local/lib/python3.6/dist-packages (from tensorboard<2.3.0,>=2.2.0->tensorflow>=1.14->joeynmt==0.0.1) (1.7.2)\n",
            "Requirement already satisfied: tensorboard-plugin-wit>=1.6.0 in /usr/local/lib/python3.6/dist-packages (from tensorboard<2.3.0,>=2.2.0->tensorflow>=1.14->joeynmt==0.0.1) (1.6.0.post3)\n",
            "Requirement already satisfied: markdown>=2.6.8 in /usr/local/lib/python3.6/dist-packages (from tensorboard<2.3.0,>=2.2.0->tensorflow>=1.14->joeynmt==0.0.1) (3.2.2)\n",
            "Requirement already satisfied: werkzeug>=0.11.15 in /usr/local/lib/python3.6/dist-packages (from tensorboard<2.3.0,>=2.2.0->tensorflow>=1.14->joeynmt==0.0.1) (1.0.1)\n",
            "Requirement already satisfied: urllib3!=1.25.0,!=1.25.1,<1.26,>=1.21.1 in /usr/local/lib/python3.6/dist-packages (from requests->torchtext->joeynmt==0.0.1) (1.24.3)\n",
            "Requirement already satisfied: idna<3,>=2.5 in /usr/local/lib/python3.6/dist-packages (from requests->torchtext->joeynmt==0.0.1) (2.9)\n",
            "Requirement already satisfied: chardet<4,>=3.0.2 in /usr/local/lib/python3.6/dist-packages (from requests->torchtext->joeynmt==0.0.1) (3.0.4)\n",
            "Requirement already satisfied: certifi>=2017.4.17 in /usr/local/lib/python3.6/dist-packages (from requests->torchtext->joeynmt==0.0.1) (2020.4.5.1)\n",
            "Requirement already satisfied: pytz>=2017.2 in /usr/local/lib/python3.6/dist-packages (from pandas>=0.22.0->seaborn->joeynmt==0.0.1) (2018.9)\n",
            "Collecting typed-ast<1.5,>=1.4.0; implementation_name == \"cpython\" and python_version < \"3.8\"\n",
            "\u001b[?25l  Downloading https://files.pythonhosted.org/packages/90/ed/5459080d95eb87a02fe860d447197be63b6e2b5e9ff73c2b0a85622994f4/typed_ast-1.4.1-cp36-cp36m-manylinux1_x86_64.whl (737kB)\n",
            "\u001b[K     |████████████████████████████████| 747kB 23.7MB/s \n",
            "\u001b[?25hCollecting lazy-object-proxy==1.4.*\n",
            "\u001b[?25l  Downloading https://files.pythonhosted.org/packages/0b/dd/b1e3407e9e6913cf178e506cd0dee818e58694d9a5cd1984e3f6a8b9a10f/lazy_object_proxy-1.4.3-cp36-cp36m-manylinux1_x86_64.whl (55kB)\n",
            "\u001b[K     |████████████████████████████████| 61kB 6.2MB/s \n",
            "\u001b[?25hRequirement already satisfied: requests-oauthlib>=0.7.0 in /usr/local/lib/python3.6/dist-packages (from google-auth-oauthlib<0.5,>=0.4.1->tensorboard<2.3.0,>=2.2.0->tensorflow>=1.14->joeynmt==0.0.1) (1.3.0)\n",
            "Requirement already satisfied: cachetools<3.2,>=2.0.0 in /usr/local/lib/python3.6/dist-packages (from google-auth<2,>=1.6.3->tensorboard<2.3.0,>=2.2.0->tensorflow>=1.14->joeynmt==0.0.1) (3.1.1)\n",
            "Requirement already satisfied: pyasn1-modules>=0.2.1 in /usr/local/lib/python3.6/dist-packages (from google-auth<2,>=1.6.3->tensorboard<2.3.0,>=2.2.0->tensorflow>=1.14->joeynmt==0.0.1) (0.2.8)\n",
            "Requirement already satisfied: rsa<4.1,>=3.1.4 in /usr/local/lib/python3.6/dist-packages (from google-auth<2,>=1.6.3->tensorboard<2.3.0,>=2.2.0->tensorflow>=1.14->joeynmt==0.0.1) (4.0)\n",
            "Requirement already satisfied: importlib-metadata; python_version < \"3.8\" in /usr/local/lib/python3.6/dist-packages (from markdown>=2.6.8->tensorboard<2.3.0,>=2.2.0->tensorflow>=1.14->joeynmt==0.0.1) (1.6.0)\n",
            "Requirement already satisfied: oauthlib>=3.0.0 in /usr/local/lib/python3.6/dist-packages (from requests-oauthlib>=0.7.0->google-auth-oauthlib<0.5,>=0.4.1->tensorboard<2.3.0,>=2.2.0->tensorflow>=1.14->joeynmt==0.0.1) (3.1.0)\n",
            "Requirement already satisfied: pyasn1<0.5.0,>=0.4.6 in /usr/local/lib/python3.6/dist-packages (from pyasn1-modules>=0.2.1->google-auth<2,>=1.6.3->tensorboard<2.3.0,>=2.2.0->tensorflow>=1.14->joeynmt==0.0.1) (0.4.8)\n",
            "Requirement already satisfied: zipp>=0.5 in /usr/local/lib/python3.6/dist-packages (from importlib-metadata; python_version < \"3.8\"->markdown>=2.6.8->tensorboard<2.3.0,>=2.2.0->tensorflow>=1.14->joeynmt==0.0.1) (3.1.0)\n",
            "Building wheels for collected packages: joeynmt, pyyaml, wrapt\n",
            "  Building wheel for joeynmt (setup.py) ... \u001b[?25l\u001b[?25hdone\n",
            "  Created wheel for joeynmt: filename=joeynmt-0.0.1-cp36-none-any.whl size=77165 sha256=52bcb5f17e336496836891392b4a8a70bdce6369cbc2d5abf41a2216c31d326a\n",
            "  Stored in directory: /tmp/pip-ephem-wheel-cache-rapd13ay/wheels/db/01/db/751cc9f3e7f6faec127c43644ba250a3ea7ad200594aeda70a\n",
            "  Building wheel for pyyaml (setup.py) ... \u001b[?25l\u001b[?25hdone\n",
            "  Created wheel for pyyaml: filename=PyYAML-5.3.1-cp36-cp36m-linux_x86_64.whl size=44621 sha256=e9f18920f01d2557f16bcff32f39acc9e060c18281a0587b5f148f3a7abd7f11\n",
            "  Stored in directory: /root/.cache/pip/wheels/a7/c1/ea/cf5bd31012e735dc1dfea3131a2d5eae7978b251083d6247bd\n",
            "  Building wheel for wrapt (setup.py) ... \u001b[?25l\u001b[?25hdone\n",
            "  Created wheel for wrapt: filename=wrapt-1.11.1-cp36-cp36m-linux_x86_64.whl size=67430 sha256=5f2ac61326aa6d4fa76935d2afc4c77c5ab400c9647dc1f21840b63cd47b7d75\n",
            "  Stored in directory: /root/.cache/pip/wheels/89/67/41/63cbf0f6ac0a6156588b9587be4db5565f8c6d8ccef98202fc\n",
            "Successfully built joeynmt pyyaml wrapt\n",
            "Installing collected packages: portalocker, sacrebleu, subword-nmt, pyyaml, isort, wrapt, typed-ast, lazy-object-proxy, astroid, toml, mccabe, pylint, joeynmt\n",
            "  Found existing installation: PyYAML 3.13\n",
            "    Uninstalling PyYAML-3.13:\n",
            "      Successfully uninstalled PyYAML-3.13\n",
            "  Found existing installation: wrapt 1.12.1\n",
            "    Uninstalling wrapt-1.12.1:\n",
            "      Successfully uninstalled wrapt-1.12.1\n",
            "Successfully installed astroid-2.4.1 isort-4.3.21 joeynmt-0.0.1 lazy-object-proxy-1.4.3 mccabe-0.6.1 portalocker-1.7.0 pylint-2.5.2 pyyaml-5.3.1 sacrebleu-1.4.9 subword-nmt-0.3.7 toml-0.10.1 typed-ast-1.4.1 wrapt-1.11.1\n"
          ],
          "name": "stdout"
        }
      ]
    },
    {
      "cell_type": "markdown",
      "metadata": {
        "colab_type": "text",
        "id": "AaE77Tcppex9"
      },
      "source": [
        "# Preprocessing the Data into Subword BPE Tokens\n",
        "\n",
        "- One of the most powerful improvements for agglutinative languages (a feature of most Bantu languages) is using BPE tokenization [ (Sennrich, 2015) ](https://arxiv.org/abs/1508.07909).\n",
        "\n",
        "- It was also shown that by optimizing the umber of BPE codes we significantly improve results for low-resourced languages [(Sennrich, 2019)](https://www.aclweb.org/anthology/P19-1021) [(Martinus, 2019)](https://arxiv.org/abs/1906.05685)\n",
        "\n",
        "- Below we have the scripts for doing BPE tokenization of our data. We use 4000 tokens as recommended by [(Sennrich, 2019)](https://www.aclweb.org/anthology/P19-1021). You do not need to change anything. Simply running the below will be suitable. "
      ]
    },
    {
      "cell_type": "code",
      "metadata": {
        "colab_type": "code",
        "id": "H-TyjtmXB1mL",
        "outputId": "52432828-4677-414f-e263-3624a1cffb23",
        "colab": {
          "base_uri": "https://localhost:8080/",
          "height": 403
        }
      },
      "source": [
        "# One of the huge boosts in NMT performance was to use a different method of tokenizing. \n",
        "# Usually, NMT would tokenize by words. However, using a method called BPE gave amazing boosts to performance\n",
        "\n",
        "# Do subword NMT\n",
        "from os import path\n",
        "os.environ[\"src\"] = source_language # Sets them in bash as well, since we often use bash scripts\n",
        "os.environ[\"tgt\"] = target_language\n",
        "\n",
        "# Learn BPEs on the training data.\n",
        "os.environ[\"data_path\"] = path.join(\"joeynmt\", \"data\", source_language + target_language) # Herman! \n",
        "! subword-nmt learn-joint-bpe-and-vocab --input train.$src train.$tgt -s 40000 -o bpe.codes.40000 --write-vocabulary vocab.$src vocab.$tgt\n",
        "\n",
        "# Apply BPE splits to the development and test data.\n",
        "! subword-nmt apply-bpe -c bpe.codes.40000 --vocabulary vocab.$src < train.$src > train.bpe.$src\n",
        "! subword-nmt apply-bpe -c bpe.codes.40000 --vocabulary vocab.$tgt < train.$tgt > train.bpe.$tgt\n",
        "\n",
        "! subword-nmt apply-bpe -c bpe.codes.40000 --vocabulary vocab.$src < dev.$src > dev.bpe.$src\n",
        "! subword-nmt apply-bpe -c bpe.codes.40000 --vocabulary vocab.$tgt < dev.$tgt > dev.bpe.$tgt\n",
        "! subword-nmt apply-bpe -c bpe.codes.40000 --vocabulary vocab.$src < test.$src > test.bpe.$src\n",
        "! subword-nmt apply-bpe -c bpe.codes.40000 --vocabulary vocab.$tgt < test.$tgt > test.bpe.$tgt\n",
        "\n",
        "# Create directory, move everyone we care about to the correct location\n",
        "! mkdir -p $data_path\n",
        "! cp train.* $data_path\n",
        "! cp test.* $data_path\n",
        "! cp dev.* $data_path\n",
        "! cp bpe.codes.40000 $data_path\n",
        "! ls $data_path\n",
        "\n",
        "# Also move everything we care about to a mounted location in google drive (relevant if running in colab) at gdrive_path\n",
        "! cp train.* \"$gdrive_path\"\n",
        "! cp test.* \"$gdrive_path\"\n",
        "! cp dev.* \"$gdrive_path\"\n",
        "! cp bpe.codes.40000 \"$gdrive_path\"\n",
        "! ls \"$gdrive_path\"\n",
        "\n",
        "# Create that vocab using build_vocab\n",
        "! sudo chmod 777 joeynmt/scripts/build_vocab.py\n",
        "! joeynmt/scripts/build_vocab.py joeynmt/data/$src$tgt/train.bpe.$src joeynmt/data/$src$tgt/train.bpe.$tgt --output_path joeynmt/data/$src$tgt/vocab.txt\n",
        "\n",
        "# Some output\n",
        "! echo \"BPE isiNdebele Sentences\"\n",
        "! tail -n 5 test.bpe.$tgt\n",
        "! echo \"Combined BPE Vocab\"\n",
        "! tail -n 10 joeynmt/data/$src$tgt/vocab.txt  # Herman"
      ],
      "execution_count": 15,
      "outputs": [
        {
          "output_type": "stream",
          "text": [
            "bpe.codes.40000  dev.en       test.bpe.nr     test.nr\t    train.en\n",
            "dev.bpe.en\t dev.nr       test.en\t      train.bpe.en  train.nr\n",
            "dev.bpe.nr\t test.bpe.en  test.en-any.en  train.bpe.nr  vocab.txt\n",
            "bpe.codes.40000  dev.en       test.bpe.nr     test.nr\t    train.en\n",
            "dev.bpe.en\t dev.nr       test.en\t      train.bpe.en  train.nr\n",
            "dev.bpe.nr\t test.bpe.en  test.en-any.en  train.bpe.nr\n",
            "BPE isiNdebele Sentences\n",
            "Lokho kwenza bona ngaz@@ iwe njengomuntu ong@@ akathembeki .\n",
            "Kwathi bona ngifunde iqiniso , akhenge ngis@@ avuma ukuraga nent@@ wel@@ eyo , nanyana umberego lo bewub@@ hadela kangaka .\n",
            "Ng@@ isibonelo esihle eb@@ as@@ any@@ aneni bami ababili , begodu ngikghona nokub@@ eregiswa ebandleni .\n",
            "Ebantwini abab@@ had@@ elisa umthelo nakilabo engib@@ ereg@@ isana nabo ngaz@@ iwa njengomuntu othembekileko . ”\n",
            "UR@@ ute wafudukela kwa - Israyeli lapho ebekazoku@@ kghona ukulotjha khona uZimu weqiniso .\n",
            "Combined BPE Vocab\n",
            "tirement\n",
            "Irel@@\n",
            "lier\n",
            "willing@@\n",
            "WITNES@@\n",
            "arrang@@\n",
            "ital@@\n",
            "IZWI\n",
            "build@@\n",
            "OKUBUZ@@\n"
          ],
          "name": "stdout"
        }
      ]
    },
    {
      "cell_type": "code",
      "metadata": {
        "colab_type": "code",
        "id": "IlMitUHR8Qy-",
        "outputId": "4064b14a-fde0-4a37-c381-7d9dd4198571",
        "colab": {
          "base_uri": "https://localhost:8080/",
          "height": 67
        }
      },
      "source": [
        "# Also move everything we care about to a mounted location in google drive (relevant if running in colab) at gdrive_path\n",
        "! cp train.* \"$gdrive_path\"\n",
        "! cp test.* \"$gdrive_path\"\n",
        "! cp dev.* \"$gdrive_path\"\n",
        "! cp bpe.codes.40000 \"$gdrive_path\"\n",
        "! ls \"$gdrive_path\""
      ],
      "execution_count": 16,
      "outputs": [
        {
          "output_type": "stream",
          "text": [
            "bpe.codes.40000  dev.en       test.bpe.nr     test.nr\t    train.en\n",
            "dev.bpe.en\t dev.nr       test.en\t      train.bpe.en  train.nr\n",
            "dev.bpe.nr\t test.bpe.en  test.en-any.en  train.bpe.nr\n"
          ],
          "name": "stdout"
        }
      ]
    },
    {
      "cell_type": "code",
      "metadata": {
        "id": "iprRFmA1e_cn",
        "colab_type": "code",
        "colab": {}
      },
      "source": [
        "#THIS WAS NEVER SAVED TO DRIVE.\n",
        "# Create that vocab using build_vocab\n",
        "! sudo chmod 777 joeynmt/scripts/build_vocab.py\n",
        "! joeynmt/scripts/build_vocab.py \"/content/drive/My Drive/masakhane/en-nr-baseline/train.bpe.$src\" \"/content/drive/My Drive/masakhane/en-nr-baseline/train.bpe.$tgt\" --output_path \"/content/drive/My Drive/masakhane/en-nr-baseline/vocab.txt\"\n"
      ],
      "execution_count": 0,
      "outputs": []
    },
    {
      "cell_type": "markdown",
      "metadata": {
        "colab_type": "text",
        "id": "Ixmzi60WsUZ8"
      },
      "source": [
        "# Creating the JoeyNMT Config\n",
        "\n",
        "JoeyNMT requires a yaml config. We provide a template below. We've also set a number of defaults with it, that you may play with!\n",
        "\n",
        "- We used Transformer architecture \n",
        "- We set our dropout to reasonably high: 0.3 (recommended in  [(Sennrich, 2019)](https://www.aclweb.org/anthology/P19-1021))\n",
        "\n",
        "Things worth playing with:\n",
        "- The batch size (also recommended to change for low-resourced languages)\n",
        "- The number of epochs (we've set it at 30 just so it runs in about an hour, for testing purposes)\n",
        "- The decoder options (beam_size, alpha)\n",
        "- Evaluation metrics (BLEU versus Crhf4)"
      ]
    },
    {
      "cell_type": "code",
      "metadata": {
        "colab_type": "code",
        "id": "PIs1lY2hxMsl",
        "colab": {}
      },
      "source": [
        "# This creates the config file for our JoeyNMT system. It might seem overwhelming so we've provided a couple of useful parameters you'll need to update\n",
        "# (You can of course play with all the parameters if you'd like!)\n",
        "\n",
        "name = '%s%s' % (source_language, target_language)\n",
        "gdrive_path = os.environ[\"gdrive_path\"]\n",
        "\n",
        "# Create the config\n",
        "config = \"\"\"\n",
        "name: \"{name}_transformer\"\n",
        "\n",
        "data:\n",
        "    src: \"{source_language}\"\n",
        "    trg: \"{target_language}\"\n",
        "    train: \"data/{name}/train.bpe\"\n",
        "    dev:   \"data/{name}/dev.bpe\"\n",
        "    test:  \"data/{name}/test.bpe\"\n",
        "    level: \"bpe\"\n",
        "    lowercase: False\n",
        "    max_sent_length: 100\n",
        "    src_vocab: \"data/{name}/vocab.txt\"\n",
        "    trg_vocab: \"data/{name}/vocab.txt\"\n",
        "\n",
        "testing:\n",
        "    beam_size: 5\n",
        "    alpha: 1.0\n",
        "\n",
        "training:\n",
        "    #load_model: \"{gdrive_path}/models/{name}_transformer/1.ckpt\" # if uncommented, load a pre-trained model from this checkpoint\n",
        "    random_seed: 42\n",
        "    optimizer: \"adam\"\n",
        "    normalization: \"tokens\"\n",
        "    adam_betas: [0.9, 0.999] \n",
        "    scheduling: \"plateau\"           # TODO: try switching from plateau to Noam scheduling\n",
        "    patience: 5                     # For plateau: decrease learning rate by decrease_factor if validation score has not improved for this many validation rounds.\n",
        "    learning_rate_factor: 0.5       # factor for Noam scheduler (used with Transformer)\n",
        "    learning_rate_warmup: 1000      # warmup steps for Noam scheduler (used with Transformer)\n",
        "    decrease_factor: 0.7\n",
        "    loss: \"crossentropy\"\n",
        "    learning_rate: 0.0003\n",
        "    learning_rate_min: 0.00000001\n",
        "    weight_decay: 0.0\n",
        "    label_smoothing: 0.1\n",
        "    batch_size: 4096\n",
        "    batch_type: \"token\"\n",
        "    eval_batch_size: 3600\n",
        "    eval_batch_type: \"token\"\n",
        "    batch_multiplier: 1\n",
        "    early_stopping_metric: \"ppl\"\n",
        "    epochs: 30                     # TODO: Decrease for when playing around and checking of working. Around 30 is sufficient to check if its working at all\n",
        "    validation_freq: 1000          # TODO: Set to at least once per epoch.\n",
        "    logging_freq: 100\n",
        "    eval_metric: \"bleu\"\n",
        "    model_dir: \"models/{name}_transformer\"\n",
        "    overwrite: False               # TODO: Set to True if you want to overwrite possibly existing models. \n",
        "    shuffle: True\n",
        "    use_cuda: True\n",
        "    max_output_length: 100\n",
        "    print_valid_sents: [0, 1, 2, 3]\n",
        "    keep_last_ckpts: 3\n",
        "\n",
        "model:\n",
        "    initializer: \"xavier\"\n",
        "    bias_initializer: \"zeros\"\n",
        "    init_gain: 1.0\n",
        "    embed_initializer: \"xavier\"\n",
        "    embed_init_gain: 1.0\n",
        "    tied_embeddings: True\n",
        "    tied_softmax: True\n",
        "    encoder:\n",
        "        type: \"transformer\"\n",
        "        num_layers: 6\n",
        "        num_heads: 4             # TODO: Increase to 8 for larger data.\n",
        "        embeddings:\n",
        "            embedding_dim: 256   # TODO: Increase to 512 for larger data.\n",
        "            scale: True\n",
        "            dropout: 0.2\n",
        "        # typically ff_size = 4 x hidden_size\n",
        "        hidden_size: 256         # TODO: Increase to 512 for larger data.\n",
        "        ff_size: 1024            # TODO: Increase to 2048 for larger data.\n",
        "        dropout: 0.3\n",
        "    decoder:\n",
        "        type: \"transformer\"\n",
        "        num_layers: 6\n",
        "        num_heads: 4              # TODO: Increase to 8 for larger data.\n",
        "        embeddings:\n",
        "            embedding_dim: 256    # TODO: Increase to 512 for larger data.\n",
        "            scale: True\n",
        "            dropout: 0.2\n",
        "        # typically ff_size = 4 x hidden_size\n",
        "        hidden_size: 256         # TODO: Increase to 512 for larger data.\n",
        "        ff_size: 1024            # TODO: Increase to 2048 for larger data.\n",
        "        dropout: 0.3\n",
        "\"\"\".format(name=name, gdrive_path=os.environ[\"gdrive_path\"], source_language=source_language, target_language=target_language)\n",
        "with open(\"joeynmt/configs/transformer_{name}.yaml\".format(name=name),'w') as f:\n",
        "    f.write(config)"
      ],
      "execution_count": 0,
      "outputs": []
    },
    {
      "cell_type": "markdown",
      "metadata": {
        "colab_type": "text",
        "id": "pIifxE3Qzuvs"
      },
      "source": [
        "# Train the Model\n",
        "\n",
        "This single line of joeynmt runs the training using the config we made above"
      ]
    },
    {
      "cell_type": "code",
      "metadata": {
        "colab_type": "code",
        "id": "6ZBPFwT94WpI",
        "outputId": "949abe85-da56-45b6-9ca5-ab191e007c6f",
        "colab": {
          "base_uri": "https://localhost:8080/",
          "height": 1000
        }
      },
      "source": [
        "# Train the model\n",
        "# You can press Ctrl-C to stop. And then run the next cell to save your checkpoints! \n",
        "!cd joeynmt; python3 -m joeynmt train configs/transformer_$src$tgt.yaml"
      ],
      "execution_count": 19,
      "outputs": [
        {
          "output_type": "stream",
          "text": [
            "2020-05-25 10:07:25,863 Hello! This is Joey-NMT.\n",
            "2020-05-25 10:07:25.998377: I tensorflow/stream_executor/platform/default/dso_loader.cc:44] Successfully opened dynamic library libcudart.so.10.1\n",
            "2020-05-25 10:07:27,575 Total params: 21083392\n",
            "2020-05-25 10:07:27,576 Trainable parameters: ['decoder.layer_norm.bias', 'decoder.layer_norm.weight', 'decoder.layers.0.dec_layer_norm.bias', 'decoder.layers.0.dec_layer_norm.weight', 'decoder.layers.0.feed_forward.layer_norm.bias', 'decoder.layers.0.feed_forward.layer_norm.weight', 'decoder.layers.0.feed_forward.pwff_layer.0.bias', 'decoder.layers.0.feed_forward.pwff_layer.0.weight', 'decoder.layers.0.feed_forward.pwff_layer.3.bias', 'decoder.layers.0.feed_forward.pwff_layer.3.weight', 'decoder.layers.0.src_trg_att.k_layer.bias', 'decoder.layers.0.src_trg_att.k_layer.weight', 'decoder.layers.0.src_trg_att.output_layer.bias', 'decoder.layers.0.src_trg_att.output_layer.weight', 'decoder.layers.0.src_trg_att.q_layer.bias', 'decoder.layers.0.src_trg_att.q_layer.weight', 'decoder.layers.0.src_trg_att.v_layer.bias', 'decoder.layers.0.src_trg_att.v_layer.weight', 'decoder.layers.0.trg_trg_att.k_layer.bias', 'decoder.layers.0.trg_trg_att.k_layer.weight', 'decoder.layers.0.trg_trg_att.output_layer.bias', 'decoder.layers.0.trg_trg_att.output_layer.weight', 'decoder.layers.0.trg_trg_att.q_layer.bias', 'decoder.layers.0.trg_trg_att.q_layer.weight', 'decoder.layers.0.trg_trg_att.v_layer.bias', 'decoder.layers.0.trg_trg_att.v_layer.weight', 'decoder.layers.0.x_layer_norm.bias', 'decoder.layers.0.x_layer_norm.weight', 'decoder.layers.1.dec_layer_norm.bias', 'decoder.layers.1.dec_layer_norm.weight', 'decoder.layers.1.feed_forward.layer_norm.bias', 'decoder.layers.1.feed_forward.layer_norm.weight', 'decoder.layers.1.feed_forward.pwff_layer.0.bias', 'decoder.layers.1.feed_forward.pwff_layer.0.weight', 'decoder.layers.1.feed_forward.pwff_layer.3.bias', 'decoder.layers.1.feed_forward.pwff_layer.3.weight', 'decoder.layers.1.src_trg_att.k_layer.bias', 'decoder.layers.1.src_trg_att.k_layer.weight', 'decoder.layers.1.src_trg_att.output_layer.bias', 'decoder.layers.1.src_trg_att.output_layer.weight', 'decoder.layers.1.src_trg_att.q_layer.bias', 'decoder.layers.1.src_trg_att.q_layer.weight', 'decoder.layers.1.src_trg_att.v_layer.bias', 'decoder.layers.1.src_trg_att.v_layer.weight', 'decoder.layers.1.trg_trg_att.k_layer.bias', 'decoder.layers.1.trg_trg_att.k_layer.weight', 'decoder.layers.1.trg_trg_att.output_layer.bias', 'decoder.layers.1.trg_trg_att.output_layer.weight', 'decoder.layers.1.trg_trg_att.q_layer.bias', 'decoder.layers.1.trg_trg_att.q_layer.weight', 'decoder.layers.1.trg_trg_att.v_layer.bias', 'decoder.layers.1.trg_trg_att.v_layer.weight', 'decoder.layers.1.x_layer_norm.bias', 'decoder.layers.1.x_layer_norm.weight', 'decoder.layers.2.dec_layer_norm.bias', 'decoder.layers.2.dec_layer_norm.weight', 'decoder.layers.2.feed_forward.layer_norm.bias', 'decoder.layers.2.feed_forward.layer_norm.weight', 'decoder.layers.2.feed_forward.pwff_layer.0.bias', 'decoder.layers.2.feed_forward.pwff_layer.0.weight', 'decoder.layers.2.feed_forward.pwff_layer.3.bias', 'decoder.layers.2.feed_forward.pwff_layer.3.weight', 'decoder.layers.2.src_trg_att.k_layer.bias', 'decoder.layers.2.src_trg_att.k_layer.weight', 'decoder.layers.2.src_trg_att.output_layer.bias', 'decoder.layers.2.src_trg_att.output_layer.weight', 'decoder.layers.2.src_trg_att.q_layer.bias', 'decoder.layers.2.src_trg_att.q_layer.weight', 'decoder.layers.2.src_trg_att.v_layer.bias', 'decoder.layers.2.src_trg_att.v_layer.weight', 'decoder.layers.2.trg_trg_att.k_layer.bias', 'decoder.layers.2.trg_trg_att.k_layer.weight', 'decoder.layers.2.trg_trg_att.output_layer.bias', 'decoder.layers.2.trg_trg_att.output_layer.weight', 'decoder.layers.2.trg_trg_att.q_layer.bias', 'decoder.layers.2.trg_trg_att.q_layer.weight', 'decoder.layers.2.trg_trg_att.v_layer.bias', 'decoder.layers.2.trg_trg_att.v_layer.weight', 'decoder.layers.2.x_layer_norm.bias', 'decoder.layers.2.x_layer_norm.weight', 'decoder.layers.3.dec_layer_norm.bias', 'decoder.layers.3.dec_layer_norm.weight', 'decoder.layers.3.feed_forward.layer_norm.bias', 'decoder.layers.3.feed_forward.layer_norm.weight', 'decoder.layers.3.feed_forward.pwff_layer.0.bias', 'decoder.layers.3.feed_forward.pwff_layer.0.weight', 'decoder.layers.3.feed_forward.pwff_layer.3.bias', 'decoder.layers.3.feed_forward.pwff_layer.3.weight', 'decoder.layers.3.src_trg_att.k_layer.bias', 'decoder.layers.3.src_trg_att.k_layer.weight', 'decoder.layers.3.src_trg_att.output_layer.bias', 'decoder.layers.3.src_trg_att.output_layer.weight', 'decoder.layers.3.src_trg_att.q_layer.bias', 'decoder.layers.3.src_trg_att.q_layer.weight', 'decoder.layers.3.src_trg_att.v_layer.bias', 'decoder.layers.3.src_trg_att.v_layer.weight', 'decoder.layers.3.trg_trg_att.k_layer.bias', 'decoder.layers.3.trg_trg_att.k_layer.weight', 'decoder.layers.3.trg_trg_att.output_layer.bias', 'decoder.layers.3.trg_trg_att.output_layer.weight', 'decoder.layers.3.trg_trg_att.q_layer.bias', 'decoder.layers.3.trg_trg_att.q_layer.weight', 'decoder.layers.3.trg_trg_att.v_layer.bias', 'decoder.layers.3.trg_trg_att.v_layer.weight', 'decoder.layers.3.x_layer_norm.bias', 'decoder.layers.3.x_layer_norm.weight', 'decoder.layers.4.dec_layer_norm.bias', 'decoder.layers.4.dec_layer_norm.weight', 'decoder.layers.4.feed_forward.layer_norm.bias', 'decoder.layers.4.feed_forward.layer_norm.weight', 'decoder.layers.4.feed_forward.pwff_layer.0.bias', 'decoder.layers.4.feed_forward.pwff_layer.0.weight', 'decoder.layers.4.feed_forward.pwff_layer.3.bias', 'decoder.layers.4.feed_forward.pwff_layer.3.weight', 'decoder.layers.4.src_trg_att.k_layer.bias', 'decoder.layers.4.src_trg_att.k_layer.weight', 'decoder.layers.4.src_trg_att.output_layer.bias', 'decoder.layers.4.src_trg_att.output_layer.weight', 'decoder.layers.4.src_trg_att.q_layer.bias', 'decoder.layers.4.src_trg_att.q_layer.weight', 'decoder.layers.4.src_trg_att.v_layer.bias', 'decoder.layers.4.src_trg_att.v_layer.weight', 'decoder.layers.4.trg_trg_att.k_layer.bias', 'decoder.layers.4.trg_trg_att.k_layer.weight', 'decoder.layers.4.trg_trg_att.output_layer.bias', 'decoder.layers.4.trg_trg_att.output_layer.weight', 'decoder.layers.4.trg_trg_att.q_layer.bias', 'decoder.layers.4.trg_trg_att.q_layer.weight', 'decoder.layers.4.trg_trg_att.v_layer.bias', 'decoder.layers.4.trg_trg_att.v_layer.weight', 'decoder.layers.4.x_layer_norm.bias', 'decoder.layers.4.x_layer_norm.weight', 'decoder.layers.5.dec_layer_norm.bias', 'decoder.layers.5.dec_layer_norm.weight', 'decoder.layers.5.feed_forward.layer_norm.bias', 'decoder.layers.5.feed_forward.layer_norm.weight', 'decoder.layers.5.feed_forward.pwff_layer.0.bias', 'decoder.layers.5.feed_forward.pwff_layer.0.weight', 'decoder.layers.5.feed_forward.pwff_layer.3.bias', 'decoder.layers.5.feed_forward.pwff_layer.3.weight', 'decoder.layers.5.src_trg_att.k_layer.bias', 'decoder.layers.5.src_trg_att.k_layer.weight', 'decoder.layers.5.src_trg_att.output_layer.bias', 'decoder.layers.5.src_trg_att.output_layer.weight', 'decoder.layers.5.src_trg_att.q_layer.bias', 'decoder.layers.5.src_trg_att.q_layer.weight', 'decoder.layers.5.src_trg_att.v_layer.bias', 'decoder.layers.5.src_trg_att.v_layer.weight', 'decoder.layers.5.trg_trg_att.k_layer.bias', 'decoder.layers.5.trg_trg_att.k_layer.weight', 'decoder.layers.5.trg_trg_att.output_layer.bias', 'decoder.layers.5.trg_trg_att.output_layer.weight', 'decoder.layers.5.trg_trg_att.q_layer.bias', 'decoder.layers.5.trg_trg_att.q_layer.weight', 'decoder.layers.5.trg_trg_att.v_layer.bias', 'decoder.layers.5.trg_trg_att.v_layer.weight', 'decoder.layers.5.x_layer_norm.bias', 'decoder.layers.5.x_layer_norm.weight', 'encoder.layer_norm.bias', 'encoder.layer_norm.weight', 'encoder.layers.0.feed_forward.layer_norm.bias', 'encoder.layers.0.feed_forward.layer_norm.weight', 'encoder.layers.0.feed_forward.pwff_layer.0.bias', 'encoder.layers.0.feed_forward.pwff_layer.0.weight', 'encoder.layers.0.feed_forward.pwff_layer.3.bias', 'encoder.layers.0.feed_forward.pwff_layer.3.weight', 'encoder.layers.0.layer_norm.bias', 'encoder.layers.0.layer_norm.weight', 'encoder.layers.0.src_src_att.k_layer.bias', 'encoder.layers.0.src_src_att.k_layer.weight', 'encoder.layers.0.src_src_att.output_layer.bias', 'encoder.layers.0.src_src_att.output_layer.weight', 'encoder.layers.0.src_src_att.q_layer.bias', 'encoder.layers.0.src_src_att.q_layer.weight', 'encoder.layers.0.src_src_att.v_layer.bias', 'encoder.layers.0.src_src_att.v_layer.weight', 'encoder.layers.1.feed_forward.layer_norm.bias', 'encoder.layers.1.feed_forward.layer_norm.weight', 'encoder.layers.1.feed_forward.pwff_layer.0.bias', 'encoder.layers.1.feed_forward.pwff_layer.0.weight', 'encoder.layers.1.feed_forward.pwff_layer.3.bias', 'encoder.layers.1.feed_forward.pwff_layer.3.weight', 'encoder.layers.1.layer_norm.bias', 'encoder.layers.1.layer_norm.weight', 'encoder.layers.1.src_src_att.k_layer.bias', 'encoder.layers.1.src_src_att.k_layer.weight', 'encoder.layers.1.src_src_att.output_layer.bias', 'encoder.layers.1.src_src_att.output_layer.weight', 'encoder.layers.1.src_src_att.q_layer.bias', 'encoder.layers.1.src_src_att.q_layer.weight', 'encoder.layers.1.src_src_att.v_layer.bias', 'encoder.layers.1.src_src_att.v_layer.weight', 'encoder.layers.2.feed_forward.layer_norm.bias', 'encoder.layers.2.feed_forward.layer_norm.weight', 'encoder.layers.2.feed_forward.pwff_layer.0.bias', 'encoder.layers.2.feed_forward.pwff_layer.0.weight', 'encoder.layers.2.feed_forward.pwff_layer.3.bias', 'encoder.layers.2.feed_forward.pwff_layer.3.weight', 'encoder.layers.2.layer_norm.bias', 'encoder.layers.2.layer_norm.weight', 'encoder.layers.2.src_src_att.k_layer.bias', 'encoder.layers.2.src_src_att.k_layer.weight', 'encoder.layers.2.src_src_att.output_layer.bias', 'encoder.layers.2.src_src_att.output_layer.weight', 'encoder.layers.2.src_src_att.q_layer.bias', 'encoder.layers.2.src_src_att.q_layer.weight', 'encoder.layers.2.src_src_att.v_layer.bias', 'encoder.layers.2.src_src_att.v_layer.weight', 'encoder.layers.3.feed_forward.layer_norm.bias', 'encoder.layers.3.feed_forward.layer_norm.weight', 'encoder.layers.3.feed_forward.pwff_layer.0.bias', 'encoder.layers.3.feed_forward.pwff_layer.0.weight', 'encoder.layers.3.feed_forward.pwff_layer.3.bias', 'encoder.layers.3.feed_forward.pwff_layer.3.weight', 'encoder.layers.3.layer_norm.bias', 'encoder.layers.3.layer_norm.weight', 'encoder.layers.3.src_src_att.k_layer.bias', 'encoder.layers.3.src_src_att.k_layer.weight', 'encoder.layers.3.src_src_att.output_layer.bias', 'encoder.layers.3.src_src_att.output_layer.weight', 'encoder.layers.3.src_src_att.q_layer.bias', 'encoder.layers.3.src_src_att.q_layer.weight', 'encoder.layers.3.src_src_att.v_layer.bias', 'encoder.layers.3.src_src_att.v_layer.weight', 'encoder.layers.4.feed_forward.layer_norm.bias', 'encoder.layers.4.feed_forward.layer_norm.weight', 'encoder.layers.4.feed_forward.pwff_layer.0.bias', 'encoder.layers.4.feed_forward.pwff_layer.0.weight', 'encoder.layers.4.feed_forward.pwff_layer.3.bias', 'encoder.layers.4.feed_forward.pwff_layer.3.weight', 'encoder.layers.4.layer_norm.bias', 'encoder.layers.4.layer_norm.weight', 'encoder.layers.4.src_src_att.k_layer.bias', 'encoder.layers.4.src_src_att.k_layer.weight', 'encoder.layers.4.src_src_att.output_layer.bias', 'encoder.layers.4.src_src_att.output_layer.weight', 'encoder.layers.4.src_src_att.q_layer.bias', 'encoder.layers.4.src_src_att.q_layer.weight', 'encoder.layers.4.src_src_att.v_layer.bias', 'encoder.layers.4.src_src_att.v_layer.weight', 'encoder.layers.5.feed_forward.layer_norm.bias', 'encoder.layers.5.feed_forward.layer_norm.weight', 'encoder.layers.5.feed_forward.pwff_layer.0.bias', 'encoder.layers.5.feed_forward.pwff_layer.0.weight', 'encoder.layers.5.feed_forward.pwff_layer.3.bias', 'encoder.layers.5.feed_forward.pwff_layer.3.weight', 'encoder.layers.5.layer_norm.bias', 'encoder.layers.5.layer_norm.weight', 'encoder.layers.5.src_src_att.k_layer.bias', 'encoder.layers.5.src_src_att.k_layer.weight', 'encoder.layers.5.src_src_att.output_layer.bias', 'encoder.layers.5.src_src_att.output_layer.weight', 'encoder.layers.5.src_src_att.q_layer.bias', 'encoder.layers.5.src_src_att.q_layer.weight', 'encoder.layers.5.src_src_att.v_layer.bias', 'encoder.layers.5.src_src_att.v_layer.weight', 'src_embed.lut.weight']\n",
            "2020-05-25 10:07:41,653 cfg.name                           : ennr_transformer\n",
            "2020-05-25 10:07:41,653 cfg.data.src                       : en\n",
            "2020-05-25 10:07:41,654 cfg.data.trg                       : nr\n",
            "2020-05-25 10:07:41,654 cfg.data.train                     : data/ennr/train.bpe\n",
            "2020-05-25 10:07:41,654 cfg.data.dev                       : data/ennr/dev.bpe\n",
            "2020-05-25 10:07:41,654 cfg.data.test                      : data/ennr/test.bpe\n",
            "2020-05-25 10:07:41,654 cfg.data.level                     : bpe\n",
            "2020-05-25 10:07:41,654 cfg.data.lowercase                 : False\n",
            "2020-05-25 10:07:41,654 cfg.data.max_sent_length           : 100\n",
            "2020-05-25 10:07:41,654 cfg.data.src_vocab                 : data/ennr/vocab.txt\n",
            "2020-05-25 10:07:41,654 cfg.data.trg_vocab                 : data/ennr/vocab.txt\n",
            "2020-05-25 10:07:41,654 cfg.testing.beam_size              : 5\n",
            "2020-05-25 10:07:41,655 cfg.testing.alpha                  : 1.0\n",
            "2020-05-25 10:07:41,655 cfg.training.random_seed           : 42\n",
            "2020-05-25 10:07:41,655 cfg.training.optimizer             : adam\n",
            "2020-05-25 10:07:41,655 cfg.training.normalization         : tokens\n",
            "2020-05-25 10:07:41,655 cfg.training.adam_betas            : [0.9, 0.999]\n",
            "2020-05-25 10:07:41,655 cfg.training.scheduling            : plateau\n",
            "2020-05-25 10:07:41,655 cfg.training.patience              : 5\n",
            "2020-05-25 10:07:41,655 cfg.training.learning_rate_factor  : 0.5\n",
            "2020-05-25 10:07:41,655 cfg.training.learning_rate_warmup  : 1000\n",
            "2020-05-25 10:07:41,656 cfg.training.decrease_factor       : 0.7\n",
            "2020-05-25 10:07:41,656 cfg.training.loss                  : crossentropy\n",
            "2020-05-25 10:07:41,656 cfg.training.learning_rate         : 0.0003\n",
            "2020-05-25 10:07:41,656 cfg.training.learning_rate_min     : 1e-08\n",
            "2020-05-25 10:07:41,656 cfg.training.weight_decay          : 0.0\n",
            "2020-05-25 10:07:41,656 cfg.training.label_smoothing       : 0.1\n",
            "2020-05-25 10:07:41,656 cfg.training.batch_size            : 4096\n",
            "2020-05-25 10:07:41,656 cfg.training.batch_type            : token\n",
            "2020-05-25 10:07:41,656 cfg.training.eval_batch_size       : 3600\n",
            "2020-05-25 10:07:41,656 cfg.training.eval_batch_type       : token\n",
            "2020-05-25 10:07:41,657 cfg.training.batch_multiplier      : 1\n",
            "2020-05-25 10:07:41,657 cfg.training.early_stopping_metric : ppl\n",
            "2020-05-25 10:07:41,657 cfg.training.epochs                : 30\n",
            "2020-05-25 10:07:41,657 cfg.training.validation_freq       : 1000\n",
            "2020-05-25 10:07:41,657 cfg.training.logging_freq          : 100\n",
            "2020-05-25 10:07:41,657 cfg.training.eval_metric           : bleu\n",
            "2020-05-25 10:07:41,657 cfg.training.model_dir             : models/ennr_transformer\n",
            "2020-05-25 10:07:41,657 cfg.training.overwrite             : False\n",
            "2020-05-25 10:07:41,657 cfg.training.shuffle               : True\n",
            "2020-05-25 10:07:41,658 cfg.training.use_cuda              : True\n",
            "2020-05-25 10:07:41,658 cfg.training.max_output_length     : 100\n",
            "2020-05-25 10:07:41,658 cfg.training.print_valid_sents     : [0, 1, 2, 3]\n",
            "2020-05-25 10:07:41,658 cfg.training.keep_last_ckpts       : 3\n",
            "2020-05-25 10:07:41,658 cfg.model.initializer              : xavier\n",
            "2020-05-25 10:07:41,658 cfg.model.bias_initializer         : zeros\n",
            "2020-05-25 10:07:41,658 cfg.model.init_gain                : 1.0\n",
            "2020-05-25 10:07:41,658 cfg.model.embed_initializer        : xavier\n",
            "2020-05-25 10:07:41,658 cfg.model.embed_init_gain          : 1.0\n",
            "2020-05-25 10:07:41,658 cfg.model.tied_embeddings          : True\n",
            "2020-05-25 10:07:41,659 cfg.model.tied_softmax             : True\n",
            "2020-05-25 10:07:41,659 cfg.model.encoder.type             : transformer\n",
            "2020-05-25 10:07:41,659 cfg.model.encoder.num_layers       : 6\n",
            "2020-05-25 10:07:41,659 cfg.model.encoder.num_heads        : 4\n",
            "2020-05-25 10:07:41,659 cfg.model.encoder.embeddings.embedding_dim : 256\n",
            "2020-05-25 10:07:41,659 cfg.model.encoder.embeddings.scale : True\n",
            "2020-05-25 10:07:41,659 cfg.model.encoder.embeddings.dropout : 0.2\n",
            "2020-05-25 10:07:41,659 cfg.model.encoder.hidden_size      : 256\n",
            "2020-05-25 10:07:41,659 cfg.model.encoder.ff_size          : 1024\n",
            "2020-05-25 10:07:41,660 cfg.model.encoder.dropout          : 0.3\n",
            "2020-05-25 10:07:41,660 cfg.model.decoder.type             : transformer\n",
            "2020-05-25 10:07:41,660 cfg.model.decoder.num_layers       : 6\n",
            "2020-05-25 10:07:41,660 cfg.model.decoder.num_heads        : 4\n",
            "2020-05-25 10:07:41,660 cfg.model.decoder.embeddings.embedding_dim : 256\n",
            "2020-05-25 10:07:41,660 cfg.model.decoder.embeddings.scale : True\n",
            "2020-05-25 10:07:41,660 cfg.model.decoder.embeddings.dropout : 0.2\n",
            "2020-05-25 10:07:41,660 cfg.model.decoder.hidden_size      : 256\n",
            "2020-05-25 10:07:41,660 cfg.model.decoder.ff_size          : 1024\n",
            "2020-05-25 10:07:41,661 cfg.model.decoder.dropout          : 0.3\n",
            "2020-05-25 10:07:41,661 Data set sizes: \n",
            "\ttrain 90654,\n",
            "\tvalid 1000,\n",
            "\ttest 2672\n",
            "2020-05-25 10:07:41,661 First training example:\n",
            "\t[SRC] Jehovah’s servants in the past set the pattern in their relationship with governments and officials .\n",
            "\t[TRG] Iinceku zakaJehova zem@@ andulo zis@@ iv@@ ulele umtlhala endleleni yoku@@ sebenzisana neenkhulu zakarhulumende .\n",
            "2020-05-25 10:07:41,661 First 10 words (src): (0) <unk> (1) <pad> (2) <s> (3) </s> (4) . (5) , (6) the (7) to (8) of (9) :\n",
            "2020-05-25 10:07:41,662 First 10 words (trg): (0) <unk> (1) <pad> (2) <s> (3) </s> (4) . (5) , (6) the (7) to (8) of (9) :\n",
            "2020-05-25 10:07:41,662 Number of Src words (types): 39153\n",
            "2020-05-25 10:07:41,662 Number of Trg words (types): 39153\n",
            "2020-05-25 10:07:41,662 Model(\n",
            "\tencoder=TransformerEncoder(num_layers=6, num_heads=4),\n",
            "\tdecoder=TransformerDecoder(num_layers=6, num_heads=4),\n",
            "\tsrc_embed=Embeddings(embedding_dim=256, vocab_size=39153),\n",
            "\ttrg_embed=Embeddings(embedding_dim=256, vocab_size=39153))\n",
            "2020-05-25 10:07:41,693 EPOCH 1\n",
            "/pytorch/torch/csrc/utils/python_arg_parser.cpp:756: UserWarning: This overload of nonzero is deprecated:\n",
            "\tnonzero(Tensor input, *, Tensor out)\n",
            "Consider using one of the following signatures instead:\n",
            "\tnonzero(Tensor input, *, bool as_tuple)\n",
            "2020-05-25 10:08:32,411 Epoch   1 Step:      100 Batch Loss:     7.211356 Tokens per Sec:     3953, Lr: 0.000300\n",
            "2020-05-25 10:09:22,676 Epoch   1 Step:      200 Batch Loss:     6.965822 Tokens per Sec:     4050, Lr: 0.000300\n",
            "2020-05-25 10:10:13,677 Epoch   1 Step:      300 Batch Loss:     6.630541 Tokens per Sec:     3998, Lr: 0.000300\n",
            "2020-05-25 10:11:04,519 Epoch   1 Step:      400 Batch Loss:     6.411305 Tokens per Sec:     3933, Lr: 0.000300\n",
            "2020-05-25 10:11:55,309 Epoch   1 Step:      500 Batch Loss:     6.247663 Tokens per Sec:     3897, Lr: 0.000300\n",
            "2020-05-25 10:12:45,993 Epoch   1 Step:      600 Batch Loss:     6.483799 Tokens per Sec:     3952, Lr: 0.000300\n",
            "2020-05-25 10:13:37,553 Epoch   1 Step:      700 Batch Loss:     6.492374 Tokens per Sec:     3933, Lr: 0.000300\n",
            "2020-05-25 10:14:10,419 Epoch   1: total training loss 5081.31\n",
            "2020-05-25 10:14:10,419 EPOCH 2\n",
            "2020-05-25 10:14:28,741 Epoch   2 Step:      800 Batch Loss:     6.017582 Tokens per Sec:     3941, Lr: 0.000300\n",
            "2020-05-25 10:15:19,563 Epoch   2 Step:      900 Batch Loss:     5.772392 Tokens per Sec:     3955, Lr: 0.000300\n",
            "2020-05-25 10:16:11,347 Epoch   2 Step:     1000 Batch Loss:     5.954979 Tokens per Sec:     3935, Lr: 0.000300\n",
            "2020-05-25 10:18:33,414 Hooray! New best validation result [ppl]!\n",
            "2020-05-25 10:18:33,414 Saving new checkpoint.\n",
            "2020-05-25 10:18:33,880 Example #0\n",
            "2020-05-25 10:18:33,880 \tSource:     The king was already an apostate , the worst of Israel’s kings up to that point .\n",
            "2020-05-25 10:18:33,880 \tReference:  Ikosi besele isihlubuki , iyimbi ukuwadlula woke amakhosi wakwa - Israyeli ngesikhatheso .\n",
            "2020-05-25 10:18:33,880 \tHypothesis: Kodwana , uJehova uJehova , uJehova uJehova , uJehova uJehova uJehova , uJehova uJehova .\n",
            "2020-05-25 10:18:33,880 Example #1\n",
            "2020-05-25 10:18:33,881 \tSource:     When Esau belatedly realized what a foolish choice he had made , he begged Isaac : “ Bless me , even me too , my father ! . . .\n",
            "2020-05-25 10:18:33,881 \tReference:  U - Esewu nekalemuka ngemva kwesikhathi bona wenze isiqunto sobudlhayela , wancenga u - Isaka wathi : “ Nami ngibusisa baba ! . . .\n",
            "2020-05-25 10:18:33,881 \tHypothesis: Nanyana kunjalo , “ “ “ “ “ “ ‘ kobana kobana uJehova uJehova , “ “ “ “ “ “ ‘ kobana kobana kobana kobana kobana kobana kobana kobana kobana kobana kobana kobana kobana kobana kobana kobana kobana kobana kobana kobana kobana kobana kobana kobana kobana kobana kobana kobana kobana kobana kobana kobana kobana kobana kobana kobana kobana kobana kobana kobana kobana kobana kobana kobana kobana kobana kobana kobana kobana kobana kobana kobana kobana kobana kobana kobana kobana kobana kobana kobana kobana kobana kobana kobana kobana kobana kobana kobana kobana kobana kobana kobana kobana kobana kobana kobana kobana kobana\n",
            "2020-05-25 10:18:33,881 Example #2\n",
            "2020-05-25 10:18:33,881 \tSource:     When he first learned that she was pregnant , he wanted to deal mercifully with her , even before God’s angel explained to him what had happened to Mary .\n",
            "2020-05-25 10:18:33,881 \tReference:  Indaba yokobana uMariya usidisi neyifika eendlebeni zakhe , wafuna ukumphatha ngomusa , ngitjho nangaphambi kobana ingilozi kaZimu imhlathululele okwenzeke kuMariya .\n",
            "2020-05-25 10:18:33,881 \tHypothesis: Kodwana , uJehova uJehova , uJehova uJehova , uJehova kufuze uJehova uJehova , uJehova kufuze uJehova uJehova uJehova , uJehova uJehova kufuze uJehova uJehova uJehova uJehova uJehova uJehova , uJehova uJehova , uJehova uJehova uJehova uJehova uJehova , uJehova uJehova uJehova uJehova uJehova uJehova uJehova uJehova uJehova uJehova uJehova , uJehova uJehova uJehova uJehova uJehova uJehova uJehova uJehova uJehova uJehova uJehova uJehova uJehova uJehova uJehova uJehova uJehova uJehova uJehova uJehova uJehova uJehova uJehova uJehova uJehova uJehova uJehova uJehova uJehova uJehova kufuze uJehova kufuze uJehova kufuze uJehova uJehova uJehova uJehova uJehova uJehova uJehova uJehova uJehova kufuze uJehova kufuze uJehova uJehova uJehova\n",
            "2020-05-25 10:18:33,881 Example #3\n",
            "2020-05-25 10:18:33,882 \tSource:     Who was this Joseph of Arimathea ?\n",
            "2020-05-25 10:18:33,882 \tReference:  Kanti ngubani uJosefa we - Arimathiya ?\n",
            "2020-05-25 10:18:33,882 \tHypothesis: Kubayini kufuze kubayini uJehova ?\n",
            "2020-05-25 10:18:33,882 Validation result (greedy) at epoch   2, step     1000: bleu:   0.12, loss: 99971.8828, ppl: 336.5500, duration: 142.5343s\n",
            "2020-05-25 10:19:25,725 Epoch   2 Step:     1100 Batch Loss:     5.877172 Tokens per Sec:     4030, Lr: 0.000300\n",
            "2020-05-25 10:20:16,523 Epoch   2 Step:     1200 Batch Loss:     6.005499 Tokens per Sec:     3870, Lr: 0.000300\n",
            "2020-05-25 10:21:07,776 Epoch   2 Step:     1300 Batch Loss:     5.445710 Tokens per Sec:     3977, Lr: 0.000300\n",
            "2020-05-25 10:21:59,053 Epoch   2 Step:     1400 Batch Loss:     5.715794 Tokens per Sec:     3909, Lr: 0.000300\n",
            "2020-05-25 10:22:50,096 Epoch   2 Step:     1500 Batch Loss:     5.804766 Tokens per Sec:     3935, Lr: 0.000300\n",
            "2020-05-25 10:23:02,608 Epoch   2: total training loss 4365.97\n",
            "2020-05-25 10:23:02,608 EPOCH 3\n",
            "2020-05-25 10:23:41,646 Epoch   3 Step:     1600 Batch Loss:     5.540798 Tokens per Sec:     3997, Lr: 0.000300\n",
            "2020-05-25 10:24:32,591 Epoch   3 Step:     1700 Batch Loss:     5.530884 Tokens per Sec:     3981, Lr: 0.000300\n",
            "2020-05-25 10:25:24,414 Epoch   3 Step:     1800 Batch Loss:     5.342935 Tokens per Sec:     3931, Lr: 0.000300\n",
            "2020-05-25 10:26:15,760 Epoch   3 Step:     1900 Batch Loss:     5.219332 Tokens per Sec:     3987, Lr: 0.000300\n",
            "2020-05-25 10:27:07,122 Epoch   3 Step:     2000 Batch Loss:     5.275292 Tokens per Sec:     3909, Lr: 0.000300\n",
            "2020-05-25 10:29:17,487 Hooray! New best validation result [ppl]!\n",
            "2020-05-25 10:29:17,487 Saving new checkpoint.\n",
            "2020-05-25 10:29:17,939 Example #0\n",
            "2020-05-25 10:29:17,939 \tSource:     The king was already an apostate , the worst of Israel’s kings up to that point .\n",
            "2020-05-25 10:29:17,939 \tReference:  Ikosi besele isihlubuki , iyimbi ukuwadlula woke amakhosi wakwa - Israyeli ngesikhatheso .\n",
            "2020-05-25 10:29:17,939 \tHypothesis: U - Israyeli , u - Israyeli , kodwana akhenge amkhala .\n",
            "2020-05-25 10:29:17,939 Example #1\n",
            "2020-05-25 10:29:17,940 \tSource:     When Esau belatedly realized what a foolish choice he had made , he begged Isaac : “ Bless me , even me too , my father ! . . .\n",
            "2020-05-25 10:29:17,940 \tReference:  U - Esewu nekalemuka ngemva kwesikhathi bona wenze isiqunto sobudlhayela , wancenga u - Isaka wathi : “ Nami ngibusisa baba ! . . .\n",
            "2020-05-25 10:29:17,940 \tHypothesis: UJesu wathi : “ Ngazi bona uJesu wathi : “ Ngazi bona uJesu , kodwana akhenge amkhala . ”\n",
            "2020-05-25 10:29:17,940 Example #2\n",
            "2020-05-25 10:29:17,940 \tSource:     When he first learned that she was pregnant , he wanted to deal mercifully with her , even before God’s angel explained to him what had happened to Mary .\n",
            "2020-05-25 10:29:17,940 \tReference:  Indaba yokobana uMariya usidisi neyifika eendlebeni zakhe , wafuna ukumphatha ngomusa , ngitjho nangaphambi kobana ingilozi kaZimu imhlathululele okwenzeke kuMariya .\n",
            "2020-05-25 10:29:17,940 \tHypothesis: Ngemva kwalokho , uJesu wathi : “ Ngazi , kodwana akhenge akhenge akhenge akhenge akhenge akhenge akhenge amkhala .\n",
            "2020-05-25 10:29:17,940 Example #3\n",
            "2020-05-25 10:29:17,941 \tSource:     Who was this Joseph of Arimathea ?\n",
            "2020-05-25 10:29:17,941 \tReference:  Kanti ngubani uJosefa we - Arimathiya ?\n",
            "2020-05-25 10:29:17,941 \tHypothesis: Kghani uJesu - ke - ke - ke - ke , kubayini ?\n",
            "2020-05-25 10:29:17,941 Validation result (greedy) at epoch   3, step     2000: bleu:   1.25, loss: 87661.0547, ppl: 164.3846, duration: 130.8184s\n",
            "2020-05-25 10:30:08,993 Epoch   3 Step:     2100 Batch Loss:     5.213541 Tokens per Sec:     3923, Lr: 0.000300\n",
            "2020-05-25 10:31:00,068 Epoch   3 Step:     2200 Batch Loss:     5.015653 Tokens per Sec:     3857, Lr: 0.000300\n",
            "2020-05-25 10:31:43,287 Epoch   3: total training loss 3962.32\n",
            "2020-05-25 10:31:43,287 EPOCH 4\n",
            "2020-05-25 10:31:51,852 Epoch   4 Step:     2300 Batch Loss:     4.895185 Tokens per Sec:     3812, Lr: 0.000300\n",
            "2020-05-25 10:32:42,836 Epoch   4 Step:     2400 Batch Loss:     4.647756 Tokens per Sec:     3906, Lr: 0.000300\n",
            "2020-05-25 10:33:33,253 Epoch   4 Step:     2500 Batch Loss:     5.308408 Tokens per Sec:     3881, Lr: 0.000300\n",
            "2020-05-25 10:34:24,714 Epoch   4 Step:     2600 Batch Loss:     4.777163 Tokens per Sec:     3953, Lr: 0.000300\n",
            "2020-05-25 10:35:15,858 Epoch   4 Step:     2700 Batch Loss:     3.514590 Tokens per Sec:     3977, Lr: 0.000300\n",
            "2020-05-25 10:36:06,932 Epoch   4 Step:     2800 Batch Loss:     4.947702 Tokens per Sec:     3921, Lr: 0.000300\n",
            "2020-05-25 10:36:58,432 Epoch   4 Step:     2900 Batch Loss:     4.938779 Tokens per Sec:     3998, Lr: 0.000300\n",
            "2020-05-25 10:37:49,106 Epoch   4 Step:     3000 Batch Loss:     4.795860 Tokens per Sec:     3897, Lr: 0.000300\n",
            "2020-05-25 10:39:12,653 Hooray! New best validation result [ppl]!\n",
            "2020-05-25 10:39:12,653 Saving new checkpoint.\n",
            "2020-05-25 10:39:13,098 Example #0\n",
            "2020-05-25 10:39:13,098 \tSource:     The king was already an apostate , the worst of Israel’s kings up to that point .\n",
            "2020-05-25 10:39:13,098 \tReference:  Ikosi besele isihlubuki , iyimbi ukuwadlula woke amakhosi wakwa - Israyeli ngesikhatheso .\n",
            "2020-05-25 10:39:13,098 \tHypothesis: Ngafika , u - Israyeli , ama - Israyeli bekaba bakhe .\n",
            "2020-05-25 10:39:13,098 Example #1\n",
            "2020-05-25 10:39:13,099 \tSource:     When Esau belatedly realized what a foolish choice he had made , he begged Isaac : “ Bless me , even me too , my father ! . . .\n",
            "2020-05-25 10:39:13,099 \tReference:  U - Esewu nekalemuka ngemva kwesikhathi bona wenze isiqunto sobudlhayela , wancenga u - Isaka wathi : “ Nami ngibusisa baba ! . . .\n",
            "2020-05-25 10:39:13,099 \tHypothesis: U - Adamu no - Adamu no - Adamu , wathi : “ Ngaba - Adamu , kodwana mina mina , kodwana mina mina . . . . . . . . . . . . .\n",
            "2020-05-25 10:39:13,099 Example #2\n",
            "2020-05-25 10:39:13,099 \tSource:     When he first learned that she was pregnant , he wanted to deal mercifully with her , even before God’s angel explained to him what had happened to Mary .\n",
            "2020-05-25 10:39:13,099 \tReference:  Indaba yokobana uMariya usidisi neyifika eendlebeni zakhe , wafuna ukumphatha ngomusa , ngitjho nangaphambi kobana ingilozi kaZimu imhlathululele okwenzeke kuMariya .\n",
            "2020-05-25 10:39:13,099 \tHypothesis: Wathi , bekangatjho bona umuntu angamtjela bona abe nesibindi , kodwana yena wathi : “ Ngambile .\n",
            "2020-05-25 10:39:13,099 Example #3\n",
            "2020-05-25 10:39:13,100 \tSource:     Who was this Joseph of Arimathea ?\n",
            "2020-05-25 10:39:13,100 \tReference:  Kanti ngubani uJosefa we - Arimathiya ?\n",
            "2020-05-25 10:39:13,100 \tHypothesis: Kghani u - kghani u - Arhabi ?\n",
            "2020-05-25 10:39:13,100 Validation result (greedy) at epoch   4, step     3000: bleu:   3.11, loss: 78894.1953, ppl:  98.6861, duration: 83.9940s\n",
            "2020-05-25 10:39:37,331 Epoch   4: total training loss 3662.26\n",
            "2020-05-25 10:39:37,332 EPOCH 5\n",
            "2020-05-25 10:40:04,853 Epoch   5 Step:     3100 Batch Loss:     3.724206 Tokens per Sec:     4015, Lr: 0.000300\n",
            "2020-05-25 10:40:56,306 Epoch   5 Step:     3200 Batch Loss:     4.079641 Tokens per Sec:     3934, Lr: 0.000300\n",
            "2020-05-25 10:41:47,538 Epoch   5 Step:     3300 Batch Loss:     4.424605 Tokens per Sec:     3956, Lr: 0.000300\n",
            "2020-05-25 10:42:38,508 Epoch   5 Step:     3400 Batch Loss:     4.620626 Tokens per Sec:     3898, Lr: 0.000300\n",
            "2020-05-25 10:43:29,679 Epoch   5 Step:     3500 Batch Loss:     4.744503 Tokens per Sec:     4000, Lr: 0.000300\n",
            "2020-05-25 10:44:19,948 Epoch   5 Step:     3600 Batch Loss:     4.547628 Tokens per Sec:     3908, Lr: 0.000300\n",
            "2020-05-25 10:45:11,375 Epoch   5 Step:     3700 Batch Loss:     4.247553 Tokens per Sec:     3953, Lr: 0.000300\n",
            "2020-05-25 10:46:02,631 Epoch   5 Step:     3800 Batch Loss:     3.881932 Tokens per Sec:     3918, Lr: 0.000300\n",
            "2020-05-25 10:46:06,884 Epoch   5: total training loss 3392.48\n",
            "2020-05-25 10:46:06,884 EPOCH 6\n",
            "2020-05-25 10:46:53,841 Epoch   6 Step:     3900 Batch Loss:     2.895326 Tokens per Sec:     3920, Lr: 0.000300\n",
            "2020-05-25 10:47:44,850 Epoch   6 Step:     4000 Batch Loss:     3.987758 Tokens per Sec:     3973, Lr: 0.000300\n",
            "2020-05-25 10:48:53,816 Hooray! New best validation result [ppl]!\n",
            "2020-05-25 10:48:53,816 Saving new checkpoint.\n",
            "2020-05-25 10:48:54,294 Example #0\n",
            "2020-05-25 10:48:54,294 \tSource:     The king was already an apostate , the worst of Israel’s kings up to that point .\n",
            "2020-05-25 10:48:54,295 \tReference:  Ikosi besele isihlubuki , iyimbi ukuwadlula woke amakhosi wakwa - Israyeli ngesikhatheso .\n",
            "2020-05-25 10:48:54,295 \tHypothesis: UMesiya bekaphila hlangana nabantu bakhe , begodu bekukwosingazimu .\n",
            "2020-05-25 10:48:54,295 Example #1\n",
            "2020-05-25 10:48:54,295 \tSource:     When Esau belatedly realized what a foolish choice he had made , he begged Isaac : “ Bless me , even me too , my father ! . . .\n",
            "2020-05-25 10:48:54,295 \tReference:  U - Esewu nekalemuka ngemva kwesikhathi bona wenze isiqunto sobudlhayela , wancenga u - Isaka wathi : “ Nami ngibusisa baba ! . . .\n",
            "2020-05-25 10:48:54,295 \tHypothesis: U - Abrahama akhenge abe nesibindi , kodwana wathi : “ Mina , kodwana mina mina mina , kodwana mina mina mina , mina ! . . . . . . . . . .\n",
            "2020-05-25 10:48:54,295 Example #2\n",
            "2020-05-25 10:48:54,296 \tSource:     When he first learned that she was pregnant , he wanted to deal mercifully with her , even before God’s angel explained to him what had happened to Mary .\n",
            "2020-05-25 10:48:54,296 \tReference:  Indaba yokobana uMariya usidisi neyifika eendlebeni zakhe , wafuna ukumphatha ngomusa , ngitjho nangaphambi kobana ingilozi kaZimu imhlathululele okwenzeke kuMariya .\n",
            "2020-05-25 10:48:54,296 \tHypothesis: Wathi , wathi : “ Nanyana kunjalo , wenza njalo , ngombana umuntu angabawa bona abe nesibindi .\n",
            "2020-05-25 10:48:54,296 Example #3\n",
            "2020-05-25 10:48:54,296 \tSource:     Who was this Joseph of Arimathea ?\n",
            "2020-05-25 10:48:54,296 \tReference:  Kanti ngubani uJosefa we - Arimathiya ?\n",
            "2020-05-25 10:48:54,296 \tHypothesis: Ngubani u - New World Translation ?\n",
            "2020-05-25 10:48:54,296 Validation result (greedy) at epoch   6, step     4000: bleu:   5.35, loss: 73069.3438, ppl:  70.3101, duration: 69.4459s\n",
            "2020-05-25 10:49:45,202 Epoch   6 Step:     4100 Batch Loss:     4.568571 Tokens per Sec:     3900, Lr: 0.000300\n",
            "2020-05-25 10:50:36,533 Epoch   6 Step:     4200 Batch Loss:     4.330948 Tokens per Sec:     4027, Lr: 0.000300\n",
            "2020-05-25 10:51:27,308 Epoch   6 Step:     4300 Batch Loss:     2.994790 Tokens per Sec:     3889, Lr: 0.000300\n",
            "2020-05-25 10:52:18,530 Epoch   6 Step:     4400 Batch Loss:     4.560994 Tokens per Sec:     4053, Lr: 0.000300\n",
            "2020-05-25 10:53:09,805 Epoch   6 Step:     4500 Batch Loss:     3.958454 Tokens per Sec:     3900, Lr: 0.000300\n",
            "2020-05-25 10:53:45,372 Epoch   6: total training loss 3186.30\n",
            "2020-05-25 10:53:45,373 EPOCH 7\n",
            "2020-05-25 10:54:00,658 Epoch   7 Step:     4600 Batch Loss:     4.307690 Tokens per Sec:     3932, Lr: 0.000300\n",
            "2020-05-25 10:54:51,731 Epoch   7 Step:     4700 Batch Loss:     2.707994 Tokens per Sec:     3938, Lr: 0.000300\n",
            "2020-05-25 10:55:42,721 Epoch   7 Step:     4800 Batch Loss:     4.294012 Tokens per Sec:     3925, Lr: 0.000300\n",
            "2020-05-25 10:56:33,535 Epoch   7 Step:     4900 Batch Loss:     4.175139 Tokens per Sec:     3928, Lr: 0.000300\n",
            "2020-05-25 10:57:25,213 Epoch   7 Step:     5000 Batch Loss:     2.907524 Tokens per Sec:     3996, Lr: 0.000300\n",
            "2020-05-25 10:58:21,095 Hooray! New best validation result [ppl]!\n",
            "2020-05-25 10:58:21,095 Saving new checkpoint.\n",
            "2020-05-25 10:58:21,575 Example #0\n",
            "2020-05-25 10:58:21,575 \tSource:     The king was already an apostate , the worst of Israel’s kings up to that point .\n",
            "2020-05-25 10:58:21,575 \tReference:  Ikosi besele isihlubuki , iyimbi ukuwadlula woke amakhosi wakwa - Israyeli ngesikhatheso .\n",
            "2020-05-25 10:58:21,575 \tHypothesis: Umpristi lo waba yingcenye yabantu , ama - Israyeli amanengi amanengi .\n",
            "2020-05-25 10:58:21,576 Example #1\n",
            "2020-05-25 10:58:21,576 \tSource:     When Esau belatedly realized what a foolish choice he had made , he begged Isaac : “ Bless me , even me too , my father ! . . .\n",
            "2020-05-25 10:58:21,576 \tReference:  U - Esewu nekalemuka ngemva kwesikhathi bona wenze isiqunto sobudlhayela , wancenga u - Isaka wathi : “ Nami ngibusisa baba ! . . .\n",
            "2020-05-25 10:58:21,576 \tHypothesis: U - Esewu bekangalemuka bona umuntu angakwenza umuntu ongamenza angatjho ukuthi : “ Mina mina mina , mina mina mina mina mina mina , mina mina mina mina !\n",
            "2020-05-25 10:58:21,576 Example #2\n",
            "2020-05-25 10:58:21,576 \tSource:     When he first learned that she was pregnant , he wanted to deal mercifully with her , even before God’s angel explained to him what had happened to Mary .\n",
            "2020-05-25 10:58:21,576 \tReference:  Indaba yokobana uMariya usidisi neyifika eendlebeni zakhe , wafuna ukumphatha ngomusa , ngitjho nangaphambi kobana ingilozi kaZimu imhlathululele okwenzeke kuMariya .\n",
            "2020-05-25 10:58:21,577 \tHypothesis: Nekafunda kuhle kuhle , akhenge angakwazi ukwenza njalo , kodwana umfazi lo watjela umfazi lo bona uMariya .\n",
            "2020-05-25 10:58:21,577 Example #3\n",
            "2020-05-25 10:58:21,577 \tSource:     Who was this Joseph of Arimathea ?\n",
            "2020-05-25 10:58:21,577 \tReference:  Kanti ngubani uJosefa we - Arimathiya ?\n",
            "2020-05-25 10:58:21,577 \tHypothesis: Ngubani eyasiza u - ofisi legatja ?\n",
            "2020-05-25 10:58:21,577 Validation result (greedy) at epoch   7, step     5000: bleu:   8.09, loss: 68052.5703, ppl:  52.5056, duration: 56.3642s\n",
            "2020-05-25 10:59:12,424 Epoch   7 Step:     5100 Batch Loss:     4.321835 Tokens per Sec:     3944, Lr: 0.000300\n",
            "2020-05-25 11:00:03,672 Epoch   7 Step:     5200 Batch Loss:     4.078584 Tokens per Sec:     3970, Lr: 0.000300\n",
            "2020-05-25 11:00:54,677 Epoch   7 Step:     5300 Batch Loss:     4.178669 Tokens per Sec:     3853, Lr: 0.000300\n",
            "2020-05-25 11:01:11,940 Epoch   7: total training loss 3015.61\n",
            "2020-05-25 11:01:11,941 EPOCH 8\n",
            "2020-05-25 11:01:45,973 Epoch   8 Step:     5400 Batch Loss:     3.566381 Tokens per Sec:     3974, Lr: 0.000300\n",
            "2020-05-25 11:02:36,925 Epoch   8 Step:     5500 Batch Loss:     3.704456 Tokens per Sec:     3916, Lr: 0.000300\n",
            "2020-05-25 11:03:28,303 Epoch   8 Step:     5600 Batch Loss:     3.832468 Tokens per Sec:     4012, Lr: 0.000300\n",
            "2020-05-25 11:04:19,102 Epoch   8 Step:     5700 Batch Loss:     2.345056 Tokens per Sec:     3908, Lr: 0.000300\n",
            "2020-05-25 11:05:10,132 Epoch   8 Step:     5800 Batch Loss:     3.776027 Tokens per Sec:     4035, Lr: 0.000300\n",
            "2020-05-25 11:06:01,448 Epoch   8 Step:     5900 Batch Loss:     2.693149 Tokens per Sec:     3957, Lr: 0.000300\n",
            "2020-05-25 11:06:52,559 Epoch   8 Step:     6000 Batch Loss:     4.402835 Tokens per Sec:     3890, Lr: 0.000300\n",
            "2020-05-25 11:07:39,576 Hooray! New best validation result [ppl]!\n",
            "2020-05-25 11:07:39,576 Saving new checkpoint.\n",
            "2020-05-25 11:07:40,066 Example #0\n",
            "2020-05-25 11:07:40,066 \tSource:     The king was already an apostate , the worst of Israel’s kings up to that point .\n",
            "2020-05-25 11:07:40,066 \tReference:  Ikosi besele isihlubuki , iyimbi ukuwadlula woke amakhosi wakwa - Israyeli ngesikhatheso .\n",
            "2020-05-25 11:07:40,066 \tHypothesis: Ikosi le beyifanekisela amaJuda , ama - Israyeli bona abe mumuntu oyedwa .\n",
            "2020-05-25 11:07:40,066 Example #1\n",
            "2020-05-25 11:07:40,066 \tSource:     When Esau belatedly realized what a foolish choice he had made , he begged Isaac : “ Bless me , even me too , my father ! . . .\n",
            "2020-05-25 11:07:40,067 \tReference:  U - Esewu nekalemuka ngemva kwesikhathi bona wenze isiqunto sobudlhayela , wancenga u - Isaka wathi : “ Nami ngibusisa baba ! . . .\n",
            "2020-05-25 11:07:40,067 \tHypothesis: U - Esewu bekangalemuka bona kubayini lokho , watjela u - Isaka wathi : “ Mina mina mina mina mina , mina mina mina mina mina mina mina mina mina .\n",
            "2020-05-25 11:07:40,067 Example #2\n",
            "2020-05-25 11:07:40,067 \tSource:     When he first learned that she was pregnant , he wanted to deal mercifully with her , even before God’s angel explained to him what had happened to Mary .\n",
            "2020-05-25 11:07:40,067 \tReference:  Indaba yokobana uMariya usidisi neyifika eendlebeni zakhe , wafuna ukumphatha ngomusa , ngitjho nangaphambi kobana ingilozi kaZimu imhlathululele okwenzeke kuMariya .\n",
            "2020-05-25 11:07:40,067 \tHypothesis: Nekafunda naye , bekafuna bona angakhulumi naye , ngitjho nanyana ngubani owatjela uJesu bona abe yikosi .\n",
            "2020-05-25 11:07:40,068 Example #3\n",
            "2020-05-25 11:07:40,068 \tSource:     Who was this Joseph of Arimathea ?\n",
            "2020-05-25 11:07:40,068 \tReference:  Kanti ngubani uJosefa we - Arimathiya ?\n",
            "2020-05-25 11:07:40,068 \tHypothesis: Ngubani u - Arimathiya ?\n",
            "2020-05-25 11:07:40,068 Validation result (greedy) at epoch   8, step     6000: bleu:  10.06, loss: 64672.6172, ppl:  43.1289, duration: 47.5090s\n",
            "2020-05-25 11:08:28,026 Epoch   8: total training loss 2842.54\n",
            "2020-05-25 11:08:28,026 EPOCH 9\n",
            "2020-05-25 11:08:31,708 Epoch   9 Step:     6100 Batch Loss:     2.596967 Tokens per Sec:     3940, Lr: 0.000300\n",
            "2020-05-25 11:09:23,004 Epoch   9 Step:     6200 Batch Loss:     3.824742 Tokens per Sec:     3903, Lr: 0.000300\n",
            "2020-05-25 11:10:14,675 Epoch   9 Step:     6300 Batch Loss:     3.485603 Tokens per Sec:     4009, Lr: 0.000300\n",
            "2020-05-25 11:11:06,065 Epoch   9 Step:     6400 Batch Loss:     3.679117 Tokens per Sec:     3988, Lr: 0.000300\n",
            "2020-05-25 11:11:57,414 Epoch   9 Step:     6500 Batch Loss:     3.425065 Tokens per Sec:     3977, Lr: 0.000300\n",
            "2020-05-25 11:12:48,187 Epoch   9 Step:     6600 Batch Loss:     3.333281 Tokens per Sec:     3857, Lr: 0.000300\n",
            "2020-05-25 11:13:38,756 Epoch   9 Step:     6700 Batch Loss:     3.282903 Tokens per Sec:     3966, Lr: 0.000300\n",
            "2020-05-25 11:14:29,194 Epoch   9 Step:     6800 Batch Loss:     2.681944 Tokens per Sec:     3893, Lr: 0.000300\n",
            "2020-05-25 11:14:57,881 Epoch   9: total training loss 2722.73\n",
            "2020-05-25 11:14:57,882 EPOCH 10\n",
            "2020-05-25 11:15:20,489 Epoch  10 Step:     6900 Batch Loss:     2.158492 Tokens per Sec:     3901, Lr: 0.000300\n",
            "2020-05-25 11:16:11,466 Epoch  10 Step:     7000 Batch Loss:     3.532651 Tokens per Sec:     3979, Lr: 0.000300\n",
            "2020-05-25 11:17:17,326 Hooray! New best validation result [ppl]!\n",
            "2020-05-25 11:17:17,327 Saving new checkpoint.\n",
            "2020-05-25 11:17:17,753 Example #0\n",
            "2020-05-25 11:17:17,754 \tSource:     The king was already an apostate , the worst of Israel’s kings up to that point .\n",
            "2020-05-25 11:17:17,754 \tReference:  Ikosi besele isihlubuki , iyimbi ukuwadlula woke amakhosi wakwa - Israyeli ngesikhatheso .\n",
            "2020-05-25 11:17:17,754 \tHypothesis: Ikosi yakhiwa babantu bakaZimu , abantu abanengi batjala ama - Israyeli bona benze okufanako .\n",
            "2020-05-25 11:17:17,754 Example #1\n",
            "2020-05-25 11:17:17,755 \tSource:     When Esau belatedly realized what a foolish choice he had made , he begged Isaac : “ Bless me , even me too , my father ! . . .\n",
            "2020-05-25 11:17:17,755 \tReference:  U - Esewu nekalemuka ngemva kwesikhathi bona wenze isiqunto sobudlhayela , wancenga u - Isaka wathi : “ Nami ngibusisa baba ! . . .\n",
            "2020-05-25 11:17:17,755 \tHypothesis: U - Esewu nekavumela bona kubayini lokho akuqala , u - Isaka wathi : “ Ngithanda , mina mina mina mina mina mina mina mina , mina mina mina mina mina mina mina ! . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .\n",
            "2020-05-25 11:17:17,755 Example #2\n",
            "2020-05-25 11:17:17,755 \tSource:     When he first learned that she was pregnant , he wanted to deal mercifully with her , even before God’s angel explained to him what had happened to Mary .\n",
            "2020-05-25 11:17:17,755 \tReference:  Indaba yokobana uMariya usidisi neyifika eendlebeni zakhe , wafuna ukumphatha ngomusa , ngitjho nangaphambi kobana ingilozi kaZimu imhlathululele okwenzeke kuMariya .\n",
            "2020-05-25 11:17:17,755 \tHypothesis: Nekafunda ngaye , bekafuna ukumlinga ukumlalela , ngitjho nanyana ngubani owatjela bona uJesu bekamtjela bona uMariya .\n",
            "2020-05-25 11:17:17,755 Example #3\n",
            "2020-05-25 11:17:17,756 \tSource:     Who was this Joseph of Arimathea ?\n",
            "2020-05-25 11:17:17,756 \tReference:  Kanti ngubani uJosefa we - Arimathiya ?\n",
            "2020-05-25 11:17:17,756 \tHypothesis: Ngubani Okwenzeka ngo - Asiriya ?\n",
            "2020-05-25 11:17:17,756 Validation result (greedy) at epoch  10, step     7000: bleu:  11.18, loss: 61825.8711, ppl:  36.5435, duration: 66.2898s\n",
            "2020-05-25 11:18:08,947 Epoch  10 Step:     7100 Batch Loss:     3.364533 Tokens per Sec:     3952, Lr: 0.000300\n",
            "2020-05-25 11:19:00,120 Epoch  10 Step:     7200 Batch Loss:     3.256028 Tokens per Sec:     3933, Lr: 0.000300\n",
            "2020-05-25 11:19:51,621 Epoch  10 Step:     7300 Batch Loss:     3.800498 Tokens per Sec:     3981, Lr: 0.000300\n",
            "2020-05-25 11:20:42,851 Epoch  10 Step:     7400 Batch Loss:     2.939037 Tokens per Sec:     3962, Lr: 0.000300\n",
            "2020-05-25 11:21:34,109 Epoch  10 Step:     7500 Batch Loss:     2.867895 Tokens per Sec:     3926, Lr: 0.000300\n",
            "2020-05-25 11:22:25,440 Epoch  10 Step:     7600 Batch Loss:     3.335697 Tokens per Sec:     3992, Lr: 0.000300\n",
            "2020-05-25 11:22:32,887 Epoch  10: total training loss 2598.48\n",
            "2020-05-25 11:22:32,887 EPOCH 11\n",
            "2020-05-25 11:23:16,378 Epoch  11 Step:     7700 Batch Loss:     3.232729 Tokens per Sec:     3924, Lr: 0.000300\n",
            "2020-05-25 11:24:07,559 Epoch  11 Step:     7800 Batch Loss:     3.767534 Tokens per Sec:     3898, Lr: 0.000300\n",
            "2020-05-25 11:24:59,047 Epoch  11 Step:     7900 Batch Loss:     3.215782 Tokens per Sec:     3977, Lr: 0.000300\n",
            "2020-05-25 11:25:50,132 Epoch  11 Step:     8000 Batch Loss:     2.819639 Tokens per Sec:     3903, Lr: 0.000300\n",
            "2020-05-25 11:26:33,635 Hooray! New best validation result [ppl]!\n",
            "2020-05-25 11:26:33,635 Saving new checkpoint.\n",
            "2020-05-25 11:26:34,228 Example #0\n",
            "2020-05-25 11:26:34,228 \tSource:     The king was already an apostate , the worst of Israel’s kings up to that point .\n",
            "2020-05-25 11:26:34,228 \tReference:  Ikosi besele isihlubuki , iyimbi ukuwadlula woke amakhosi wakwa - Israyeli ngesikhatheso .\n",
            "2020-05-25 11:26:34,228 \tHypothesis: Ikosi yakhiwa ziinceku zaka - Israyeli , abanengi abanengi baba makhosi wakwa - Israyeli .\n",
            "2020-05-25 11:26:34,229 Example #1\n",
            "2020-05-25 11:26:34,229 \tSource:     When Esau belatedly realized what a foolish choice he had made , he begged Isaac : “ Bless me , even me too , my father ! . . .\n",
            "2020-05-25 11:26:34,229 \tReference:  U - Esewu nekalemuka ngemva kwesikhathi bona wenze isiqunto sobudlhayela , wancenga u - Isaka wathi : “ Nami ngibusisa baba ! . . .\n",
            "2020-05-25 11:26:34,229 \tHypothesis: U - Esewu nekavumela bona kubayini u - Esewu nekakhetha ukungafaneleki , wathi : “ Ningesabi , ngitjho nanyana ngingami ! . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .\n",
            "2020-05-25 11:26:34,229 Example #2\n",
            "2020-05-25 11:26:34,229 \tSource:     When he first learned that she was pregnant , he wanted to deal mercifully with her , even before God’s angel explained to him what had happened to Mary .\n",
            "2020-05-25 11:26:34,230 \tReference:  Indaba yokobana uMariya usidisi neyifika eendlebeni zakhe , wafuna ukumphatha ngomusa , ngitjho nangaphambi kobana ingilozi kaZimu imhlathululele okwenzeke kuMariya .\n",
            "2020-05-25 11:26:34,230 \tHypothesis: Nekafunda ngaye , bekafuna ukumzwisa ubuhlungu , bekafuna ukumlalela , ngitjho nanyana ngubani loyo ngaphambi kobana uJesu wathini .\n",
            "2020-05-25 11:26:34,230 Example #3\n",
            "2020-05-25 11:26:34,230 \tSource:     Who was this Joseph of Arimathea ?\n",
            "2020-05-25 11:26:34,230 \tReference:  Kanti ngubani uJosefa we - Arimathiya ?\n",
            "2020-05-25 11:26:34,230 \tHypothesis: Ngubani uJosefa ebekazibuza ?\n",
            "2020-05-25 11:26:34,230 Validation result (greedy) at epoch  11, step     8000: bleu:  12.31, loss: 59846.4844, ppl:  32.5668, duration: 44.0985s\n",
            "2020-05-25 11:27:25,648 Epoch  11 Step:     8100 Batch Loss:     3.825439 Tokens per Sec:     3959, Lr: 0.000300\n",
            "2020-05-25 11:28:17,000 Epoch  11 Step:     8200 Batch Loss:     3.389385 Tokens per Sec:     3997, Lr: 0.000300\n",
            "2020-05-25 11:29:07,661 Epoch  11 Step:     8300 Batch Loss:     3.341794 Tokens per Sec:     3921, Lr: 0.000300\n",
            "2020-05-25 11:29:46,812 Epoch  11: total training loss 2508.36\n",
            "2020-05-25 11:29:46,813 EPOCH 12\n",
            "2020-05-25 11:29:58,701 Epoch  12 Step:     8400 Batch Loss:     3.539187 Tokens per Sec:     4036, Lr: 0.000300\n",
            "2020-05-25 11:30:49,794 Epoch  12 Step:     8500 Batch Loss:     3.257367 Tokens per Sec:     3895, Lr: 0.000300\n",
            "2020-05-25 11:31:40,601 Epoch  12 Step:     8600 Batch Loss:     2.892198 Tokens per Sec:     3957, Lr: 0.000300\n",
            "2020-05-25 11:32:30,986 Epoch  12 Step:     8700 Batch Loss:     3.448338 Tokens per Sec:     3904, Lr: 0.000300\n",
            "2020-05-25 11:33:22,662 Epoch  12 Step:     8800 Batch Loss:     3.046474 Tokens per Sec:     4004, Lr: 0.000300\n",
            "2020-05-25 11:34:13,419 Epoch  12 Step:     8900 Batch Loss:     2.132654 Tokens per Sec:     3937, Lr: 0.000300\n",
            "2020-05-25 11:35:04,631 Epoch  12 Step:     9000 Batch Loss:     2.975393 Tokens per Sec:     4019, Lr: 0.000300\n",
            "2020-05-25 11:35:45,621 Hooray! New best validation result [ppl]!\n",
            "2020-05-25 11:35:45,621 Saving new checkpoint.\n",
            "2020-05-25 11:35:46,083 Example #0\n",
            "2020-05-25 11:35:46,084 \tSource:     The king was already an apostate , the worst of Israel’s kings up to that point .\n",
            "2020-05-25 11:35:46,084 \tReference:  Ikosi besele isihlubuki , iyimbi ukuwadlula woke amakhosi wakwa - Israyeli ngesikhatheso .\n",
            "2020-05-25 11:35:46,084 \tHypothesis: Ikosi beyihlubuki , beyihlobanisa amakhosi wakwa - Israyeli bona enze izinto .\n",
            "2020-05-25 11:35:46,084 Example #1\n",
            "2020-05-25 11:35:46,084 \tSource:     When Esau belatedly realized what a foolish choice he had made , he begged Isaac : “ Bless me , even me too , my father ! . . .\n",
            "2020-05-25 11:35:46,084 \tReference:  U - Esewu nekalemuka ngemva kwesikhathi bona wenze isiqunto sobudlhayela , wancenga u - Isaka wathi : “ Nami ngibusisa baba ! . . .\n",
            "2020-05-25 11:35:46,084 \tHypothesis: U - Esewu nekakhetha bona kubayini umraro lo , watjela u - Isaka : “ Ningatshwenyeki , ngitjho nanyana mina mina mina mina mina mina mina mina nodadwethu . . . . . . . . . . . . . . . . . . . . . . .\n",
            "2020-05-25 11:35:46,084 Example #2\n",
            "2020-05-25 11:35:46,085 \tSource:     When he first learned that she was pregnant , he wanted to deal mercifully with her , even before God’s angel explained to him what had happened to Mary .\n",
            "2020-05-25 11:35:46,085 \tReference:  Indaba yokobana uMariya usidisi neyifika eendlebeni zakhe , wafuna ukumphatha ngomusa , ngitjho nangaphambi kobana ingilozi kaZimu imhlathululele okwenzeke kuMariya .\n",
            "2020-05-25 11:35:46,085 \tHypothesis: Nekafunda ukuthi indodakwakhe , bekafuna ukumtlhala , ngitjho nanyana ingilozi kaZimu yatjela uMariya bona enze lokho uMariya .\n",
            "2020-05-25 11:35:46,085 Example #3\n",
            "2020-05-25 11:35:46,085 \tSource:     Who was this Joseph of Arimathea ?\n",
            "2020-05-25 11:35:46,085 \tReference:  Kanti ngubani uJosefa we - Arimathiya ?\n",
            "2020-05-25 11:35:46,086 \tHypothesis: Bobani uJosefa aba - Arimathiya ?\n",
            "2020-05-25 11:35:46,086 Validation result (greedy) at epoch  12, step     9000: bleu:  13.71, loss: 57646.3984, ppl:  28.6525, duration: 41.4540s\n",
            "2020-05-25 11:36:37,134 Epoch  12 Step:     9100 Batch Loss:     2.816390 Tokens per Sec:     3928, Lr: 0.000300\n",
            "2020-05-25 11:36:57,278 Epoch  12: total training loss 2423.78\n",
            "2020-05-25 11:36:57,278 EPOCH 13\n",
            "2020-05-25 11:37:27,245 Epoch  13 Step:     9200 Batch Loss:     2.518830 Tokens per Sec:     3927, Lr: 0.000300\n",
            "2020-05-25 11:38:18,233 Epoch  13 Step:     9300 Batch Loss:     3.324573 Tokens per Sec:     3885, Lr: 0.000300\n",
            "2020-05-25 11:39:10,053 Epoch  13 Step:     9400 Batch Loss:     2.894380 Tokens per Sec:     3933, Lr: 0.000300\n",
            "2020-05-25 11:40:01,800 Epoch  13 Step:     9500 Batch Loss:     3.528171 Tokens per Sec:     3984, Lr: 0.000300\n",
            "2020-05-25 11:40:52,664 Epoch  13 Step:     9600 Batch Loss:     3.334397 Tokens per Sec:     3916, Lr: 0.000300\n",
            "2020-05-25 11:41:44,049 Epoch  13 Step:     9700 Batch Loss:     2.807940 Tokens per Sec:     3939, Lr: 0.000300\n",
            "2020-05-25 11:42:34,762 Epoch  13 Step:     9800 Batch Loss:     3.769112 Tokens per Sec:     3997, Lr: 0.000300\n",
            "2020-05-25 11:43:25,777 Epoch  13 Step:     9900 Batch Loss:     3.474180 Tokens per Sec:     3975, Lr: 0.000300\n",
            "2020-05-25 11:43:26,862 Epoch  13: total training loss 2335.16\n",
            "2020-05-25 11:43:26,862 EPOCH 14\n",
            "2020-05-25 11:44:17,715 Epoch  14 Step:    10000 Batch Loss:     2.759861 Tokens per Sec:     3954, Lr: 0.000300\n",
            "2020-05-25 11:45:04,183 Hooray! New best validation result [ppl]!\n",
            "2020-05-25 11:45:04,183 Saving new checkpoint.\n",
            "2020-05-25 11:45:04,634 Example #0\n",
            "2020-05-25 11:45:04,634 \tSource:     The king was already an apostate , the worst of Israel’s kings up to that point .\n",
            "2020-05-25 11:45:04,634 \tReference:  Ikosi besele isihlubuki , iyimbi ukuwadlula woke amakhosi wakwa - Israyeli ngesikhatheso .\n",
            "2020-05-25 11:45:04,634 \tHypothesis: Ikosi yahlubukako beyirhagele khulu , yamakhosi wakwa - Israyeli ebekadosa phambili .\n",
            "2020-05-25 11:45:04,634 Example #1\n",
            "2020-05-25 11:45:04,635 \tSource:     When Esau belatedly realized what a foolish choice he had made , he begged Isaac : “ Bless me , even me too , my father ! . . .\n",
            "2020-05-25 11:45:04,635 \tReference:  U - Esewu nekalemuka ngemva kwesikhathi bona wenze isiqunto sobudlhayela , wancenga u - Isaka wathi : “ Nami ngibusisa baba ! . . .\n",
            "2020-05-25 11:45:04,635 \tHypothesis: U - Esewu nekavumela bona kubayini angikhetha isiqunto sokubeletha , wathi : “ Ningesabi , ngitjho nanyana mina mina mina mina mina mina mina mina mina mina mina mina mina mina , mina mina mina mina mina ! . . . . . . . . . . . . . . . .\n",
            "2020-05-25 11:45:04,635 Example #2\n",
            "2020-05-25 11:45:04,635 \tSource:     When he first learned that she was pregnant , he wanted to deal mercifully with her , even before God’s angel explained to him what had happened to Mary .\n",
            "2020-05-25 11:45:04,635 \tReference:  Indaba yokobana uMariya usidisi neyifika eendlebeni zakhe , wafuna ukumphatha ngomusa , ngitjho nangaphambi kobana ingilozi kaZimu imhlathululele okwenzeke kuMariya .\n",
            "2020-05-25 11:45:04,635 \tHypothesis: Nekafunda ngaye ekuthomeni , bekafuna ukuba nesineke , ngitjho nangaphambi kobana ingilozi kaZimu yamtjela bona uMariya .\n",
            "2020-05-25 11:45:04,636 Example #3\n",
            "2020-05-25 11:45:04,636 \tSource:     Who was this Joseph of Arimathea ?\n",
            "2020-05-25 11:45:04,636 \tReference:  Kanti ngubani uJosefa we - Arimathiya ?\n",
            "2020-05-25 11:45:04,636 \tHypothesis: Ngubani uJosefa we - Arimathiya ?\n",
            "2020-05-25 11:45:04,636 Validation result (greedy) at epoch  14, step    10000: bleu:  14.41, loss: 56374.8633, ppl:  26.6086, duration: 46.9210s\n",
            "2020-05-25 11:45:56,029 Epoch  14 Step:    10100 Batch Loss:     3.091419 Tokens per Sec:     3941, Lr: 0.000300\n",
            "2020-05-25 11:46:47,034 Epoch  14 Step:    10200 Batch Loss:     2.939920 Tokens per Sec:     3959, Lr: 0.000300\n",
            "2020-05-25 11:47:38,199 Epoch  14 Step:    10300 Batch Loss:     3.538213 Tokens per Sec:     4009, Lr: 0.000300\n",
            "2020-05-25 11:48:29,565 Epoch  14 Step:    10400 Batch Loss:     2.450259 Tokens per Sec:     3882, Lr: 0.000300\n",
            "2020-05-25 11:49:20,355 Epoch  14 Step:    10500 Batch Loss:     3.633758 Tokens per Sec:     3917, Lr: 0.000300\n",
            "2020-05-25 11:50:11,446 Epoch  14 Step:    10600 Batch Loss:     3.121220 Tokens per Sec:     3991, Lr: 0.000300\n",
            "2020-05-25 11:50:43,128 Epoch  14: total training loss 2265.29\n",
            "2020-05-25 11:50:43,128 EPOCH 15\n",
            "2020-05-25 11:51:01,843 Epoch  15 Step:    10700 Batch Loss:     3.182974 Tokens per Sec:     3857, Lr: 0.000300\n",
            "2020-05-25 11:51:52,874 Epoch  15 Step:    10800 Batch Loss:     2.115698 Tokens per Sec:     3966, Lr: 0.000300\n",
            "2020-05-25 11:52:44,473 Epoch  15 Step:    10900 Batch Loss:     3.158496 Tokens per Sec:     3984, Lr: 0.000300\n",
            "2020-05-25 11:53:35,603 Epoch  15 Step:    11000 Batch Loss:     2.826963 Tokens per Sec:     3959, Lr: 0.000300\n",
            "2020-05-25 11:54:12,735 Hooray! New best validation result [ppl]!\n",
            "2020-05-25 11:54:12,735 Saving new checkpoint.\n",
            "2020-05-25 11:54:13,216 Example #0\n",
            "2020-05-25 11:54:13,216 \tSource:     The king was already an apostate , the worst of Israel’s kings up to that point .\n",
            "2020-05-25 11:54:13,216 \tReference:  Ikosi besele isihlubuki , iyimbi ukuwadlula woke amakhosi wakwa - Israyeli ngesikhatheso .\n",
            "2020-05-25 11:54:13,217 \tHypothesis: Ikosi beyisolo ihlubuka , yagandelela amakhosi wakwa - Israyeli bona enze izinto ezimbi .\n",
            "2020-05-25 11:54:13,217 Example #1\n",
            "2020-05-25 11:54:13,217 \tSource:     When Esau belatedly realized what a foolish choice he had made , he begged Isaac : “ Bless me , even me too , my father ! . . .\n",
            "2020-05-25 11:54:13,217 \tReference:  U - Esewu nekalemuka ngemva kwesikhathi bona wenze isiqunto sobudlhayela , wancenga u - Isaka wathi : “ Nami ngibusisa baba ! . . .\n",
            "2020-05-25 11:54:13,217 \tHypothesis: U - Esewu nekabona bona khuyini eyikhetha nengabe angavumelani , wabawa u - Isaka wathi : “ Ningatshwenyeki , ngitjho nangami ! . . . . . . . . . .\n",
            "2020-05-25 11:54:13,217 Example #2\n",
            "2020-05-25 11:54:13,217 \tSource:     When he first learned that she was pregnant , he wanted to deal mercifully with her , even before God’s angel explained to him what had happened to Mary .\n",
            "2020-05-25 11:54:13,218 \tReference:  Indaba yokobana uMariya usidisi neyifika eendlebeni zakhe , wafuna ukumphatha ngomusa , ngitjho nangaphambi kobana ingilozi kaZimu imhlathululele okwenzeke kuMariya .\n",
            "2020-05-25 11:54:13,218 \tHypothesis: Nekafunda ngaye , bekafuna ukumsola , ngitjho nanyana ingilozi kaZimu yatjela uMariya bona enzeni uMariya .\n",
            "2020-05-25 11:54:13,218 Example #3\n",
            "2020-05-25 11:54:13,218 \tSource:     Who was this Joseph of Arimathea ?\n",
            "2020-05-25 11:54:13,218 \tReference:  Kanti ngubani uJosefa we - Arimathiya ?\n",
            "2020-05-25 11:54:13,218 \tHypothesis: Ngubani uJosefa ebekakwenza u - Arimathiya ?\n",
            "2020-05-25 11:54:13,218 Validation result (greedy) at epoch  15, step    11000: bleu:  14.67, loss: 55355.2812, ppl:  25.0755, duration: 37.6155s\n",
            "2020-05-25 11:55:05,294 Epoch  15 Step:    11100 Batch Loss:     2.912613 Tokens per Sec:     3981, Lr: 0.000300\n",
            "2020-05-25 11:55:56,489 Epoch  15 Step:    11200 Batch Loss:     2.501546 Tokens per Sec:     3882, Lr: 0.000300\n",
            "2020-05-25 11:56:47,357 Epoch  15 Step:    11300 Batch Loss:     2.903274 Tokens per Sec:     3897, Lr: 0.000300\n",
            "2020-05-25 11:57:38,119 Epoch  15 Step:    11400 Batch Loss:     2.935089 Tokens per Sec:     3934, Lr: 0.000300\n",
            "2020-05-25 11:57:50,733 Epoch  15: total training loss 2200.65\n",
            "2020-05-25 11:57:50,733 EPOCH 16\n",
            "2020-05-25 11:58:29,710 Epoch  16 Step:    11500 Batch Loss:     2.318067 Tokens per Sec:     3918, Lr: 0.000300\n",
            "2020-05-25 11:59:21,015 Epoch  16 Step:    11600 Batch Loss:     2.116566 Tokens per Sec:     3961, Lr: 0.000300\n",
            "2020-05-25 12:00:12,457 Epoch  16 Step:    11700 Batch Loss:     1.657208 Tokens per Sec:     3922, Lr: 0.000300\n",
            "2020-05-25 12:01:03,611 Epoch  16 Step:    11800 Batch Loss:     2.232226 Tokens per Sec:     4020, Lr: 0.000300\n",
            "2020-05-25 12:01:54,720 Epoch  16 Step:    11900 Batch Loss:     2.733254 Tokens per Sec:     3850, Lr: 0.000300\n",
            "2020-05-25 12:02:46,319 Epoch  16 Step:    12000 Batch Loss:     2.933255 Tokens per Sec:     4009, Lr: 0.000300\n",
            "2020-05-25 12:03:33,510 Hooray! New best validation result [ppl]!\n",
            "2020-05-25 12:03:33,510 Saving new checkpoint.\n",
            "2020-05-25 12:03:33,996 Example #0\n",
            "2020-05-25 12:03:33,996 \tSource:     The king was already an apostate , the worst of Israel’s kings up to that point .\n",
            "2020-05-25 12:03:33,996 \tReference:  Ikosi besele isihlubuki , iyimbi ukuwadlula woke amakhosi wakwa - Israyeli ngesikhatheso .\n",
            "2020-05-25 12:03:33,997 \tHypothesis: Ikosi yahlubuka , inani elikhulu elikhulu lama - Israyeli lamakhosi ama - Israyeli wemvelo lebanga lokudlulisela .\n",
            "2020-05-25 12:03:33,997 Example #1\n",
            "2020-05-25 12:03:33,997 \tSource:     When Esau belatedly realized what a foolish choice he had made , he begged Isaac : “ Bless me , even me too , my father ! . . .\n",
            "2020-05-25 12:03:33,997 \tReference:  U - Esewu nekalemuka ngemva kwesikhathi bona wenze isiqunto sobudlhayela , wancenga u - Isaka wathi : “ Nami ngibusisa baba ! . . .\n",
            "2020-05-25 12:03:33,997 \tHypothesis: U - Esewu nekavumela bona into eyikhetha ngayo , wathi ku - Isaka : “ Tjhisi , ngitjho nanyana ubaba , nami nami angami . . . . .\n",
            "2020-05-25 12:03:33,997 Example #2\n",
            "2020-05-25 12:03:33,998 \tSource:     When he first learned that she was pregnant , he wanted to deal mercifully with her , even before God’s angel explained to him what had happened to Mary .\n",
            "2020-05-25 12:03:33,998 \tReference:  Indaba yokobana uMariya usidisi neyifika eendlebeni zakhe , wafuna ukumphatha ngomusa , ngitjho nangaphambi kobana ingilozi kaZimu imhlathululele okwenzeke kuMariya .\n",
            "2020-05-25 12:03:33,998 \tHypothesis: Nekafunda bona bekadlala , bekafuna ukuba nomusa kuye , ngitjho nangaphambi kobana ingilozi kaZimu yahlathulula lokho uMariya .\n",
            "2020-05-25 12:03:33,998 Example #3\n",
            "2020-05-25 12:03:33,998 \tSource:     Who was this Joseph of Arimathea ?\n",
            "2020-05-25 12:03:33,998 \tReference:  Kanti ngubani uJosefa we - Arimathiya ?\n",
            "2020-05-25 12:03:33,998 \tHypothesis: Ngubani uJosefa ebekathiywa ngu - Arimathiya ?\n",
            "2020-05-25 12:03:33,998 Validation result (greedy) at epoch  16, step    12000: bleu:  15.46, loss: 54200.1680, ppl:  23.4450, duration: 47.6787s\n",
            "2020-05-25 12:04:25,498 Epoch  16 Step:    12100 Batch Loss:     3.026308 Tokens per Sec:     3927, Lr: 0.000300\n",
            "2020-05-25 12:05:07,786 Epoch  16: total training loss 2129.14\n",
            "2020-05-25 12:05:07,786 EPOCH 17\n",
            "2020-05-25 12:05:16,782 Epoch  17 Step:    12200 Batch Loss:     2.988366 Tokens per Sec:     3969, Lr: 0.000300\n",
            "2020-05-25 12:06:07,706 Epoch  17 Step:    12300 Batch Loss:     3.031974 Tokens per Sec:     4015, Lr: 0.000300\n",
            "2020-05-25 12:06:58,998 Epoch  17 Step:    12400 Batch Loss:     1.818121 Tokens per Sec:     3958, Lr: 0.000300\n",
            "2020-05-25 12:07:50,018 Epoch  17 Step:    12500 Batch Loss:     1.967185 Tokens per Sec:     3928, Lr: 0.000300\n",
            "2020-05-25 12:08:40,489 Epoch  17 Step:    12600 Batch Loss:     2.011937 Tokens per Sec:     3891, Lr: 0.000300\n",
            "2020-05-25 12:09:32,079 Epoch  17 Step:    12700 Batch Loss:     3.119825 Tokens per Sec:     3974, Lr: 0.000300\n",
            "2020-05-25 12:10:23,865 Epoch  17 Step:    12800 Batch Loss:     2.841220 Tokens per Sec:     4024, Lr: 0.000300\n",
            "2020-05-25 12:11:14,510 Epoch  17 Step:    12900 Batch Loss:     3.279654 Tokens per Sec:     3971, Lr: 0.000300\n",
            "2020-05-25 12:11:35,930 Epoch  17: total training loss 2081.47\n",
            "2020-05-25 12:11:35,930 EPOCH 18\n",
            "2020-05-25 12:12:05,489 Epoch  18 Step:    13000 Batch Loss:     2.676652 Tokens per Sec:     3923, Lr: 0.000300\n",
            "2020-05-25 12:12:54,432 Hooray! New best validation result [ppl]!\n",
            "2020-05-25 12:12:54,432 Saving new checkpoint.\n",
            "2020-05-25 12:12:54,921 Example #0\n",
            "2020-05-25 12:12:54,922 \tSource:     The king was already an apostate , the worst of Israel’s kings up to that point .\n",
            "2020-05-25 12:12:54,922 \tReference:  Ikosi besele isihlubuki , iyimbi ukuwadlula woke amakhosi wakwa - Israyeli ngesikhatheso .\n",
            "2020-05-25 12:12:54,922 \tHypothesis: Ikosi besele ihlongandlebe , isiqubuthu esikhulu samakhosi wakwa - Israyeli ebekanawo .\n",
            "2020-05-25 12:12:54,922 Example #1\n",
            "2020-05-25 12:12:54,922 \tSource:     When Esau belatedly realized what a foolish choice he had made , he begged Isaac : “ Bless me , even me too , my father ! . . .\n",
            "2020-05-25 12:12:54,923 \tReference:  U - Esewu nekalemuka ngemva kwesikhathi bona wenze isiqunto sobudlhayela , wancenga u - Isaka wathi : “ Nami ngibusisa baba ! . . .\n",
            "2020-05-25 12:12:54,923 \tHypothesis: U - Esewu nekavumela bona ngikuphi ukutjhigamela kwesizathu esizwakalako ebekambonileko , wabawa u - Isaka wathi : “ Akhahlamezi , ngitjho nomntwana ! .\n",
            "2020-05-25 12:12:54,923 Example #2\n",
            "2020-05-25 12:12:54,923 \tSource:     When he first learned that she was pregnant , he wanted to deal mercifully with her , even before God’s angel explained to him what had happened to Mary .\n",
            "2020-05-25 12:12:54,923 \tReference:  Indaba yokobana uMariya usidisi neyifika eendlebeni zakhe , wafuna ukumphatha ngomusa , ngitjho nangaphambi kobana ingilozi kaZimu imhlathululele okwenzeke kuMariya .\n",
            "2020-05-25 12:12:54,923 \tHypothesis: Nekafunda bona intombi le beyingamfazi , bekafuna bona aqalane nayo , ngitjho nangaphambi kobana ingilozi kaZimu yamtjela bona enzeni uMariya .\n",
            "2020-05-25 12:12:54,924 Example #3\n",
            "2020-05-25 12:12:54,924 \tSource:     Who was this Joseph of Arimathea ?\n",
            "2020-05-25 12:12:54,924 \tReference:  Kanti ngubani uJosefa we - Arimathiya ?\n",
            "2020-05-25 12:12:54,924 \tHypothesis: Ngubani uJosefa we - Arimathiya ?\n",
            "2020-05-25 12:12:54,924 Validation result (greedy) at epoch  18, step    13000: bleu:  16.09, loss: 53559.3516, ppl:  22.5867, duration: 49.4347s\n",
            "2020-05-25 12:13:45,661 Epoch  18 Step:    13100 Batch Loss:     3.206995 Tokens per Sec:     3941, Lr: 0.000300\n",
            "2020-05-25 12:14:37,119 Epoch  18 Step:    13200 Batch Loss:     2.392627 Tokens per Sec:     3947, Lr: 0.000300\n",
            "2020-05-25 12:15:27,641 Epoch  18 Step:    13300 Batch Loss:     2.687269 Tokens per Sec:     3931, Lr: 0.000300\n",
            "2020-05-25 12:16:18,740 Epoch  18 Step:    13400 Batch Loss:     2.552677 Tokens per Sec:     3941, Lr: 0.000300\n",
            "2020-05-25 12:17:09,947 Epoch  18 Step:    13500 Batch Loss:     2.722476 Tokens per Sec:     3935, Lr: 0.000300\n",
            "2020-05-25 12:18:01,461 Epoch  18 Step:    13600 Batch Loss:     2.929390 Tokens per Sec:     3970, Lr: 0.000300\n",
            "2020-05-25 12:18:52,275 Epoch  18 Step:    13700 Batch Loss:     3.004923 Tokens per Sec:     4000, Lr: 0.000300\n",
            "2020-05-25 12:18:54,351 Epoch  18: total training loss 2045.30\n",
            "2020-05-25 12:18:54,351 EPOCH 19\n",
            "2020-05-25 12:19:43,736 Epoch  19 Step:    13800 Batch Loss:     2.463118 Tokens per Sec:     3860, Lr: 0.000300\n",
            "2020-05-25 12:20:34,952 Epoch  19 Step:    13900 Batch Loss:     2.182680 Tokens per Sec:     3930, Lr: 0.000300\n",
            "2020-05-25 12:21:26,139 Epoch  19 Step:    14000 Batch Loss:     2.719429 Tokens per Sec:     3888, Lr: 0.000300\n",
            "2020-05-25 12:22:13,421 Hooray! New best validation result [ppl]!\n",
            "2020-05-25 12:22:13,421 Saving new checkpoint.\n",
            "2020-05-25 12:22:13,886 Example #0\n",
            "2020-05-25 12:22:13,886 \tSource:     The king was already an apostate , the worst of Israel’s kings up to that point .\n",
            "2020-05-25 12:22:13,886 \tReference:  Ikosi besele isihlubuki , iyimbi ukuwadlula woke amakhosi wakwa - Israyeli ngesikhatheso .\n",
            "2020-05-25 12:22:13,887 \tHypothesis: Ikosi besele ibekelwe ebugqilini , isiqubuthu esikhulu samakhosi wakwa - Israyeli bona enze izinto .\n",
            "2020-05-25 12:22:13,887 Example #1\n",
            "2020-05-25 12:22:13,887 \tSource:     When Esau belatedly realized what a foolish choice he had made , he begged Isaac : “ Bless me , even me too , my father ! . . .\n",
            "2020-05-25 12:22:13,887 \tReference:  U - Esewu nekalemuka ngemva kwesikhathi bona wenze isiqunto sobudlhayela , wancenga u - Isaka wathi : “ Nami ngibusisa baba ! . . .\n",
            "2020-05-25 12:22:13,887 \tHypothesis: U - Esewu nekalemuka bona khuyini engikhetha esikhundleni sokukhetha , wabawa u - Isaka wathi : “ Ngithabe nami , ngitjho nobaba . .\n",
            "2020-05-25 12:22:13,887 Example #2\n",
            "2020-05-25 12:22:13,888 \tSource:     When he first learned that she was pregnant , he wanted to deal mercifully with her , even before God’s angel explained to him what had happened to Mary .\n",
            "2020-05-25 12:22:13,888 \tReference:  Indaba yokobana uMariya usidisi neyifika eendlebeni zakhe , wafuna ukumphatha ngomusa , ngitjho nangaphambi kobana ingilozi kaZimu imhlathululele okwenzeke kuMariya .\n",
            "2020-05-25 12:22:13,888 \tHypothesis: Nekafunda bona bekanekankere , bekafuna ukuba nomusa kuye , ngitjho nanyana ingilozi kaZimu yatjela uMariya bona enze lokho okwatjhiwo nguMariya .\n",
            "2020-05-25 12:22:13,888 Example #3\n",
            "2020-05-25 12:22:13,888 \tSource:     Who was this Joseph of Arimathea ?\n",
            "2020-05-25 12:22:13,888 \tReference:  Kanti ngubani uJosefa we - Arimathiya ?\n",
            "2020-05-25 12:22:13,888 \tHypothesis: Ngubani uJosefa we - Arimathiya ?\n",
            "2020-05-25 12:22:13,889 Validation result (greedy) at epoch  19, step    14000: bleu:  16.30, loss: 52983.3711, ppl:  21.8420, duration: 47.7488s\n",
            "2020-05-25 12:23:04,625 Epoch  19 Step:    14100 Batch Loss:     2.533882 Tokens per Sec:     3929, Lr: 0.000300\n",
            "2020-05-25 12:23:55,608 Epoch  19 Step:    14200 Batch Loss:     2.797831 Tokens per Sec:     3929, Lr: 0.000300\n",
            "2020-05-25 12:24:47,154 Epoch  19 Step:    14300 Batch Loss:     2.804958 Tokens per Sec:     4029, Lr: 0.000300\n",
            "2020-05-25 12:25:38,598 Epoch  19 Step:    14400 Batch Loss:     2.673256 Tokens per Sec:     3956, Lr: 0.000300\n",
            "2020-05-25 12:26:12,575 Epoch  19: total training loss 1995.76\n",
            "2020-05-25 12:26:12,576 EPOCH 20\n",
            "2020-05-25 12:26:30,260 Epoch  20 Step:    14500 Batch Loss:     2.611196 Tokens per Sec:     3759, Lr: 0.000300\n",
            "2020-05-25 12:27:20,922 Epoch  20 Step:    14600 Batch Loss:     2.902875 Tokens per Sec:     3966, Lr: 0.000300\n",
            "2020-05-25 12:28:12,200 Epoch  20 Step:    14700 Batch Loss:     2.458294 Tokens per Sec:     3995, Lr: 0.000300\n",
            "2020-05-25 12:29:03,761 Epoch  20 Step:    14800 Batch Loss:     2.953134 Tokens per Sec:     3948, Lr: 0.000300\n",
            "2020-05-25 12:29:54,784 Epoch  20 Step:    14900 Batch Loss:     2.069063 Tokens per Sec:     3960, Lr: 0.000300\n",
            "2020-05-25 12:30:46,071 Epoch  20 Step:    15000 Batch Loss:     2.763923 Tokens per Sec:     3909, Lr: 0.000300\n",
            "2020-05-25 12:31:21,050 Hooray! New best validation result [ppl]!\n",
            "2020-05-25 12:31:21,051 Saving new checkpoint.\n",
            "2020-05-25 12:31:21,549 Example #0\n",
            "2020-05-25 12:31:21,549 \tSource:     The king was already an apostate , the worst of Israel’s kings up to that point .\n",
            "2020-05-25 12:31:21,550 \tReference:  Ikosi besele isihlubuki , iyimbi ukuwadlula woke amakhosi wakwa - Israyeli ngesikhatheso .\n",
            "2020-05-25 12:31:21,550 \tHypothesis: Ikosi besele ihlukanise iinhlubuki , ezikulu zamakhosi wakwa - Israyeli egade anawo iphuzu .\n",
            "2020-05-25 12:31:21,550 Example #1\n",
            "2020-05-25 12:31:21,550 \tSource:     When Esau belatedly realized what a foolish choice he had made , he begged Isaac : “ Bless me , even me too , my father ! . . .\n",
            "2020-05-25 12:31:21,550 \tReference:  U - Esewu nekalemuka ngemva kwesikhathi bona wenze isiqunto sobudlhayela , wancenga u - Isaka wathi : “ Nami ngibusisa baba ! . . .\n",
            "2020-05-25 12:31:21,550 \tHypothesis: U - Esewu nekabona bona khuyini ebeyingikhetha esikhundleni sokubeletha , wabawa u - Isaka wathi : “ Ngithwala , ngitjho nobaba ! . . . . . .\n",
            "2020-05-25 12:31:21,550 Example #2\n",
            "2020-05-25 12:31:21,551 \tSource:     When he first learned that she was pregnant , he wanted to deal mercifully with her , even before God’s angel explained to him what had happened to Mary .\n",
            "2020-05-25 12:31:21,551 \tReference:  Indaba yokobana uMariya usidisi neyifika eendlebeni zakhe , wafuna ukumphatha ngomusa , ngitjho nangaphambi kobana ingilozi kaZimu imhlathululele okwenzeke kuMariya .\n",
            "2020-05-25 12:31:21,551 \tHypothesis: Nekafunda bona bekasilingekile , bekafuna bona afune ukuba nomusa kuye , ngitjho nangaphambi kobana ingilozi kaZimu yamtjela bona enzeni uMariya .\n",
            "2020-05-25 12:31:21,551 Example #3\n",
            "2020-05-25 12:31:21,551 \tSource:     Who was this Joseph of Arimathea ?\n",
            "2020-05-25 12:31:21,551 \tReference:  Kanti ngubani uJosefa we - Arimathiya ?\n",
            "2020-05-25 12:31:21,551 \tHypothesis: Bobani uJosefa aba - Arimathiya ?\n",
            "2020-05-25 12:31:21,551 Validation result (greedy) at epoch  20, step    15000: bleu:  16.71, loss: 52261.3750, ppl:  20.9432, duration: 35.4800s\n",
            "2020-05-25 12:32:12,952 Epoch  20 Step:    15100 Batch Loss:     3.054322 Tokens per Sec:     3986, Lr: 0.000300\n",
            "2020-05-25 12:33:03,808 Epoch  20 Step:    15200 Batch Loss:     2.870383 Tokens per Sec:     3906, Lr: 0.000300\n",
            "2020-05-25 12:33:17,789 Epoch  20: total training loss 1950.82\n",
            "2020-05-25 12:33:17,789 EPOCH 21\n",
            "2020-05-25 12:33:55,268 Epoch  21 Step:    15300 Batch Loss:     2.708786 Tokens per Sec:     3868, Lr: 0.000300\n",
            "2020-05-25 12:34:46,680 Epoch  21 Step:    15400 Batch Loss:     2.456804 Tokens per Sec:     4007, Lr: 0.000300\n",
            "2020-05-25 12:35:37,781 Epoch  21 Step:    15500 Batch Loss:     2.431135 Tokens per Sec:     3995, Lr: 0.000300\n",
            "2020-05-25 12:36:29,006 Epoch  21 Step:    15600 Batch Loss:     1.550877 Tokens per Sec:     3968, Lr: 0.000300\n",
            "2020-05-25 12:37:20,419 Epoch  21 Step:    15700 Batch Loss:     2.860752 Tokens per Sec:     3928, Lr: 0.000300\n",
            "2020-05-25 12:38:11,012 Epoch  21 Step:    15800 Batch Loss:     2.168457 Tokens per Sec:     3944, Lr: 0.000300\n",
            "2020-05-25 12:39:02,235 Epoch  21 Step:    15900 Batch Loss:     1.779843 Tokens per Sec:     3946, Lr: 0.000300\n",
            "2020-05-25 12:39:46,601 Epoch  21: total training loss 1908.61\n",
            "2020-05-25 12:39:46,602 EPOCH 22\n",
            "2020-05-25 12:39:53,533 Epoch  22 Step:    16000 Batch Loss:     2.541933 Tokens per Sec:     3867, Lr: 0.000300\n",
            "2020-05-25 12:40:32,270 Hooray! New best validation result [ppl]!\n",
            "2020-05-25 12:40:32,270 Saving new checkpoint.\n",
            "2020-05-25 12:40:32,755 Example #0\n",
            "2020-05-25 12:40:32,755 \tSource:     The king was already an apostate , the worst of Israel’s kings up to that point .\n",
            "2020-05-25 12:40:32,755 \tReference:  Ikosi besele isihlubuki , iyimbi ukuwadlula woke amakhosi wakwa - Israyeli ngesikhatheso .\n",
            "2020-05-25 12:40:32,755 \tHypothesis: Ikosi besele ibinzondo yobuqili , isiqubuthu esikhulu samakhosi wakwa - Israyeli bona ahlwe .\n",
            "2020-05-25 12:40:32,755 Example #1\n",
            "2020-05-25 12:40:32,756 \tSource:     When Esau belatedly realized what a foolish choice he had made , he begged Isaac : “ Bless me , even me too , my father ! . . .\n",
            "2020-05-25 12:40:32,756 \tReference:  U - Esewu nekalemuka ngemva kwesikhathi bona wenze isiqunto sobudlhayela , wancenga u - Isaka wathi : “ Nami ngibusisa baba ! . . .\n",
            "2020-05-25 12:40:32,756 \tHypothesis: U - Esewu nekabona bona ngisiphi isiqunto esingakahlakaniphi ebekambulali , wabawa u - Isaka wathi : “ Aspeli , ngitjho nanyana mina mina , mina nobaba . .\n",
            "2020-05-25 12:40:32,756 Example #2\n",
            "2020-05-25 12:40:32,756 \tSource:     When he first learned that she was pregnant , he wanted to deal mercifully with her , even before God’s angel explained to him what had happened to Mary .\n",
            "2020-05-25 12:40:32,757 \tReference:  Indaba yokobana uMariya usidisi neyifika eendlebeni zakhe , wafuna ukumphatha ngomusa , ngitjho nangaphambi kobana ingilozi kaZimu imhlathululele okwenzeke kuMariya .\n",
            "2020-05-25 12:40:32,757 \tHypothesis: Nekafunda bona bekanesibindi , bekafuna ukumhlathululele bona kubayini ingilozi kaZimu yamtjela bona kwenzekani kuJesu .\n",
            "2020-05-25 12:40:32,757 Example #3\n",
            "2020-05-25 12:40:32,757 \tSource:     Who was this Joseph of Arimathea ?\n",
            "2020-05-25 12:40:32,757 \tReference:  Kanti ngubani uJosefa we - Arimathiya ?\n",
            "2020-05-25 12:40:32,757 \tHypothesis: Bobani uJosefa aba - Arimathiya ?\n",
            "2020-05-25 12:40:32,757 Validation result (greedy) at epoch  22, step    16000: bleu:  17.20, loss: 51425.2188, ppl:  19.9483, duration: 39.2242s\n",
            "2020-05-25 12:41:24,157 Epoch  22 Step:    16100 Batch Loss:     2.565468 Tokens per Sec:     3945, Lr: 0.000300\n",
            "2020-05-25 12:42:14,934 Epoch  22 Step:    16200 Batch Loss:     2.368915 Tokens per Sec:     3949, Lr: 0.000300\n",
            "2020-05-25 12:43:06,147 Epoch  22 Step:    16300 Batch Loss:     2.577751 Tokens per Sec:     3944, Lr: 0.000300\n",
            "2020-05-25 12:43:57,482 Epoch  22 Step:    16400 Batch Loss:     2.556015 Tokens per Sec:     4089, Lr: 0.000300\n",
            "2020-05-25 12:44:48,606 Epoch  22 Step:    16500 Batch Loss:     2.239263 Tokens per Sec:     3897, Lr: 0.000300\n",
            "2020-05-25 12:45:39,214 Epoch  22 Step:    16600 Batch Loss:     2.981003 Tokens per Sec:     3917, Lr: 0.000300\n",
            "2020-05-25 12:46:30,706 Epoch  22 Step:    16700 Batch Loss:     2.938588 Tokens per Sec:     4031, Lr: 0.000300\n",
            "2020-05-25 12:46:53,864 Epoch  22: total training loss 1866.05\n",
            "2020-05-25 12:46:53,864 EPOCH 23\n",
            "2020-05-25 12:47:21,488 Epoch  23 Step:    16800 Batch Loss:     2.617186 Tokens per Sec:     3870, Lr: 0.000300\n",
            "2020-05-25 12:48:12,070 Epoch  23 Step:    16900 Batch Loss:     2.579906 Tokens per Sec:     3906, Lr: 0.000300\n",
            "2020-05-25 12:49:03,638 Epoch  23 Step:    17000 Batch Loss:     2.368757 Tokens per Sec:     4014, Lr: 0.000300\n",
            "2020-05-25 12:49:33,537 Example #0\n",
            "2020-05-25 12:49:33,538 \tSource:     The king was already an apostate , the worst of Israel’s kings up to that point .\n",
            "2020-05-25 12:49:33,538 \tReference:  Ikosi besele isihlubuki , iyimbi ukuwadlula woke amakhosi wakwa - Israyeli ngesikhatheso .\n",
            "2020-05-25 12:49:33,538 \tHypothesis: Ikosi besele ibinzinzinzondo , isiqubuthu esikhulu samakhosi wakwa - Israyeli bona ahlwe .\n",
            "2020-05-25 12:49:33,538 Example #1\n",
            "2020-05-25 12:49:33,538 \tSource:     When Esau belatedly realized what a foolish choice he had made , he begged Isaac : “ Bless me , even me too , my father ! . . .\n",
            "2020-05-25 12:49:33,538 \tReference:  U - Esewu nekalemuka ngemva kwesikhathi bona wenze isiqunto sobudlhayela , wancenga u - Isaka wathi : “ Nami ngibusisa baba ! . . .\n",
            "2020-05-25 12:49:33,539 \tHypothesis: U - Esewu nekabuzwa bona ngisiphi isiqunto esingakahlakaniphi , wabawa u - Isaka wathi : “ Ngithabe nami , ngitjho nobaba ! . . . .\n",
            "2020-05-25 12:49:33,539 Example #2\n",
            "2020-05-25 12:49:33,539 \tSource:     When he first learned that she was pregnant , he wanted to deal mercifully with her , even before God’s angel explained to him what had happened to Mary .\n",
            "2020-05-25 12:49:33,539 \tReference:  Indaba yokobana uMariya usidisi neyifika eendlebeni zakhe , wafuna ukumphatha ngomusa , ngitjho nangaphambi kobana ingilozi kaZimu imhlathululele okwenzeke kuMariya .\n",
            "2020-05-25 12:49:33,539 \tHypothesis: Wathi nakasesemntwana , bekafuna ukuba nomusa kuye , ngitjho nanyana ingilozi kaZimu yamhlathululela bona khuyini eyenzeka uMariya .\n",
            "2020-05-25 12:49:33,539 Example #3\n",
            "2020-05-25 12:49:33,540 \tSource:     Who was this Joseph of Arimathea ?\n",
            "2020-05-25 12:49:33,540 \tReference:  Kanti ngubani uJosefa we - Arimathiya ?\n",
            "2020-05-25 12:49:33,540 \tHypothesis: Bobani uJosefa aba - Arimathiya ?\n",
            "2020-05-25 12:49:33,540 Validation result (greedy) at epoch  23, step    17000: bleu:  17.08, loss: 51554.6641, ppl:  20.0992, duration: 29.9015s\n",
            "2020-05-25 12:50:24,838 Epoch  23 Step:    17100 Batch Loss:     2.038454 Tokens per Sec:     3918, Lr: 0.000300\n",
            "2020-05-25 12:51:15,120 Epoch  23 Step:    17200 Batch Loss:     2.791324 Tokens per Sec:     4056, Lr: 0.000300\n",
            "2020-05-25 12:52:05,362 Epoch  23 Step:    17300 Batch Loss:     2.481578 Tokens per Sec:     3975, Lr: 0.000300\n",
            "2020-05-25 12:52:55,816 Epoch  23 Step:    17400 Batch Loss:     2.624002 Tokens per Sec:     4049, Lr: 0.000300\n",
            "2020-05-25 12:53:45,531 Epoch  23 Step:    17500 Batch Loss:     2.310919 Tokens per Sec:     4038, Lr: 0.000300\n",
            "2020-05-25 12:53:49,609 Epoch  23: total training loss 1842.98\n",
            "2020-05-25 12:53:49,609 EPOCH 24\n",
            "2020-05-25 12:54:36,353 Epoch  24 Step:    17600 Batch Loss:     2.417732 Tokens per Sec:     4023, Lr: 0.000300\n",
            "2020-05-25 12:55:26,259 Epoch  24 Step:    17700 Batch Loss:     2.605726 Tokens per Sec:     3975, Lr: 0.000300\n",
            "2020-05-25 12:56:16,194 Epoch  24 Step:    17800 Batch Loss:     2.440283 Tokens per Sec:     4031, Lr: 0.000300\n",
            "2020-05-25 12:57:06,803 Epoch  24 Step:    17900 Batch Loss:     2.609377 Tokens per Sec:     4050, Lr: 0.000300\n",
            "2020-05-25 12:57:57,345 Epoch  24 Step:    18000 Batch Loss:     2.638469 Tokens per Sec:     4021, Lr: 0.000300\n",
            "2020-05-25 12:58:29,935 Hooray! New best validation result [ppl]!\n",
            "2020-05-25 12:58:29,935 Saving new checkpoint.\n",
            "2020-05-25 12:58:30,405 Example #0\n",
            "2020-05-25 12:58:30,405 \tSource:     The king was already an apostate , the worst of Israel’s kings up to that point .\n",
            "2020-05-25 12:58:30,405 \tReference:  Ikosi besele isihlubuki , iyimbi ukuwadlula woke amakhosi wakwa - Israyeli ngesikhatheso .\n",
            "2020-05-25 12:58:30,405 \tHypothesis: Ikosi besele ihlinzinzinzinzinzinzwe , beyivela kwa - Israyeli bona enze njalo .\n",
            "2020-05-25 12:58:30,406 Example #1\n",
            "2020-05-25 12:58:30,406 \tSource:     When Esau belatedly realized what a foolish choice he had made , he begged Isaac : “ Bless me , even me too , my father ! . . .\n",
            "2020-05-25 12:58:30,406 \tReference:  U - Esewu nekalemuka ngemva kwesikhathi bona wenze isiqunto sobudlhayela , wancenga u - Isaka wathi : “ Nami ngibusisa baba ! . . .\n",
            "2020-05-25 12:58:30,406 \tHypothesis: U - Esewu nekabona bona ngisiphi isiqunto esingakahlakaniphi esamenza , wabawa u - Isaka : “ Ngithabe nami , ngitjho noyise , mina nobaba ! . . .\n",
            "2020-05-25 12:58:30,406 Example #2\n",
            "2020-05-25 12:58:30,406 \tSource:     When he first learned that she was pregnant , he wanted to deal mercifully with her , even before God’s angel explained to him what had happened to Mary .\n",
            "2020-05-25 12:58:30,407 \tReference:  Indaba yokobana uMariya usidisi neyifika eendlebeni zakhe , wafuna ukumphatha ngomusa , ngitjho nangaphambi kobana ingilozi kaZimu imhlathululele okwenzeke kuMariya .\n",
            "2020-05-25 12:58:30,407 \tHypothesis: Nekafunda bona bekanesibindi , bekafuna ukuba nomusa kuye , ngitjho nangaphambi kobana ingilozi kaZimu yamtjela bona kwenzekani uMariya .\n",
            "2020-05-25 12:58:30,407 Example #3\n",
            "2020-05-25 12:58:30,407 \tSource:     Who was this Joseph of Arimathea ?\n",
            "2020-05-25 12:58:30,407 \tReference:  Kanti ngubani uJosefa we - Arimathiya ?\n",
            "2020-05-25 12:58:30,407 \tHypothesis: Bekuzokuba zokuba nguJosefa we - Arimathiya ?\n",
            "2020-05-25 12:58:30,407 Validation result (greedy) at epoch  24, step    18000: bleu:  17.72, loss: 50781.8320, ppl:  19.2151, duration: 33.0615s\n",
            "2020-05-25 12:59:20,160 Epoch  24 Step:    18100 Batch Loss:     2.178338 Tokens per Sec:     3977, Lr: 0.000300\n",
            "2020-05-25 13:00:10,758 Epoch  24 Step:    18200 Batch Loss:     2.687871 Tokens per Sec:     4013, Lr: 0.000300\n",
            "2020-05-25 13:00:46,002 Epoch  24: total training loss 1810.07\n",
            "2020-05-25 13:00:46,002 EPOCH 25\n",
            "2020-05-25 13:01:00,432 Epoch  25 Step:    18300 Batch Loss:     2.583940 Tokens per Sec:     3976, Lr: 0.000300\n",
            "2020-05-25 13:01:50,644 Epoch  25 Step:    18400 Batch Loss:     2.505003 Tokens per Sec:     4074, Lr: 0.000300\n",
            "2020-05-25 13:02:41,073 Epoch  25 Step:    18500 Batch Loss:     1.245688 Tokens per Sec:     3960, Lr: 0.000300\n",
            "2020-05-25 13:03:31,349 Epoch  25 Step:    18600 Batch Loss:     2.388033 Tokens per Sec:     4114, Lr: 0.000300\n",
            "2020-05-25 13:04:21,406 Epoch  25 Step:    18700 Batch Loss:     2.480107 Tokens per Sec:     3972, Lr: 0.000300\n",
            "2020-05-25 13:05:11,850 Epoch  25 Step:    18800 Batch Loss:     2.617943 Tokens per Sec:     4012, Lr: 0.000300\n",
            "2020-05-25 13:06:02,362 Epoch  25 Step:    18900 Batch Loss:     2.788568 Tokens per Sec:     3983, Lr: 0.000300\n",
            "2020-05-25 13:06:52,791 Epoch  25 Step:    19000 Batch Loss:     2.623625 Tokens per Sec:     3995, Lr: 0.000300\n",
            "2020-05-25 13:07:21,866 Hooray! New best validation result [ppl]!\n",
            "2020-05-25 13:07:21,867 Saving new checkpoint.\n",
            "2020-05-25 13:07:22,347 Example #0\n",
            "2020-05-25 13:07:22,347 \tSource:     The king was already an apostate , the worst of Israel’s kings up to that point .\n",
            "2020-05-25 13:07:22,347 \tReference:  Ikosi besele isihlubuki , iyimbi ukuwadlula woke amakhosi wakwa - Israyeli ngesikhatheso .\n",
            "2020-05-25 13:07:22,347 \tHypothesis: Ikosi besele ibinzinzinzwe , beyivela kwa - Israyeli bona ibe mamala .\n",
            "2020-05-25 13:07:22,347 Example #1\n",
            "2020-05-25 13:07:22,348 \tSource:     When Esau belatedly realized what a foolish choice he had made , he begged Isaac : “ Bless me , even me too , my father ! . . .\n",
            "2020-05-25 13:07:22,348 \tReference:  U - Esewu nekalemuka ngemva kwesikhathi bona wenze isiqunto sobudlhayela , wancenga u - Isaka wathi : “ Nami ngibusisa baba ! . . .\n",
            "2020-05-25 13:07:22,348 \tHypothesis: U - Esewu nekalemuka bona ngisiphi isiqunto esingakahlakaniphi ebekasenze , wabawa u - Isaka : “ Azange angilahle , ngitjho nobabami ! . .\n",
            "2020-05-25 13:07:22,348 Example #2\n",
            "2020-05-25 13:07:22,348 \tSource:     When he first learned that she was pregnant , he wanted to deal mercifully with her , even before God’s angel explained to him what had happened to Mary .\n",
            "2020-05-25 13:07:22,348 \tReference:  Indaba yokobana uMariya usidisi neyifika eendlebeni zakhe , wafuna ukumphatha ngomusa , ngitjho nangaphambi kobana ingilozi kaZimu imhlathululele okwenzeke kuMariya .\n",
            "2020-05-25 13:07:22,349 \tHypothesis: Nakafunda ukuthi bekambamba , bekafuna ukuba nomusa kuye , ngitjho nangaphambi kobana ingilozi kaZimu yamhlathululela bona kwenzekani uMariya .\n",
            "2020-05-25 13:07:22,349 Example #3\n",
            "2020-05-25 13:07:22,349 \tSource:     Who was this Joseph of Arimathea ?\n",
            "2020-05-25 13:07:22,349 \tReference:  Kanti ngubani uJosefa we - Arimathiya ?\n",
            "2020-05-25 13:07:22,349 \tHypothesis: Bekuzokuba nguJosefa we - Arimathiya ?\n",
            "2020-05-25 13:07:22,349 Validation result (greedy) at epoch  25, step    19000: bleu:  17.59, loss: 50529.4297, ppl:  18.9349, duration: 29.5582s\n",
            "2020-05-25 13:07:38,635 Epoch  25: total training loss 1777.35\n",
            "2020-05-25 13:07:38,635 EPOCH 26\n",
            "2020-05-25 13:08:13,148 Epoch  26 Step:    19100 Batch Loss:     2.113364 Tokens per Sec:     3856, Lr: 0.000300\n",
            "2020-05-25 13:09:04,136 Epoch  26 Step:    19200 Batch Loss:     2.358621 Tokens per Sec:     4066, Lr: 0.000300\n",
            "2020-05-25 13:09:55,060 Epoch  26 Step:    19300 Batch Loss:     2.495302 Tokens per Sec:     4003, Lr: 0.000300\n",
            "2020-05-25 13:10:45,899 Epoch  26 Step:    19400 Batch Loss:     2.160303 Tokens per Sec:     3980, Lr: 0.000300\n",
            "2020-05-25 13:11:36,382 Epoch  26 Step:    19500 Batch Loss:     2.631365 Tokens per Sec:     3989, Lr: 0.000300\n",
            "2020-05-25 13:12:27,431 Epoch  26 Step:    19600 Batch Loss:     2.385973 Tokens per Sec:     4034, Lr: 0.000300\n",
            "2020-05-25 13:13:17,619 Epoch  26 Step:    19700 Batch Loss:     2.412109 Tokens per Sec:     4022, Lr: 0.000300\n",
            "2020-05-25 13:14:02,927 Epoch  26: total training loss 1741.40\n",
            "2020-05-25 13:14:02,928 EPOCH 27\n",
            "2020-05-25 13:14:08,204 Epoch  27 Step:    19800 Batch Loss:     2.666044 Tokens per Sec:     3872, Lr: 0.000300\n",
            "2020-05-25 13:14:58,137 Epoch  27 Step:    19900 Batch Loss:     2.714296 Tokens per Sec:     3952, Lr: 0.000300\n",
            "2020-05-25 13:15:47,851 Epoch  27 Step:    20000 Batch Loss:     2.449810 Tokens per Sec:     4024, Lr: 0.000300\n",
            "2020-05-25 13:16:48,815 Example #0\n",
            "2020-05-25 13:16:48,815 \tSource:     The king was already an apostate , the worst of Israel’s kings up to that point .\n",
            "2020-05-25 13:16:48,816 \tReference:  Ikosi besele isihlubuki , iyimbi ukuwadlula woke amakhosi wakwa - Israyeli ngesikhatheso .\n",
            "2020-05-25 13:16:48,816 \tHypothesis: Ikosi besele ibinzinzinzondo , omumbi wakwa - Israyeli wadlulisela iphuzu elinjalo .\n",
            "2020-05-25 13:16:48,816 Example #1\n",
            "2020-05-25 13:16:48,816 \tSource:     When Esau belatedly realized what a foolish choice he had made , he begged Isaac : “ Bless me , even me too , my father ! . . .\n",
            "2020-05-25 13:16:48,816 \tReference:  U - Esewu nekalemuka ngemva kwesikhathi bona wenze isiqunto sobudlhayela , wancenga u - Isaka wathi : “ Nami ngibusisa baba ! . . .\n",
            "2020-05-25 13:16:48,816 \tHypothesis: U - Esewu nekalemuka bona ngisiphi isiqunto esingakahlakaniphi esenzileko , wabawa u - Isaka : “ Ngibawa ungivumele , ngitjho nobaba !\n",
            "2020-05-25 13:16:48,816 Example #2\n",
            "2020-05-25 13:16:48,817 \tSource:     When he first learned that she was pregnant , he wanted to deal mercifully with her , even before God’s angel explained to him what had happened to Mary .\n",
            "2020-05-25 13:16:48,817 \tReference:  Indaba yokobana uMariya usidisi neyifika eendlebeni zakhe , wafuna ukumphatha ngomusa , ngitjho nangaphambi kobana ingilozi kaZimu imhlathululele okwenzeke kuMariya .\n",
            "2020-05-25 13:16:48,817 \tHypothesis: Nekafunda bona bekambamba , bekafuna ukuba nomusa kuye , ngitjho nangaphambi kobana ingilozi kaZimu yahlathululela lokho egade kwenzeke uMariya .\n",
            "2020-05-25 13:16:48,817 Example #3\n",
            "2020-05-25 13:16:48,817 \tSource:     Who was this Joseph of Arimathea ?\n",
            "2020-05-25 13:16:48,817 \tReference:  Kanti ngubani uJosefa we - Arimathiya ?\n",
            "2020-05-25 13:16:48,817 \tHypothesis: Bekuzokuba nguJosefa we - Arimathiya ?\n",
            "2020-05-25 13:16:48,817 Validation result (greedy) at epoch  27, step    20000: bleu:  17.91, loss: 50921.8477, ppl:  19.3723, duration: 60.9663s\n",
            "2020-05-25 13:17:39,426 Epoch  27 Step:    20100 Batch Loss:     2.674980 Tokens per Sec:     4142, Lr: 0.000300\n",
            "2020-05-25 13:18:29,578 Epoch  27 Step:    20200 Batch Loss:     1.698183 Tokens per Sec:     4071, Lr: 0.000300\n",
            "2020-05-25 13:19:19,265 Epoch  27 Step:    20300 Batch Loss:     2.509459 Tokens per Sec:     4028, Lr: 0.000300\n",
            "2020-05-25 13:20:09,686 Epoch  27 Step:    20400 Batch Loss:     2.503241 Tokens per Sec:     3967, Lr: 0.000300\n",
            "2020-05-25 13:21:00,024 Epoch  27 Step:    20500 Batch Loss:     2.531883 Tokens per Sec:     3988, Lr: 0.000300\n",
            "2020-05-25 13:21:26,254 Epoch  27: total training loss 1723.38\n",
            "2020-05-25 13:21:26,255 EPOCH 28\n",
            "2020-05-25 13:21:50,806 Epoch  28 Step:    20600 Batch Loss:     2.324357 Tokens per Sec:     3978, Lr: 0.000300\n",
            "2020-05-25 13:22:41,185 Epoch  28 Step:    20700 Batch Loss:     1.893052 Tokens per Sec:     4003, Lr: 0.000300\n",
            "2020-05-25 13:23:31,232 Epoch  28 Step:    20800 Batch Loss:     2.386988 Tokens per Sec:     4069, Lr: 0.000300\n",
            "2020-05-25 13:24:22,252 Epoch  28 Step:    20900 Batch Loss:     2.175425 Tokens per Sec:     3998, Lr: 0.000300\n",
            "2020-05-25 13:25:12,788 Epoch  28 Step:    21000 Batch Loss:     1.499287 Tokens per Sec:     3974, Lr: 0.000300\n",
            "2020-05-25 13:25:43,831 Hooray! New best validation result [ppl]!\n",
            "2020-05-25 13:25:43,831 Saving new checkpoint.\n",
            "2020-05-25 13:25:44,260 Example #0\n",
            "2020-05-25 13:25:44,261 \tSource:     The king was already an apostate , the worst of Israel’s kings up to that point .\n",
            "2020-05-25 13:25:44,262 \tReference:  Ikosi besele isihlubuki , iyimbi ukuwadlula woke amakhosi wakwa - Israyeli ngesikhatheso .\n",
            "2020-05-25 13:25:44,262 \tHypothesis: Ikosi besele ibogaboga , ubukhulu kwama - Israyeli egade banamandla wokwenza njalo .\n",
            "2020-05-25 13:25:44,262 Example #1\n",
            "2020-05-25 13:25:44,263 \tSource:     When Esau belatedly realized what a foolish choice he had made , he begged Isaac : “ Bless me , even me too , my father ! . . .\n",
            "2020-05-25 13:25:44,263 \tReference:  U - Esewu nekalemuka ngemva kwesikhathi bona wenze isiqunto sobudlhayela , wancenga u - Isaka wathi : “ Nami ngibusisa baba ! . . .\n",
            "2020-05-25 13:25:44,263 \tHypothesis: U - Esewu nekabona ukuthi ngisiphi isiqunto esithethe , wabawa u - Isaka wathi : “ Azange ngibalekele , ngitjho nobaba ! .\n",
            "2020-05-25 13:25:44,263 Example #2\n",
            "2020-05-25 13:25:44,263 \tSource:     When he first learned that she was pregnant , he wanted to deal mercifully with her , even before God’s angel explained to him what had happened to Mary .\n",
            "2020-05-25 13:25:44,263 \tReference:  Indaba yokobana uMariya usidisi neyifika eendlebeni zakhe , wafuna ukumphatha ngomusa , ngitjho nangaphambi kobana ingilozi kaZimu imhlathululele okwenzeke kuMariya .\n",
            "2020-05-25 13:25:44,264 \tHypothesis: Nekafunda bona bekambamba , bekafuna ukumsola , ngitjho nangaphambi kobana ingilozi kaZimu yahlathululela lokho okwenzeka kuMariya .\n",
            "2020-05-25 13:25:44,264 Example #3\n",
            "2020-05-25 13:25:44,264 \tSource:     Who was this Joseph of Arimathea ?\n",
            "2020-05-25 13:25:44,264 \tReference:  Kanti ngubani uJosefa we - Arimathiya ?\n",
            "2020-05-25 13:25:44,264 \tHypothesis: Bekuzokuba nguJesefa we - Arimathiya ?\n",
            "2020-05-25 13:25:44,264 Validation result (greedy) at epoch  28, step    21000: bleu:  17.92, loss: 50338.4961, ppl:  18.7256, duration: 31.4759s\n",
            "2020-05-25 13:26:34,924 Epoch  28 Step:    21100 Batch Loss:     2.143458 Tokens per Sec:     3913, Lr: 0.000300\n",
            "2020-05-25 13:27:25,109 Epoch  28 Step:    21200 Batch Loss:     2.375255 Tokens per Sec:     3996, Lr: 0.000300\n",
            "2020-05-25 13:28:15,753 Epoch  28 Step:    21300 Batch Loss:     2.519253 Tokens per Sec:     4002, Lr: 0.000300\n",
            "2020-05-25 13:28:22,724 Epoch  28: total training loss 1699.08\n",
            "2020-05-25 13:28:22,724 EPOCH 29\n",
            "2020-05-25 13:29:06,084 Epoch  29 Step:    21400 Batch Loss:     2.282044 Tokens per Sec:     3989, Lr: 0.000300\n",
            "2020-05-25 13:29:56,932 Epoch  29 Step:    21500 Batch Loss:     2.258498 Tokens per Sec:     3968, Lr: 0.000300\n",
            "2020-05-25 13:30:46,707 Epoch  29 Step:    21600 Batch Loss:     1.852776 Tokens per Sec:     3974, Lr: 0.000300\n",
            "2020-05-25 13:31:36,574 Epoch  29 Step:    21700 Batch Loss:     2.184012 Tokens per Sec:     4015, Lr: 0.000300\n",
            "2020-05-25 13:32:26,802 Epoch  29 Step:    21800 Batch Loss:     2.440323 Tokens per Sec:     4053, Lr: 0.000300\n",
            "2020-05-25 13:33:16,663 Epoch  29 Step:    21900 Batch Loss:     2.422097 Tokens per Sec:     4021, Lr: 0.000300\n",
            "2020-05-25 13:34:06,754 Epoch  29 Step:    22000 Batch Loss:     1.386654 Tokens per Sec:     3994, Lr: 0.000300\n",
            "2020-05-25 13:34:41,836 Hooray! New best validation result [ppl]!\n",
            "2020-05-25 13:34:41,836 Saving new checkpoint.\n",
            "2020-05-25 13:34:42,298 Example #0\n",
            "2020-05-25 13:34:42,298 \tSource:     The king was already an apostate , the worst of Israel’s kings up to that point .\n",
            "2020-05-25 13:34:42,298 \tReference:  Ikosi besele isihlubuki , iyimbi ukuwadlula woke amakhosi wakwa - Israyeli ngesikhatheso .\n",
            "2020-05-25 13:34:42,298 \tHypothesis: Ikosi besele ibinzondo yobubuki , amakhosi wakwa - Israyeli wona wona wona wona bekalinga ngamandla ukwenza njalo .\n",
            "2020-05-25 13:34:42,298 Example #1\n",
            "2020-05-25 13:34:42,299 \tSource:     When Esau belatedly realized what a foolish choice he had made , he begged Isaac : “ Bless me , even me too , my father ! . . .\n",
            "2020-05-25 13:34:42,299 \tReference:  U - Esewu nekalemuka ngemva kwesikhathi bona wenze isiqunto sobudlhayela , wancenga u - Isaka wathi : “ Nami ngibusisa baba ! . . .\n",
            "2020-05-25 13:34:42,299 \tHypothesis: U - Esewu nekabona bona khuyini okweqa esikhundleni sakhe sokukhetha , wabawa u - Isaka wathi : “ Ngibawa ungilibalele ngitjho nanyana nobaba ! .\n",
            "2020-05-25 13:34:42,299 Example #2\n",
            "2020-05-25 13:34:42,299 \tSource:     When he first learned that she was pregnant , he wanted to deal mercifully with her , even before God’s angel explained to him what had happened to Mary .\n",
            "2020-05-25 13:34:42,299 \tReference:  Indaba yokobana uMariya usidisi neyifika eendlebeni zakhe , wafuna ukumphatha ngomusa , ngitjho nangaphambi kobana ingilozi kaZimu imhlathululele okwenzeke kuMariya .\n",
            "2020-05-25 13:34:42,300 \tHypothesis: Nekafunda bona bekambamba , bekafuna ukumkhalima , ngitjho nangaphambi kobana ingilozi kaZimu yamtjela bona kwenzekeni uMariya .\n",
            "2020-05-25 13:34:42,300 Example #3\n",
            "2020-05-25 13:34:42,300 \tSource:     Who was this Joseph of Arimathea ?\n",
            "2020-05-25 13:34:42,300 \tReference:  Kanti ngubani uJosefa we - Arimathiya ?\n",
            "2020-05-25 13:34:42,300 \tHypothesis: Bekuzokuba ngubani uJosefa we - Arimathiya ?\n",
            "2020-05-25 13:34:42,300 Validation result (greedy) at epoch  29, step    22000: bleu:  18.91, loss: 49742.1797, ppl:  18.0869, duration: 35.5456s\n",
            "2020-05-25 13:35:22,573 Epoch  29: total training loss 1685.50\n",
            "2020-05-25 13:35:22,573 EPOCH 30\n",
            "2020-05-25 13:35:32,535 Epoch  30 Step:    22100 Batch Loss:     1.949780 Tokens per Sec:     4038, Lr: 0.000300\n",
            "2020-05-25 13:36:23,245 Epoch  30 Step:    22200 Batch Loss:     2.507748 Tokens per Sec:     4015, Lr: 0.000300\n",
            "2020-05-25 13:37:12,665 Epoch  30 Step:    22300 Batch Loss:     2.382967 Tokens per Sec:     3978, Lr: 0.000300\n",
            "2020-05-25 13:38:03,790 Epoch  30 Step:    22400 Batch Loss:     2.338923 Tokens per Sec:     3987, Lr: 0.000300\n",
            "2020-05-25 13:38:54,832 Epoch  30 Step:    22500 Batch Loss:     2.305876 Tokens per Sec:     4000, Lr: 0.000300\n",
            "2020-05-25 13:39:44,953 Epoch  30 Step:    22600 Batch Loss:     1.948185 Tokens per Sec:     3901, Lr: 0.000300\n",
            "2020-05-25 13:40:35,337 Epoch  30 Step:    22700 Batch Loss:     2.519622 Tokens per Sec:     4002, Lr: 0.000300\n",
            "2020-05-25 13:41:26,393 Epoch  30 Step:    22800 Batch Loss:     1.205953 Tokens per Sec:     4001, Lr: 0.000300\n",
            "2020-05-25 13:41:47,730 Epoch  30: total training loss 1648.48\n",
            "2020-05-25 13:41:47,730 Training ended after  30 epochs.\n",
            "2020-05-25 13:41:47,730 Best validation result (greedy) at step    22000:  18.09 ppl.\n",
            "/pytorch/aten/src/ATen/native/BinaryOps.cpp:81: UserWarning: Integer division of tensors using div or / is deprecated, and in a future release div will perform true division as in Python 3. Use true_divide or floor_divide (// in Python) instead.\n",
            "2020-05-25 13:42:37,959  dev bleu:  19.77 [Beam search decoding with beam size = 5 and alpha = 1.0]\n",
            "2020-05-25 13:42:37,960 Translations saved to: models/ennr_transformer/00022000.hyps.dev\n",
            "2020-05-25 13:43:47,198 test bleu:  26.61 [Beam search decoding with beam size = 5 and alpha = 1.0]\n",
            "2020-05-25 13:43:47,201 Translations saved to: models/ennr_transformer/00022000.hyps.test\n"
          ],
          "name": "stdout"
        }
      ]
    },
    {
      "cell_type": "code",
      "metadata": {
        "colab_type": "code",
        "id": "MBoDS09JM807",
        "outputId": "046b29d7-db5a-49e0-9098-09e9154c8d31",
        "colab": {
          "base_uri": "https://localhost:8080/",
          "height": 34
        }
      },
      "source": [
        "# Copy the created models from the notebook storage to google drive for persistant storage \n",
        "!cp -r joeynmt/models/${src}${tgt}_transformer/* \"$gdrive_path/models/${src}${tgt}_transformer/\""
      ],
      "execution_count": 21,
      "outputs": [
        {
          "output_type": "stream",
          "text": [
            "cp: cannot create symbolic link '/content/drive/My Drive/masakhane/en-nr-baseline/models/ennr_transformer/best.ckpt': Operation not supported\n"
          ],
          "name": "stdout"
        }
      ]
    },
    {
      "cell_type": "code",
      "metadata": {
        "id": "4WeRIo2_66Jq",
        "colab_type": "code",
        "colab": {}
      },
      "source": [
        "!cp /content/joeynmt/models/ennr_transformer/best.ckpt \"/content/drive/My Drive/masakhane/en-nr-baseline/models/ennr_transformer/\""
      ],
      "execution_count": 0,
      "outputs": []
    },
    {
      "cell_type": "code",
      "metadata": {
        "colab_type": "code",
        "id": "n94wlrCjVc17",
        "outputId": "1387224e-c7ff-4ba8-d80e-5d4dcfca6872",
        "colab": {
          "base_uri": "https://localhost:8080/",
          "height": 386
        }
      },
      "source": [
        "# Output our validation accuracy\n",
        "! cat \"$gdrive_path/models/${src}${tgt}_transformer/validations.txt\""
      ],
      "execution_count": 23,
      "outputs": [
        {
          "output_type": "stream",
          "text": [
            "Steps: 1000\tLoss: 99971.88281\tPPL: 336.54996\tbleu: 0.12180\tLR: 0.00030000\t*\n",
            "Steps: 2000\tLoss: 87661.05469\tPPL: 164.38464\tbleu: 1.24824\tLR: 0.00030000\t*\n",
            "Steps: 3000\tLoss: 78894.19531\tPPL: 98.68610\tbleu: 3.11364\tLR: 0.00030000\t*\n",
            "Steps: 4000\tLoss: 73069.34375\tPPL: 70.31013\tbleu: 5.35443\tLR: 0.00030000\t*\n",
            "Steps: 5000\tLoss: 68052.57031\tPPL: 52.50563\tbleu: 8.08551\tLR: 0.00030000\t*\n",
            "Steps: 6000\tLoss: 64672.61719\tPPL: 43.12893\tbleu: 10.06278\tLR: 0.00030000\t*\n",
            "Steps: 7000\tLoss: 61825.87109\tPPL: 36.54347\tbleu: 11.18306\tLR: 0.00030000\t*\n",
            "Steps: 8000\tLoss: 59846.48438\tPPL: 32.56684\tbleu: 12.30515\tLR: 0.00030000\t*\n",
            "Steps: 9000\tLoss: 57646.39844\tPPL: 28.65252\tbleu: 13.71154\tLR: 0.00030000\t*\n",
            "Steps: 10000\tLoss: 56374.86328\tPPL: 26.60856\tbleu: 14.40518\tLR: 0.00030000\t*\n",
            "Steps: 11000\tLoss: 55355.28125\tPPL: 25.07545\tbleu: 14.66825\tLR: 0.00030000\t*\n",
            "Steps: 12000\tLoss: 54200.16797\tPPL: 23.44500\tbleu: 15.46316\tLR: 0.00030000\t*\n",
            "Steps: 13000\tLoss: 53559.35156\tPPL: 22.58666\tbleu: 16.08570\tLR: 0.00030000\t*\n",
            "Steps: 14000\tLoss: 52983.37109\tPPL: 21.84201\tbleu: 16.29692\tLR: 0.00030000\t*\n",
            "Steps: 15000\tLoss: 52261.37500\tPPL: 20.94316\tbleu: 16.71145\tLR: 0.00030000\t*\n",
            "Steps: 16000\tLoss: 51425.21875\tPPL: 19.94832\tbleu: 17.19772\tLR: 0.00030000\t*\n",
            "Steps: 17000\tLoss: 51554.66406\tPPL: 20.09918\tbleu: 17.08415\tLR: 0.00030000\t\n",
            "Steps: 18000\tLoss: 50781.83203\tPPL: 19.21511\tbleu: 17.71864\tLR: 0.00030000\t*\n",
            "Steps: 19000\tLoss: 50529.42969\tPPL: 18.93489\tbleu: 17.59382\tLR: 0.00030000\t*\n",
            "Steps: 20000\tLoss: 50921.84766\tPPL: 19.37235\tbleu: 17.90990\tLR: 0.00030000\t\n",
            "Steps: 21000\tLoss: 50338.49609\tPPL: 18.72563\tbleu: 17.92365\tLR: 0.00030000\t*\n",
            "Steps: 22000\tLoss: 49742.17969\tPPL: 18.08685\tbleu: 18.90914\tLR: 0.00030000\t*\n"
          ],
          "name": "stdout"
        }
      ]
    },
    {
      "cell_type": "code",
      "metadata": {
        "colab_type": "code",
        "id": "66WhRE9lIhoD",
        "outputId": "37117975-25db-4c0e-9a38-cf8251d904f8",
        "colab": {
          "base_uri": "https://localhost:8080/",
          "height": 104
        }
      },
      "source": [
        "# Test our model\n",
        "! cd joeynmt; python3 -m joeynmt test \"$gdrive_path/models/${src}${tgt}_transformer/config.yaml\""
      ],
      "execution_count": 24,
      "outputs": [
        {
          "output_type": "stream",
          "text": [
            "2020-05-25 13:46:02,382 Hello! This is Joey-NMT.\n",
            "/pytorch/aten/src/ATen/native/BinaryOps.cpp:81: UserWarning: Integer division of tensors using div or / is deprecated, and in a future release div will perform true division as in Python 3. Use true_divide or floor_divide (// in Python) instead.\n",
            "2020-05-25 13:46:54,063  dev bleu:  19.77 [Beam search decoding with beam size = 5 and alpha = 1.0]\n",
            "2020-05-25 13:48:02,692 test bleu:  26.61 [Beam search decoding with beam size = 5 and alpha = 1.0]\n"
          ],
          "name": "stdout"
        }
      ]
    },
    {
      "cell_type": "code",
      "metadata": {
        "id": "foeaIXVo75Pe",
        "colab_type": "code",
        "colab": {}
      },
      "source": [
        ""
      ],
      "execution_count": 0,
      "outputs": []
    }
  ]
}