File size: 189,728 Bytes
78aa4ee
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
211
212
213
214
215
216
217
218
219
220
221
222
223
224
225
226
227
228
229
230
231
232
233
234
235
236
237
238
239
240
241
242
243
244
245
246
247
248
249
250
251
252
253
254
255
256
257
258
259
260
261
262
263
264
265
266
267
268
269
270
271
272
273
274
275
276
277
278
279
280
281
282
283
284
285
286
287
288
289
290
291
292
293
294
295
296
297
298
299
300
301
302
303
304
305
306
307
308
309
310
311
312
313
314
315
316
317
318
319
320
321
322
323
324
325
326
327
328
329
330
331
332
333
334
335
336
337
338
339
340
341
342
343
344
345
346
347
348
349
350
351
352
353
354
355
356
357
358
359
360
361
362
363
364
365
366
367
368
369
370
371
372
373
374
375
376
377
378
379
380
381
382
383
384
385
386
387
388
389
390
391
392
393
394
395
396
397
398
399
400
401
402
403
404
405
406
407
408
409
410
411
412
413
414
415
416
417
418
419
420
421
422
423
424
425
426
427
428
429
430
431
432
433
434
435
436
437
438
439
440
441
442
443
444
445
446
447
448
449
450
451
452
453
454
455
456
457
458
459
460
461
462
463
464
465
466
467
468
469
470
471
472
473
474
475
476
477
478
479
480
481
482
483
484
485
486
487
488
489
490
491
492
493
494
495
496
497
498
499
500
501
502
503
504
505
506
507
508
509
510
511
512
513
514
515
516
517
518
519
520
521
522
523
524
525
526
527
528
529
530
531
532
533
534
535
536
537
538
539
540
541
542
543
544
545
546
547
548
549
550
551
552
553
554
555
556
557
558
559
560
561
562
563
564
565
566
567
568
569
570
571
572
573
574
575
576
577
578
579
580
581
582
583
584
585
586
587
588
589
590
591
592
593
594
595
596
597
598
599
600
601
602
603
604
605
606
607
608
609
610
611
612
613
614
615
616
617
618
619
620
621
622
623
624
625
626
627
628
629
630
631
632
633
634
635
636
637
638
639
640
641
642
643
644
645
646
647
648
649
650
651
652
653
654
655
656
657
658
659
660
661
662
663
664
665
666
667
668
669
670
671
672
673
674
675
676
677
678
679
680
681
682
683
684
685
686
687
688
689
690
691
692
693
694
695
696
697
698
699
700
701
702
703
704
705
706
707
708
709
710
711
712
713
714
715
716
717
718
719
720
721
722
723
724
725
726
727
728
729
730
731
732
733
734
735
736
737
738
739
740
741
742
743
744
745
746
747
748
749
750
751
752
753
754
755
756
757
758
759
760
761
762
763
764
765
766
767
768
769
770
771
772
773
774
775
776
777
778
779
780
781
782
783
784
785
786
787
788
789
790
791
792
793
794
795
796
797
798
799
800
801
802
803
804
805
806
807
808
809
810
811
812
813
814
815
816
817
818
819
820
821
822
823
824
825
826
827
828
829
830
831
832
833
834
835
836
837
838
839
840
841
842
843
844
845
846
847
848
849
850
851
852
853
854
855
856
857
858
859
860
861
862
863
864
865
866
867
868
869
870
871
872
873
874
875
876
877
878
879
880
881
882
883
884
885
886
887
888
889
890
891
892
893
894
895
896
897
898
899
900
901
902
903
904
905
906
907
908
909
910
911
912
913
914
915
916
917
918
919
920
921
922
923
924
925
926
927
928
929
930
931
932
933
934
935
936
937
938
939
940
941
942
943
944
945
946
947
948
949
950
951
952
953
954
955
956
957
958
959
960
961
962
963
964
965
966
967
968
969
970
971
972
973
974
975
976
977
978
979
980
981
982
983
984
985
986
987
988
989
990
991
992
993
994
995
996
997
998
999
1000
1001
1002
1003
1004
1005
1006
1007
1008
1009
1010
1011
1012
1013
1014
1015
1016
1017
1018
1019
1020
1021
1022
1023
1024
1025
1026
1027
1028
1029
1030
1031
1032
1033
1034
1035
1036
1037
1038
1039
1040
1041
1042
1043
1044
1045
1046
1047
1048
1049
1050
1051
1052
1053
1054
1055
1056
1057
1058
1059
1060
1061
1062
1063
1064
1065
1066
1067
1068
1069
1070
1071
1072
1073
1074
1075
1076
1077
1078
1079
1080
1081
1082
1083
1084
1085
1086
1087
1088
1089
1090
1091
1092
1093
1094
1095
1096
1097
1098
1099
1100
1101
1102
1103
1104
1105
1106
1107
1108
1109
1110
1111
1112
1113
1114
1115
1116
1117
1118
1119
1120
1121
1122
1123
1124
1125
1126
1127
1128
1129
1130
1131
1132
1133
1134
1135
1136
1137
1138
1139
1140
1141
1142
1143
1144
1145
1146
1147
1148
1149
1150
1151
1152
1153
1154
1155
1156
1157
1158
1159
1160
1161
1162
1163
1164
1165
1166
1167
1168
1169
1170
1171
1172
1173
1174
1175
1176
1177
1178
1179
1180
1181
1182
1183
1184
1185
1186
1187
1188
1189
1190
1191
1192
1193
1194
1195
1196
1197
1198
1199
1200
1201
1202
1203
1204
1205
1206
1207
1208
1209
1210
1211
1212
1213
1214
1215
1216
1217
1218
1219
1220
1221
1222
1223
1224
1225
1226
1227
1228
1229
1230
1231
1232
1233
1234
1235
1236
1237
1238
1239
1240
1241
1242
1243
1244
1245
1246
1247
1248
1249
1250
1251
1252
1253
1254
1255
1256
1257
1258
1259
1260
1261
1262
1263
1264
1265
1266
1267
1268
1269
1270
1271
1272
1273
1274
1275
1276
1277
1278
1279
1280
1281
1282
1283
1284
1285
1286
1287
1288
1289
1290
1291
1292
1293
1294
1295
1296
1297
1298
1299
1300
1301
1302
1303
1304
1305
1306
1307
1308
1309
1310
1311
1312
1313
1314
1315
1316
1317
1318
1319
1320
1321
1322
1323
1324
1325
1326
1327
1328
1329
1330
1331
1332
1333
1334
1335
1336
1337
1338
1339
1340
1341
1342
1343
1344
1345
1346
1347
1348
1349
1350
1351
1352
1353
1354
1355
1356
1357
1358
1359
1360
1361
1362
1363
1364
1365
1366
1367
1368
1369
1370
1371
1372
1373
1374
1375
1376
1377
1378
1379
1380
1381
1382
1383
1384
1385
1386
1387
1388
1389
1390
1391
1392
1393
1394
1395
1396
1397
1398
1399
1400
1401
1402
1403
1404
1405
1406
1407
1408
1409
1410
1411
1412
1413
1414
1415
1416
1417
1418
1419
1420
1421
1422
1423
1424
1425
1426
1427
1428
1429
1430
1431
1432
1433
1434
1435
1436
1437
1438
1439
1440
1441
1442
1443
1444
1445
1446
1447
1448
1449
1450
1451
1452
1453
1454
1455
1456
1457
1458
1459
1460
1461
1462
1463
1464
1465
1466
1467
1468
1469
1470
1471
1472
1473
1474
1475
1476
1477
1478
1479
1480
1481
1482
1483
1484
1485
1486
1487
1488
1489
1490
1491
1492
1493
1494
1495
1496
1497
1498
1499
1500
1501
1502
1503
1504
1505
1506
1507
1508
1509
1510
1511
1512
1513
1514
1515
1516
1517
1518
1519
1520
1521
1522
1523
1524
1525
1526
1527
1528
1529
1530
1531
1532
1533
1534
1535
1536
1537
1538
1539
1540
1541
1542
1543
1544
1545
1546
1547
1548
1549
1550
1551
1552
1553
1554
1555
1556
1557
1558
1559
1560
1561
1562
1563
1564
1565
1566
1567
1568
1569
1570
1571
1572
1573
1574
1575
1576
1577
1578
1579
1580
1581
1582
1583
1584
1585
1586
1587
1588
1589
1590
1591
1592
1593
1594
1595
1596
1597
1598
1599
1600
1601
1602
1603
1604
1605
1606
1607
1608
1609
1610
1611
1612
1613
1614
1615
1616
1617
1618
1619
1620
1621
1622
1623
1624
1625
1626
1627
1628
1629
1630
1631
1632
1633
1634
1635
1636
1637
1638
1639
1640
1641
1642
1643
1644
1645
1646
1647
1648
1649
1650
1651
1652
1653
1654
1655
1656
1657
1658
1659
1660
1661
1662
1663
1664
1665
1666
1667
1668
1669
1670
1671
1672
1673
1674
1675
1676
1677
1678
1679
1680
1681
1682
1683
1684
1685
1686
1687
1688
1689
1690
1691
1692
1693
1694
1695
1696
1697
1698
1699
1700
1701
1702
1703
1704
1705
1706
1707
1708
1709
1710
1711
1712
1713
1714
1715
1716
1717
1718
1719
1720
1721
1722
1723
1724
1725
1726
1727
1728
1729
1730
1731
1732
1733
1734
1735
1736
1737
1738
1739
1740
1741
1742
1743
1744
1745
1746
1747
1748
1749
1750
1751
1752
1753
1754
1755
1756
1757
1758
1759
1760
1761
1762
1763
1764
1765
1766
1767
1768
1769
1770
1771
1772
1773
1774
1775
1776
1777
1778
1779
1780
1781
1782
1783
1784
1785
1786
1787
1788
1789
1790
1791
1792
1793
1794
1795
1796
1797
1798
1799
1800
1801
1802
1803
1804
1805
1806
1807
1808
1809
1810
1811
1812
1813
1814
1815
1816
1817
1818
1819
1820
1821
1822
1823
1824
1825
1826
1827
1828
1829
1830
1831
1832
1833
1834
1835
1836
1837
1838
1839
1840
1841
1842
1843
1844
1845
1846
1847
1848
1849
1850
1851
1852
1853
1854
1855
1856
1857
1858
1859
1860
1861
1862
1863
1864
1865
1866
1867
1868
1869
1870
1871
1872
1873
1874
1875
1876
1877
1878
1879
1880
1881
1882
1883
1884
1885
1886
1887
1888
1889
1890
1891
1892
1893
1894
1895
1896
1897
1898
1899
1900
1901
1902
1903
1904
1905
1906
1907
1908
1909
1910
1911
1912
1913
1914
1915
1916
1917
1918
1919
1920
1921
1922
1923
1924
1925
1926
1927
1928
1929
1930
1931
1932
1933
1934
1935
1936
1937
1938
1939
1940
1941
1942
1943
1944
1945
1946
1947
1948
1949
1950
1951
1952
1953
1954
1955
1956
1957
1958
1959
1960
1961
1962
1963
1964
1965
1966
1967
1968
1969
1970
1971
1972
1973
1974
1975
1976
1977
1978
1979
1980
1981
1982
1983
1984
1985
1986
1987
1988
1989
1990
1991
1992
1993
1994
1995
1996
1997
1998
1999
2000
2001
2002
2003
2004
2005
2006
2007
2008
2009
2010
2011
2012
2013
2014
2015
2016
2017
2018
2019
2020
2021
2022
2023
2024
2025
2026
2027
2028
2029
2030
2031
2032
2033
2034
2035
2036
2037
2038
2039
2040
2041
2042
2043
2044
2045
2046
2047
2048
2049
2050
2051
2052
2053
2054
2055
2056
2057
2058
2059
2060
2061
2062
2063
2064
2065
2066
2067
2068
2069
2070
2071
2072
2073
2074
2075
2076
2077
2078
2079
2080
2081
2082
2083
2084
2085
2086
2087
2088
2089
2090
2091
2092
2093
2094
2095
2096
2097
2098
2099
2100
2101
2102
2103
2104
2105
2106
2107
2108
2109
2110
2111
2112
2113
2114
2115
2116
2117
2118
2119
2120
2121
2122
2123
2124
2125
2126
2127
2128
2129
2130
2131
2132
2133
2134
2135
2136
2137
2138
2139
2140
2141
2142
2143
2144
2145
2146
2147
2148
2149
2150
2151
2152
2153
2154
2155
2156
2157
2158
2159
2160
2161
2162
2163
2164
2165
2166
2167
2168
2169
2170
2171
2172
2173
2174
2175
2176
2177
2178
2179
2180
2181
2182
2183
2184
2185
2186
2187
2188
2189
2190
2191
2192
2193
2194
2195
2196
2197
2198
2199
2200
2201
2202
2203
2204
2205
2206
2207
2208
2209
2210
2211
2212
2213
2214
2215
2216
2217
2218
2219
2220
2221
2222
2223
2224
2225
2226
2227
2228
2229
2230
2231
2232
2233
2234
2235
2236
2237
2238
2239
2240
2241
2242
2243
2244
2245
2246
2247
2248
2249
2250
2251
2252
2253
2254
2255
2256
2257
2258
2259
2260
2261
2262
2263
2264
2265
2266
2267
2268
2269
2270
2271
2272
2273
2274
2275
2276
2277
2278
2279
2280
2281
2282
2283
2284
2285
2286
2287
2288
2289
2290
2291
2292
2293
2294
2295
2296
2297
2298
2299
2300
2301
2302
2303
2304
2305
{
  "nbformat": 4,
  "nbformat_minor": 0,
  "metadata": {
    "accelerator": "GPU",
    "colab": {
      "name": "starter_notebook.ipynb",
      "provenance": [],
      "collapsed_sections": [],
      "toc_visible": true,
      "include_colab_link": true
    },
    "kernelspec": {
      "display_name": "Python 3",
      "language": "python",
      "name": "python3"
    },
    "language_info": {
      "codemirror_mode": {
        "name": "ipython",
        "version": 3
      },
      "file_extension": ".py",
      "mimetype": "text/x-python",
      "name": "python",
      "nbconvert_exporter": "python",
      "pygments_lexer": "ipython3",
      "version": "3.5.6"
    }
  },
  "cells": [
    {
      "cell_type": "markdown",
      "metadata": {
        "id": "view-in-github",
        "colab_type": "text"
      },
      "source": [
        "<a href=\"https://colab.research.google.com/github/ruohoruotsi/masakhane/blob/master/en-ish/jw300-baseline/English_to_Esan_Word-level_notebook.ipynb\" target=\"_parent\"><img src=\"https://colab.research.google.com/assets/colab-badge.svg\" alt=\"Open In Colab\"/></a>"
      ]
    },
    {
      "cell_type": "markdown",
      "metadata": {
        "colab_type": "text",
        "id": "Igc5itf-xMGj"
      },
      "source": [
        "# Masakhane - Machine Translation for African Languages (Using JoeyNMT)"
      ]
    },
    {
      "cell_type": "markdown",
      "metadata": {
        "colab_type": "text",
        "id": "x4fXCKCf36IK"
      },
      "source": [
        "## Note before beginning:\n",
        "### - The idea is that you should be able to make minimal changes to this in order to get SOME result for your own translation corpus. \n",
        "\n",
        "### - The tl;dr: Go to the **\"TODO\"** comments which will tell you what to update to get up and running\n",
        "\n",
        "### - If you actually want to have a clue what you're doing, read the text and peek at the links\n",
        "\n",
        "### - With 100 epochs, it should take around 7 hours to run in Google Colab\n",
        "\n",
        "### - Once you've gotten a result for your language, please attach and email your notebook that generated it to [email protected]\n",
        "\n",
        "### - If you care enough and get a chance, doing a brief background on your language would be amazing. See examples in  [(Martinus, 2019)](https://arxiv.org/abs/1906.05685)"
      ]
    },
    {
      "cell_type": "markdown",
      "metadata": {
        "colab_type": "text",
        "id": "l929HimrxS0a"
      },
      "source": [
        "## Retrieve your data & make a parallel corpus\n",
        "\n",
        "If you are wanting to use the JW300 data referenced on the Masakhane website or in our GitHub repo, you can use `opus-tools` to convert the data into a convenient format. `opus_read` from that package provides a convenient tool for reading the native aligned XML files and to convert them to TMX format. The tool can also be used to fetch relevant files from OPUS on the fly and to filter the data as necessary. [Read the documentation](https://pypi.org/project/opustools-pkg/) for more details.\n",
        "\n",
        "Once you have your corpus files in TMX format (an xml structure which will include the sentences in your target language and your source language in a single file), we recommend reading them into a pandas dataframe. Thankfully, Jade wrote a silly `tmx2dataframe` package which converts your tmx file to a pandas dataframe. "
      ]
    },
    {
      "cell_type": "code",
      "metadata": {
        "colab_type": "code",
        "id": "oGRmDELn7Az0",
        "outputId": "2a02d3ea-3f1a-46b9-bd56-f439adb91530",
        "colab": {
          "base_uri": "https://localhost:8080/",
          "height": 122
        }
      },
      "source": [
        "from google.colab import drive\n",
        "drive.mount('/content/drive')"
      ],
      "execution_count": 1,
      "outputs": [
        {
          "output_type": "stream",
          "text": [
            "Go to this URL in a browser: https://accounts.google.com/o/oauth2/auth?client_id=947318989803-6bn6qk8qdgf4n4g3pfee6491hc0brc4i.apps.googleusercontent.com&redirect_uri=urn%3aietf%3awg%3aoauth%3a2.0%3aoob&response_type=code&scope=email%20https%3a%2f%2fwww.googleapis.com%2fauth%2fdocs.test%20https%3a%2f%2fwww.googleapis.com%2fauth%2fdrive%20https%3a%2f%2fwww.googleapis.com%2fauth%2fdrive.photos.readonly%20https%3a%2f%2fwww.googleapis.com%2fauth%2fpeopleapi.readonly\n",
            "\n",
            "Enter your authorization code:\n",
            "··········\n",
            "Mounted at /content/drive\n"
          ],
          "name": "stdout"
        }
      ]
    },
    {
      "cell_type": "code",
      "metadata": {
        "colab_type": "code",
        "id": "Cn3tgQLzUxwn",
        "colab": {}
      },
      "source": [
        "# TODO: Set your source and target languages. Keep in mind, these traditionally use language codes as found here:\n",
        "# These will also become the suffix's of all vocab and corpus files used throughout\n",
        "import os\n",
        "source_language = \"en\"\n",
        "target_language = \"ish\" \n",
        "lc = False  # If True, lowercase the data.\n",
        "seed = 42  # Random seed for shuffling.\n",
        "tag = \"baseline\" # Give a unique name to your folder - this is to ensure you don't rewrite any models you've already submitted\n",
        "\n",
        "os.environ[\"src\"] = source_language # Sets them in bash as well, since we often use bash scripts\n",
        "os.environ[\"tgt\"] = target_language\n",
        "os.environ[\"tag\"] = tag\n",
        "\n",
        "# This will save it to a folder in our gdrive instead!\n",
        "!mkdir -p \"/content/drive/My Drive/masakhane/$src-$tgt-$tag\"\n",
        "os.environ[\"gdrive_path\"] = \"/content/drive/My Drive/masakhane/%s-%s-%s\" % (source_language, target_language, tag)"
      ],
      "execution_count": 0,
      "outputs": []
    },
    {
      "cell_type": "code",
      "metadata": {
        "colab_type": "code",
        "id": "kBSgJHEw7Nvx",
        "outputId": "b79d00f5-b467-4493-cd76-26dc880ca2bf",
        "colab": {
          "base_uri": "https://localhost:8080/",
          "height": 34
        }
      },
      "source": [
        "!echo $gdrive_path"
      ],
      "execution_count": 4,
      "outputs": [
        {
          "output_type": "stream",
          "text": [
            "/content/drive/My Drive/masakhane/en-ish-baseline\n"
          ],
          "name": "stdout"
        }
      ]
    },
    {
      "cell_type": "code",
      "metadata": {
        "colab_type": "code",
        "id": "gA75Fs9ys8Y9",
        "outputId": "85f1a7de-5ab8-45b9-cdb0-9ae3199df91b",
        "colab": {
          "base_uri": "https://localhost:8080/",
          "height": 102
        }
      },
      "source": [
        "# Install opus-tools\n",
        "! pip install opustools-pkg"
      ],
      "execution_count": 0,
      "outputs": [
        {
          "output_type": "stream",
          "text": [
            "Collecting opustools-pkg\n",
            "\u001b[?25l  Downloading https://files.pythonhosted.org/packages/6c/9f/e829a0cceccc603450cd18e1ff80807b6237a88d9a8df2c0bb320796e900/opustools_pkg-0.0.52-py3-none-any.whl (80kB)\n",
            "\r\u001b[K     |████                            | 10kB 23.8MB/s eta 0:00:01\r\u001b[K     |████████                        | 20kB 1.7MB/s eta 0:00:01\r\u001b[K     |████████████▏                   | 30kB 2.5MB/s eta 0:00:01\r\u001b[K     |████████████████▏               | 40kB 1.7MB/s eta 0:00:01\r\u001b[K     |████████████████████▎           | 51kB 2.1MB/s eta 0:00:01\r\u001b[K     |████████████████████████▎       | 61kB 2.5MB/s eta 0:00:01\r\u001b[K     |████████████████████████████▎   | 71kB 2.9MB/s eta 0:00:01\r\u001b[K     |████████████████████████████████| 81kB 2.5MB/s \n",
            "\u001b[?25hInstalling collected packages: opustools-pkg\n",
            "Successfully installed opustools-pkg-0.0.52\n"
          ],
          "name": "stdout"
        }
      ]
    },
    {
      "cell_type": "code",
      "metadata": {
        "colab_type": "code",
        "id": "xq-tDZVks7ZD",
        "outputId": "9d17c9e1-b6a7-43f4-ee1e-3ea9a8559c27",
        "colab": {
          "base_uri": "https://localhost:8080/",
          "height": 204
        }
      },
      "source": [
        "# Downloading our corpus\n",
        "! opus_read -d JW300 -s $src -t $tgt -wm moses -w jw300.$src jw300.$tgt -q\n",
        "\n",
        "# extract the corpus file\n",
        "! gunzip JW300_latest_xml_$src-$tgt.xml.gz"
      ],
      "execution_count": 0,
      "outputs": [
        {
          "output_type": "stream",
          "text": [
            "\n",
            "Alignment file /proj/nlpl/data/OPUS/JW300/latest/xml/en-iso.xml.gz not found. The following files are available for downloading:\n",
            "\n",
            "   2 MB https://object.pouta.csc.fi/OPUS-JW300/v1/xml/en-iso.xml.gz\n",
            " 263 MB https://object.pouta.csc.fi/OPUS-JW300/v1/xml/en.zip\n",
            "  26 MB https://object.pouta.csc.fi/OPUS-JW300/v1/xml/iso.zip\n",
            "\n",
            " 291 MB Total size\n",
            "./JW300_latest_xml_en-iso.xml.gz ... 100% of 2 MB\n",
            "./JW300_latest_xml_en.zip ... 100% of 263 MB\n",
            "./JW300_latest_xml_iso.zip ... 100% of 26 MB\n"
          ],
          "name": "stdout"
        }
      ]
    },
    {
      "cell_type": "code",
      "metadata": {
        "id": "n48GDRnP8y2G",
        "colab_type": "code",
        "outputId": "8949fb1b-854c-4644-a03c-43fdb68dbc42",
        "colab": {
          "base_uri": "https://localhost:8080/",
          "height": 578
        }
      },
      "source": [
        "# Download the global test set.\n",
        "! wget https://raw.githubusercontent.com/juliakreutzer/masakhane/master/jw300_utils/test/test.en-any.en\n",
        "  \n",
        "# And the specific test set for this language pair.\n",
        "os.environ[\"trg\"] = target_language \n",
        "os.environ[\"src\"] = source_language \n",
        "\n",
        "! wget https://raw.githubusercontent.com/juliakreutzer/masakhane/master/jw300_utils/test/test.en-$trg.en \n",
        "! mv test.en-$trg.en test.en\n",
        "! wget https://raw.githubusercontent.com/juliakreutzer/masakhane/master/jw300_utils/test/test.en-$trg.$trg \n",
        "! mv test.en-$trg.$trg test.$trg"
      ],
      "execution_count": 0,
      "outputs": [
        {
          "output_type": "stream",
          "text": [
            "--2020-01-17 04:59:50--  https://raw.githubusercontent.com/juliakreutzer/masakhane/master/jw300_utils/test/test.en-any.en\n",
            "Resolving raw.githubusercontent.com (raw.githubusercontent.com)... 151.101.0.133, 151.101.64.133, 151.101.128.133, ...\n",
            "Connecting to raw.githubusercontent.com (raw.githubusercontent.com)|151.101.0.133|:443... connected.\n",
            "HTTP request sent, awaiting response... 200 OK\n",
            "Length: 277791 (271K) [text/plain]\n",
            "Saving to: ‘test.en-any.en’\n",
            "\n",
            "\rtest.en-any.en        0%[                    ]       0  --.-KB/s               \rtest.en-any.en      100%[===================>] 271.28K  --.-KB/s    in 0.05s   \n",
            "\n",
            "2020-01-17 04:59:51 (5.15 MB/s) - ‘test.en-any.en’ saved [277791/277791]\n",
            "\n",
            "--2020-01-17 04:59:52--  https://raw.githubusercontent.com/juliakreutzer/masakhane/master/jw300_utils/test/test.en-iso.en\n",
            "Resolving raw.githubusercontent.com (raw.githubusercontent.com)... 151.101.0.133, 151.101.64.133, 151.101.128.133, ...\n",
            "Connecting to raw.githubusercontent.com (raw.githubusercontent.com)|151.101.0.133|:443... connected.\n",
            "HTTP request sent, awaiting response... 200 OK\n",
            "Length: 205488 (201K) [text/plain]\n",
            "Saving to: ‘test.en-iso.en’\n",
            "\n",
            "test.en-iso.en      100%[===================>] 200.67K  --.-KB/s    in 0.04s   \n",
            "\n",
            "2020-01-17 04:59:52 (5.30 MB/s) - ‘test.en-iso.en’ saved [205488/205488]\n",
            "\n",
            "--2020-01-17 04:59:54--  https://raw.githubusercontent.com/juliakreutzer/masakhane/master/jw300_utils/test/test.en-iso.iso\n",
            "Resolving raw.githubusercontent.com (raw.githubusercontent.com)... 151.101.0.133, 151.101.64.133, 151.101.128.133, ...\n",
            "Connecting to raw.githubusercontent.com (raw.githubusercontent.com)|151.101.0.133|:443... connected.\n",
            "HTTP request sent, awaiting response... 200 OK\n",
            "Length: 251918 (246K) [text/plain]\n",
            "Saving to: ‘test.en-iso.iso’\n",
            "\n",
            "test.en-iso.iso     100%[===================>] 246.01K  --.-KB/s    in 0.05s   \n",
            "\n",
            "2020-01-17 04:59:55 (4.68 MB/s) - ‘test.en-iso.iso’ saved [251918/251918]\n",
            "\n"
          ],
          "name": "stdout"
        }
      ]
    },
    {
      "cell_type": "code",
      "metadata": {
        "id": "NqDG-CI28y2L",
        "colab_type": "code",
        "outputId": "44ef9271-b0fc-418d-dc5f-04c90e4e38cd",
        "colab": {
          "base_uri": "https://localhost:8080/",
          "height": 34
        }
      },
      "source": [
        "# Read the test data to filter from train and dev splits.\n",
        "# Store english portion in set for quick filtering checks.\n",
        "en_test_sents = set()\n",
        "filter_test_sents = \"test.en-any.en\"\n",
        "j = 0\n",
        "with open(filter_test_sents) as f:\n",
        "  for line in f:\n",
        "    en_test_sents.add(line.strip())\n",
        "    j += 1\n",
        "print('Loaded {} global test sentences to filter from the training/dev data.'.format(j))"
      ],
      "execution_count": 0,
      "outputs": [
        {
          "output_type": "stream",
          "text": [
            "Loaded 3571 global test sentences to filter from the training/dev data.\n"
          ],
          "name": "stdout"
        }
      ]
    },
    {
      "cell_type": "code",
      "metadata": {
        "colab_type": "code",
        "id": "3CNdwLBCfSIl",
        "outputId": "fcf09810-26de-481b-8ba0-39853c4378b0",
        "colab": {
          "base_uri": "https://localhost:8080/",
          "height": 159
        }
      },
      "source": [
        "import pandas as pd\n",
        "\n",
        "# TMX file to dataframe\n",
        "source_file = 'jw300.' + source_language\n",
        "target_file = 'jw300.' + target_language\n",
        "\n",
        "source = []\n",
        "target = []\n",
        "skip_lines = []  # Collect the line numbers of the source portion to skip the same lines for the target portion.\n",
        "with open(source_file) as f:\n",
        "    for i, line in enumerate(f):\n",
        "        # Skip sentences that are contained in the test set.\n",
        "        if line.strip() not in en_test_sents:\n",
        "            source.append(line.strip())\n",
        "        else:\n",
        "            skip_lines.append(i)             \n",
        "with open(target_file) as f:\n",
        "    for j, line in enumerate(f):\n",
        "        # Only add to corpus if corresponding source was not skipped.\n",
        "        if j not in skip_lines:\n",
        "            target.append(line.strip())\n",
        "    \n",
        "print('Loaded data and skipped {}/{} lines since contained in test set.'.format(len(skip_lines), i))\n",
        "    \n",
        "df = pd.DataFrame(zip(source, target), columns=['source_sentence', 'target_sentence'])\n",
        "# if you get TypeError: data argument can't be an iterator is because of your zip version run this below\n",
        "#df = pd.DataFrame(list(zip(source, target)), columns=['source_sentence', 'target_sentence'])\n",
        "df.head(3)"
      ],
      "execution_count": 0,
      "outputs": [
        {
          "output_type": "stream",
          "text": [
            "Loaded data and skipped 5685/243487 lines since contained in test set.\n"
          ],
          "name": "stdout"
        },
        {
          "output_type": "execute_result",
          "data": {
            "text/html": [
              "<div>\n",
              "<style scoped>\n",
              "    .dataframe tbody tr th:only-of-type {\n",
              "        vertical-align: middle;\n",
              "    }\n",
              "\n",
              "    .dataframe tbody tr th {\n",
              "        vertical-align: top;\n",
              "    }\n",
              "\n",
              "    .dataframe thead th {\n",
              "        text-align: right;\n",
              "    }\n",
              "</style>\n",
              "<table border=\"1\" class=\"dataframe\">\n",
              "  <thead>\n",
              "    <tr style=\"text-align: right;\">\n",
              "      <th></th>\n",
              "      <th>source_sentence</th>\n",
              "      <th>target_sentence</th>\n",
              "    </tr>\n",
              "  </thead>\n",
              "  <tbody>\n",
              "    <tr>\n",
              "      <th>0</th>\n",
              "      <td>“ Only One of the Many Lives That You Touched ”</td>\n",
              "      <td>“ Omọvo Ahwo Buobu nọ Who Duobọ te Uzuazọ Riẹ ”</td>\n",
              "    </tr>\n",
              "    <tr>\n",
              "      <th>1</th>\n",
              "      <td>BACK in January 1996 , Carol was sick with a b...</td>\n",
              "      <td>EVAỌ January 1996 , Carol ọ jẹ mọ ẹyao ẹvori .</td>\n",
              "    </tr>\n",
              "    <tr>\n",
              "      <th>2</th>\n",
              "      <td>She was in her 60 ’ s and until then had alway...</td>\n",
              "      <td>Ọ kpako te ikpe 60 no yọ oke yena kpobi ọ jọ a...</td>\n",
              "    </tr>\n",
              "  </tbody>\n",
              "</table>\n",
              "</div>"
            ],
            "text/plain": [
              "                                     source_sentence                                    target_sentence\n",
              "0    “ Only One of the Many Lives That You Touched ”    “ Omọvo Ahwo Buobu nọ Who Duobọ te Uzuazọ Riẹ ”\n",
              "1  BACK in January 1996 , Carol was sick with a b...     EVAỌ January 1996 , Carol ọ jẹ mọ ẹyao ẹvori .\n",
              "2  She was in her 60 ’ s and until then had alway...  Ọ kpako te ikpe 60 no yọ oke yena kpobi ọ jọ a..."
            ]
          },
          "metadata": {
            "tags": []
          },
          "execution_count": 11
        }
      ]
    },
    {
      "cell_type": "markdown",
      "metadata": {
        "colab_type": "text",
        "id": "YkuK3B4p2AkN"
      },
      "source": [
        "## Pre-processing and export\n",
        "\n",
        "It is generally a good idea to remove duplicate translations and conflicting translations from the corpus. In practice, these public corpora include some number of these that need to be cleaned.\n",
        "\n",
        "In addition we will split our data into dev/test/train and export to the filesystem."
      ]
    },
    {
      "cell_type": "code",
      "metadata": {
        "colab_type": "code",
        "id": "M_2ouEOH1_1q",
        "outputId": "b109ef42-7557-4c8c-8952-874ac33ed667",
        "colab": {
          "base_uri": "https://localhost:8080/",
          "height": 187
        }
      },
      "source": [
        "# drop duplicate translations\n",
        "df_pp = df.drop_duplicates()\n",
        "\n",
        "# drop conflicting translations\n",
        "# (this is optional and something that you might want to comment out \n",
        "# depending on the size of your corpus)\n",
        "df_pp.drop_duplicates(subset='source_sentence', inplace=True)\n",
        "df_pp.drop_duplicates(subset='target_sentence', inplace=True)\n",
        "\n",
        "# Shuffle the data to remove bias in dev set selection.\n",
        "df_pp = df_pp.sample(frac=1, random_state=seed).reset_index(drop=True)"
      ],
      "execution_count": 0,
      "outputs": [
        {
          "output_type": "stream",
          "text": [
            "/usr/local/lib/python3.6/dist-packages/ipykernel_launcher.py:6: SettingWithCopyWarning: \n",
            "A value is trying to be set on a copy of a slice from a DataFrame\n",
            "\n",
            "See the caveats in the documentation: http://pandas.pydata.org/pandas-docs/stable/user_guide/indexing.html#returning-a-view-versus-a-copy\n",
            "  \n",
            "/usr/local/lib/python3.6/dist-packages/ipykernel_launcher.py:7: SettingWithCopyWarning: \n",
            "A value is trying to be set on a copy of a slice from a DataFrame\n",
            "\n",
            "See the caveats in the documentation: http://pandas.pydata.org/pandas-docs/stable/user_guide/indexing.html#returning-a-view-versus-a-copy\n",
            "  import sys\n"
          ],
          "name": "stderr"
        }
      ]
    },
    {
      "cell_type": "code",
      "metadata": {
        "id": "Z_1BwAApEtMk",
        "colab_type": "code",
        "outputId": "175b8c38-2c43-47f7-bccc-0cffe0336959",
        "colab": {
          "base_uri": "https://localhost:8080/",
          "height": 1000
        }
      },
      "source": [
        "# Install fuzzy wuzzy to remove \"almost duplicate\" sentences in the\n",
        "# test and training sets.\n",
        "! pip install fuzzywuzzy\n",
        "! pip install python-Levenshtein\n",
        "import time\n",
        "from fuzzywuzzy import process\n",
        "import numpy as np\n",
        "\n",
        "# reset the index of the training set after previous filtering\n",
        "df_pp.reset_index(drop=False, inplace=True)\n",
        "\n",
        "# Remove samples from the training data set if they \"almost overlap\" with the\n",
        "# samples in the test set.\n",
        "\n",
        "# Filtering function. Adjust pad to narrow down the candidate matches to\n",
        "# within a certain length of characters of the given sample.\n",
        "def fuzzfilter(sample, candidates, pad):\n",
        "  candidates = [x for x in candidates if len(x) <= len(sample)+pad and len(x) >= len(sample)-pad] \n",
        "  if len(candidates) > 0:\n",
        "    return process.extractOne(sample, candidates)[1]\n",
        "  else:\n",
        "    return np.nan\n",
        "\n",
        "# NOTE - This might run slow depending on the size of your training set. We are\n",
        "# printing some information to help you track how long it would take. \n",
        "scores = []\n",
        "start_time = time.time()\n",
        "for idx, row in df_pp.iterrows():\n",
        "  scores.append(fuzzfilter(row['source_sentence'], list(en_test_sents), 5))\n",
        "  if idx % 1000 == 0:\n",
        "    hours, rem = divmod(time.time() - start_time, 3600)\n",
        "    minutes, seconds = divmod(rem, 60)\n",
        "    print(\"{:0>2}:{:0>2}:{:05.2f}\".format(int(hours),int(minutes),seconds), \"%0.2f percent complete\" % (100.0*float(idx)/float(len(df_pp))))\n",
        "\n",
        "# Filter out \"almost overlapping samples\"\n",
        "df_pp['scores'] = scores\n",
        "df_pp = df_pp[df_pp['scores'] < 95]"
      ],
      "execution_count": 0,
      "outputs": [
        {
          "output_type": "stream",
          "text": [
            "Collecting fuzzywuzzy\n",
            "  Downloading https://files.pythonhosted.org/packages/d8/f1/5a267addb30ab7eaa1beab2b9323073815da4551076554ecc890a3595ec9/fuzzywuzzy-0.17.0-py2.py3-none-any.whl\n",
            "Installing collected packages: fuzzywuzzy\n",
            "Successfully installed fuzzywuzzy-0.17.0\n",
            "Collecting python-Levenshtein\n",
            "\u001b[?25l  Downloading https://files.pythonhosted.org/packages/42/a9/d1785c85ebf9b7dfacd08938dd028209c34a0ea3b1bcdb895208bd40a67d/python-Levenshtein-0.12.0.tar.gz (48kB)\n",
            "\u001b[K     |████████████████████████████████| 51kB 1.7MB/s \n",
            "\u001b[?25hRequirement already satisfied: setuptools in /usr/local/lib/python3.6/dist-packages (from python-Levenshtein) (42.0.2)\n",
            "Building wheels for collected packages: python-Levenshtein\n",
            "  Building wheel for python-Levenshtein (setup.py) ... \u001b[?25l\u001b[?25hdone\n",
            "  Created wheel for python-Levenshtein: filename=python_Levenshtein-0.12.0-cp36-cp36m-linux_x86_64.whl size=144672 sha256=27cc679925e9ea7d499147fe08f2564ad8e4295a570a1a075b46139a669d35bc\n",
            "  Stored in directory: /root/.cache/pip/wheels/de/c2/93/660fd5f7559049268ad2dc6d81c4e39e9e36518766eaf7e342\n",
            "Successfully built python-Levenshtein\n",
            "Installing collected packages: python-Levenshtein\n",
            "Successfully installed python-Levenshtein-0.12.0\n",
            "00:00:00.10 0.00 percent complete\n",
            "00:00:23.78 0.46 percent complete\n"
          ],
          "name": "stdout"
        },
        {
          "output_type": "stream",
          "text": [
            "WARNING:root:Applied processor reduces input query to empty string, all comparisons will have score 0. [Query: '']\n"
          ],
          "name": "stderr"
        },
        {
          "output_type": "stream",
          "text": [
            "00:00:47.40 0.92 percent complete\n",
            "00:01:10.57 1.39 percent complete\n"
          ],
          "name": "stdout"
        },
        {
          "output_type": "stream",
          "text": [
            "WARNING:root:Applied processor reduces input query to empty string, all comparisons will have score 0. [Query: '*']\n"
          ],
          "name": "stderr"
        },
        {
          "output_type": "stream",
          "text": [
            "00:01:33.67 1.85 percent complete\n",
            "00:01:56.94 2.31 percent complete\n",
            "00:02:20.72 2.77 percent complete\n",
            "00:02:43.97 3.23 percent complete\n",
            "00:03:07.38 3.70 percent complete\n",
            "00:03:31.62 4.16 percent complete\n",
            "00:03:56.02 4.62 percent complete\n",
            "00:04:19.06 5.08 percent complete\n",
            "00:04:42.39 5.54 percent complete\n",
            "00:05:06.25 6.00 percent complete\n",
            "00:05:30.46 6.47 percent complete\n",
            "00:05:53.63 6.93 percent complete\n",
            "00:06:17.23 7.39 percent complete\n",
            "00:06:41.67 7.85 percent complete\n",
            "00:07:05.22 8.31 percent complete\n",
            "00:07:29.08 8.78 percent complete\n",
            "00:07:52.78 9.24 percent complete\n",
            "00:08:16.19 9.70 percent complete\n",
            "00:08:39.44 10.16 percent complete\n",
            "00:09:03.31 10.62 percent complete\n",
            "00:09:26.40 11.09 percent complete\n",
            "00:09:51.25 11.55 percent complete\n",
            "00:10:15.14 12.01 percent complete\n",
            "00:10:38.52 12.47 percent complete\n",
            "00:11:02.41 12.93 percent complete\n",
            "00:11:26.41 13.40 percent complete\n",
            "00:11:50.05 13.86 percent complete\n",
            "00:12:13.38 14.32 percent complete\n"
          ],
          "name": "stdout"
        },
        {
          "output_type": "stream",
          "text": [
            "WARNING:root:Applied processor reduces input query to empty string, all comparisons will have score 0. [Query: '․ ․ ․ ․ ․']\n"
          ],
          "name": "stderr"
        },
        {
          "output_type": "stream",
          "text": [
            "00:12:37.46 14.78 percent complete\n",
            "00:13:01.81 15.24 percent complete\n",
            "00:13:25.69 15.70 percent complete\n",
            "00:13:49.63 16.17 percent complete\n",
            "00:14:13.48 16.63 percent complete\n",
            "00:14:37.29 17.09 percent complete\n",
            "00:15:01.50 17.55 percent complete\n",
            "00:15:25.57 18.01 percent complete\n",
            "00:15:49.18 18.48 percent complete\n",
            "00:16:13.51 18.94 percent complete\n",
            "00:16:37.01 19.40 percent complete\n",
            "00:17:00.10 19.86 percent complete\n",
            "00:17:23.41 20.32 percent complete\n",
            "00:17:47.00 20.79 percent complete\n",
            "00:18:10.96 21.25 percent complete\n",
            "00:18:34.67 21.71 percent complete\n",
            "00:18:59.32 22.17 percent complete\n",
            "00:19:23.61 22.63 percent complete\n",
            "00:19:47.81 23.10 percent complete\n",
            "00:20:12.35 23.56 percent complete\n",
            "00:20:36.05 24.02 percent complete\n",
            "00:20:59.50 24.48 percent complete\n",
            "00:21:23.22 24.94 percent complete\n",
            "00:21:47.62 25.40 percent complete\n",
            "00:22:11.51 25.87 percent complete\n",
            "00:22:35.28 26.33 percent complete\n",
            "00:22:58.71 26.79 percent complete\n",
            "00:23:22.48 27.25 percent complete\n",
            "00:23:46.81 27.71 percent complete\n"
          ],
          "name": "stdout"
        },
        {
          "output_type": "stream",
          "text": [
            "WARNING:root:Applied processor reduces input query to empty string, all comparisons will have score 0. [Query: '․ ․ ․ ․ ․ ․ ․ ․']\n"
          ],
          "name": "stderr"
        },
        {
          "output_type": "stream",
          "text": [
            "00:24:10.94 28.18 percent complete\n",
            "00:24:34.16 28.64 percent complete\n",
            "00:24:58.34 29.10 percent complete\n",
            "00:25:22.14 29.56 percent complete\n",
            "00:25:46.52 30.02 percent complete\n",
            "00:26:09.90 30.49 percent complete\n",
            "00:26:34.10 30.95 percent complete\n",
            "00:26:58.06 31.41 percent complete\n",
            "00:27:21.26 31.87 percent complete\n",
            "00:27:45.50 32.33 percent complete\n",
            "00:28:09.00 32.79 percent complete\n",
            "00:28:32.87 33.26 percent complete\n",
            "00:28:57.11 33.72 percent complete\n",
            "00:29:21.37 34.18 percent complete\n",
            "00:29:45.41 34.64 percent complete\n",
            "00:30:08.93 35.10 percent complete\n",
            "00:30:32.97 35.57 percent complete\n",
            "00:30:56.46 36.03 percent complete\n",
            "00:31:19.93 36.49 percent complete\n",
            "00:31:44.33 36.95 percent complete\n",
            "00:32:07.88 37.41 percent complete\n",
            "00:32:32.08 37.88 percent complete\n",
            "00:32:56.34 38.34 percent complete\n",
            "00:33:20.79 38.80 percent complete\n",
            "00:33:44.59 39.26 percent complete\n",
            "00:34:08.98 39.72 percent complete\n",
            "00:34:32.93 40.19 percent complete\n",
            "00:34:56.72 40.65 percent complete\n",
            "00:35:21.12 41.11 percent complete\n",
            "00:35:45.38 41.57 percent complete\n",
            "00:36:09.10 42.03 percent complete\n",
            "00:36:33.30 42.49 percent complete\n",
            "00:36:57.68 42.96 percent complete\n",
            "00:37:21.90 43.42 percent complete\n",
            "00:37:45.21 43.88 percent complete\n",
            "00:38:09.01 44.34 percent complete\n",
            "00:38:33.14 44.80 percent complete\n",
            "00:38:57.65 45.27 percent complete\n",
            "00:39:21.34 45.73 percent complete\n",
            "00:39:45.27 46.19 percent complete\n",
            "00:40:09.16 46.65 percent complete\n"
          ],
          "name": "stdout"
        },
        {
          "output_type": "stream",
          "text": [
            "WARNING:root:Applied processor reduces input query to empty string, all comparisons will have score 0. [Query: '․ ․']\n"
          ],
          "name": "stderr"
        },
        {
          "output_type": "stream",
          "text": [
            "00:40:32.51 47.11 percent complete\n",
            "00:40:56.64 47.58 percent complete\n",
            "00:41:20.36 48.04 percent complete\n",
            "00:41:44.61 48.50 percent complete\n",
            "00:42:08.32 48.96 percent complete\n",
            "00:42:31.93 49.42 percent complete\n",
            "00:42:56.28 49.89 percent complete\n",
            "00:43:20.24 50.35 percent complete\n",
            "00:43:44.62 50.81 percent complete\n",
            "00:44:08.91 51.27 percent complete\n",
            "00:44:32.54 51.73 percent complete\n",
            "00:44:56.09 52.19 percent complete\n",
            "00:45:20.95 52.66 percent complete\n",
            "00:45:44.71 53.12 percent complete\n",
            "00:46:08.30 53.58 percent complete\n",
            "00:46:32.61 54.04 percent complete\n",
            "00:46:56.86 54.50 percent complete\n",
            "00:47:20.82 54.97 percent complete\n",
            "00:47:44.99 55.43 percent complete\n",
            "00:48:08.38 55.89 percent complete\n",
            "00:48:32.48 56.35 percent complete\n",
            "00:48:56.67 56.81 percent complete\n",
            "00:49:20.35 57.28 percent complete\n",
            "00:49:44.61 57.74 percent complete\n",
            "00:50:08.07 58.20 percent complete\n",
            "00:50:32.40 58.66 percent complete\n",
            "00:50:56.51 59.12 percent complete\n",
            "00:51:20.65 59.59 percent complete\n",
            "00:51:44.56 60.05 percent complete\n",
            "00:52:08.95 60.51 percent complete\n",
            "00:52:32.77 60.97 percent complete\n",
            "00:52:56.32 61.43 percent complete\n",
            "00:53:20.96 61.89 percent complete\n",
            "00:53:45.01 62.36 percent complete\n",
            "00:54:08.62 62.82 percent complete\n",
            "00:54:32.80 63.28 percent complete\n",
            "00:54:56.52 63.74 percent complete\n",
            "00:55:20.42 64.20 percent complete\n",
            "00:55:44.48 64.67 percent complete\n",
            "00:56:08.38 65.13 percent complete\n",
            "00:56:32.50 65.59 percent complete\n",
            "00:56:56.41 66.05 percent complete\n",
            "00:57:20.00 66.51 percent complete\n",
            "00:57:43.52 66.98 percent complete\n",
            "00:58:07.51 67.44 percent complete\n",
            "00:58:31.43 67.90 percent complete\n",
            "00:58:55.35 68.36 percent complete\n",
            "00:59:19.06 68.82 percent complete\n",
            "00:59:42.85 69.29 percent complete\n",
            "01:00:07.00 69.75 percent complete\n",
            "01:00:30.53 70.21 percent complete\n",
            "01:00:54.45 70.67 percent complete\n",
            "01:01:18.35 71.13 percent complete\n",
            "01:01:42.37 71.59 percent complete\n",
            "01:02:06.05 72.06 percent complete\n",
            "01:02:29.54 72.52 percent complete\n",
            "01:02:53.79 72.98 percent complete\n",
            "01:03:17.95 73.44 percent complete\n",
            "01:03:41.78 73.90 percent complete\n",
            "01:04:05.36 74.37 percent complete\n",
            "01:04:29.49 74.83 percent complete\n",
            "01:04:54.40 75.29 percent complete\n",
            "01:05:18.19 75.75 percent complete\n",
            "01:05:41.97 76.21 percent complete\n",
            "01:06:05.42 76.68 percent complete\n",
            "01:06:29.65 77.14 percent complete\n",
            "01:06:53.24 77.60 percent complete\n",
            "01:07:16.62 78.06 percent complete\n",
            "01:07:40.89 78.52 percent complete\n",
            "01:08:05.22 78.98 percent complete\n",
            "01:08:28.49 79.45 percent complete\n",
            "01:08:52.56 79.91 percent complete\n",
            "01:09:16.44 80.37 percent complete\n",
            "01:09:40.34 80.83 percent complete\n",
            "01:10:04.15 81.29 percent complete\n",
            "01:10:28.28 81.76 percent complete\n",
            "01:10:51.83 82.22 percent complete\n",
            "01:11:15.87 82.68 percent complete\n",
            "01:11:39.95 83.14 percent complete\n",
            "01:12:03.72 83.60 percent complete\n",
            "01:12:26.92 84.07 percent complete\n",
            "01:12:51.37 84.53 percent complete\n"
          ],
          "name": "stdout"
        },
        {
          "output_type": "stream",
          "text": [
            "WARNING:root:Applied processor reduces input query to empty string, all comparisons will have score 0. [Query: '⇩']\n"
          ],
          "name": "stderr"
        },
        {
          "output_type": "stream",
          "text": [
            "01:13:15.72 84.99 percent complete\n",
            "01:13:39.67 85.45 percent complete\n",
            "01:14:03.39 85.91 percent complete\n",
            "01:14:27.32 86.38 percent complete\n",
            "01:14:51.76 86.84 percent complete\n",
            "01:15:15.58 87.30 percent complete\n",
            "01:15:39.33 87.76 percent complete\n",
            "01:16:03.85 88.22 percent complete\n",
            "01:16:27.71 88.68 percent complete\n",
            "01:16:51.58 89.15 percent complete\n",
            "01:17:15.41 89.61 percent complete\n",
            "01:17:39.83 90.07 percent complete\n",
            "01:18:04.13 90.53 percent complete\n",
            "01:18:28.67 90.99 percent complete\n",
            "01:18:53.01 91.46 percent complete\n",
            "01:19:16.73 91.92 percent complete\n",
            "01:19:41.87 92.38 percent complete\n",
            "01:20:05.67 92.84 percent complete\n",
            "01:20:29.44 93.30 percent complete\n",
            "01:20:53.86 93.77 percent complete\n",
            "01:21:18.33 94.23 percent complete\n",
            "01:21:42.36 94.69 percent complete\n",
            "01:22:06.26 95.15 percent complete\n",
            "01:22:29.82 95.61 percent complete\n",
            "01:22:53.83 96.08 percent complete\n",
            "01:23:17.51 96.54 percent complete\n",
            "01:23:41.70 97.00 percent complete\n",
            "01:24:05.69 97.46 percent complete\n",
            "01:24:30.08 97.92 percent complete\n",
            "01:24:53.94 98.38 percent complete\n",
            "01:25:17.57 98.85 percent complete\n",
            "01:25:41.43 99.31 percent complete\n",
            "01:26:05.41 99.77 percent complete\n"
          ],
          "name": "stdout"
        }
      ]
    },
    {
      "cell_type": "code",
      "metadata": {
        "colab_type": "code",
        "id": "hxxBOCA-xXhy",
        "colab": {}
      },
      "source": [
        "# This section does the split between train/dev for the parallel corpora then saves them as separate files\n",
        "# We use 1000 dev test and the given test set.\n",
        "import csv\n",
        "\n",
        "# Do the split between dev/train and create parallel corpora\n",
        "num_dev_patterns = 1000\n",
        "\n",
        "# Optional: lower case the corpora - this will make it easier to generalize, but without proper casing.\n",
        "if lc:  # Julia: making lowercasing optional\n",
        "    df_pp[\"source_sentence\"] = df_pp[\"source_sentence\"].str.lower()\n",
        "    df_pp[\"target_sentence\"] = df_pp[\"target_sentence\"].str.lower()\n",
        "\n",
        "# Julia: test sets are already generated\n",
        "dev = df_pp.tail(num_dev_patterns) # Herman: Error in original\n",
        "stripped = df_pp.drop(df_pp.tail(num_dev_patterns).index)\n",
        "\n",
        "with open(\"train.\"+source_language, \"w\") as src_file, open(\"train.\"+target_language, \"w\") as trg_file:\n",
        "  for index, row in stripped.iterrows():\n",
        "    src_file.write(row[\"source_sentence\"]+\"\\n\")\n",
        "    trg_file.write(row[\"target_sentence\"]+\"\\n\")\n",
        "    \n",
        "with open(\"dev.\"+source_language, \"w\") as src_file, open(\"dev.\"+target_language, \"w\") as trg_file:\n",
        "  for index, row in dev.iterrows():\n",
        "    src_file.write(row[\"source_sentence\"]+\"\\n\")\n",
        "    trg_file.write(row[\"target_sentence\"]+\"\\n\")\n",
        "\n",
        "#stripped[[\"source_sentence\"]].to_csv(\"train.\"+source_language, header=False, index=False)  # Herman: Added `header=False` everywhere\n",
        "#stripped[[\"target_sentence\"]].to_csv(\"train.\"+target_language, header=False, index=False)  # Julia: Problematic handling of quotation marks.\n",
        "\n",
        "#dev[[\"source_sentence\"]].to_csv(\"dev.\"+source_language, header=False, index=False)\n",
        "#dev[[\"target_sentence\"]].to_csv(\"dev.\"+target_language, header=False, index=False)\n",
        "\n",
        "# Doublecheck the format below. There should be no extra quotation marks or weird characters.\n",
        "! head train.*\n",
        "! head dev.*"
      ],
      "execution_count": 0,
      "outputs": []
    },
    {
      "cell_type": "markdown",
      "metadata": {
        "colab_type": "text",
        "id": "epeCydmCyS8X"
      },
      "source": [
        "\n",
        "\n",
        "---\n",
        "\n",
        "\n",
        "## Installation of JoeyNMT\n",
        "\n",
        "JoeyNMT is a simple, minimalist NMT package which is useful for learning and teaching. Check out the documentation for JoeyNMT [here](https://joeynmt.readthedocs.io)  "
      ]
    },
    {
      "cell_type": "code",
      "metadata": {
        "colab_type": "code",
        "id": "iBRMm4kMxZ8L",
        "outputId": "bff98114-48cb-4762-9a92-c29167222bbc",
        "colab": {
          "base_uri": "https://localhost:8080/",
          "height": 1000
        }
      },
      "source": [
        "# Install JoeyNMT\n",
        "! git clone https://github.com/joeynmt/joeynmt.git\n",
        "! cd joeynmt; pip3 install ."
      ],
      "execution_count": 5,
      "outputs": [
        {
          "output_type": "stream",
          "text": [
            "Cloning into 'joeynmt'...\n",
            "remote: Enumerating objects: 61, done.\u001b[K\n",
            "remote: Counting objects: 100% (61/61), done.\u001b[K\n",
            "remote: Compressing objects: 100% (39/39), done.\u001b[K\n",
            "remote: Total 2245 (delta 34), reused 34 (delta 22), pack-reused 2184\u001b[K\n",
            "Receiving objects: 100% (2245/2245), 2.63 MiB | 1.95 MiB/s, done.\n",
            "Resolving deltas: 100% (1555/1555), done.\n",
            "Processing /content/joeynmt\n",
            "Requirement already satisfied: future in /usr/local/lib/python3.6/dist-packages (from joeynmt==0.0.1) (0.16.0)\n",
            "Requirement already satisfied: pillow in /usr/local/lib/python3.6/dist-packages (from joeynmt==0.0.1) (6.2.2)\n",
            "Requirement already satisfied: numpy<2.0,>=1.14.5 in /usr/local/lib/python3.6/dist-packages (from joeynmt==0.0.1) (1.17.5)\n",
            "Requirement already satisfied: setuptools>=41.0.0 in /usr/local/lib/python3.6/dist-packages (from joeynmt==0.0.1) (42.0.2)\n",
            "Requirement already satisfied: torch>=1.1 in /usr/local/lib/python3.6/dist-packages (from joeynmt==0.0.1) (1.3.1)\n",
            "Requirement already satisfied: tensorflow>=1.14 in /usr/local/lib/python3.6/dist-packages (from joeynmt==0.0.1) (1.15.0)\n",
            "Requirement already satisfied: torchtext in /usr/local/lib/python3.6/dist-packages (from joeynmt==0.0.1) (0.3.1)\n",
            "Collecting sacrebleu>=1.3.6\n",
            "  Downloading https://files.pythonhosted.org/packages/45/31/1a135b964c169984b27fb2f7a50280fa7f8e6d9d404d8a9e596180487fd1/sacrebleu-1.4.3-py3-none-any.whl\n",
            "Collecting subword-nmt\n",
            "  Downloading https://files.pythonhosted.org/packages/74/60/6600a7bc09e7ab38bc53a48a20d8cae49b837f93f5842a41fe513a694912/subword_nmt-0.3.7-py2.py3-none-any.whl\n",
            "Requirement already satisfied: matplotlib in /usr/local/lib/python3.6/dist-packages (from joeynmt==0.0.1) (3.1.2)\n",
            "Requirement already satisfied: seaborn in /usr/local/lib/python3.6/dist-packages (from joeynmt==0.0.1) (0.9.0)\n",
            "Collecting pyyaml>=5.1\n",
            "\u001b[?25l  Downloading https://files.pythonhosted.org/packages/3d/d9/ea9816aea31beeadccd03f1f8b625ecf8f645bd66744484d162d84803ce5/PyYAML-5.3.tar.gz (268kB)\n",
            "\u001b[K     |████████████████████████████████| 276kB 34.6MB/s \n",
            "\u001b[?25hCollecting pylint\n",
            "\u001b[?25l  Downloading https://files.pythonhosted.org/packages/e9/59/43fc36c5ee316bb9aeb7cf5329cdbdca89e5749c34d5602753827c0aa2dc/pylint-2.4.4-py3-none-any.whl (302kB)\n",
            "\u001b[K     |████████████████████████████████| 307kB 50.7MB/s \n",
            "\u001b[?25hRequirement already satisfied: six==1.12 in /usr/local/lib/python3.6/dist-packages (from joeynmt==0.0.1) (1.12.0)\n",
            "Requirement already satisfied: tensorflow-estimator==1.15.1 in /usr/local/lib/python3.6/dist-packages (from tensorflow>=1.14->joeynmt==0.0.1) (1.15.1)\n",
            "Requirement already satisfied: gast==0.2.2 in /usr/local/lib/python3.6/dist-packages (from tensorflow>=1.14->joeynmt==0.0.1) (0.2.2)\n",
            "Requirement already satisfied: astor>=0.6.0 in /usr/local/lib/python3.6/dist-packages (from tensorflow>=1.14->joeynmt==0.0.1) (0.8.1)\n",
            "Requirement already satisfied: keras-preprocessing>=1.0.5 in /usr/local/lib/python3.6/dist-packages (from tensorflow>=1.14->joeynmt==0.0.1) (1.1.0)\n",
            "Requirement already satisfied: tensorboard<1.16.0,>=1.15.0 in /usr/local/lib/python3.6/dist-packages (from tensorflow>=1.14->joeynmt==0.0.1) (1.15.0)\n",
            "Requirement already satisfied: google-pasta>=0.1.6 in /usr/local/lib/python3.6/dist-packages (from tensorflow>=1.14->joeynmt==0.0.1) (0.1.8)\n",
            "Requirement already satisfied: opt-einsum>=2.3.2 in /usr/local/lib/python3.6/dist-packages (from tensorflow>=1.14->joeynmt==0.0.1) (3.1.0)\n",
            "Requirement already satisfied: wrapt>=1.11.1 in /usr/local/lib/python3.6/dist-packages (from tensorflow>=1.14->joeynmt==0.0.1) (1.11.2)\n",
            "Requirement already satisfied: protobuf>=3.6.1 in /usr/local/lib/python3.6/dist-packages (from tensorflow>=1.14->joeynmt==0.0.1) (3.10.0)\n",
            "Requirement already satisfied: grpcio>=1.8.6 in /usr/local/lib/python3.6/dist-packages (from tensorflow>=1.14->joeynmt==0.0.1) (1.15.0)\n",
            "Requirement already satisfied: absl-py>=0.7.0 in /usr/local/lib/python3.6/dist-packages (from tensorflow>=1.14->joeynmt==0.0.1) (0.9.0)\n",
            "Requirement already satisfied: wheel>=0.26 in /usr/local/lib/python3.6/dist-packages (from tensorflow>=1.14->joeynmt==0.0.1) (0.33.6)\n",
            "Requirement already satisfied: termcolor>=1.1.0 in /usr/local/lib/python3.6/dist-packages (from tensorflow>=1.14->joeynmt==0.0.1) (1.1.0)\n",
            "Requirement already satisfied: keras-applications>=1.0.8 in /usr/local/lib/python3.6/dist-packages (from tensorflow>=1.14->joeynmt==0.0.1) (1.0.8)\n",
            "Requirement already satisfied: tqdm in /usr/local/lib/python3.6/dist-packages (from torchtext->joeynmt==0.0.1) (4.28.1)\n",
            "Requirement already satisfied: requests in /usr/local/lib/python3.6/dist-packages (from torchtext->joeynmt==0.0.1) (2.21.0)\n",
            "Collecting portalocker\n",
            "  Downloading https://files.pythonhosted.org/packages/91/db/7bc703c0760df726839e0699b7f78a4d8217fdc9c7fcb1b51b39c5a22a4e/portalocker-1.5.2-py2.py3-none-any.whl\n",
            "Requirement already satisfied: typing in /usr/local/lib/python3.6/dist-packages (from sacrebleu>=1.3.6->joeynmt==0.0.1) (3.6.6)\n",
            "Requirement already satisfied: pyparsing!=2.0.4,!=2.1.2,!=2.1.6,>=2.0.1 in /usr/local/lib/python3.6/dist-packages (from matplotlib->joeynmt==0.0.1) (2.4.6)\n",
            "Requirement already satisfied: cycler>=0.10 in /usr/local/lib/python3.6/dist-packages (from matplotlib->joeynmt==0.0.1) (0.10.0)\n",
            "Requirement already satisfied: python-dateutil>=2.1 in /usr/local/lib/python3.6/dist-packages (from matplotlib->joeynmt==0.0.1) (2.6.1)\n",
            "Requirement already satisfied: kiwisolver>=1.0.1 in /usr/local/lib/python3.6/dist-packages (from matplotlib->joeynmt==0.0.1) (1.1.0)\n",
            "Requirement already satisfied: pandas>=0.15.2 in /usr/local/lib/python3.6/dist-packages (from seaborn->joeynmt==0.0.1) (0.25.3)\n",
            "Requirement already satisfied: scipy>=0.14.0 in /usr/local/lib/python3.6/dist-packages (from seaborn->joeynmt==0.0.1) (1.4.1)\n",
            "Collecting mccabe<0.7,>=0.6\n",
            "  Downloading https://files.pythonhosted.org/packages/87/89/479dc97e18549e21354893e4ee4ef36db1d237534982482c3681ee6e7b57/mccabe-0.6.1-py2.py3-none-any.whl\n",
            "Collecting isort<5,>=4.2.5\n",
            "\u001b[?25l  Downloading https://files.pythonhosted.org/packages/e5/b0/c121fd1fa3419ea9bfd55c7f9c4fedfec5143208d8c7ad3ce3db6c623c21/isort-4.3.21-py2.py3-none-any.whl (42kB)\n",
            "\u001b[K     |████████████████████████████████| 51kB 9.4MB/s \n",
            "\u001b[?25hCollecting astroid<2.4,>=2.3.0\n",
            "\u001b[?25l  Downloading https://files.pythonhosted.org/packages/ad/ae/86734823047962e7b8c8529186a1ac4a7ca19aaf1aa0c7713c022ef593fd/astroid-2.3.3-py3-none-any.whl (205kB)\n",
            "\u001b[K     |████████████████████████████████| 215kB 53.2MB/s \n",
            "\u001b[?25hRequirement already satisfied: markdown>=2.6.8 in /usr/local/lib/python3.6/dist-packages (from tensorboard<1.16.0,>=1.15.0->tensorflow>=1.14->joeynmt==0.0.1) (3.1.1)\n",
            "Requirement already satisfied: werkzeug>=0.11.15 in /usr/local/lib/python3.6/dist-packages (from tensorboard<1.16.0,>=1.15.0->tensorflow>=1.14->joeynmt==0.0.1) (0.16.0)\n",
            "Requirement already satisfied: h5py in /usr/local/lib/python3.6/dist-packages (from keras-applications>=1.0.8->tensorflow>=1.14->joeynmt==0.0.1) (2.8.0)\n",
            "Requirement already satisfied: chardet<3.1.0,>=3.0.2 in /usr/local/lib/python3.6/dist-packages (from requests->torchtext->joeynmt==0.0.1) (3.0.4)\n",
            "Requirement already satisfied: certifi>=2017.4.17 in /usr/local/lib/python3.6/dist-packages (from requests->torchtext->joeynmt==0.0.1) (2019.11.28)\n",
            "Requirement already satisfied: urllib3<1.25,>=1.21.1 in /usr/local/lib/python3.6/dist-packages (from requests->torchtext->joeynmt==0.0.1) (1.24.3)\n",
            "Requirement already satisfied: idna<2.9,>=2.5 in /usr/local/lib/python3.6/dist-packages (from requests->torchtext->joeynmt==0.0.1) (2.8)\n",
            "Requirement already satisfied: pytz>=2017.2 in /usr/local/lib/python3.6/dist-packages (from pandas>=0.15.2->seaborn->joeynmt==0.0.1) (2018.9)\n",
            "Collecting typed-ast<1.5,>=1.4.0; implementation_name == \"cpython\" and python_version < \"3.8\"\n",
            "\u001b[?25l  Downloading https://files.pythonhosted.org/packages/90/ed/5459080d95eb87a02fe860d447197be63b6e2b5e9ff73c2b0a85622994f4/typed_ast-1.4.1-cp36-cp36m-manylinux1_x86_64.whl (737kB)\n",
            "\u001b[K     |████████████████████████████████| 747kB 55.9MB/s \n",
            "\u001b[?25hCollecting lazy-object-proxy==1.4.*\n",
            "\u001b[?25l  Downloading https://files.pythonhosted.org/packages/0b/dd/b1e3407e9e6913cf178e506cd0dee818e58694d9a5cd1984e3f6a8b9a10f/lazy_object_proxy-1.4.3-cp36-cp36m-manylinux1_x86_64.whl (55kB)\n",
            "\u001b[K     |████████████████████████████████| 61kB 10.3MB/s \n",
            "\u001b[?25hBuilding wheels for collected packages: joeynmt, pyyaml\n",
            "  Building wheel for joeynmt (setup.py) ... \u001b[?25l\u001b[?25hdone\n",
            "  Created wheel for joeynmt: filename=joeynmt-0.0.1-cp36-none-any.whl size=72136 sha256=0dd2eb8283fc02915ba7744edd0efbcfa015c5bde8a28d89e2a61f6bda0083bc\n",
            "  Stored in directory: /tmp/pip-ephem-wheel-cache-c6jfu0up/wheels/db/01/db/751cc9f3e7f6faec127c43644ba250a3ea7ad200594aeda70a\n",
            "  Building wheel for pyyaml (setup.py) ... \u001b[?25l\u001b[?25hdone\n",
            "  Created wheel for pyyaml: filename=PyYAML-5.3-cp36-cp36m-linux_x86_64.whl size=44229 sha256=df87aadcc50a400dc278a40afc1ffa777492a692efd93def19fcb776e5656e14\n",
            "  Stored in directory: /root/.cache/pip/wheels/e4/76/4d/a95b8dd7b452b69e8ed4f68b69e1b55e12c9c9624dd962b191\n",
            "Successfully built joeynmt pyyaml\n",
            "Installing collected packages: portalocker, sacrebleu, subword-nmt, pyyaml, mccabe, isort, typed-ast, lazy-object-proxy, astroid, pylint, joeynmt\n",
            "  Found existing installation: PyYAML 3.13\n",
            "    Uninstalling PyYAML-3.13:\n",
            "      Successfully uninstalled PyYAML-3.13\n",
            "Successfully installed astroid-2.3.3 isort-4.3.21 joeynmt-0.0.1 lazy-object-proxy-1.4.3 mccabe-0.6.1 portalocker-1.5.2 pylint-2.4.4 pyyaml-5.3 sacrebleu-1.4.3 subword-nmt-0.3.7 typed-ast-1.4.1\n"
          ],
          "name": "stdout"
        }
      ]
    },
    {
      "cell_type": "markdown",
      "metadata": {
        "colab_type": "text",
        "id": "AaE77Tcppex9"
      },
      "source": [
        "# Preprocessing the Data into Subword BPE Tokens\n",
        "\n",
        "- One of the most powerful improvements for agglutinative languages (a feature of most Bantu languages) is using BPE tokenization [ (Sennrich, 2015) ](https://arxiv.org/abs/1508.07909).\n",
        "\n",
        "- It was also shown that by optimizing the umber of BPE codes we significantly improve results for low-resourced languages [(Sennrich, 2019)](https://www.aclweb.org/anthology/P19-1021) [(Martinus, 2019)](https://arxiv.org/abs/1906.05685)\n",
        "\n",
        "- Below we have the scripts for doing BPE tokenization of our data. We use 4000 tokens as recommended by [(Sennrich, 2019)](https://www.aclweb.org/anthology/P19-1021). You do not need to change anything. Simply running the below will be suitable. "
      ]
    },
    {
      "cell_type": "code",
      "metadata": {
        "colab_type": "code",
        "id": "H-TyjtmXB1mL",
        "colab": {}
      },
      "source": [
        "# # One of the huge boosts in NMT performance was to use a different method of tokenizing. \n",
        "# # Usually, NMT would tokenize by words. However, using a method called BPE gave amazing boosts to performance\n",
        "\n",
        "# # Do subword NMT\n",
        "# from os import path\n",
        "# os.environ[\"src\"] = source_language # Sets them in bash as well, since we often use bash scripts\n",
        "# os.environ[\"tgt\"] = target_language\n",
        "\n",
        "# # Learn BPEs on the training data.\n",
        "# os.environ[\"data_path\"] = path.join(\"joeynmt\", \"data\", source_language + target_language) # Herman! \n",
        "# ! subword-nmt learn-joint-bpe-and-vocab --input train.$src train.$tgt -s 4000 -o bpe.codes.4000 --write-vocabulary vocab.$src vocab.$tgt\n",
        "\n",
        "# # Apply BPE splits to the development and test data.\n",
        "# ! subword-nmt apply-bpe -c bpe.codes.4000 --vocabulary vocab.$src < train.$src > train.bpe.$src\n",
        "# ! subword-nmt apply-bpe -c bpe.codes.4000 --vocabulary vocab.$tgt < train.$tgt > train.bpe.$tgt\n",
        "\n",
        "# ! subword-nmt apply-bpe -c bpe.codes.4000 --vocabulary vocab.$src < dev.$src > dev.bpe.$src\n",
        "# ! subword-nmt apply-bpe -c bpe.codes.4000 --vocabulary vocab.$tgt < dev.$tgt > dev.bpe.$tgt\n",
        "# ! subword-nmt apply-bpe -c bpe.codes.4000 --vocabulary vocab.$src < test.$src > test.bpe.$src\n",
        "# ! subword-nmt apply-bpe -c bpe.codes.4000 --vocabulary vocab.$tgt < test.$tgt > test.bpe.$tgt\n",
        "\n",
        "# # Create directory, move everyone we care about to the correct location\n",
        "# ! mkdir -p $data_path\n",
        "# ! cp train.* $data_path\n",
        "# ! cp test.* $data_path\n",
        "# ! cp dev.* $data_path\n",
        "# ! cp bpe.codes.4000 $data_path\n",
        "# ! ls $data_path\n",
        "\n",
        "# # Also move everything we care about to a mounted location in google drive (relevant if running in colab) at gdrive_path\n",
        "# ! cp train.* \"$gdrive_path\"\n",
        "# ! cp test.* \"$gdrive_path\"\n",
        "# ! cp dev.* \"$gdrive_path\"\n",
        "# ! cp bpe.codes.4000 \"$gdrive_path\"\n",
        "# ! ls \"$gdrive_path\"\n",
        "\n",
        "# # Create that vocab using build_vocab\n",
        "# ! sudo chmod 777 joeynmt/scripts/build_vocab.py\n",
        "# ! joeynmt/scripts/build_vocab.py joeynmt/data/$src$tgt/train.bpe.$src joeynmt/data/$src$tgt/train.bpe.$tgt --output_path joeynmt/data/$src$tgt/vocab.txt\n",
        "\n",
        "# # Some output\n",
        "# ! echo \"BPE Isoko Sentences\"\n",
        "# ! tail -n 5 test.bpe.$tgt\n",
        "# ! echo \"Combined BPE Vocab\"\n",
        "# ! tail -n 10 joeynmt/data/$src$tgt/vocab.txt  # Herman\n",
        "# ! cp joeynmt/data/$src$tgt/vocab.txt \"$gdrive_path\""
      ],
      "execution_count": 0,
      "outputs": []
    },
    {
      "cell_type": "code",
      "metadata": {
        "id": "4OkAKSIK7Eg4",
        "colab_type": "code",
        "outputId": "51b9e870-a6cd-4089-f92f-427a5bc3a43d",
        "colab": {
          "base_uri": "https://localhost:8080/",
          "height": 306
        }
      },
      "source": [
        "###### IOHAVOC MODIFICATIONS ==>> CREATE THE VOCAB FOR NON-BPE EXPERIMENTS\n",
        "from os import path\n",
        "\n",
        "os.environ[\"src\"] = source_language # Sets them in bash as well, since we often use bash scripts\n",
        "os.environ[\"tgt\"] = target_language\n",
        "\n",
        "! sudo chmod 777 joeynmt/scripts/build_vocab.py\n",
        "! joeynmt/scripts/build_vocab.py \"$gdrive_path/train.$src\" \"$gdrive_path/train.$tgt\" --output_path \"$gdrive_path/vocab-nonBPE.txt\"\n",
        "\n",
        "# Some output\n",
        "! echo \"Ẹ̀sán test Sentences\"\n",
        "! tail -n 5 \"$gdrive_path/test.$tgt\"\n",
        "! echo \"Combined Vocab\"\n",
        "! tail -n 10 \"$gdrive_path/vocab-nonBPE.txt\"  # iroro"
      ],
      "execution_count": 6,
      "outputs": [
        {
          "output_type": "stream",
          "text": [
            "Ẹ̀sán test Sentences\n",
            "Agbada ọsi ẹlinmhin nọn khiale ( Fẹ uduọle 19 - 20 ghe )\n",
            "Jehova dẹ rẹkpa mhan nin mhan da sabọ nin ọle suan .\n",
            "( b ) Emhin nela mhan ha zilo nyan bhi uhọmhọn - ọta nọn ki sẹ ọle bhi egbe ?\n",
            "Uwẹ be gbẹlokotọ tie ene ebe Ọkhẹughe nọn bha sẹ buẹ gbe nan ne dagbare ?\n",
            "Fẹghe si uwẹ dẹ sabọ re ewanniẹn ọbhi ene inọnta nan :\n",
            "Combined Vocab\n",
            "reassured\n",
            "devote\n",
            "thrill\n",
            "commendable\n",
            "worthwhile\n",
            "loyally\n",
            "testifying\n",
            "perishes\n",
            "opposite\n",
            "inactive\n"
          ],
          "name": "stdout"
        }
      ]
    },
    {
      "cell_type": "markdown",
      "metadata": {
        "colab_type": "text",
        "id": "Ixmzi60WsUZ8"
      },
      "source": [
        "# Creating the JoeyNMT Config\n",
        "\n",
        "JoeyNMT requires a yaml config. We provide a template below. We've also set a number of defaults with it, that you may play with!\n",
        "\n",
        "- We used Transformer architecture \n",
        "- We set our dropout to reasonably high: 0.3 (recommended in  [(Sennrich, 2019)](https://www.aclweb.org/anthology/P19-1021))\n",
        "\n",
        "Things worth playing with:\n",
        "- The batch size (also recommended to change for low-resourced languages)\n",
        "- The number of epochs (we've set it at 30 just so it runs in about an hour, for testing purposes)\n",
        "- The decoder options (beam_size, alpha)\n",
        "- Evaluation metrics (BLEU versus Crhf4)"
      ]
    },
    {
      "cell_type": "code",
      "metadata": {
        "colab_type": "code",
        "id": "PIs1lY2hxMsl",
        "colab": {}
      },
      "source": [
        "# This creates the config file for our JoeyNMT system. It might seem overwhelming so we've provided a couple of useful parameters you'll need to update\n",
        "# (You can of course play with all the parameters if you'd like!)\n",
        "\n",
        "name = '%s%s' % (source_language, target_language)\n",
        "gdrive_path = os.environ[\"gdrive_path\"]\n",
        "\n",
        "# Create the config\n",
        "config = \"\"\"\n",
        "name: \"{name}_transformer\"\n",
        "\n",
        "data:\n",
        "    src: \"{source_language}\"\n",
        "    trg: \"{target_language}\"\n",
        "    train: \"{gdrive_path}/train\"\n",
        "    dev:   \"{gdrive_path}/dev\"\n",
        "    test:  \"{gdrive_path}/test\"\n",
        "    level: \"bpe\"\n",
        "    lowercase: False\n",
        "    max_sent_length: 100\n",
        "    src_vocab: \"{gdrive_path}/vocab-nonBPE.txt\"\n",
        "    trg_vocab: \"{gdrive_path}/vocab-nonBPE.txt\"\n",
        "\n",
        "testing:\n",
        "    beam_size: 5\n",
        "    alpha: 1.0\n",
        "\n",
        "training:\n",
        "    # load_model: \"{gdrive_path}/models/{name}_transformer_orig/142000.ckpt\" # if uncommented, load a pre-trained model from this checkpoint\n",
        "    random_seed: 42\n",
        "    optimizer: \"adam\"\n",
        "    normalization: \"tokens\"\n",
        "    adam_betas: [0.9, 0.999] \n",
        "    scheduling: \"plateau\"           # TODO: try switching from plateau to Noam scheduling\n",
        "    patience: 5                     # For plateau: decrease learning rate by decrease_factor if validation score has not improved for this many validation rounds.\n",
        "    learning_rate_factor: 0.5       # factor for Noam scheduler (used with Transformer)\n",
        "    learning_rate_warmup: 1000      # warmup steps for Noam scheduler (used with Transformer)\n",
        "    decrease_factor: 0.7\n",
        "    loss: \"crossentropy\"\n",
        "    learning_rate: 0.0003\n",
        "    learning_rate_min: 0.00000001\n",
        "    weight_decay: 0.0\n",
        "    label_smoothing: 0.1\n",
        "    batch_size: 4096\n",
        "    batch_type: \"token\"\n",
        "    eval_batch_size: 3600\n",
        "    eval_batch_type: \"token\"\n",
        "    batch_multiplier: 1\n",
        "    early_stopping_metric: \"ppl\"\n",
        "    epochs: 120                     # TODO: Decrease for when playing around and checking of working. Around 30 is sufficient to check if its working at all\n",
        "    validation_freq: 100          # TODO: Set to at least once per epoch.\n",
        "    logging_freq: 100\n",
        "    eval_metric: \"bleu\"\n",
        "    model_dir: \"{gdrive_path}/models/{name}_transformer\"\n",
        "    overwrite: True               # TODO: Set to True if you want to overwrite possibly existing models. \n",
        "    shuffle: True\n",
        "    use_cuda: True\n",
        "    max_output_length: 100\n",
        "    print_valid_sents: [0, 1, 2, 3]\n",
        "    keep_last_ckpts: 3\n",
        "\n",
        "model:\n",
        "    initializer: \"xavier\"\n",
        "    bias_initializer: \"zeros\"\n",
        "    init_gain: 1.0\n",
        "    embed_initializer: \"xavier\"\n",
        "    embed_init_gain: 1.0\n",
        "    tied_embeddings: True\n",
        "    tied_softmax: True\n",
        "    encoder:\n",
        "        type: \"transformer\"\n",
        "        num_layers: 6\n",
        "        num_heads: 4             # TODO: Increase to 8 for larger data.\n",
        "        embeddings:\n",
        "            embedding_dim: 256   # TODO: Increase to 512 for larger data.\n",
        "            scale: True\n",
        "            dropout: 0.2\n",
        "        # typically ff_size = 4 x hidden_size\n",
        "        hidden_size: 256         # TODO: Increase to 512 for larger data.\n",
        "        ff_size: 1024            # TODO: Increase to 2048 for larger data.\n",
        "        dropout: 0.3\n",
        "    decoder:\n",
        "        type: \"transformer\"\n",
        "        num_layers: 6\n",
        "        num_heads: 4              # TODO: Increase to 8 for larger data.\n",
        "        embeddings:\n",
        "            embedding_dim: 256    # TODO: Increase to 512 for larger data.\n",
        "            scale: True\n",
        "            dropout: 0.2\n",
        "        # typically ff_size = 4 x hidden_size\n",
        "        hidden_size: 256         # TODO: Increase to 512 for larger data.\n",
        "        ff_size: 1024            # TODO: Increase to 2048 for larger data.\n",
        "        dropout: 0.3\n",
        "\"\"\".format(name=name, gdrive_path=os.environ[\"gdrive_path\"], source_language=source_language, target_language=target_language)\n",
        "with open(\"joeynmt/configs/transformer_{name}.yaml\".format(name=name),'w') as f:\n",
        "    f.write(config)\n",
        "\n",
        "! cp joeynmt/configs/transformer_$src$tgt.yaml \"$gdrive_path\""
      ],
      "execution_count": 0,
      "outputs": []
    },
    {
      "cell_type": "markdown",
      "metadata": {
        "colab_type": "text",
        "id": "pIifxE3Qzuvs"
      },
      "source": [
        "# Train the Model\n",
        "\n",
        "This single line of joeynmt runs the training using the config we made above"
      ]
    },
    {
      "cell_type": "code",
      "metadata": {
        "colab_type": "code",
        "id": "6ZBPFwT94WpI",
        "outputId": "b5c806b5-e0f5-4d40-d5ab-f1d019a0b289",
        "colab": {
          "base_uri": "https://localhost:8080/",
          "height": 1000
        }
      },
      "source": [
        "# Train the model\n",
        "# You can press Ctrl-C to stop. And then run the next cell to save your checkpoints! \n",
        "# !cd joeynmt; python3 -m joeynmt train configs/transformer_$src$tgt.yaml\n",
        "!python3 -m joeynmt train \"$gdrive_path/transformer_$src$tgt.yaml\""
      ],
      "execution_count": 8,
      "outputs": [
        {
          "output_type": "stream",
          "text": [
            "2020-01-26 07:56:54,581 Hello! This is Joey-NMT.\n",
            "2020-01-26 07:56:56,002 Total params: 13244928\n",
            "2020-01-26 07:56:56,003 Trainable parameters: ['decoder.layer_norm.bias', 'decoder.layer_norm.weight', 'decoder.layers.0.dec_layer_norm.bias', 'decoder.layers.0.dec_layer_norm.weight', 'decoder.layers.0.feed_forward.layer_norm.bias', 'decoder.layers.0.feed_forward.layer_norm.weight', 'decoder.layers.0.feed_forward.pwff_layer.0.bias', 'decoder.layers.0.feed_forward.pwff_layer.0.weight', 'decoder.layers.0.feed_forward.pwff_layer.3.bias', 'decoder.layers.0.feed_forward.pwff_layer.3.weight', 'decoder.layers.0.src_trg_att.k_layer.bias', 'decoder.layers.0.src_trg_att.k_layer.weight', 'decoder.layers.0.src_trg_att.output_layer.bias', 'decoder.layers.0.src_trg_att.output_layer.weight', 'decoder.layers.0.src_trg_att.q_layer.bias', 'decoder.layers.0.src_trg_att.q_layer.weight', 'decoder.layers.0.src_trg_att.v_layer.bias', 'decoder.layers.0.src_trg_att.v_layer.weight', 'decoder.layers.0.trg_trg_att.k_layer.bias', 'decoder.layers.0.trg_trg_att.k_layer.weight', 'decoder.layers.0.trg_trg_att.output_layer.bias', 'decoder.layers.0.trg_trg_att.output_layer.weight', 'decoder.layers.0.trg_trg_att.q_layer.bias', 'decoder.layers.0.trg_trg_att.q_layer.weight', 'decoder.layers.0.trg_trg_att.v_layer.bias', 'decoder.layers.0.trg_trg_att.v_layer.weight', 'decoder.layers.0.x_layer_norm.bias', 'decoder.layers.0.x_layer_norm.weight', 'decoder.layers.1.dec_layer_norm.bias', 'decoder.layers.1.dec_layer_norm.weight', 'decoder.layers.1.feed_forward.layer_norm.bias', 'decoder.layers.1.feed_forward.layer_norm.weight', 'decoder.layers.1.feed_forward.pwff_layer.0.bias', 'decoder.layers.1.feed_forward.pwff_layer.0.weight', 'decoder.layers.1.feed_forward.pwff_layer.3.bias', 'decoder.layers.1.feed_forward.pwff_layer.3.weight', 'decoder.layers.1.src_trg_att.k_layer.bias', 'decoder.layers.1.src_trg_att.k_layer.weight', 'decoder.layers.1.src_trg_att.output_layer.bias', 'decoder.layers.1.src_trg_att.output_layer.weight', 'decoder.layers.1.src_trg_att.q_layer.bias', 'decoder.layers.1.src_trg_att.q_layer.weight', 'decoder.layers.1.src_trg_att.v_layer.bias', 'decoder.layers.1.src_trg_att.v_layer.weight', 'decoder.layers.1.trg_trg_att.k_layer.bias', 'decoder.layers.1.trg_trg_att.k_layer.weight', 'decoder.layers.1.trg_trg_att.output_layer.bias', 'decoder.layers.1.trg_trg_att.output_layer.weight', 'decoder.layers.1.trg_trg_att.q_layer.bias', 'decoder.layers.1.trg_trg_att.q_layer.weight', 'decoder.layers.1.trg_trg_att.v_layer.bias', 'decoder.layers.1.trg_trg_att.v_layer.weight', 'decoder.layers.1.x_layer_norm.bias', 'decoder.layers.1.x_layer_norm.weight', 'decoder.layers.2.dec_layer_norm.bias', 'decoder.layers.2.dec_layer_norm.weight', 'decoder.layers.2.feed_forward.layer_norm.bias', 'decoder.layers.2.feed_forward.layer_norm.weight', 'decoder.layers.2.feed_forward.pwff_layer.0.bias', 'decoder.layers.2.feed_forward.pwff_layer.0.weight', 'decoder.layers.2.feed_forward.pwff_layer.3.bias', 'decoder.layers.2.feed_forward.pwff_layer.3.weight', 'decoder.layers.2.src_trg_att.k_layer.bias', 'decoder.layers.2.src_trg_att.k_layer.weight', 'decoder.layers.2.src_trg_att.output_layer.bias', 'decoder.layers.2.src_trg_att.output_layer.weight', 'decoder.layers.2.src_trg_att.q_layer.bias', 'decoder.layers.2.src_trg_att.q_layer.weight', 'decoder.layers.2.src_trg_att.v_layer.bias', 'decoder.layers.2.src_trg_att.v_layer.weight', 'decoder.layers.2.trg_trg_att.k_layer.bias', 'decoder.layers.2.trg_trg_att.k_layer.weight', 'decoder.layers.2.trg_trg_att.output_layer.bias', 'decoder.layers.2.trg_trg_att.output_layer.weight', 'decoder.layers.2.trg_trg_att.q_layer.bias', 'decoder.layers.2.trg_trg_att.q_layer.weight', 'decoder.layers.2.trg_trg_att.v_layer.bias', 'decoder.layers.2.trg_trg_att.v_layer.weight', 'decoder.layers.2.x_layer_norm.bias', 'decoder.layers.2.x_layer_norm.weight', 'decoder.layers.3.dec_layer_norm.bias', 'decoder.layers.3.dec_layer_norm.weight', 'decoder.layers.3.feed_forward.layer_norm.bias', 'decoder.layers.3.feed_forward.layer_norm.weight', 'decoder.layers.3.feed_forward.pwff_layer.0.bias', 'decoder.layers.3.feed_forward.pwff_layer.0.weight', 'decoder.layers.3.feed_forward.pwff_layer.3.bias', 'decoder.layers.3.feed_forward.pwff_layer.3.weight', 'decoder.layers.3.src_trg_att.k_layer.bias', 'decoder.layers.3.src_trg_att.k_layer.weight', 'decoder.layers.3.src_trg_att.output_layer.bias', 'decoder.layers.3.src_trg_att.output_layer.weight', 'decoder.layers.3.src_trg_att.q_layer.bias', 'decoder.layers.3.src_trg_att.q_layer.weight', 'decoder.layers.3.src_trg_att.v_layer.bias', 'decoder.layers.3.src_trg_att.v_layer.weight', 'decoder.layers.3.trg_trg_att.k_layer.bias', 'decoder.layers.3.trg_trg_att.k_layer.weight', 'decoder.layers.3.trg_trg_att.output_layer.bias', 'decoder.layers.3.trg_trg_att.output_layer.weight', 'decoder.layers.3.trg_trg_att.q_layer.bias', 'decoder.layers.3.trg_trg_att.q_layer.weight', 'decoder.layers.3.trg_trg_att.v_layer.bias', 'decoder.layers.3.trg_trg_att.v_layer.weight', 'decoder.layers.3.x_layer_norm.bias', 'decoder.layers.3.x_layer_norm.weight', 'decoder.layers.4.dec_layer_norm.bias', 'decoder.layers.4.dec_layer_norm.weight', 'decoder.layers.4.feed_forward.layer_norm.bias', 'decoder.layers.4.feed_forward.layer_norm.weight', 'decoder.layers.4.feed_forward.pwff_layer.0.bias', 'decoder.layers.4.feed_forward.pwff_layer.0.weight', 'decoder.layers.4.feed_forward.pwff_layer.3.bias', 'decoder.layers.4.feed_forward.pwff_layer.3.weight', 'decoder.layers.4.src_trg_att.k_layer.bias', 'decoder.layers.4.src_trg_att.k_layer.weight', 'decoder.layers.4.src_trg_att.output_layer.bias', 'decoder.layers.4.src_trg_att.output_layer.weight', 'decoder.layers.4.src_trg_att.q_layer.bias', 'decoder.layers.4.src_trg_att.q_layer.weight', 'decoder.layers.4.src_trg_att.v_layer.bias', 'decoder.layers.4.src_trg_att.v_layer.weight', 'decoder.layers.4.trg_trg_att.k_layer.bias', 'decoder.layers.4.trg_trg_att.k_layer.weight', 'decoder.layers.4.trg_trg_att.output_layer.bias', 'decoder.layers.4.trg_trg_att.output_layer.weight', 'decoder.layers.4.trg_trg_att.q_layer.bias', 'decoder.layers.4.trg_trg_att.q_layer.weight', 'decoder.layers.4.trg_trg_att.v_layer.bias', 'decoder.layers.4.trg_trg_att.v_layer.weight', 'decoder.layers.4.x_layer_norm.bias', 'decoder.layers.4.x_layer_norm.weight', 'decoder.layers.5.dec_layer_norm.bias', 'decoder.layers.5.dec_layer_norm.weight', 'decoder.layers.5.feed_forward.layer_norm.bias', 'decoder.layers.5.feed_forward.layer_norm.weight', 'decoder.layers.5.feed_forward.pwff_layer.0.bias', 'decoder.layers.5.feed_forward.pwff_layer.0.weight', 'decoder.layers.5.feed_forward.pwff_layer.3.bias', 'decoder.layers.5.feed_forward.pwff_layer.3.weight', 'decoder.layers.5.src_trg_att.k_layer.bias', 'decoder.layers.5.src_trg_att.k_layer.weight', 'decoder.layers.5.src_trg_att.output_layer.bias', 'decoder.layers.5.src_trg_att.output_layer.weight', 'decoder.layers.5.src_trg_att.q_layer.bias', 'decoder.layers.5.src_trg_att.q_layer.weight', 'decoder.layers.5.src_trg_att.v_layer.bias', 'decoder.layers.5.src_trg_att.v_layer.weight', 'decoder.layers.5.trg_trg_att.k_layer.bias', 'decoder.layers.5.trg_trg_att.k_layer.weight', 'decoder.layers.5.trg_trg_att.output_layer.bias', 'decoder.layers.5.trg_trg_att.output_layer.weight', 'decoder.layers.5.trg_trg_att.q_layer.bias', 'decoder.layers.5.trg_trg_att.q_layer.weight', 'decoder.layers.5.trg_trg_att.v_layer.bias', 'decoder.layers.5.trg_trg_att.v_layer.weight', 'decoder.layers.5.x_layer_norm.bias', 'decoder.layers.5.x_layer_norm.weight', 'encoder.layer_norm.bias', 'encoder.layer_norm.weight', 'encoder.layers.0.feed_forward.layer_norm.bias', 'encoder.layers.0.feed_forward.layer_norm.weight', 'encoder.layers.0.feed_forward.pwff_layer.0.bias', 'encoder.layers.0.feed_forward.pwff_layer.0.weight', 'encoder.layers.0.feed_forward.pwff_layer.3.bias', 'encoder.layers.0.feed_forward.pwff_layer.3.weight', 'encoder.layers.0.layer_norm.bias', 'encoder.layers.0.layer_norm.weight', 'encoder.layers.0.src_src_att.k_layer.bias', 'encoder.layers.0.src_src_att.k_layer.weight', 'encoder.layers.0.src_src_att.output_layer.bias', 'encoder.layers.0.src_src_att.output_layer.weight', 'encoder.layers.0.src_src_att.q_layer.bias', 'encoder.layers.0.src_src_att.q_layer.weight', 'encoder.layers.0.src_src_att.v_layer.bias', 'encoder.layers.0.src_src_att.v_layer.weight', 'encoder.layers.1.feed_forward.layer_norm.bias', 'encoder.layers.1.feed_forward.layer_norm.weight', 'encoder.layers.1.feed_forward.pwff_layer.0.bias', 'encoder.layers.1.feed_forward.pwff_layer.0.weight', 'encoder.layers.1.feed_forward.pwff_layer.3.bias', 'encoder.layers.1.feed_forward.pwff_layer.3.weight', 'encoder.layers.1.layer_norm.bias', 'encoder.layers.1.layer_norm.weight', 'encoder.layers.1.src_src_att.k_layer.bias', 'encoder.layers.1.src_src_att.k_layer.weight', 'encoder.layers.1.src_src_att.output_layer.bias', 'encoder.layers.1.src_src_att.output_layer.weight', 'encoder.layers.1.src_src_att.q_layer.bias', 'encoder.layers.1.src_src_att.q_layer.weight', 'encoder.layers.1.src_src_att.v_layer.bias', 'encoder.layers.1.src_src_att.v_layer.weight', 'encoder.layers.2.feed_forward.layer_norm.bias', 'encoder.layers.2.feed_forward.layer_norm.weight', 'encoder.layers.2.feed_forward.pwff_layer.0.bias', 'encoder.layers.2.feed_forward.pwff_layer.0.weight', 'encoder.layers.2.feed_forward.pwff_layer.3.bias', 'encoder.layers.2.feed_forward.pwff_layer.3.weight', 'encoder.layers.2.layer_norm.bias', 'encoder.layers.2.layer_norm.weight', 'encoder.layers.2.src_src_att.k_layer.bias', 'encoder.layers.2.src_src_att.k_layer.weight', 'encoder.layers.2.src_src_att.output_layer.bias', 'encoder.layers.2.src_src_att.output_layer.weight', 'encoder.layers.2.src_src_att.q_layer.bias', 'encoder.layers.2.src_src_att.q_layer.weight', 'encoder.layers.2.src_src_att.v_layer.bias', 'encoder.layers.2.src_src_att.v_layer.weight', 'encoder.layers.3.feed_forward.layer_norm.bias', 'encoder.layers.3.feed_forward.layer_norm.weight', 'encoder.layers.3.feed_forward.pwff_layer.0.bias', 'encoder.layers.3.feed_forward.pwff_layer.0.weight', 'encoder.layers.3.feed_forward.pwff_layer.3.bias', 'encoder.layers.3.feed_forward.pwff_layer.3.weight', 'encoder.layers.3.layer_norm.bias', 'encoder.layers.3.layer_norm.weight', 'encoder.layers.3.src_src_att.k_layer.bias', 'encoder.layers.3.src_src_att.k_layer.weight', 'encoder.layers.3.src_src_att.output_layer.bias', 'encoder.layers.3.src_src_att.output_layer.weight', 'encoder.layers.3.src_src_att.q_layer.bias', 'encoder.layers.3.src_src_att.q_layer.weight', 'encoder.layers.3.src_src_att.v_layer.bias', 'encoder.layers.3.src_src_att.v_layer.weight', 'encoder.layers.4.feed_forward.layer_norm.bias', 'encoder.layers.4.feed_forward.layer_norm.weight', 'encoder.layers.4.feed_forward.pwff_layer.0.bias', 'encoder.layers.4.feed_forward.pwff_layer.0.weight', 'encoder.layers.4.feed_forward.pwff_layer.3.bias', 'encoder.layers.4.feed_forward.pwff_layer.3.weight', 'encoder.layers.4.layer_norm.bias', 'encoder.layers.4.layer_norm.weight', 'encoder.layers.4.src_src_att.k_layer.bias', 'encoder.layers.4.src_src_att.k_layer.weight', 'encoder.layers.4.src_src_att.output_layer.bias', 'encoder.layers.4.src_src_att.output_layer.weight', 'encoder.layers.4.src_src_att.q_layer.bias', 'encoder.layers.4.src_src_att.q_layer.weight', 'encoder.layers.4.src_src_att.v_layer.bias', 'encoder.layers.4.src_src_att.v_layer.weight', 'encoder.layers.5.feed_forward.layer_norm.bias', 'encoder.layers.5.feed_forward.layer_norm.weight', 'encoder.layers.5.feed_forward.pwff_layer.0.bias', 'encoder.layers.5.feed_forward.pwff_layer.0.weight', 'encoder.layers.5.feed_forward.pwff_layer.3.bias', 'encoder.layers.5.feed_forward.pwff_layer.3.weight', 'encoder.layers.5.layer_norm.bias', 'encoder.layers.5.layer_norm.weight', 'encoder.layers.5.src_src_att.k_layer.bias', 'encoder.layers.5.src_src_att.k_layer.weight', 'encoder.layers.5.src_src_att.output_layer.bias', 'encoder.layers.5.src_src_att.output_layer.weight', 'encoder.layers.5.src_src_att.q_layer.bias', 'encoder.layers.5.src_src_att.q_layer.weight', 'encoder.layers.5.src_src_att.v_layer.bias', 'encoder.layers.5.src_src_att.v_layer.weight', 'src_embed.lut.weight']\n",
            "2020-01-26 07:57:05,950 cfg.name                           : enish_transformer\n",
            "2020-01-26 07:57:05,950 cfg.data.src                       : en\n",
            "2020-01-26 07:57:05,950 cfg.data.trg                       : ish\n",
            "2020-01-26 07:57:05,950 cfg.data.train                     : /content/drive/My Drive/masakhane/en-ish-baseline/train\n",
            "2020-01-26 07:57:05,950 cfg.data.dev                       : /content/drive/My Drive/masakhane/en-ish-baseline/dev\n",
            "2020-01-26 07:57:05,950 cfg.data.test                      : /content/drive/My Drive/masakhane/en-ish-baseline/test\n",
            "2020-01-26 07:57:05,951 cfg.data.level                     : bpe\n",
            "2020-01-26 07:57:05,951 cfg.data.lowercase                 : False\n",
            "2020-01-26 07:57:05,951 cfg.data.max_sent_length           : 100\n",
            "2020-01-26 07:57:05,951 cfg.data.src_vocab                 : /content/drive/My Drive/masakhane/en-ish-baseline/vocab-nonBPE.txt\n",
            "2020-01-26 07:57:05,951 cfg.data.trg_vocab                 : /content/drive/My Drive/masakhane/en-ish-baseline/vocab-nonBPE.txt\n",
            "2020-01-26 07:57:05,951 cfg.testing.beam_size              : 5\n",
            "2020-01-26 07:57:05,951 cfg.testing.alpha                  : 1.0\n",
            "2020-01-26 07:57:05,951 cfg.training.random_seed           : 42\n",
            "2020-01-26 07:57:05,952 cfg.training.optimizer             : adam\n",
            "2020-01-26 07:57:05,952 cfg.training.normalization         : tokens\n",
            "2020-01-26 07:57:05,952 cfg.training.adam_betas            : [0.9, 0.999]\n",
            "2020-01-26 07:57:05,952 cfg.training.scheduling            : plateau\n",
            "2020-01-26 07:57:05,952 cfg.training.patience              : 5\n",
            "2020-01-26 07:57:05,952 cfg.training.learning_rate_factor  : 0.5\n",
            "2020-01-26 07:57:05,952 cfg.training.learning_rate_warmup  : 1000\n",
            "2020-01-26 07:57:05,953 cfg.training.decrease_factor       : 0.7\n",
            "2020-01-26 07:57:05,953 cfg.training.loss                  : crossentropy\n",
            "2020-01-26 07:57:05,953 cfg.training.learning_rate         : 0.0003\n",
            "2020-01-26 07:57:05,953 cfg.training.learning_rate_min     : 1e-08\n",
            "2020-01-26 07:57:05,953 cfg.training.weight_decay          : 0.0\n",
            "2020-01-26 07:57:05,953 cfg.training.label_smoothing       : 0.1\n",
            "2020-01-26 07:57:05,953 cfg.training.batch_size            : 4096\n",
            "2020-01-26 07:57:05,954 cfg.training.batch_type            : token\n",
            "2020-01-26 07:57:05,954 cfg.training.eval_batch_size       : 3600\n",
            "2020-01-26 07:57:05,954 cfg.training.eval_batch_type       : token\n",
            "2020-01-26 07:57:05,954 cfg.training.batch_multiplier      : 1\n",
            "2020-01-26 07:57:05,954 cfg.training.early_stopping_metric : ppl\n",
            "2020-01-26 07:57:05,954 cfg.training.epochs                : 120\n",
            "2020-01-26 07:57:05,955 cfg.training.validation_freq       : 100\n",
            "2020-01-26 07:57:05,955 cfg.training.logging_freq          : 100\n",
            "2020-01-26 07:57:05,955 cfg.training.eval_metric           : bleu\n",
            "2020-01-26 07:57:05,955 cfg.training.model_dir             : /content/drive/My Drive/masakhane/en-ish-baseline/models/enish_transformer\n",
            "2020-01-26 07:57:05,955 cfg.training.overwrite             : True\n",
            "2020-01-26 07:57:05,955 cfg.training.shuffle               : True\n",
            "2020-01-26 07:57:05,956 cfg.training.use_cuda              : True\n",
            "2020-01-26 07:57:05,956 cfg.training.max_output_length     : 100\n",
            "2020-01-26 07:57:05,956 cfg.training.print_valid_sents     : [0, 1, 2, 3]\n",
            "2020-01-26 07:57:05,956 cfg.training.keep_last_ckpts       : 3\n",
            "2020-01-26 07:57:05,956 cfg.model.initializer              : xavier\n",
            "2020-01-26 07:57:05,956 cfg.model.bias_initializer         : zeros\n",
            "2020-01-26 07:57:05,957 cfg.model.init_gain                : 1.0\n",
            "2020-01-26 07:57:05,957 cfg.model.embed_initializer        : xavier\n",
            "2020-01-26 07:57:05,957 cfg.model.embed_init_gain          : 1.0\n",
            "2020-01-26 07:57:05,957 cfg.model.tied_embeddings          : True\n",
            "2020-01-26 07:57:05,957 cfg.model.tied_softmax             : True\n",
            "2020-01-26 07:57:05,957 cfg.model.encoder.type             : transformer\n",
            "2020-01-26 07:57:05,958 cfg.model.encoder.num_layers       : 6\n",
            "2020-01-26 07:57:05,958 cfg.model.encoder.num_heads        : 4\n",
            "2020-01-26 07:57:05,958 cfg.model.encoder.embeddings.embedding_dim : 256\n",
            "2020-01-26 07:57:05,958 cfg.model.encoder.embeddings.scale : True\n",
            "2020-01-26 07:57:05,958 cfg.model.encoder.embeddings.dropout : 0.2\n",
            "2020-01-26 07:57:05,958 cfg.model.encoder.hidden_size      : 256\n",
            "2020-01-26 07:57:05,958 cfg.model.encoder.ff_size          : 1024\n",
            "2020-01-26 07:57:05,959 cfg.model.encoder.dropout          : 0.3\n",
            "2020-01-26 07:57:05,959 cfg.model.decoder.type             : transformer\n",
            "2020-01-26 07:57:05,959 cfg.model.decoder.num_layers       : 6\n",
            "2020-01-26 07:57:05,959 cfg.model.decoder.num_heads        : 4\n",
            "2020-01-26 07:57:05,959 cfg.model.decoder.embeddings.embedding_dim : 256\n",
            "2020-01-26 07:57:05,959 cfg.model.decoder.embeddings.scale : True\n",
            "2020-01-26 07:57:05,960 cfg.model.decoder.embeddings.dropout : 0.2\n",
            "2020-01-26 07:57:05,960 cfg.model.decoder.hidden_size      : 256\n",
            "2020-01-26 07:57:05,960 cfg.model.decoder.ff_size          : 1024\n",
            "2020-01-26 07:57:05,960 cfg.model.decoder.dropout          : 0.3\n",
            "2020-01-26 07:57:05,960 Data set sizes: \n",
            "\ttrain 4126,\n",
            "\tvalid 1000,\n",
            "\ttest 343\n",
            "2020-01-26 07:57:05,960 First training example:\n",
            "\t[SRC] Their unity would give a powerful witness , offering clear evidence that Jehovah had sent Jesus to the earth to do God’s will .\n",
            "\t[TRG] Okugbe nọnsele dẹ wo sabọ sọsali ọbhọ ghe , Jehova gene ji Jesu re bhi ọne otọ nan nin ọle dọ lu iho nọnsole . Ahoẹmhọn - egbe hi iyaman nan ha rẹ gene lẹn edibo nesi Jesu .\n",
            "2020-01-26 07:57:05,961 First 10 words (src): (0) <unk> (1) <pad> (2) <s> (3) </s> (4) . (5) , (6) nin (7) ha (8) the (9) mhan\n",
            "2020-01-26 07:57:05,961 First 10 words (trg): (0) <unk> (1) <pad> (2) <s> (3) </s> (4) . (5) , (6) nin (7) ha (8) the (9) mhan\n",
            "2020-01-26 07:57:05,961 Number of Src words (types): 8534\n",
            "2020-01-26 07:57:05,962 Number of Trg words (types): 8534\n",
            "2020-01-26 07:57:05,962 Model(\n",
            "\tencoder=TransformerEncoder(num_layers=6, num_heads=4),\n",
            "\tdecoder=TransformerDecoder(num_layers=6, num_heads=4),\n",
            "\tsrc_embed=Embeddings(embedding_dim=256, vocab_size=8534),\n",
            "\ttrg_embed=Embeddings(embedding_dim=256, vocab_size=8534))\n",
            "2020-01-26 07:57:05,975 EPOCH 1\n",
            "2020-01-26 07:57:12,898 Epoch   1: total training loss 273.35\n",
            "2020-01-26 07:57:12,898 EPOCH 2\n",
            "2020-01-26 07:57:19,618 Epoch   2: total training loss 222.69\n",
            "2020-01-26 07:57:19,619 EPOCH 3\n",
            "2020-01-26 07:57:21,144 Epoch   3 Step:      100 Batch Loss:     4.997618 Tokens per Sec:    13210, Lr: 0.000300\n",
            "2020-01-26 07:58:03,963 Hooray! New best validation result [ppl]!\n",
            "2020-01-26 07:58:03,963 Saving new checkpoint.\n",
            "2020-01-26 07:58:05,059 Example #0\n",
            "2020-01-26 07:58:05,060 \tSource:     I WAS raised in Graz , Austria .\n",
            "2020-01-26 07:58:05,060 \tReference:  AGBAẸBHO natiọle Graz bhi Austria , ọle mẹn da wanre .\n",
            "2020-01-26 07:58:05,060 \tHypothesis: , , , , , , .\n",
            "2020-01-26 07:58:05,060 Example #1\n",
            "2020-01-26 07:58:05,061 \tSource:     In contrast with the people who show the widespread lack of love today , those who worship Jehovah have genuine love for their fellow man .\n",
            "2020-01-26 07:58:05,061 \tReference:  Ene ga iJehova ẹlẹnan wo mhọn oyẹẹ da ibo ele , ele bha diabe ene iga Jehova ne bha hoẹmhọn ibo ele .\n",
            "2020-01-26 07:58:05,061 \tHypothesis: , , , , , , , ,\n",
            "2020-01-26 07:58:05,061 Example #2\n",
            "2020-01-26 07:58:05,062 \tSource:     Today , we live as foreigners , as it were , in a world that has been morally and spiritually corrupted by Babylon the Great , the world empire of false religion , “ a dwelling place of demons . ”\n",
            "2020-01-26 07:58:05,062 \tReference:  Inian mhan diabi eriọbhe bhi ẹkẹ ọne agbọn nan nin oga ohoghe ria a . Babylon nọn khua a tie ene oga ohoghe nan , ele da dọ kiẹn eji ẹlinmhin ne imhẹn da nyẹnlẹn . ( Rev .\n",
            "2020-01-26 07:58:05,062 \tHypothesis: , , , , , , , ,\n",
            "2020-01-26 07:58:05,062 Example #3\n",
            "2020-01-26 07:58:05,062 \tSource:     We should also strive to help others spiritually .\n",
            "2020-01-26 07:58:05,063 \tReference:  Ahamiẹn mhan re ẹghe bhi otọ rẹ ha luẹ iBaibo , yẹ deba ene gene guanọ nin ele ga iJehova ha muobọ , ọ dẹ rẹkpa mhan rẹ ziẹn ikolu nin mhan bi Jehova koko mhọnlẹn .\n",
            "2020-01-26 07:58:05,063 \tHypothesis: , , , , , , ,\n",
            "2020-01-26 07:58:05,063 Validation result (greedy) at epoch   3, step      100: bleu:   0.00, loss: 110740.5469, ppl: 135.4943, duration: 43.9188s\n",
            "2020-01-26 07:58:10,428 Epoch   3: total training loss 219.20\n",
            "2020-01-26 07:58:10,429 EPOCH 4\n",
            "2020-01-26 07:58:17,485 Epoch   4: total training loss 211.90\n",
            "2020-01-26 07:58:17,485 EPOCH 5\n",
            "2020-01-26 07:58:20,481 Epoch   5 Step:      200 Batch Loss:     4.402267 Tokens per Sec:    13032, Lr: 0.000300\n",
            "2020-01-26 07:59:04,482 Hooray! New best validation result [ppl]!\n",
            "2020-01-26 07:59:04,482 Saving new checkpoint.\n",
            "2020-01-26 07:59:05,588 Example #0\n",
            "2020-01-26 07:59:05,588 \tSource:     I WAS raised in Graz , Austria .\n",
            "2020-01-26 07:59:05,588 \tReference:  AGBAẸBHO natiọle Graz bhi Austria , ọle mẹn da wanre .\n",
            "2020-01-26 07:59:05,589 \tHypothesis: ( : : : : : : : : : : : : : : : : : : : : : : : : : : : : : : : : : : : : : : : : : : : : : : : : : : : : : : : : : : : : : : : : : : : : : : : : : : : : : : : : : : : : : : : : : : : : : : : : : : :\n",
            "2020-01-26 07:59:05,589 Example #1\n",
            "2020-01-26 07:59:05,589 \tSource:     In contrast with the people who show the widespread lack of love today , those who worship Jehovah have genuine love for their fellow man .\n",
            "2020-01-26 07:59:05,589 \tReference:  Ene ga iJehova ẹlẹnan wo mhọn oyẹẹ da ibo ele , ele bha diabe ene iga Jehova ne bha hoẹmhọn ibo ele .\n",
            "2020-01-26 07:59:05,589 \tHypothesis: ( : : : : : : : : : : : : : : : : : : : : : : : : : : : : : : : : : : : : : : : : : : : : : : : : : : : : : : : : : : : : : : : : : : : : : : : : : : : : : : : : : : : : : : : : : : : : : : : : : : :\n",
            "2020-01-26 07:59:05,589 Example #2\n",
            "2020-01-26 07:59:05,590 \tSource:     Today , we live as foreigners , as it were , in a world that has been morally and spiritually corrupted by Babylon the Great , the world empire of false religion , “ a dwelling place of demons . ”\n",
            "2020-01-26 07:59:05,590 \tReference:  Inian mhan diabi eriọbhe bhi ẹkẹ ọne agbọn nan nin oga ohoghe ria a . Babylon nọn khua a tie ene oga ohoghe nan , ele da dọ kiẹn eji ẹlinmhin ne imhẹn da nyẹnlẹn . ( Rev .\n",
            "2020-01-26 07:59:05,590 \tHypothesis: ( : : : : : : : : : : : : : : : : : : : : : : : : : : : : : : : : : : : : : : : : : : : : : : : : : : : : : : : : : : : : : : : : : : : : : : : : : : : : : : : : : : : : : : : : : : : : : : : : : : :\n",
            "2020-01-26 07:59:05,590 Example #3\n",
            "2020-01-26 07:59:05,590 \tSource:     We should also strive to help others spiritually .\n",
            "2020-01-26 07:59:05,590 \tReference:  Ahamiẹn mhan re ẹghe bhi otọ rẹ ha luẹ iBaibo , yẹ deba ene gene guanọ nin ele ga iJehova ha muobọ , ọ dẹ rẹkpa mhan rẹ ziẹn ikolu nin mhan bi Jehova koko mhọnlẹn .\n",
            "2020-01-26 07:59:05,590 \tHypothesis: ( : : : : : : : : : : : : : : : : : : : : : : : : : : : : : : : : : : : : : : : : : : : : : : : : : : : : : : : : : : : : : : : : : : : : : : : : : : : : : : : : : : : : : : : : : : : : : : : : : : :\n",
            "2020-01-26 07:59:05,590 Validation result (greedy) at epoch   5, step      200: bleu:   0.00, loss: 103501.9688, ppl:  98.3032, duration: 45.1093s\n",
            "2020-01-26 07:59:09,498 Epoch   5: total training loss 205.32\n",
            "2020-01-26 07:59:09,498 EPOCH 6\n",
            "2020-01-26 07:59:16,666 Epoch   6: total training loss 200.77\n",
            "2020-01-26 07:59:16,666 EPOCH 7\n",
            "2020-01-26 07:59:21,318 Epoch   7 Step:      300 Batch Loss:     4.303302 Tokens per Sec:    13440, Lr: 0.000300\n",
            "2020-01-26 08:00:06,391 Hooray! New best validation result [ppl]!\n",
            "2020-01-26 08:00:06,392 Saving new checkpoint.\n",
            "2020-01-26 08:00:07,987 Example #0\n",
            "2020-01-26 08:00:07,988 \tSource:     I WAS raised in Graz , Austria .\n",
            "2020-01-26 08:00:07,988 \tReference:  AGBAẸBHO natiọle Graz bhi Austria , ọle mẹn da wanre .\n",
            "2020-01-26 08:00:07,988 \tHypothesis: Be mhan ha ha ha ha ha ha ha ha ha ha ha ha ha ha ha ha ha ha ha ha ha ha ha ha ha ha ha ha ha ha ha ha ha ha ha ha ha ha ha ha ha ha ha ha ha ha ha ha ha ha ha ha ha ha ha ha ha ha ha ha ha ha ha ha ha ha ha ha ha ha ha ha ha ha ha ha ha ha ha ha ha ha ha ha ha ha ha ha ha ha ha ha ha ha ha ha ha ha\n",
            "2020-01-26 08:00:07,988 Example #1\n",
            "2020-01-26 08:00:07,989 \tSource:     In contrast with the people who show the widespread lack of love today , those who worship Jehovah have genuine love for their fellow man .\n",
            "2020-01-26 08:00:07,989 \tReference:  Ene ga iJehova ẹlẹnan wo mhọn oyẹẹ da ibo ele , ele bha diabe ene iga Jehova ne bha hoẹmhọn ibo ele .\n",
            "2020-01-26 08:00:07,989 \tHypothesis: ( : ( ) ( ) ( ) ( ) ( ( ( ( ( ( ( ( ( ( ( ( ( ( ( ( ( ( ( ( ( ( ( ( ( ( ( ( ( ( ( ( ( ( ( ( ( ( ( ( ( ( ( ( ( ( ( ( ( ( ( ( ( ( ( ( ( ( ( ( ( ( ( ( ( ( ( ( ( ( ( ( ( ( ( ( ( ( ( ( ( ( ( ( ( ( ( ( ( (\n",
            "2020-01-26 08:00:07,989 Example #2\n",
            "2020-01-26 08:00:07,990 \tSource:     Today , we live as foreigners , as it were , in a world that has been morally and spiritually corrupted by Babylon the Great , the world empire of false religion , “ a dwelling place of demons . ”\n",
            "2020-01-26 08:00:07,990 \tReference:  Inian mhan diabi eriọbhe bhi ẹkẹ ọne agbọn nan nin oga ohoghe ria a . Babylon nọn khua a tie ene oga ohoghe nan , ele da dọ kiẹn eji ẹlinmhin ne imhẹn da nyẹnlẹn . ( Rev .\n",
            "2020-01-26 08:00:07,990 \tHypothesis: ( : ( ) ( ) ( ) ( ) ( ( ( ( ( ( ( ( ( ( ( ( ( ( ( ( ( ( ( ( ( ( ( ( ( ( ( ( ( ( ( ( ( ( ( ( ( ( ( ( ( ( ( ( ( ( ( ( ( ( ( ( ( ( ( ( ( ( ( ( ( ( ( ( ( ( ( ( ( ( ( ( ( ( ( ( ( ( ( ( ( ( ( ( ( ( ( ( ( (\n",
            "2020-01-26 08:00:07,990 Example #3\n",
            "2020-01-26 08:00:07,991 \tSource:     We should also strive to help others spiritually .\n",
            "2020-01-26 08:00:07,991 \tReference:  Ahamiẹn mhan re ẹghe bhi otọ rẹ ha luẹ iBaibo , yẹ deba ene gene guanọ nin ele ga iJehova ha muobọ , ọ dẹ rẹkpa mhan rẹ ziẹn ikolu nin mhan bi Jehova koko mhọnlẹn .\n",
            "2020-01-26 08:00:07,991 \tHypothesis: ( : Be , : Be , : Be , mhan ha ha ha ha ha ha ha ha ha ha ha ha ha ha ha ha ha ha ha ha ha ha ha ha ha ha ha ha ha ha ha ha ha ha ha ha ha ha ha ha ha ha ha ha ha ha ha ha ha ha ha ha ha ha ha ha ha ha ha ha ha ha ha ha ha ha ha ha ha ha ha ha ha ha ha ha ha ha ha ha ha ha ha ha ha ha ha ha ha\n",
            "2020-01-26 08:00:07,991 Validation result (greedy) at epoch   7, step      300: bleu:   0.00, loss: 96958.1016, ppl:  73.5509, duration: 46.6734s\n",
            "2020-01-26 08:00:10,417 Epoch   7: total training loss 194.45\n",
            "2020-01-26 08:00:10,418 EPOCH 8\n",
            "2020-01-26 08:00:17,533 Epoch   8: total training loss 187.50\n",
            "2020-01-26 08:00:17,533 EPOCH 9\n",
            "2020-01-26 08:00:23,991 Epoch   9 Step:      400 Batch Loss:     4.006420 Tokens per Sec:    12786, Lr: 0.000300\n",
            "2020-01-26 08:01:09,696 Hooray! New best validation result [ppl]!\n",
            "2020-01-26 08:01:09,696 Saving new checkpoint.\n",
            "2020-01-26 08:01:10,867 Example #0\n",
            "2020-01-26 08:01:10,868 \tSource:     I WAS raised in Graz , Austria .\n",
            "2020-01-26 08:01:10,868 \tReference:  AGBAẸBHO natiọle Graz bhi Austria , ọle mẹn da wanre .\n",
            "2020-01-26 08:01:10,868 \tHypothesis: ( : : 1 : 1 : 1 : 1 : (\n",
            "2020-01-26 08:01:10,868 Example #1\n",
            "2020-01-26 08:01:10,869 \tSource:     In contrast with the people who show the widespread lack of love today , those who worship Jehovah have genuine love for their fellow man .\n",
            "2020-01-26 08:01:10,869 \tReference:  Ene ga iJehova ẹlẹnan wo mhọn oyẹẹ da ibo ele , ele bha diabe ene iga Jehova ne bha hoẹmhọn ibo ele .\n",
            "2020-01-26 08:01:10,869 \tHypothesis: ( : : 1 ) ( ) ( ) ( ) ( ) ( ) ( ) ( ) ( ) ( ) ( ) ( 1 ) ( ) ( 1 ) ( ) ( 1 ) ( 1 ) ( 1 ) ( 1 ) ( 1 ) ( 1 ) ( ) ( 1 ) ( 1 ) ( 1 ) ( 1 ) ( 1 ) ( 1 ) ( 1 ) ( 1 ) ( 1 ) ( 1 ) ( ( ( ( ( ( ( ( 1 ) ( 1 ) ( 1\n",
            "2020-01-26 08:01:10,869 Example #2\n",
            "2020-01-26 08:01:10,870 \tSource:     Today , we live as foreigners , as it were , in a world that has been morally and spiritually corrupted by Babylon the Great , the world empire of false religion , “ a dwelling place of demons . ”\n",
            "2020-01-26 08:01:10,870 \tReference:  Inian mhan diabi eriọbhe bhi ẹkẹ ọne agbọn nan nin oga ohoghe ria a . Babylon nọn khua a tie ene oga ohoghe nan , ele da dọ kiẹn eji ẹlinmhin ne imhẹn da nyẹnlẹn . ( Rev .\n",
            "2020-01-26 08:01:10,870 \tHypothesis: ( ) ( ) Bhi , mhan ha ha ha ha ha ha ha ha ha ha ha ha ha ha re emhin nin mhan ha ha ha ha ha ha re emhin nin mhan ha re emhin nin mhan ha re egbe bhi egbe .\n",
            "2020-01-26 08:01:10,870 Example #3\n",
            "2020-01-26 08:01:10,871 \tSource:     We should also strive to help others spiritually .\n",
            "2020-01-26 08:01:10,871 \tReference:  Ahamiẹn mhan re ẹghe bhi otọ rẹ ha luẹ iBaibo , yẹ deba ene gene guanọ nin ele ga iJehova ha muobọ , ọ dẹ rẹkpa mhan rẹ ziẹn ikolu nin mhan bi Jehova koko mhọnlẹn .\n",
            "2020-01-26 08:01:10,871 \tHypothesis: ( : : 1 ) ( ) Be ha ha ha ha ha ha ha re egbe .\n",
            "2020-01-26 08:01:10,872 Validation result (greedy) at epoch   9, step      400: bleu:   0.17, loss: 90492.0625, ppl:  55.2214, duration: 46.8799s\n",
            "2020-01-26 08:01:11,652 Epoch   9: total training loss 181.92\n",
            "2020-01-26 08:01:11,652 EPOCH 10\n",
            "2020-01-26 08:01:18,998 Epoch  10: total training loss 176.76\n",
            "2020-01-26 08:01:18,998 EPOCH 11\n",
            "2020-01-26 08:01:26,067 Epoch  11: total training loss 171.99\n",
            "2020-01-26 08:01:26,068 EPOCH 12\n",
            "2020-01-26 08:01:26,855 Epoch  12 Step:      500 Batch Loss:     3.999224 Tokens per Sec:    12500, Lr: 0.000300\n",
            "2020-01-26 08:02:12,940 Hooray! New best validation result [ppl]!\n",
            "2020-01-26 08:02:12,940 Saving new checkpoint.\n",
            "2020-01-26 08:02:14,106 Example #0\n",
            "2020-01-26 08:02:14,107 \tSource:     I WAS raised in Graz , Austria .\n",
            "2020-01-26 08:02:14,107 \tReference:  AGBAẸBHO natiọle Graz bhi Austria , ọle mẹn da wanre .\n",
            "2020-01-26 08:02:14,107 \tHypothesis: Bhi , ọle da ha ha ha re egbe .\n",
            "2020-01-26 08:02:14,107 Example #1\n",
            "2020-01-26 08:02:14,107 \tSource:     In contrast with the people who show the widespread lack of love today , those who worship Jehovah have genuine love for their fellow man .\n",
            "2020-01-26 08:02:14,108 \tReference:  Ene ga iJehova ẹlẹnan wo mhọn oyẹẹ da ibo ele , ele bha diabe ene iga Jehova ne bha hoẹmhọn ibo ele .\n",
            "2020-01-26 08:02:14,108 \tHypothesis: ( 1 : 1 ) Be ha ha ha ha ha ha ha ha ha ha re egbe .\n",
            "2020-01-26 08:02:14,108 Example #2\n",
            "2020-01-26 08:02:14,108 \tSource:     Today , we live as foreigners , as it were , in a world that has been morally and spiritually corrupted by Babylon the Great , the world empire of false religion , “ a dwelling place of demons . ”\n",
            "2020-01-26 08:02:14,108 \tReference:  Inian mhan diabi eriọbhe bhi ẹkẹ ọne agbọn nan nin oga ohoghe ria a . Babylon nọn khua a tie ene oga ohoghe nan , ele da dọ kiẹn eji ẹlinmhin ne imhẹn da nyẹnlẹn . ( Rev .\n",
            "2020-01-26 08:02:14,109 \tHypothesis: ( 1 : 1 ) Bhi nin mhan ha ha ha ha ha ha ha ha ha ha ha ha ha re egbe .\n",
            "2020-01-26 08:02:14,109 Example #3\n",
            "2020-01-26 08:02:14,109 \tSource:     We should also strive to help others spiritually .\n",
            "2020-01-26 08:02:14,109 \tReference:  Ahamiẹn mhan re ẹghe bhi otọ rẹ ha luẹ iBaibo , yẹ deba ene gene guanọ nin ele ga iJehova ha muobọ , ọ dẹ rẹkpa mhan rẹ ziẹn ikolu nin mhan bi Jehova koko mhọnlẹn .\n",
            "2020-01-26 08:02:14,110 \tHypothesis: ( 1 : 1 ) Be ha ha ha rẹkpa mhan rẹ ha rẹkpa mhan rẹ ha rẹkpa mhan .\n",
            "2020-01-26 08:02:14,110 Validation result (greedy) at epoch  12, step      500: bleu:   0.76, loss: 86351.7031, ppl:  45.9621, duration: 47.2545s\n",
            "2020-01-26 08:02:20,383 Epoch  12: total training loss 168.13\n",
            "2020-01-26 08:02:20,383 EPOCH 13\n",
            "2020-01-26 08:02:27,709 Epoch  13: total training loss 164.23\n",
            "2020-01-26 08:02:27,710 EPOCH 14\n",
            "2020-01-26 08:02:30,008 Epoch  14 Step:      600 Batch Loss:     3.553907 Tokens per Sec:    11914, Lr: 0.000300\n",
            "2020-01-26 08:03:16,042 Hooray! New best validation result [ppl]!\n",
            "2020-01-26 08:03:16,043 Saving new checkpoint.\n",
            "2020-01-26 08:03:17,215 Example #0\n",
            "2020-01-26 08:03:17,216 \tSource:     I WAS raised in Graz , Austria .\n",
            "2020-01-26 08:03:17,216 \tReference:  AGBAẸBHO natiọle Graz bhi Austria , ọle mẹn da wanre .\n",
            "2020-01-26 08:03:17,216 \tHypothesis: Bhi ọsi ọne ọne ọne ọne ọne ọne ọne ọne ọne ọne ọne ọne ọne ọne ọne ọne ọne oga .\n",
            "2020-01-26 08:03:17,216 Example #1\n",
            "2020-01-26 08:03:17,216 \tSource:     In contrast with the people who show the widespread lack of love today , those who worship Jehovah have genuine love for their fellow man .\n",
            "2020-01-26 08:03:17,216 \tReference:  Ene ga iJehova ẹlẹnan wo mhọn oyẹẹ da ibo ele , ele bha diabe ene iga Jehova ne bha hoẹmhọn ibo ele .\n",
            "2020-01-26 08:03:17,217 \tHypothesis: Mhan da ha ha ha ha ha ha re emhin nin mhan rẹ ha ha ha re egbe .\n",
            "2020-01-26 08:03:17,217 Example #2\n",
            "2020-01-26 08:03:17,217 \tSource:     Today , we live as foreigners , as it were , in a world that has been morally and spiritually corrupted by Babylon the Great , the world empire of false religion , “ a dwelling place of demons . ”\n",
            "2020-01-26 08:03:17,217 \tReference:  Inian mhan diabi eriọbhe bhi ẹkẹ ọne agbọn nan nin oga ohoghe ria a . Babylon nọn khua a tie ene oga ohoghe nan , ele da dọ kiẹn eji ẹlinmhin ne imhẹn da nyẹnlẹn . ( Rev .\n",
            "2020-01-26 08:03:17,217 \tHypothesis: Bhi ọsi ọne ọne ọne ọne ọne ọne ọne ọne ọne ọne ọne ọne ọne ọne ọne ọne ọne ọne ọne ọne ọne ọne ọne ọne ọne ọne ọne ọne ọne ọne ọne ọne ọne ọne ọne ọne ọne ọne ọne ọne ọne ọne ọne ọne ọne ọne ọne ọne ọne ọne ọne ọne ọne ọne ọne ọne ọne ọne ọne ọne ọne ọne ọne ọne ọne ọne ọne ọne ọne ọne ọne ọne ọne ọne ọne ọne ọne ọne ọne ọne ọne ọne ọne ọne ọne ọne ọne ọne ọne ọne ọne ọne ọne ọne ọne ọne ọne ọne\n",
            "2020-01-26 08:03:17,217 Example #3\n",
            "2020-01-26 08:03:17,217 \tSource:     We should also strive to help others spiritually .\n",
            "2020-01-26 08:03:17,217 \tReference:  Ahamiẹn mhan re ẹghe bhi otọ rẹ ha luẹ iBaibo , yẹ deba ene gene guanọ nin ele ga iJehova ha muobọ , ọ dẹ rẹkpa mhan rẹ ziẹn ikolu nin mhan bi Jehova koko mhọnlẹn .\n",
            "2020-01-26 08:03:17,218 \tHypothesis: Be bhọ mhan ha ha sabọ sabọ sabọ sabọ sabọ ha lu egbe ?\n",
            "2020-01-26 08:03:17,218 Validation result (greedy) at epoch  14, step      600: bleu:   0.55, loss: 83069.7344, ppl:  39.7390, duration: 47.2095s\n",
            "2020-01-26 08:03:22,015 Epoch  14: total training loss 160.68\n",
            "2020-01-26 08:03:22,016 EPOCH 15\n",
            "2020-01-26 08:03:29,243 Epoch  15: total training loss 156.83\n",
            "2020-01-26 08:03:29,244 EPOCH 16\n",
            "2020-01-26 08:03:33,296 Epoch  16 Step:      700 Batch Loss:     3.292420 Tokens per Sec:    12327, Lr: 0.000300\n",
            "2020-01-26 08:04:19,411 Hooray! New best validation result [ppl]!\n",
            "2020-01-26 08:04:19,411 Saving new checkpoint.\n",
            "2020-01-26 08:04:20,600 Example #0\n",
            "2020-01-26 08:04:20,600 \tSource:     I WAS raised in Graz , Austria .\n",
            "2020-01-26 08:04:20,600 \tReference:  AGBAẸBHO natiọle Graz bhi Austria , ọle mẹn da wanre .\n",
            "2020-01-26 08:04:20,600 \tHypothesis: Ọle da wo ha lu .\n",
            "2020-01-26 08:04:20,601 Example #1\n",
            "2020-01-26 08:04:20,601 \tSource:     In contrast with the people who show the widespread lack of love today , those who worship Jehovah have genuine love for their fellow man .\n",
            "2020-01-26 08:04:20,601 \tReference:  Ene ga iJehova ẹlẹnan wo mhọn oyẹẹ da ibo ele , ele bha diabe ene iga Jehova ne bha hoẹmhọn ibo ele .\n",
            "2020-01-26 08:04:20,601 \tHypothesis: Mhan da ha rẹ ha rẹ ha rẹ ha rẹ ha rẹ ha rẹ ha lu bhi egbe .\n",
            "2020-01-26 08:04:20,601 Example #2\n",
            "2020-01-26 08:04:20,601 \tSource:     Today , we live as foreigners , as it were , in a world that has been morally and spiritually corrupted by Babylon the Great , the world empire of false religion , “ a dwelling place of demons . ”\n",
            "2020-01-26 08:04:20,602 \tReference:  Inian mhan diabi eriọbhe bhi ẹkẹ ọne agbọn nan nin oga ohoghe ria a . Babylon nọn khua a tie ene oga ohoghe nan , ele da dọ kiẹn eji ẹlinmhin ne imhẹn da nyẹnlẹn . ( Rev .\n",
            "2020-01-26 08:04:20,602 \tHypothesis: Bhi ọsi ijiẹmhin , ọle da ha rẹ ha yi ene biẹ mhan rẹ ha re obọ bhi ọne ọne agbọn nan , ọle da ha re obọ bhi ọne agbọn nan , ọle da ha re obọ bhi ọne ọne agbọn nan .\n",
            "2020-01-26 08:04:20,602 Example #3\n",
            "2020-01-26 08:04:20,602 \tSource:     We should also strive to help others spiritually .\n",
            "2020-01-26 08:04:20,602 \tReference:  Ahamiẹn mhan re ẹghe bhi otọ rẹ ha luẹ iBaibo , yẹ deba ene gene guanọ nin ele ga iJehova ha muobọ , ọ dẹ rẹkpa mhan rẹ ziẹn ikolu nin mhan bi Jehova koko mhọnlẹn .\n",
            "2020-01-26 08:04:20,602 \tHypothesis: Be bhọ mhan rẹ sabọ sabọ sabọ sabọ sabọ sabọ sabọ ha lu emhin nin mhan rẹ ha lu .\n",
            "2020-01-26 08:04:20,602 Validation result (greedy) at epoch  16, step      700: bleu:   1.23, loss: 79955.3750, ppl:  34.6147, duration: 47.3065s\n",
            "2020-01-26 08:04:23,769 Epoch  16: total training loss 153.85\n",
            "2020-01-26 08:04:23,769 EPOCH 17\n",
            "2020-01-26 08:04:31,068 Epoch  17: total training loss 150.37\n",
            "2020-01-26 08:04:31,068 EPOCH 18\n",
            "2020-01-26 08:04:36,604 Epoch  18 Step:      800 Batch Loss:     3.116080 Tokens per Sec:    12800, Lr: 0.000300\n",
            "2020-01-26 08:05:22,668 Hooray! New best validation result [ppl]!\n",
            "2020-01-26 08:05:22,668 Saving new checkpoint.\n",
            "2020-01-26 08:05:23,789 Example #0\n",
            "2020-01-26 08:05:23,790 \tSource:     I WAS raised in Graz , Austria .\n",
            "2020-01-26 08:05:23,790 \tReference:  AGBAẸBHO natiọle Graz bhi Austria , ọle mẹn da wanre .\n",
            "2020-01-26 08:05:23,790 \tHypothesis: Ọle da wo ha yi mẹn .\n",
            "2020-01-26 08:05:23,790 Example #1\n",
            "2020-01-26 08:05:23,791 \tSource:     In contrast with the people who show the widespread lack of love today , those who worship Jehovah have genuine love for their fellow man .\n",
            "2020-01-26 08:05:23,791 \tReference:  Ene ga iJehova ẹlẹnan wo mhọn oyẹẹ da ibo ele , ele bha diabe ene iga Jehova ne bha hoẹmhọn ibo ele .\n",
            "2020-01-26 08:05:23,791 \tHypothesis: Mhan da ha rẹ ha re egbe nin ele rẹ ha lu emhin nin ele rẹ ha lu .\n",
            "2020-01-26 08:05:23,791 Example #2\n",
            "2020-01-26 08:05:23,791 \tSource:     Today , we live as foreigners , as it were , in a world that has been morally and spiritually corrupted by Babylon the Great , the world empire of false religion , “ a dwelling place of demons . ”\n",
            "2020-01-26 08:05:23,791 \tReference:  Inian mhan diabi eriọbhe bhi ẹkẹ ọne agbọn nan nin oga ohoghe ria a . Babylon nọn khua a tie ene oga ohoghe nan , ele da dọ kiẹn eji ẹlinmhin ne imhẹn da nyẹnlẹn . ( Rev .\n",
            "2020-01-26 08:05:23,791 \tHypothesis: Bhi ọsi ẹmhọanta , mhan da yọle : “ “ “ “ “ “ “ “ “ “ “ “ “ “ “ “ “ “ “ “ “ “ “ “ “ “ “ “ “ “ “ “ “ “ “ “ “ “ “ “ “ “ “ “ “ “ “ “ “ “ “ “ “ “ “ “ “ “ “ “ “ “ “ “ “ “ “ “ “ “ “ “ Ẹghe nin mhan rẹ ha re re obọ nin mhan rẹ ha re obọ , ọle rẹ ha re obọ\n",
            "2020-01-26 08:05:23,792 Example #3\n",
            "2020-01-26 08:05:23,792 \tSource:     We should also strive to help others spiritually .\n",
            "2020-01-26 08:05:23,792 \tReference:  Ahamiẹn mhan re ẹghe bhi otọ rẹ ha luẹ iBaibo , yẹ deba ene gene guanọ nin ele ga iJehova ha muobọ , ọ dẹ rẹkpa mhan rẹ ziẹn ikolu nin mhan bi Jehova koko mhọnlẹn .\n",
            "2020-01-26 08:05:23,792 \tHypothesis: Be bhọ mhan ha rẹ ha rẹkpa mhan rẹ ha lu emhin nin mhan rẹ ha lu .\n",
            "2020-01-26 08:05:23,792 Validation result (greedy) at epoch  18, step      800: bleu:   2.14, loss: 78357.0234, ppl:  32.2470, duration: 47.1879s\n",
            "2020-01-26 08:05:25,377 Epoch  18: total training loss 148.45\n",
            "2020-01-26 08:05:25,378 EPOCH 19\n",
            "2020-01-26 08:05:32,521 Epoch  19: total training loss 145.88\n",
            "2020-01-26 08:05:32,521 EPOCH 20\n",
            "2020-01-26 08:05:39,749 Epoch  20 Step:      900 Batch Loss:     2.919087 Tokens per Sec:    12611, Lr: 0.000300\n",
            "2020-01-26 08:06:25,750 Hooray! New best validation result [ppl]!\n",
            "2020-01-26 08:06:25,751 Saving new checkpoint.\n",
            "2020-01-26 08:06:26,905 Example #0\n",
            "2020-01-26 08:06:26,906 \tSource:     I WAS raised in Graz , Austria .\n",
            "2020-01-26 08:06:26,906 \tReference:  AGBAẸBHO natiọle Graz bhi Austria , ọle mẹn da wanre .\n",
            "2020-01-26 08:06:26,906 \tHypothesis: Ọle da wo ha yi mẹn .\n",
            "2020-01-26 08:06:26,906 Example #1\n",
            "2020-01-26 08:06:26,907 \tSource:     In contrast with the people who show the widespread lack of love today , those who worship Jehovah have genuine love for their fellow man .\n",
            "2020-01-26 08:06:26,907 \tReference:  Ene ga iJehova ẹlẹnan wo mhọn oyẹẹ da ibo ele , ele bha diabe ene iga Jehova ne bha hoẹmhọn ibo ele .\n",
            "2020-01-26 08:06:26,907 \tHypothesis: Bhi ọsi ijiẹmhin , ene biẹ ọmọn nan rẹ ha mhọn ọne agbọn nan .\n",
            "2020-01-26 08:06:26,907 Example #2\n",
            "2020-01-26 08:06:26,907 \tSource:     Today , we live as foreigners , as it were , in a world that has been morally and spiritually corrupted by Babylon the Great , the world empire of false religion , “ a dwelling place of demons . ”\n",
            "2020-01-26 08:06:26,907 \tReference:  Inian mhan diabi eriọbhe bhi ẹkẹ ọne agbọn nan nin oga ohoghe ria a . Babylon nọn khua a tie ene oga ohoghe nan , ele da dọ kiẹn eji ẹlinmhin ne imhẹn da nyẹnlẹn . ( Rev .\n",
            "2020-01-26 08:06:26,907 \tHypothesis: Bhi ọsi ẹmhọanta , mhan da ha yi eria ne ribhi ọne agbọn nan , ọle da ha yi eria ne bunbun .\n",
            "2020-01-26 08:06:26,907 Example #3\n",
            "2020-01-26 08:06:26,908 \tSource:     We should also strive to help others spiritually .\n",
            "2020-01-26 08:06:26,908 \tReference:  Ahamiẹn mhan re ẹghe bhi otọ rẹ ha luẹ iBaibo , yẹ deba ene gene guanọ nin ele ga iJehova ha muobọ , ọ dẹ rẹkpa mhan rẹ ziẹn ikolu nin mhan bi Jehova koko mhọnlẹn .\n",
            "2020-01-26 08:06:26,908 \tHypothesis: Mhan dẹ sabọ ha rẹ ha rẹ ha mhọn emhin nin mhan rẹ ha mhọn emhin ne ribhi oga .\n",
            "2020-01-26 08:06:26,908 Validation result (greedy) at epoch  20, step      900: bleu:   2.67, loss: 76491.7969, ppl:  29.6880, duration: 47.1589s\n",
            "2020-01-26 08:06:26,913 Epoch  20: total training loss 143.58\n",
            "2020-01-26 08:06:26,913 EPOCH 21\n",
            "2020-01-26 08:06:34,001 Epoch  21: total training loss 142.98\n",
            "2020-01-26 08:06:34,002 EPOCH 22\n",
            "2020-01-26 08:06:41,290 Epoch  22: total training loss 138.97\n",
            "2020-01-26 08:06:41,290 EPOCH 23\n",
            "2020-01-26 08:06:42,875 Epoch  23 Step:     1000 Batch Loss:     2.856789 Tokens per Sec:    12842, Lr: 0.000300\n",
            "2020-01-26 08:07:29,024 Hooray! New best validation result [ppl]!\n",
            "2020-01-26 08:07:29,024 Saving new checkpoint.\n",
            "2020-01-26 08:07:30,244 Example #0\n",
            "2020-01-26 08:07:30,245 \tSource:     I WAS raised in Graz , Austria .\n",
            "2020-01-26 08:07:30,245 \tReference:  AGBAẸBHO natiọle Graz bhi Austria , ọle mẹn da wanre .\n",
            "2020-01-26 08:07:30,245 \tHypothesis: Ọle da wo ha yi mẹn bhi ọne otọ nan .\n",
            "2020-01-26 08:07:30,245 Example #1\n",
            "2020-01-26 08:07:30,246 \tSource:     In contrast with the people who show the widespread lack of love today , those who worship Jehovah have genuine love for their fellow man .\n",
            "2020-01-26 08:07:30,246 \tReference:  Ene ga iJehova ẹlẹnan wo mhọn oyẹẹ da ibo ele , ele bha diabe ene iga Jehova ne bha hoẹmhọn ibo ele .\n",
            "2020-01-26 08:07:30,246 \tHypothesis: Mhan dẹ sabọ ha re obọ rẹkhan emhin nin ele rẹ ha mhọn emhin ne bunbun , ele ki sabọ ha mhọn obọ bhi oga .\n",
            "2020-01-26 08:07:30,246 Example #2\n",
            "2020-01-26 08:07:30,247 \tSource:     Today , we live as foreigners , as it were , in a world that has been morally and spiritually corrupted by Babylon the Great , the world empire of false religion , “ a dwelling place of demons . ”\n",
            "2020-01-26 08:07:30,247 \tReference:  Inian mhan diabi eriọbhe bhi ẹkẹ ọne agbọn nan nin oga ohoghe ria a . Babylon nọn khua a tie ene oga ohoghe nan , ele da dọ kiẹn eji ẹlinmhin ne imhẹn da nyẹnlẹn . ( Rev .\n",
            "2020-01-26 08:07:30,247 \tHypothesis: ( John 4 : 1 ) Mhan da ha yi eria ne bunbun , ọle ki ha yi eria ne bunbun , ọle ki ha yi eria ne bunbun bhi ọne agbọn nan , ọle ki ha yi eria ne bunbun .\n",
            "2020-01-26 08:07:30,247 Example #3\n",
            "2020-01-26 08:07:30,248 \tSource:     We should also strive to help others spiritually .\n",
            "2020-01-26 08:07:30,248 \tReference:  Ahamiẹn mhan re ẹghe bhi otọ rẹ ha luẹ iBaibo , yẹ deba ene gene guanọ nin ele ga iJehova ha muobọ , ọ dẹ rẹkpa mhan rẹ ziẹn ikolu nin mhan bi Jehova koko mhọnlẹn .\n",
            "2020-01-26 08:07:30,248 \tHypothesis: Be bhọ mhan ha rẹ sabọ ha mhọn emhin nọn khẹke nin mhan rẹ ha mhọn emhin nin mhan rẹ ha lu ?\n",
            "2020-01-26 08:07:30,249 Validation result (greedy) at epoch  23, step     1000: bleu:   2.42, loss: 75343.2969, ppl:  28.2144, duration: 47.3732s\n",
            "2020-01-26 08:07:35,735 Epoch  23: total training loss 136.94\n",
            "2020-01-26 08:07:35,735 EPOCH 24\n",
            "2020-01-26 08:07:43,066 Epoch  24: total training loss 135.12\n",
            "2020-01-26 08:07:43,067 EPOCH 25\n",
            "2020-01-26 08:07:46,254 Epoch  25 Step:     1100 Batch Loss:     2.725771 Tokens per Sec:    12922, Lr: 0.000300\n",
            "2020-01-26 08:08:32,261 Hooray! New best validation result [ppl]!\n",
            "2020-01-26 08:08:32,262 Saving new checkpoint.\n",
            "2020-01-26 08:08:33,379 Example #0\n",
            "2020-01-26 08:08:33,380 \tSource:     I WAS raised in Graz , Austria .\n",
            "2020-01-26 08:08:33,380 \tReference:  AGBAẸBHO natiọle Graz bhi Austria , ọle mẹn da wanre .\n",
            "2020-01-26 08:08:33,380 \tHypothesis: Ọle da wo ha yi mẹn .\n",
            "2020-01-26 08:08:33,380 Example #1\n",
            "2020-01-26 08:08:33,380 \tSource:     In contrast with the people who show the widespread lack of love today , those who worship Jehovah have genuine love for their fellow man .\n",
            "2020-01-26 08:08:33,380 \tReference:  Ene ga iJehova ẹlẹnan wo mhọn oyẹẹ da ibo ele , ele bha diabe ene iga Jehova ne bha hoẹmhọn ibo ele .\n",
            "2020-01-26 08:08:33,380 \tHypothesis: Ọ dẹ sabọ ha re egbe khọkhọ eria ne bunbun , ele ki sabọ ha re egbe khọkhọ eria ne bunbun .\n",
            "2020-01-26 08:08:33,381 Example #2\n",
            "2020-01-26 08:08:33,381 \tSource:     Today , we live as foreigners , as it were , in a world that has been morally and spiritually corrupted by Babylon the Great , the world empire of false religion , “ a dwelling place of demons . ”\n",
            "2020-01-26 08:08:33,381 \tReference:  Inian mhan diabi eriọbhe bhi ẹkẹ ọne agbọn nan nin oga ohoghe ria a . Babylon nọn khua a tie ene oga ohoghe nan , ele da dọ kiẹn eji ẹlinmhin ne imhẹn da nyẹnlẹn . ( Rev .\n",
            "2020-01-26 08:08:33,381 \tHypothesis: Mhan da ha yi eria ne bunbun , mhan ki ha re obọ kpa bhi ọne agbọn nan , ọle da ha yi eria ne bunbun .\n",
            "2020-01-26 08:08:33,381 Example #3\n",
            "2020-01-26 08:08:33,381 \tSource:     We should also strive to help others spiritually .\n",
            "2020-01-26 08:08:33,381 \tReference:  Ahamiẹn mhan re ẹghe bhi otọ rẹ ha luẹ iBaibo , yẹ deba ene gene guanọ nin ele ga iJehova ha muobọ , ọ dẹ rẹkpa mhan rẹ ziẹn ikolu nin mhan bi Jehova koko mhọnlẹn .\n",
            "2020-01-26 08:08:33,381 \tHypothesis: Mhan ha sabọ rẹkpa mhan rẹ sabọ ha lu emhin nin mhan ha lu .\n",
            "2020-01-26 08:08:33,381 Validation result (greedy) at epoch  25, step     1100: bleu:   2.75, loss: 74969.6875, ppl:  27.7510, duration: 47.1269s\n",
            "2020-01-26 08:08:37,239 Epoch  25: total training loss 129.85\n",
            "2020-01-26 08:08:37,240 EPOCH 26\n",
            "2020-01-26 08:08:44,469 Epoch  26: total training loss 131.09\n",
            "2020-01-26 08:08:44,469 EPOCH 27\n",
            "2020-01-26 08:08:49,356 Epoch  27 Step:     1200 Batch Loss:     2.751511 Tokens per Sec:    12659, Lr: 0.000300\n",
            "2020-01-26 08:09:35,517 Hooray! New best validation result [ppl]!\n",
            "2020-01-26 08:09:35,517 Saving new checkpoint.\n",
            "2020-01-26 08:09:36,808 Example #0\n",
            "2020-01-26 08:09:36,809 \tSource:     I WAS raised in Graz , Austria .\n",
            "2020-01-26 08:09:36,809 \tReference:  AGBAẸBHO natiọle Graz bhi Austria , ọle mẹn da wanre .\n",
            "2020-01-26 08:09:36,809 \tHypothesis: Ọle da wo ha yi ọria nọn ha lu iwẹnna ọkanẹfan .\n",
            "2020-01-26 08:09:36,809 Example #1\n",
            "2020-01-26 08:09:36,809 \tSource:     In contrast with the people who show the widespread lack of love today , those who worship Jehovah have genuine love for their fellow man .\n",
            "2020-01-26 08:09:36,809 \tReference:  Ene ga iJehova ẹlẹnan wo mhọn oyẹẹ da ibo ele , ele bha diabe ene iga Jehova ne bha hoẹmhọn ibo ele .\n",
            "2020-01-26 08:09:36,810 \tHypothesis: Mhan ha sabọ miẹn ghe , uwẹ dẹ sabọ ha re egbe khọkhọ eria ne bunbun .\n",
            "2020-01-26 08:09:36,810 Example #2\n",
            "2020-01-26 08:09:36,810 \tSource:     Today , we live as foreigners , as it were , in a world that has been morally and spiritually corrupted by Babylon the Great , the world empire of false religion , “ a dwelling place of demons . ”\n",
            "2020-01-26 08:09:36,810 \tReference:  Inian mhan diabi eriọbhe bhi ẹkẹ ọne agbọn nan nin oga ohoghe ria a . Babylon nọn khua a tie ene oga ohoghe nan , ele da dọ kiẹn eji ẹlinmhin ne imhẹn da nyẹnlẹn . ( Rev .\n",
            "2020-01-26 08:09:36,810 \tHypothesis: Mhan da yọle : “ Mhan dẹ ha re obọ rẹkhan uhi nọn ribhi Baibo , mhan ki ha yi ẹbho ne bunbun , mhan ki ha re obọ rẹkhan ọlẹn . ” ” ” ” ( Matt .\n",
            "2020-01-26 08:09:36,811 Example #3\n",
            "2020-01-26 08:09:36,811 \tSource:     We should also strive to help others spiritually .\n",
            "2020-01-26 08:09:36,811 \tReference:  Ahamiẹn mhan re ẹghe bhi otọ rẹ ha luẹ iBaibo , yẹ deba ene gene guanọ nin ele ga iJehova ha muobọ , ọ dẹ rẹkpa mhan rẹ ziẹn ikolu nin mhan bi Jehova koko mhọnlẹn .\n",
            "2020-01-26 08:09:36,811 \tHypothesis: Mhan ha sabọ miẹn emhin ne bunbun bhi egbe .\n",
            "2020-01-26 08:09:36,811 Validation result (greedy) at epoch  27, step     1200: bleu:   3.16, loss: 73839.7266, ppl:  26.3952, duration: 47.4554s\n",
            "2020-01-26 08:09:39,028 Epoch  27: total training loss 129.69\n",
            "2020-01-26 08:09:39,028 EPOCH 28\n",
            "2020-01-26 08:09:46,304 Epoch  28: total training loss 127.06\n",
            "2020-01-26 08:09:46,304 EPOCH 29\n",
            "2020-01-26 08:09:52,660 Epoch  29 Step:     1300 Batch Loss:     2.944221 Tokens per Sec:    12920, Lr: 0.000300\n",
            "2020-01-26 08:10:38,727 Hooray! New best validation result [ppl]!\n",
            "2020-01-26 08:10:38,727 Saving new checkpoint.\n",
            "2020-01-26 08:10:39,878 Example #0\n",
            "2020-01-26 08:10:39,879 \tSource:     I WAS raised in Graz , Austria .\n",
            "2020-01-26 08:10:39,879 \tReference:  AGBAẸBHO natiọle Graz bhi Austria , ọle mẹn da wanre .\n",
            "2020-01-26 08:10:39,879 \tHypothesis: Ọle da ha mhọn ọne iwẹnna nan .\n",
            "2020-01-26 08:10:39,879 Example #1\n",
            "2020-01-26 08:10:39,879 \tSource:     In contrast with the people who show the widespread lack of love today , those who worship Jehovah have genuine love for their fellow man .\n",
            "2020-01-26 08:10:39,880 \tReference:  Ene ga iJehova ẹlẹnan wo mhọn oyẹẹ da ibo ele , ele bha diabe ene iga Jehova ne bha hoẹmhọn ibo ele .\n",
            "2020-01-26 08:10:39,880 \tHypothesis: Bhiriọ , uwẹ dẹ sabọ rẹkpa uwẹ rẹ ha mhọn emhin nin uwẹ rẹ ha mhọn nọnsẹn .\n",
            "2020-01-26 08:10:39,880 Example #2\n",
            "2020-01-26 08:10:39,880 \tSource:     Today , we live as foreigners , as it were , in a world that has been morally and spiritually corrupted by Babylon the Great , the world empire of false religion , “ a dwelling place of demons . ”\n",
            "2020-01-26 08:10:39,880 \tReference:  Inian mhan diabi eriọbhe bhi ẹkẹ ọne agbọn nan nin oga ohoghe ria a . Babylon nọn khua a tie ene oga ohoghe nan , ele da dọ kiẹn eji ẹlinmhin ne imhẹn da nyẹnlẹn . ( Rev .\n",
            "2020-01-26 08:10:39,880 \tHypothesis: Mhan da ha re obọ rẹkhan uhi nọn ribhi Baibo , mhan ki ha re obọ rẹkhan adia nesi Jehova , bi ene ga Osẹnobulua .\n",
            "2020-01-26 08:10:39,880 Example #3\n",
            "2020-01-26 08:10:39,881 \tSource:     We should also strive to help others spiritually .\n",
            "2020-01-26 08:10:39,881 \tReference:  Ahamiẹn mhan re ẹghe bhi otọ rẹ ha luẹ iBaibo , yẹ deba ene gene guanọ nin ele ga iJehova ha muobọ , ọ dẹ rẹkpa mhan rẹ ziẹn ikolu nin mhan bi Jehova koko mhọnlẹn .\n",
            "2020-01-26 08:10:39,881 \tHypothesis: Mhan dẹ sabọ rẹkpa mhan rẹ sabọ ha mhọn emhin nin mhan ha mhọn nọnsẹn .\n",
            "2020-01-26 08:10:39,881 Validation result (greedy) at epoch  29, step     1300: bleu:   3.21, loss: 73582.2969, ppl:  26.0957, duration: 47.2207s\n",
            "2020-01-26 08:10:40,551 Epoch  29: total training loss 125.88\n",
            "2020-01-26 08:10:40,551 EPOCH 30\n",
            "2020-01-26 08:10:47,611 Epoch  30: total training loss 123.65\n",
            "2020-01-26 08:10:47,611 EPOCH 31\n",
            "2020-01-26 08:10:54,774 Epoch  31: total training loss 122.03\n",
            "2020-01-26 08:10:54,775 EPOCH 32\n",
            "2020-01-26 08:10:55,747 Epoch  32 Step:     1400 Batch Loss:     2.719724 Tokens per Sec:    12781, Lr: 0.000300\n",
            "2020-01-26 08:11:41,993 Hooray! New best validation result [ppl]!\n",
            "2020-01-26 08:11:41,994 Saving new checkpoint.\n",
            "2020-01-26 08:11:43,161 Example #0\n",
            "2020-01-26 08:11:43,162 \tSource:     I WAS raised in Graz , Austria .\n",
            "2020-01-26 08:11:43,162 \tReference:  AGBAẸBHO natiọle Graz bhi Austria , ọle mẹn da wanre .\n",
            "2020-01-26 08:11:43,162 \tHypothesis: Ọle da ha yi ikpe eva nin mẹn ha lu iwẹnna ọkanẹfan .\n",
            "2020-01-26 08:11:43,162 Example #1\n",
            "2020-01-26 08:11:43,162 \tSource:     In contrast with the people who show the widespread lack of love today , those who worship Jehovah have genuine love for their fellow man .\n",
            "2020-01-26 08:11:43,162 \tReference:  Ene ga iJehova ẹlẹnan wo mhọn oyẹẹ da ibo ele , ele bha diabe ene iga Jehova ne bha hoẹmhọn ibo ele .\n",
            "2020-01-26 08:11:43,162 \tHypothesis: Ene biẹ ọmọn nan wo ha mhọn ẹmhọn Agbejele nọnsi Jehova , ele da sabọ ha mhọn isẹhoa nin ele rẹ ha mhọn nọnsẹn .\n",
            "2020-01-26 08:11:43,163 Example #2\n",
            "2020-01-26 08:11:43,163 \tSource:     Today , we live as foreigners , as it were , in a world that has been morally and spiritually corrupted by Babylon the Great , the world empire of false religion , “ a dwelling place of demons . ”\n",
            "2020-01-26 08:11:43,163 \tReference:  Inian mhan diabi eriọbhe bhi ẹkẹ ọne agbọn nan nin oga ohoghe ria a . Babylon nọn khua a tie ene oga ohoghe nan , ele da dọ kiẹn eji ẹlinmhin ne imhẹn da nyẹnlẹn . ( Rev .\n",
            "2020-01-26 08:11:43,163 \tHypothesis: Mhan da ha re obọ rẹkhan uhi nọn ribhi Baibo yọle : “ Bha ji mhan rẹ ha re obọ rẹkhan adia nesi Jehova , ranmhude mhan ki ha re obọ rẹkhan ọlẹn , ranmhude mhan ki ha re obọ rẹkhan ọlẹn . ”\n",
            "2020-01-26 08:11:43,163 Example #3\n",
            "2020-01-26 08:11:43,163 \tSource:     We should also strive to help others spiritually .\n",
            "2020-01-26 08:11:43,163 \tReference:  Ahamiẹn mhan re ẹghe bhi otọ rẹ ha luẹ iBaibo , yẹ deba ene gene guanọ nin ele ga iJehova ha muobọ , ọ dẹ rẹkpa mhan rẹ ziẹn ikolu nin mhan bi Jehova koko mhọnlẹn .\n",
            "2020-01-26 08:11:43,163 \tHypothesis: Mhan dẹ sabọ ha re egbe khọkhọ eria ne bunbun .\n",
            "2020-01-26 08:11:43,164 Validation result (greedy) at epoch  32, step     1400: bleu:   3.39, loss: 72614.8125, ppl:  25.0002, duration: 47.4159s\n",
            "2020-01-26 08:11:49,257 Epoch  32: total training loss 120.11\n",
            "2020-01-26 08:11:49,257 EPOCH 33\n",
            "2020-01-26 08:11:56,537 Epoch  33: total training loss 118.35\n",
            "2020-01-26 08:11:56,537 EPOCH 34\n",
            "2020-01-26 08:11:59,151 Epoch  34 Step:     1500 Batch Loss:     2.812595 Tokens per Sec:    12506, Lr: 0.000300\n",
            "2020-01-26 08:12:45,318 Example #0\n",
            "2020-01-26 08:12:45,319 \tSource:     I WAS raised in Graz , Austria .\n",
            "2020-01-26 08:12:45,319 \tReference:  AGBAẸBHO natiọle Graz bhi Austria , ọle mẹn da wanre .\n",
            "2020-01-26 08:12:45,319 \tHypothesis: Mẹn da wo ha mhọn ẹmhọn oga .\n",
            "2020-01-26 08:12:45,320 Example #1\n",
            "2020-01-26 08:12:45,320 \tSource:     In contrast with the people who show the widespread lack of love today , those who worship Jehovah have genuine love for their fellow man .\n",
            "2020-01-26 08:12:45,320 \tReference:  Ene ga iJehova ẹlẹnan wo mhọn oyẹẹ da ibo ele , ele bha diabe ene iga Jehova ne bha hoẹmhọn ibo ele .\n",
            "2020-01-26 08:12:45,320 \tHypothesis: Ọnan wo manman re egbe khọkhọ iJehova bhi ẹghe nin uwẹ rẹ ha mhọn isẹhoa nin ọle rẹ ha mhọn idegbere .\n",
            "2020-01-26 08:12:45,321 Example #2\n",
            "2020-01-26 08:12:45,321 \tSource:     Today , we live as foreigners , as it were , in a world that has been morally and spiritually corrupted by Babylon the Great , the world empire of false religion , “ a dwelling place of demons . ”\n",
            "2020-01-26 08:12:45,321 \tReference:  Inian mhan diabi eriọbhe bhi ẹkẹ ọne agbọn nan nin oga ohoghe ria a . Babylon nọn khua a tie ene oga ohoghe nan , ele da dọ kiẹn eji ẹlinmhin ne imhẹn da nyẹnlẹn . ( Rev .\n",
            "2020-01-26 08:12:45,321 \tHypothesis: Mhan da yọle : “ Mhan dẹ ha re obọ rẹkhan uhi nọn ribhi Baibo , mhan ki ha re obọ rẹkhan ọlẹn , mhan ki ha re obọ rẹkhan ọlẹn , ranmhude mhan da yọle : “ Bha ha re obọ rẹkhan emhin nin ele . ”\n",
            "2020-01-26 08:12:45,321 Example #3\n",
            "2020-01-26 08:12:45,322 \tSource:     We should also strive to help others spiritually .\n",
            "2020-01-26 08:12:45,322 \tReference:  Ahamiẹn mhan re ẹghe bhi otọ rẹ ha luẹ iBaibo , yẹ deba ene gene guanọ nin ele ga iJehova ha muobọ , ọ dẹ rẹkpa mhan rẹ ziẹn ikolu nin mhan bi Jehova koko mhọnlẹn .\n",
            "2020-01-26 08:12:45,322 \tHypothesis: Mhan dẹ sabọ rẹkpa mhan rẹ sabọ ha re egbe khọkhọ eria ne bunbun .\n",
            "2020-01-26 08:12:45,322 Validation result (greedy) at epoch  34, step     1500: bleu:   3.91, loss: 72724.7578, ppl:  25.1224, duration: 46.1704s\n",
            "2020-01-26 08:12:49,834 Epoch  34: total training loss 116.38\n",
            "2020-01-26 08:12:49,834 EPOCH 35\n",
            "2020-01-26 08:12:56,844 Epoch  35: total training loss 112.00\n",
            "2020-01-26 08:12:56,844 EPOCH 36\n",
            "2020-01-26 08:13:01,089 Epoch  36 Step:     1600 Batch Loss:     2.552213 Tokens per Sec:    12536, Lr: 0.000300\n",
            "2020-01-26 08:13:47,232 Example #0\n",
            "2020-01-26 08:13:47,233 \tSource:     I WAS raised in Graz , Austria .\n",
            "2020-01-26 08:13:47,233 \tReference:  AGBAẸBHO natiọle Graz bhi Austria , ọle mẹn da wanre .\n",
            "2020-01-26 08:13:47,233 \tHypothesis: Mẹn da wo ha mhọn ọne iwẹnna nan .\n",
            "2020-01-26 08:13:47,233 Example #1\n",
            "2020-01-26 08:13:47,234 \tSource:     In contrast with the people who show the widespread lack of love today , those who worship Jehovah have genuine love for their fellow man .\n",
            "2020-01-26 08:13:47,234 \tReference:  Ene ga iJehova ẹlẹnan wo mhọn oyẹẹ da ibo ele , ele bha diabe ene iga Jehova ne bha hoẹmhọn ibo ele .\n",
            "2020-01-26 08:13:47,234 \tHypothesis: Ọnan wo wo re ọne isẹhoa nan rẹ ha mhọn urẹọbhọ nọnsi Jehova .\n",
            "2020-01-26 08:13:47,234 Example #2\n",
            "2020-01-26 08:13:47,235 \tSource:     Today , we live as foreigners , as it were , in a world that has been morally and spiritually corrupted by Babylon the Great , the world empire of false religion , “ a dwelling place of demons . ”\n",
            "2020-01-26 08:13:47,235 \tReference:  Inian mhan diabi eriọbhe bhi ẹkẹ ọne agbọn nan nin oga ohoghe ria a . Babylon nọn khua a tie ene oga ohoghe nan , ele da dọ kiẹn eji ẹlinmhin ne imhẹn da nyẹnlẹn . ( Rev .\n",
            "2020-01-26 08:13:47,235 \tHypothesis: Mhan da ha yi ọkpa bhi ọne uhọnmhọn - ọta nan , mhan ki ha mhọn ọne ọta nan , mhan ki ha mhọn ọne otọ nan , ranmhude mhan da wo ha mhọn urẹọbhọ bi emhin ne bunbun .\n",
            "2020-01-26 08:13:47,235 Example #3\n",
            "2020-01-26 08:13:47,236 \tSource:     We should also strive to help others spiritually .\n",
            "2020-01-26 08:13:47,236 \tReference:  Ahamiẹn mhan re ẹghe bhi otọ rẹ ha luẹ iBaibo , yẹ deba ene gene guanọ nin ele ga iJehova ha muobọ , ọ dẹ rẹkpa mhan rẹ ziẹn ikolu nin mhan bi Jehova koko mhọnlẹn .\n",
            "2020-01-26 08:13:47,236 \tHypothesis: Mhan dẹ sabọ ha re egbe khọkhọ eria ne bunbun .\n",
            "2020-01-26 08:13:47,236 Validation result (greedy) at epoch  36, step     1600: bleu:   3.30, loss: 72694.6719, ppl:  25.0889, duration: 46.1465s\n",
            "2020-01-26 08:13:50,106 Epoch  36: total training loss 113.82\n",
            "2020-01-26 08:13:50,106 EPOCH 37\n",
            "2020-01-26 08:13:57,235 Epoch  37: total training loss 111.24\n",
            "2020-01-26 08:13:57,236 EPOCH 38\n",
            "2020-01-26 08:14:03,088 Epoch  38 Step:     1700 Batch Loss:     2.625222 Tokens per Sec:    12733, Lr: 0.000300\n",
            "2020-01-26 08:14:49,243 Example #0\n",
            "2020-01-26 08:14:49,245 \tSource:     I WAS raised in Graz , Austria .\n",
            "2020-01-26 08:14:49,245 \tReference:  AGBAẸBHO natiọle Graz bhi Austria , ọle mẹn da wanre .\n",
            "2020-01-26 08:14:49,245 \tHypothesis: Mẹn da ha yi ọkpa bhi ẹwẹ mẹn .\n",
            "2020-01-26 08:14:49,245 Example #1\n",
            "2020-01-26 08:14:49,245 \tSource:     In contrast with the people who show the widespread lack of love today , those who worship Jehovah have genuine love for their fellow man .\n",
            "2020-01-26 08:14:49,246 \tReference:  Ene ga iJehova ẹlẹnan wo mhọn oyẹẹ da ibo ele , ele bha diabe ene iga Jehova ne bha hoẹmhọn ibo ele .\n",
            "2020-01-26 08:14:49,246 \tHypothesis: Ene ikpẹ nan wo manman manman manman manman manman mun oga mhọn nọnsẹn .\n",
            "2020-01-26 08:14:49,246 Example #2\n",
            "2020-01-26 08:14:49,246 \tSource:     Today , we live as foreigners , as it were , in a world that has been morally and spiritually corrupted by Babylon the Great , the world empire of false religion , “ a dwelling place of demons . ”\n",
            "2020-01-26 08:14:49,246 \tReference:  Inian mhan diabi eriọbhe bhi ẹkẹ ọne agbọn nan nin oga ohoghe ria a . Babylon nọn khua a tie ene oga ohoghe nan , ele da dọ kiẹn eji ẹlinmhin ne imhẹn da nyẹnlẹn . ( Rev .\n",
            "2020-01-26 08:14:49,247 \tHypothesis: Mhan da ha yi ọkpa bhi Baibo yọle : “ Mhan dẹ ha mhọn urẹọbhọ bi ibhio mhan ne bunbun , ranmhude mhan khin , ranmhude mhan ki ha yi ọkpa bhi ọne otọ nan , ranmhude ọne agbọn nan ki vae . ”\n",
            "2020-01-26 08:14:49,247 Example #3\n",
            "2020-01-26 08:14:49,247 \tSource:     We should also strive to help others spiritually .\n",
            "2020-01-26 08:14:49,247 \tReference:  Ahamiẹn mhan re ẹghe bhi otọ rẹ ha luẹ iBaibo , yẹ deba ene gene guanọ nin ele ga iJehova ha muobọ , ọ dẹ rẹkpa mhan rẹ ziẹn ikolu nin mhan bi Jehova koko mhọnlẹn .\n",
            "2020-01-26 08:14:49,247 \tHypothesis: Mhan dẹ sabọ rẹkpa mhan rẹ ha mhọn ọfure bi emhin nin mhan ha sabọ ha mhọnlẹn .\n",
            "2020-01-26 08:14:49,248 Validation result (greedy) at epoch  38, step     1700: bleu:   4.02, loss: 72884.2422, ppl:  25.3006, duration: 46.1595s\n",
            "2020-01-26 08:14:50,516 Epoch  38: total training loss 109.40\n",
            "2020-01-26 08:14:50,516 EPOCH 39\n",
            "2020-01-26 08:14:57,608 Epoch  39: total training loss 107.30\n",
            "2020-01-26 08:14:57,608 EPOCH 40\n",
            "2020-01-26 08:15:04,717 Epoch  40: total training loss 106.05\n",
            "2020-01-26 08:15:04,718 EPOCH 41\n",
            "2020-01-26 08:15:05,024 Epoch  41 Step:     1800 Batch Loss:     2.495653 Tokens per Sec:    12513, Lr: 0.000300\n",
            "2020-01-26 08:15:51,216 Example #0\n",
            "2020-01-26 08:15:51,217 \tSource:     I WAS raised in Graz , Austria .\n",
            "2020-01-26 08:15:51,217 \tReference:  AGBAẸBHO natiọle Graz bhi Austria , ọle mẹn da wanre .\n",
            "2020-01-26 08:15:51,217 \tHypothesis: Mẹn da wo ha mhọn urẹọbhọ bi mẹn .\n",
            "2020-01-26 08:15:51,217 Example #1\n",
            "2020-01-26 08:15:51,218 \tSource:     In contrast with the people who show the widespread lack of love today , those who worship Jehovah have genuine love for their fellow man .\n",
            "2020-01-26 08:15:51,218 \tReference:  Ene ga iJehova ẹlẹnan wo mhọn oyẹẹ da ibo ele , ele bha diabe ene iga Jehova ne bha hoẹmhọn ibo ele .\n",
            "2020-01-26 08:15:51,218 \tHypothesis: Ene ga iJehova wo re izebhudu nin ele , ele wo ha mhọn ọne isẹhoa nan rẹ ha mhọn ọne otọ nan .\n",
            "2020-01-26 08:15:51,218 Example #2\n",
            "2020-01-26 08:15:51,219 \tSource:     Today , we live as foreigners , as it were , in a world that has been morally and spiritually corrupted by Babylon the Great , the world empire of false religion , “ a dwelling place of demons . ”\n",
            "2020-01-26 08:15:51,219 \tReference:  Inian mhan diabi eriọbhe bhi ẹkẹ ọne agbọn nan nin oga ohoghe ria a . Babylon nọn khua a tie ene oga ohoghe nan , ele da dọ kiẹn eji ẹlinmhin ne imhẹn da nyẹnlẹn . ( Rev .\n",
            "2020-01-26 08:15:51,219 \tHypothesis: Bhi ọsi ẹmhọanta , mhan da ha mhọn urẹọbhọ nọnsẹmhan , mhan ki dọ lẹn ghe mhan dẹ miẹn otọ , ranmhude mhan dẹ miẹn otọ , ranmhude mhan dẹ miẹn ọne isẹhoa nan rẹ re obọ rẹkhan ọlẹn . ”\n",
            "2020-01-26 08:15:51,219 Example #3\n",
            "2020-01-26 08:15:51,220 \tSource:     We should also strive to help others spiritually .\n",
            "2020-01-26 08:15:51,220 \tReference:  Ahamiẹn mhan re ẹghe bhi otọ rẹ ha luẹ iBaibo , yẹ deba ene gene guanọ nin ele ga iJehova ha muobọ , ọ dẹ rẹkpa mhan rẹ ziẹn ikolu nin mhan bi Jehova koko mhọnlẹn .\n",
            "2020-01-26 08:15:51,220 \tHypothesis: Mhan dẹ sabọ rẹkpa mhan rẹ ha mhọn urẹọbhọ bi ọkhọnlẹn ọsaje .\n",
            "2020-01-26 08:15:51,220 Validation result (greedy) at epoch  41, step     1800: bleu:   4.19, loss: 73121.8594, ppl:  25.5685, duration: 46.1956s\n",
            "2020-01-26 08:15:58,006 Epoch  41: total training loss 103.96\n",
            "2020-01-26 08:15:58,006 EPOCH 42\n",
            "2020-01-26 08:16:05,126 Epoch  42: total training loss 102.08\n",
            "2020-01-26 08:16:05,126 EPOCH 43\n",
            "2020-01-26 08:16:07,006 Epoch  43 Step:     1900 Batch Loss:     1.994727 Tokens per Sec:    12047, Lr: 0.000300\n",
            "2020-01-26 08:16:53,220 Example #0\n",
            "2020-01-26 08:16:53,221 \tSource:     I WAS raised in Graz , Austria .\n",
            "2020-01-26 08:16:53,221 \tReference:  AGBAẸBHO natiọle Graz bhi Austria , ọle mẹn da wanre .\n",
            "2020-01-26 08:16:53,221 \tHypothesis: Mẹn da wo ha mhọn urẹọbhọ bi ọdọ mẹn .\n",
            "2020-01-26 08:16:53,222 Example #1\n",
            "2020-01-26 08:16:53,222 \tSource:     In contrast with the people who show the widespread lack of love today , those who worship Jehovah have genuine love for their fellow man .\n",
            "2020-01-26 08:16:53,222 \tReference:  Ene ga iJehova ẹlẹnan wo mhọn oyẹẹ da ibo ele , ele bha diabe ene iga Jehova ne bha hoẹmhọn ibo ele .\n",
            "2020-01-26 08:16:53,222 \tHypothesis: Ene ikpẹ nan wo manman manman re egbe khọkhọ iJehova bhi uwedẹ nin ele rẹ ha mhọn ọne isẹhoa nan rẹ rẹkpa ẹbho ne bunbun .\n",
            "2020-01-26 08:16:53,223 Example #2\n",
            "2020-01-26 08:16:53,223 \tSource:     Today , we live as foreigners , as it were , in a world that has been morally and spiritually corrupted by Babylon the Great , the world empire of false religion , “ a dwelling place of demons . ”\n",
            "2020-01-26 08:16:53,223 \tReference:  Inian mhan diabi eriọbhe bhi ẹkẹ ọne agbọn nan nin oga ohoghe ria a . Babylon nọn khua a tie ene oga ohoghe nan , ele da dọ kiẹn eji ẹlinmhin ne imhẹn da nyẹnlẹn . ( Rev .\n",
            "2020-01-26 08:16:53,223 \tHypothesis: Mhan da yọle : “ Mhan dẹ ha mhọn urẹọbhọ bi ọdọ , mhan da dọ ha mhọn urẹọbhọ da ẹbho nin mhan da ha mhọn da ẹbho , ranmhude mhan da yẹ ha mhọn urẹọbhọ bi azagba - uwa nọnsọle . ” ( Matt .\n",
            "2020-01-26 08:16:53,223 Example #3\n",
            "2020-01-26 08:16:53,224 \tSource:     We should also strive to help others spiritually .\n",
            "2020-01-26 08:16:53,224 \tReference:  Ahamiẹn mhan re ẹghe bhi otọ rẹ ha luẹ iBaibo , yẹ deba ene gene guanọ nin ele ga iJehova ha muobọ , ọ dẹ rẹkpa mhan rẹ ziẹn ikolu nin mhan bi Jehova koko mhọnlẹn .\n",
            "2020-01-26 08:16:53,224 \tHypothesis: Mhan dẹ sabọ rẹkpa mhan rẹ ha mhọn isẹhoa nin mhan mhọnlẹn .\n",
            "2020-01-26 08:16:53,224 Validation result (greedy) at epoch  43, step     1900: bleu:   4.42, loss: 73039.2188, ppl:  25.4750, duration: 46.2183s\n",
            "2020-01-26 08:16:58,519 Epoch  43: total training loss 100.58\n",
            "2020-01-26 08:16:58,520 EPOCH 44\n",
            "2020-01-26 08:17:05,657 Epoch  44: total training loss 98.74\n",
            "2020-01-26 08:17:05,657 EPOCH 45\n",
            "2020-01-26 08:17:09,150 Epoch  45 Step:     2000 Batch Loss:     2.053864 Tokens per Sec:    12719, Lr: 0.000300\n",
            "2020-01-26 08:17:55,279 Example #0\n",
            "2020-01-26 08:17:55,280 \tSource:     I WAS raised in Graz , Austria .\n",
            "2020-01-26 08:17:55,280 \tReference:  AGBAẸBHO natiọle Graz bhi Austria , ọle mẹn da wanre .\n",
            "2020-01-26 08:17:55,280 \tHypothesis: Mẹn da wo ha mhọn ọne ẹmhọn nan .\n",
            "2020-01-26 08:17:55,281 Example #1\n",
            "2020-01-26 08:17:55,281 \tSource:     In contrast with the people who show the widespread lack of love today , those who worship Jehovah have genuine love for their fellow man .\n",
            "2020-01-26 08:17:55,281 \tReference:  Ene ga iJehova ẹlẹnan wo mhọn oyẹẹ da ibo ele , ele bha diabe ene iga Jehova ne bha hoẹmhọn ibo ele .\n",
            "2020-01-26 08:17:55,281 \tHypothesis: Emhin nọn mun oga mhọn nọnsẹn wo ha mhọn nọnsẹn rẹ ha mhọn urẹọbhọ bi emhin esili ne bunbun .\n",
            "2020-01-26 08:17:55,281 Example #2\n",
            "2020-01-26 08:17:55,282 \tSource:     Today , we live as foreigners , as it were , in a world that has been morally and spiritually corrupted by Babylon the Great , the world empire of false religion , “ a dwelling place of demons . ”\n",
            "2020-01-26 08:17:55,282 \tReference:  Inian mhan diabi eriọbhe bhi ẹkẹ ọne agbọn nan nin oga ohoghe ria a . Babylon nọn khua a tie ene oga ohoghe nan , ele da dọ kiẹn eji ẹlinmhin ne imhẹn da nyẹnlẹn . ( Rev .\n",
            "2020-01-26 08:17:55,282 \tHypothesis: Mhan da ha yi ọkpa bhi Baibo yọle : “ Mhan dẹ ha re obọ rẹkhan uhi bi emhin ne bunbun , ranmhude mhan mhọn urẹọbhọ bi azagba - uwa nọnsọle , ranmhude emhin nin ọle rẹ miẹn ọne otọ nan rebhe . ”\n",
            "2020-01-26 08:17:55,282 Example #3\n",
            "2020-01-26 08:17:55,283 \tSource:     We should also strive to help others spiritually .\n",
            "2020-01-26 08:17:55,283 \tReference:  Ahamiẹn mhan re ẹghe bhi otọ rẹ ha luẹ iBaibo , yẹ deba ene gene guanọ nin ele ga iJehova ha muobọ , ọ dẹ rẹkpa mhan rẹ ziẹn ikolu nin mhan bi Jehova koko mhọnlẹn .\n",
            "2020-01-26 08:17:55,283 \tHypothesis: Mhan dẹ sabọ rẹkpa mhan rẹ ha mhọn ọfure ọsaje .\n",
            "2020-01-26 08:17:55,283 Validation result (greedy) at epoch  45, step     2000: bleu:   4.27, loss: 74022.8438, ppl:  26.6103, duration: 46.1327s\n",
            "2020-01-26 08:17:58,903 Epoch  45: total training loss 96.71\n",
            "2020-01-26 08:17:58,904 EPOCH 46\n",
            "2020-01-26 08:18:05,952 Epoch  46: total training loss 94.58\n",
            "2020-01-26 08:18:05,952 EPOCH 47\n",
            "2020-01-26 08:18:11,035 Epoch  47 Step:     2100 Batch Loss:     2.177901 Tokens per Sec:    13025, Lr: 0.000210\n",
            "2020-01-26 08:18:57,192 Example #0\n",
            "2020-01-26 08:18:57,193 \tSource:     I WAS raised in Graz , Austria .\n",
            "2020-01-26 08:18:57,193 \tReference:  AGBAẸBHO natiọle Graz bhi Austria , ọle mẹn da wanre .\n",
            "2020-01-26 08:18:57,194 \tHypothesis: Mẹn da wo ha mhọn ẹmhọn mẹn .\n",
            "2020-01-26 08:18:57,194 Example #1\n",
            "2020-01-26 08:18:57,194 \tSource:     In contrast with the people who show the widespread lack of love today , those who worship Jehovah have genuine love for their fellow man .\n",
            "2020-01-26 08:18:57,194 \tReference:  Ene ga iJehova ẹlẹnan wo mhọn oyẹẹ da ibo ele , ele bha diabe ene iga Jehova ne bha hoẹmhọn ibo ele .\n",
            "2020-01-26 08:18:57,194 \tHypothesis: Ene ikpẹ nan wo manman re egbe khọkhọ iJehova bhi iẹnlẹn nọnsele , ọle hi ene ga iJehova wo manman mun oga mhọn nọnsẹn . Ọle da wo ha mhọn ọne ahu nan .\n",
            "2020-01-26 08:18:57,195 Example #2\n",
            "2020-01-26 08:18:57,195 \tSource:     Today , we live as foreigners , as it were , in a world that has been morally and spiritually corrupted by Babylon the Great , the world empire of false religion , “ a dwelling place of demons . ”\n",
            "2020-01-26 08:18:57,195 \tReference:  Inian mhan diabi eriọbhe bhi ẹkẹ ọne agbọn nan nin oga ohoghe ria a . Babylon nọn khua a tie ene oga ohoghe nan , ele da dọ kiẹn eji ẹlinmhin ne imhẹn da nyẹnlẹn . ( Rev .\n",
            "2020-01-26 08:18:57,195 \tHypothesis: Ẹlẹnan nian , mhan ki dọ lẹn ghe , mhan dẹ sabọ re obọ rẹkhan ọlẹn , mhan ki dọ ha mhọn ọne isẹhoa nan rẹ sẹbhi eji ọle da yọle : “ Bha ha yi ikpe ne bunbun . ”\n",
            "2020-01-26 08:18:57,196 Example #3\n",
            "2020-01-26 08:18:57,196 \tSource:     We should also strive to help others spiritually .\n",
            "2020-01-26 08:18:57,196 \tReference:  Ahamiẹn mhan re ẹghe bhi otọ rẹ ha luẹ iBaibo , yẹ deba ene gene guanọ nin ele ga iJehova ha muobọ , ọ dẹ rẹkpa mhan rẹ ziẹn ikolu nin mhan bi Jehova koko mhọnlẹn .\n",
            "2020-01-26 08:18:57,196 \tHypothesis: Mhan dẹ sabọ rẹkpa mhan rẹ ha mhọn ọfure ọsaje nin mhan mhọnlẹn .\n",
            "2020-01-26 08:18:57,196 Validation result (greedy) at epoch  47, step     2100: bleu:   4.64, loss: 74151.1016, ppl:  26.7621, duration: 46.1614s\n",
            "2020-01-26 08:18:59,148 Epoch  47: total training loss 90.88\n",
            "2020-01-26 08:18:59,148 EPOCH 48\n",
            "2020-01-26 08:19:06,191 Epoch  48: total training loss 89.59\n",
            "2020-01-26 08:19:06,192 EPOCH 49\n",
            "2020-01-26 08:19:13,173 Epoch  49 Step:     2200 Batch Loss:     2.089329 Tokens per Sec:    12720, Lr: 0.000210\n",
            "2020-01-26 08:19:59,355 Example #0\n",
            "2020-01-26 08:19:59,357 \tSource:     I WAS raised in Graz , Austria .\n",
            "2020-01-26 08:19:59,357 \tReference:  AGBAẸBHO natiọle Graz bhi Austria , ọle mẹn da wanre .\n",
            "2020-01-26 08:19:59,357 \tHypothesis: Mẹn da wo ha mhọn ẹmhọn mẹn .\n",
            "2020-01-26 08:19:59,357 Example #1\n",
            "2020-01-26 08:19:59,358 \tSource:     In contrast with the people who show the widespread lack of love today , those who worship Jehovah have genuine love for their fellow man .\n",
            "2020-01-26 08:19:59,358 \tReference:  Ene ga iJehova ẹlẹnan wo mhọn oyẹẹ da ibo ele , ele bha diabe ene iga Jehova ne bha hoẹmhọn ibo ele .\n",
            "2020-01-26 08:19:59,358 \tHypothesis: Ene ikpẹ nan wo re izebhudu nin ele , ele wo manman mun udu nyan iJehova bhi iẹnlẹn nọnsele . Ọle da wo ha mhọn idegbere .\n",
            "2020-01-26 08:19:59,358 Example #2\n",
            "2020-01-26 08:19:59,359 \tSource:     Today , we live as foreigners , as it were , in a world that has been morally and spiritually corrupted by Babylon the Great , the world empire of false religion , “ a dwelling place of demons . ”\n",
            "2020-01-26 08:19:59,359 \tReference:  Inian mhan diabi eriọbhe bhi ẹkẹ ọne agbọn nan nin oga ohoghe ria a . Babylon nọn khua a tie ene oga ohoghe nan , ele da dọ kiẹn eji ẹlinmhin ne imhẹn da nyẹnlẹn . ( Rev .\n",
            "2020-01-26 08:19:59,359 \tHypothesis: Ẹlẹnan nian , mhan ki dọ kere ghe , Jehova mhọn urẹọbhọ bi emhin nin ọle rẹ ha ribhi ẹkẹ agbotu nọnsọle , ọle ki dọ ha mhọn ọlẹn bhi otọ ghe , ranmhude mhan da yẹ re ọne otọ nan rebhe . ” ( Matt .\n",
            "2020-01-26 08:19:59,359 Example #3\n",
            "2020-01-26 08:19:59,360 \tSource:     We should also strive to help others spiritually .\n",
            "2020-01-26 08:19:59,360 \tReference:  Ahamiẹn mhan re ẹghe bhi otọ rẹ ha luẹ iBaibo , yẹ deba ene gene guanọ nin ele ga iJehova ha muobọ , ọ dẹ rẹkpa mhan rẹ ziẹn ikolu nin mhan bi Jehova koko mhọnlẹn .\n",
            "2020-01-26 08:19:59,360 \tHypothesis: Mhan dẹ sabọ rẹkpa mhan rẹ ha mhọn urẹọbhọ bi ọkhọnlẹn ọsaje .\n",
            "2020-01-26 08:19:59,360 Validation result (greedy) at epoch  49, step     2200: bleu:   4.81, loss: 74790.0938, ppl:  27.5309, duration: 46.1865s\n",
            "2020-01-26 08:19:59,528 Epoch  49: total training loss 90.24\n",
            "2020-01-26 08:19:59,528 EPOCH 50\n",
            "2020-01-26 08:20:06,616 Epoch  50: total training loss 89.23\n",
            "2020-01-26 08:20:06,616 EPOCH 51\n",
            "2020-01-26 08:20:13,733 Epoch  51: total training loss 87.68\n",
            "2020-01-26 08:20:13,733 EPOCH 52\n",
            "2020-01-26 08:20:15,193 Epoch  52 Step:     2300 Batch Loss:     1.752498 Tokens per Sec:    13183, Lr: 0.000210\n",
            "2020-01-26 08:21:01,361 Example #0\n",
            "2020-01-26 08:21:01,362 \tSource:     I WAS raised in Graz , Austria .\n",
            "2020-01-26 08:21:01,362 \tReference:  AGBAẸBHO natiọle Graz bhi Austria , ọle mẹn da wanre .\n",
            "2020-01-26 08:21:01,362 \tHypothesis: Mẹn da ha mhọn urẹọbhọ bi mẹn .\n",
            "2020-01-26 08:21:01,362 Example #1\n",
            "2020-01-26 08:21:01,363 \tSource:     In contrast with the people who show the widespread lack of love today , those who worship Jehovah have genuine love for their fellow man .\n",
            "2020-01-26 08:21:01,363 \tReference:  Ene ga iJehova ẹlẹnan wo mhọn oyẹẹ da ibo ele , ele bha diabe ene iga Jehova ne bha hoẹmhọn ibo ele .\n",
            "2020-01-26 08:21:01,363 \tHypothesis: Ene ikpẹ nan wo manman re izebhudu nin ele , ele wo manman mun oga mhọn nọnsẹn rẹ ha mhọn nọnsẹn . Ọle da ene ẹbho nan erọnmhọn ji Jehova .\n",
            "2020-01-26 08:21:01,363 Example #2\n",
            "2020-01-26 08:21:01,364 \tSource:     Today , we live as foreigners , as it were , in a world that has been morally and spiritually corrupted by Babylon the Great , the world empire of false religion , “ a dwelling place of demons . ”\n",
            "2020-01-26 08:21:01,364 \tReference:  Inian mhan diabi eriọbhe bhi ẹkẹ ọne agbọn nan nin oga ohoghe ria a . Babylon nọn khua a tie ene oga ohoghe nan , ele da dọ kiẹn eji ẹlinmhin ne imhẹn da nyẹnlẹn . ( Rev .\n",
            "2020-01-26 08:21:01,364 \tHypothesis: Ẹlẹnan nian , mhan ki dọ lẹn ghe , mhan ki dọ lẹn otọ emhin rebhe ne ribhi Baibo , ranmhude mhan guanọ nin ọle dọ ha yi ọkpa bhi ọne agbọn nan , ranmhude ọne agbọn nan da sẹyẹ wo ha yi ojie . ( Matt .\n",
            "2020-01-26 08:21:01,364 Example #3\n",
            "2020-01-26 08:21:01,365 \tSource:     We should also strive to help others spiritually .\n",
            "2020-01-26 08:21:01,365 \tReference:  Ahamiẹn mhan re ẹghe bhi otọ rẹ ha luẹ iBaibo , yẹ deba ene gene guanọ nin ele ga iJehova ha muobọ , ọ dẹ rẹkpa mhan rẹ ziẹn ikolu nin mhan bi Jehova koko mhọnlẹn .\n",
            "2020-01-26 08:21:01,365 \tHypothesis: Mhan dẹ sabọ rẹkpa mhan rẹ ha mhọn ọfure ọsaje .\n",
            "2020-01-26 08:21:01,365 Validation result (greedy) at epoch  52, step     2300: bleu:   4.99, loss: 75371.0000, ppl:  28.2491, duration: 46.1714s\n",
            "2020-01-26 08:21:06,924 Epoch  52: total training loss 84.63\n",
            "2020-01-26 08:21:06,924 EPOCH 53\n",
            "2020-01-26 08:21:14,018 Epoch  53: total training loss 85.55\n",
            "2020-01-26 08:21:14,018 EPOCH 54\n",
            "2020-01-26 08:21:17,127 Epoch  54 Step:     2400 Batch Loss:     2.010780 Tokens per Sec:    13031, Lr: 0.000210\n",
            "2020-01-26 08:22:03,302 Example #0\n",
            "2020-01-26 08:22:03,303 \tSource:     I WAS raised in Graz , Austria .\n",
            "2020-01-26 08:22:03,303 \tReference:  AGBAẸBHO natiọle Graz bhi Austria , ọle mẹn da wanre .\n",
            "2020-01-26 08:22:03,303 \tHypothesis: Mẹn da ha mhọn emhanmhan nin mẹn ha mhọnlẹn .\n",
            "2020-01-26 08:22:03,303 Example #1\n",
            "2020-01-26 08:22:03,304 \tSource:     In contrast with the people who show the widespread lack of love today , those who worship Jehovah have genuine love for their fellow man .\n",
            "2020-01-26 08:22:03,304 \tReference:  Ene ga iJehova ẹlẹnan wo mhọn oyẹẹ da ibo ele , ele bha diabe ene iga Jehova ne bha hoẹmhọn ibo ele .\n",
            "2020-01-26 08:22:03,304 \tHypothesis: Ene ikpẹ nan wo manman re egbe khọkhọ iJehova bhi iẹnlẹn ọsi eria ne bunbun . Ọle wo manman ha mhọn urẹọbhọ bi ene ẹbho nan rebhe .\n",
            "2020-01-26 08:22:03,304 Example #2\n",
            "2020-01-26 08:22:03,305 \tSource:     Today , we live as foreigners , as it were , in a world that has been morally and spiritually corrupted by Babylon the Great , the world empire of false religion , “ a dwelling place of demons . ”\n",
            "2020-01-26 08:22:03,305 \tReference:  Inian mhan diabi eriọbhe bhi ẹkẹ ọne agbọn nan nin oga ohoghe ria a . Babylon nọn khua a tie ene oga ohoghe nan , ele da dọ kiẹn eji ẹlinmhin ne imhẹn da nyẹnlẹn . ( Rev .\n",
            "2020-01-26 08:22:03,305 \tHypothesis: Ẹlẹnan nian , mhan ki dọ lẹn ghe , Jehova da taman mhan ghe , nin mhan hẹi ha mhọn ọne isẹhoa nan rẹ lu emhin , ranmhude ọnan da yẹ re izebhudu nin ẹbho ne bunbun . ( Matt .\n",
            "2020-01-26 08:22:03,305 Example #3\n",
            "2020-01-26 08:22:03,306 \tSource:     We should also strive to help others spiritually .\n",
            "2020-01-26 08:22:03,306 \tReference:  Ahamiẹn mhan re ẹghe bhi otọ rẹ ha luẹ iBaibo , yẹ deba ene gene guanọ nin ele ga iJehova ha muobọ , ọ dẹ rẹkpa mhan rẹ ziẹn ikolu nin mhan bi Jehova koko mhọnlẹn .\n",
            "2020-01-26 08:22:03,306 \tHypothesis: Mhan dẹ sabọ rẹkpa mhan rẹ ha mhọn okugbe nọn khiale .\n",
            "2020-01-26 08:22:03,306 Validation result (greedy) at epoch  54, step     2400: bleu:   5.14, loss: 76095.4609, ppl:  29.1710, duration: 46.1789s\n",
            "2020-01-26 08:22:07,274 Epoch  54: total training loss 84.40\n",
            "2020-01-26 08:22:07,275 EPOCH 55\n",
            "2020-01-26 08:22:14,369 Epoch  55: total training loss 83.18\n",
            "2020-01-26 08:22:14,369 EPOCH 56\n",
            "2020-01-26 08:22:19,048 Epoch  56 Step:     2500 Batch Loss:     1.566270 Tokens per Sec:    12842, Lr: 0.000210\n",
            "2020-01-26 08:23:05,241 Example #0\n",
            "2020-01-26 08:23:05,242 \tSource:     I WAS raised in Graz , Austria .\n",
            "2020-01-26 08:23:05,242 \tReference:  AGBAẸBHO natiọle Graz bhi Austria , ọle mẹn da wanre .\n",
            "2020-01-26 08:23:05,243 \tHypothesis: Mẹn da ha riale ghe mẹn dẹ mun mẹn ọbhi egbe .\n",
            "2020-01-26 08:23:05,243 Example #1\n",
            "2020-01-26 08:23:05,243 \tSource:     In contrast with the people who show the widespread lack of love today , those who worship Jehovah have genuine love for their fellow man .\n",
            "2020-01-26 08:23:05,244 \tReference:  Ene ga iJehova ẹlẹnan wo mhọn oyẹẹ da ibo ele , ele bha diabe ene iga Jehova ne bha hoẹmhọn ibo ele .\n",
            "2020-01-26 08:23:05,244 \tHypothesis: Ene ikpẹ nan wo manman rẹkpa ele rẹ lẹn ghe , ele wo mun oga mhọn nọnsẹn nin ele rẹ ha mhọn ọne ahu nan . Ọle wo manman kaka .\n",
            "2020-01-26 08:23:05,244 Example #2\n",
            "2020-01-26 08:23:05,244 \tSource:     Today , we live as foreigners , as it were , in a world that has been morally and spiritually corrupted by Babylon the Great , the world empire of false religion , “ a dwelling place of demons . ”\n",
            "2020-01-26 08:23:05,244 \tReference:  Inian mhan diabi eriọbhe bhi ẹkẹ ọne agbọn nan nin oga ohoghe ria a . Babylon nọn khua a tie ene oga ohoghe nan , ele da dọ kiẹn eji ẹlinmhin ne imhẹn da nyẹnlẹn . ( Rev .\n",
            "2020-01-26 08:23:05,245 \tHypothesis: Ẹlẹnan nian , mhan ki dọ lẹn ghe , mhan dẹ sabọ re izebhudu nin ibhio mhan ne ribhi ọne agbọn nan , ranmhude mhan khin , ranmhude ọnan da yọle : “ Bha wo re ọne isẹhoa nan rẹ lu emhin ne imhẹn . ”\n",
            "2020-01-26 08:23:05,245 Example #3\n",
            "2020-01-26 08:23:05,245 \tSource:     We should also strive to help others spiritually .\n",
            "2020-01-26 08:23:05,245 \tReference:  Ahamiẹn mhan re ẹghe bhi otọ rẹ ha luẹ iBaibo , yẹ deba ene gene guanọ nin ele ga iJehova ha muobọ , ọ dẹ rẹkpa mhan rẹ ziẹn ikolu nin mhan bi Jehova koko mhọnlẹn .\n",
            "2020-01-26 08:23:05,245 \tHypothesis: Mhan dẹ sabọ rẹkpa mhan rẹ ha lu emhin kpataki .\n",
            "2020-01-26 08:23:05,246 Validation result (greedy) at epoch  56, step     2500: bleu:   5.46, loss: 76564.3125, ppl:  29.7836, duration: 46.1973s\n",
            "2020-01-26 08:23:07,622 Epoch  56: total training loss 82.02\n",
            "2020-01-26 08:23:07,623 EPOCH 57\n",
            "2020-01-26 08:23:14,710 Epoch  57: total training loss 80.56\n",
            "2020-01-26 08:23:14,710 EPOCH 58\n",
            "2020-01-26 08:23:20,983 Epoch  58 Step:     2600 Batch Loss:     2.045136 Tokens per Sec:    12897, Lr: 0.000210\n",
            "2020-01-26 08:24:07,178 Example #0\n",
            "2020-01-26 08:24:07,178 \tSource:     I WAS raised in Graz , Austria .\n",
            "2020-01-26 08:24:07,179 \tReference:  AGBAẸBHO natiọle Graz bhi Austria , ọle mẹn da wanre .\n",
            "2020-01-26 08:24:07,179 \tHypothesis: Mẹn da wo ha lu iwẹnna ọkanẹfan .\n",
            "2020-01-26 08:24:07,179 Example #1\n",
            "2020-01-26 08:24:07,179 \tSource:     In contrast with the people who show the widespread lack of love today , those who worship Jehovah have genuine love for their fellow man .\n",
            "2020-01-26 08:24:07,180 \tReference:  Ene ga iJehova ẹlẹnan wo mhọn oyẹẹ da ibo ele , ele bha diabe ene iga Jehova ne bha hoẹmhọn ibo ele .\n",
            "2020-01-26 08:24:07,180 \tHypothesis: Ene ikpẹ nan wo manman re izebhudu nin ele , ọle ene ga iJehova wo manman ha mhọn urẹọbhọ da ẹbho ne bunbun .\n",
            "2020-01-26 08:24:07,180 Example #2\n",
            "2020-01-26 08:24:07,180 \tSource:     Today , we live as foreigners , as it were , in a world that has been morally and spiritually corrupted by Babylon the Great , the world empire of false religion , “ a dwelling place of demons . ”\n",
            "2020-01-26 08:24:07,181 \tReference:  Inian mhan diabi eriọbhe bhi ẹkẹ ọne agbọn nan nin oga ohoghe ria a . Babylon nọn khua a tie ene oga ohoghe nan , ele da dọ kiẹn eji ẹlinmhin ne imhẹn da nyẹnlẹn . ( Rev .\n",
            "2020-01-26 08:24:07,181 \tHypothesis: Ẹlẹnan nian , mhan ki dọ lẹn ghe , mhan da ha mhọn oyẹẹ da ẹbho ne ribhi ẹkẹ agbotu nọnsọle , ranmhude mhan da ha yi ọmọẹ ọle . ( Matt .\n",
            "2020-01-26 08:24:07,181 Example #3\n",
            "2020-01-26 08:24:07,182 \tSource:     We should also strive to help others spiritually .\n",
            "2020-01-26 08:24:07,182 \tReference:  Ahamiẹn mhan re ẹghe bhi otọ rẹ ha luẹ iBaibo , yẹ deba ene gene guanọ nin ele ga iJehova ha muobọ , ọ dẹ rẹkpa mhan rẹ ziẹn ikolu nin mhan bi Jehova koko mhọnlẹn .\n",
            "2020-01-26 08:24:07,182 \tHypothesis: Mhan dẹ sabọ rẹkpa mhan rẹ ha lu emhin kpataki .\n",
            "2020-01-26 08:24:07,182 Validation result (greedy) at epoch  58, step     2600: bleu:   5.29, loss: 77054.5312, ppl:  30.4379, duration: 46.1992s\n",
            "2020-01-26 08:24:07,996 Epoch  58: total training loss 79.56\n",
            "2020-01-26 08:24:07,996 EPOCH 59\n",
            "2020-01-26 08:24:15,070 Epoch  59: total training loss 77.70\n",
            "2020-01-26 08:24:15,070 EPOCH 60\n",
            "2020-01-26 08:24:22,125 Epoch  60: total training loss 76.92\n",
            "2020-01-26 08:24:22,125 EPOCH 61\n",
            "2020-01-26 08:24:22,936 Epoch  61 Step:     2700 Batch Loss:     1.487003 Tokens per Sec:    11664, Lr: 0.000147\n",
            "2020-01-26 08:25:09,161 Example #0\n",
            "2020-01-26 08:25:09,162 \tSource:     I WAS raised in Graz , Austria .\n",
            "2020-01-26 08:25:09,162 \tReference:  AGBAẸBHO natiọle Graz bhi Austria , ọle mẹn da wanre .\n",
            "2020-01-26 08:25:09,163 \tHypothesis: Mẹn da wo ha mhọn emhanmhan nin mẹn ha mhọnlẹn .\n",
            "2020-01-26 08:25:09,163 Example #1\n",
            "2020-01-26 08:25:09,163 \tSource:     In contrast with the people who show the widespread lack of love today , those who worship Jehovah have genuine love for their fellow man .\n",
            "2020-01-26 08:25:09,163 \tReference:  Ene ga iJehova ẹlẹnan wo mhọn oyẹẹ da ibo ele , ele bha diabe ene iga Jehova ne bha hoẹmhọn ibo ele .\n",
            "2020-01-26 08:25:09,163 \tHypothesis: Ene ikpẹ nan wo manman re egbe khọkhọ iJehova bhi iẹnlẹn nọnsele , ọle hi ene ẹbho ne mhọn ọyẹẹ da ẹbho ne mhọn akan - ehọ .\n",
            "2020-01-26 08:25:09,164 Example #2\n",
            "2020-01-26 08:25:09,164 \tSource:     Today , we live as foreigners , as it were , in a world that has been morally and spiritually corrupted by Babylon the Great , the world empire of false religion , “ a dwelling place of demons . ”\n",
            "2020-01-26 08:25:09,164 \tReference:  Inian mhan diabi eriọbhe bhi ẹkẹ ọne agbọn nan nin oga ohoghe ria a . Babylon nọn khua a tie ene oga ohoghe nan , ele da dọ kiẹn eji ẹlinmhin ne imhẹn da nyẹnlẹn . ( Rev .\n",
            "2020-01-26 08:25:09,164 \tHypothesis: Ẹlẹnan nian , mhan ki dọ lẹn ghe , mhan da ha mhọn oyẹẹ da ẹbho ne ribhi ẹkẹ agbotu , ranmhude mhan wo ha mhọn elin ọsi Agbejele , ranmhude emhin nin ọle daghe ghe ọle daghe emhin nọn imhẹn . ( Matt .\n",
            "2020-01-26 08:25:09,164 Example #3\n",
            "2020-01-26 08:25:09,165 \tSource:     We should also strive to help others spiritually .\n",
            "2020-01-26 08:25:09,165 \tReference:  Ahamiẹn mhan re ẹghe bhi otọ rẹ ha luẹ iBaibo , yẹ deba ene gene guanọ nin ele ga iJehova ha muobọ , ọ dẹ rẹkpa mhan rẹ ziẹn ikolu nin mhan bi Jehova koko mhọnlẹn .\n",
            "2020-01-26 08:25:09,165 \tHypothesis: Mhan dẹ sabọ rẹkpa mhan rẹ ha mhọn okugbe nọn khua .\n",
            "2020-01-26 08:25:09,165 Validation result (greedy) at epoch  61, step     2700: bleu:   5.55, loss: 77714.9219, ppl:  31.3421, duration: 46.2290s\n",
            "2020-01-26 08:25:15,491 Epoch  61: total training loss 75.74\n",
            "2020-01-26 08:25:15,492 EPOCH 62\n",
            "2020-01-26 08:25:22,583 Epoch  62: total training loss 75.10\n",
            "2020-01-26 08:25:22,583 EPOCH 63\n",
            "2020-01-26 08:25:24,964 Epoch  63 Step:     2800 Batch Loss:     1.604341 Tokens per Sec:    12225, Lr: 0.000147\n",
            "2020-01-26 08:26:11,199 Example #0\n",
            "2020-01-26 08:26:11,200 \tSource:     I WAS raised in Graz , Austria .\n",
            "2020-01-26 08:26:11,200 \tReference:  AGBAẸBHO natiọle Graz bhi Austria , ọle mẹn da wanre .\n",
            "2020-01-26 08:26:11,200 \tHypothesis: Mẹn da wo ha ghọnghọn ranmhude mẹn guanọ nin mẹn rẹ lu .\n",
            "2020-01-26 08:26:11,201 Example #1\n",
            "2020-01-26 08:26:11,201 \tSource:     In contrast with the people who show the widespread lack of love today , those who worship Jehovah have genuine love for their fellow man .\n",
            "2020-01-26 08:26:11,201 \tReference:  Ene ga iJehova ẹlẹnan wo mhọn oyẹẹ da ibo ele , ele bha diabe ene iga Jehova ne bha hoẹmhọn ibo ele .\n",
            "2020-01-26 08:26:11,201 \tHypothesis: Ene ikpẹ nan wo manman rẹkpa ene ga iJehova bhi uwedẹ nin ele rẹ wo ha mhọn okpẹhio , ele wo wo mun ekpẹn nin ene ga iJehova .\n",
            "2020-01-26 08:26:11,201 Example #2\n",
            "2020-01-26 08:26:11,202 \tSource:     Today , we live as foreigners , as it were , in a world that has been morally and spiritually corrupted by Babylon the Great , the world empire of false religion , “ a dwelling place of demons . ”\n",
            "2020-01-26 08:26:11,202 \tReference:  Inian mhan diabi eriọbhe bhi ẹkẹ ọne agbọn nan nin oga ohoghe ria a . Babylon nọn khua a tie ene oga ohoghe nan , ele da dọ kiẹn eji ẹlinmhin ne imhẹn da nyẹnlẹn . ( Rev .\n",
            "2020-01-26 08:26:11,202 \tHypothesis: Ẹlẹnan nian , mhan ki dọ lẹn ghe , mhan da ha mhọn oyẹẹ da ẹbho ne ribhi ẹkẹ agbotu bi emhin rebhe , nin ọle da sẹyẹ ha yi ọkpa bhi ọne agbọn nan . ( Matt .\n",
            "2020-01-26 08:26:11,202 Example #3\n",
            "2020-01-26 08:26:11,203 \tSource:     We should also strive to help others spiritually .\n",
            "2020-01-26 08:26:11,203 \tReference:  Ahamiẹn mhan re ẹghe bhi otọ rẹ ha luẹ iBaibo , yẹ deba ene gene guanọ nin ele ga iJehova ha muobọ , ọ dẹ rẹkpa mhan rẹ ziẹn ikolu nin mhan bi Jehova koko mhọnlẹn .\n",
            "2020-01-26 08:26:11,203 \tHypothesis: Mhan dẹ sabọ rẹkpa mhan rẹ ha mhọn okugbe nọn khiale .\n",
            "2020-01-26 08:26:11,203 Validation result (greedy) at epoch  63, step     2800: bleu:   5.55, loss: 78130.3047, ppl:  31.9246, duration: 46.2389s\n",
            "2020-01-26 08:26:15,939 Epoch  63: total training loss 74.24\n",
            "2020-01-26 08:26:15,939 EPOCH 64\n",
            "2020-01-26 08:26:22,978 Epoch  64: total training loss 73.16\n",
            "2020-01-26 08:26:22,979 EPOCH 65\n",
            "2020-01-26 08:26:26,949 Epoch  65 Step:     2900 Batch Loss:     1.575985 Tokens per Sec:    12829, Lr: 0.000147\n",
            "2020-01-26 08:27:13,220 Example #0\n",
            "2020-01-26 08:27:13,221 \tSource:     I WAS raised in Graz , Austria .\n",
            "2020-01-26 08:27:13,222 \tReference:  AGBAẸBHO natiọle Graz bhi Austria , ọle mẹn da wanre .\n",
            "2020-01-26 08:27:13,222 \tHypothesis: Mẹn da wo ha ghọnghọn .\n",
            "2020-01-26 08:27:13,222 Example #1\n",
            "2020-01-26 08:27:13,223 \tSource:     In contrast with the people who show the widespread lack of love today , those who worship Jehovah have genuine love for their fellow man .\n",
            "2020-01-26 08:27:13,223 \tReference:  Ene ga iJehova ẹlẹnan wo mhọn oyẹẹ da ibo ele , ele bha diabe ene iga Jehova ne bha hoẹmhọn ibo ele .\n",
            "2020-01-26 08:27:13,223 \tHypothesis: Ene ikpẹ nan wo rẹkpa ene ga iJehova bhi iẹnlẹn nọnsele , ọle ene ga iJehova wo manman ha mhọn ahu nin ele rẹ wo ha mhọn okpẹhio .\n",
            "2020-01-26 08:27:13,223 Example #2\n",
            "2020-01-26 08:27:13,223 \tSource:     Today , we live as foreigners , as it were , in a world that has been morally and spiritually corrupted by Babylon the Great , the world empire of false religion , “ a dwelling place of demons . ”\n",
            "2020-01-26 08:27:13,224 \tReference:  Inian mhan diabi eriọbhe bhi ẹkẹ ọne agbọn nan nin oga ohoghe ria a . Babylon nọn khua a tie ene oga ohoghe nan , ele da dọ kiẹn eji ẹlinmhin ne imhẹn da nyẹnlẹn . ( Rev .\n",
            "2020-01-26 08:27:13,224 \tHypothesis: Ẹlẹnan nian , mhan ki dọ lẹn ghe , Jehova da re oyẹẹ man ẹbho , nin ele da sabọ ha yi ẹbho ne ribhi ọne agbọn nan , ranmhude ọnan da re izebhudu nin ele . ( Matt .\n",
            "2020-01-26 08:27:13,224 Example #3\n",
            "2020-01-26 08:27:13,224 \tSource:     We should also strive to help others spiritually .\n",
            "2020-01-26 08:27:13,225 \tReference:  Ahamiẹn mhan re ẹghe bhi otọ rẹ ha luẹ iBaibo , yẹ deba ene gene guanọ nin ele ga iJehova ha muobọ , ọ dẹ rẹkpa mhan rẹ ziẹn ikolu nin mhan bi Jehova koko mhọnlẹn .\n",
            "2020-01-26 08:27:13,225 \tHypothesis: Mhan dẹ sabọ rẹkpa mhan rẹ ha mun oga mhọn nọnsẹn .\n",
            "2020-01-26 08:27:13,225 Validation result (greedy) at epoch  65, step     2900: bleu:   5.43, loss: 78853.4531, ppl:  32.9645, duration: 46.2759s\n",
            "2020-01-26 08:27:16,394 Epoch  65: total training loss 72.62\n",
            "2020-01-26 08:27:16,394 EPOCH 66\n",
            "2020-01-26 08:27:23,459 Epoch  66: total training loss 71.77\n",
            "2020-01-26 08:27:23,460 EPOCH 67\n",
            "2020-01-26 08:27:28,981 Epoch  67 Step:     3000 Batch Loss:     1.416852 Tokens per Sec:    12840, Lr: 0.000147\n",
            "2020-01-26 08:28:15,253 Example #0\n",
            "2020-01-26 08:28:15,254 \tSource:     I WAS raised in Graz , Austria .\n",
            "2020-01-26 08:28:15,254 \tReference:  AGBAẸBHO natiọle Graz bhi Austria , ọle mẹn da wanre .\n",
            "2020-01-26 08:28:15,254 \tHypothesis: Mẹn da wo ha ghọnghọn .\n",
            "2020-01-26 08:28:15,254 Example #1\n",
            "2020-01-26 08:28:15,255 \tSource:     In contrast with the people who show the widespread lack of love today , those who worship Jehovah have genuine love for their fellow man .\n",
            "2020-01-26 08:28:15,255 \tReference:  Ene ga iJehova ẹlẹnan wo mhọn oyẹẹ da ibo ele , ele bha diabe ene iga Jehova ne bha hoẹmhọn ibo ele .\n",
            "2020-01-26 08:28:15,255 \tHypothesis: Ene ikpẹ nan wo rẹkpa ene biẹ ọmọn bi ibhio mhan nan wo lẹn ghe , ele wo hoẹmhọn iJehova . Ọle wo ha mhọn urẹọbhọ nin ele mhọnlẹn .\n",
            "2020-01-26 08:28:15,255 Example #2\n",
            "2020-01-26 08:28:15,256 \tSource:     Today , we live as foreigners , as it were , in a world that has been morally and spiritually corrupted by Babylon the Great , the world empire of false religion , “ a dwelling place of demons . ”\n",
            "2020-01-26 08:28:15,256 \tReference:  Inian mhan diabi eriọbhe bhi ẹkẹ ọne agbọn nan nin oga ohoghe ria a . Babylon nọn khua a tie ene oga ohoghe nan , ele da dọ kiẹn eji ẹlinmhin ne imhẹn da nyẹnlẹn . ( Rev .\n",
            "2020-01-26 08:28:15,256 \tHypothesis: Ẹlẹnan nian , mhan ki dọ lẹn ghe , Jehova wo re ọne isẹhoa nan rẹ lu iriọ yẹ , mhan ki dọ taman ele ghe , ọiyi ebe ebe rebhe nin ọle ha rẹ re obọ kpa bhi ọne agbọn nan . ” ( Matt .\n",
            "2020-01-26 08:28:15,256 Example #3\n",
            "2020-01-26 08:28:15,256 \tSource:     We should also strive to help others spiritually .\n",
            "2020-01-26 08:28:15,256 \tReference:  Ahamiẹn mhan re ẹghe bhi otọ rẹ ha luẹ iBaibo , yẹ deba ene gene guanọ nin ele ga iJehova ha muobọ , ọ dẹ rẹkpa mhan rẹ ziẹn ikolu nin mhan bi Jehova koko mhọnlẹn .\n",
            "2020-01-26 08:28:15,257 \tHypothesis: Emhin kpataki nọn nin mhan rẹ sabọ rẹkpa mhan rẹ ha mhọn okugbe .\n",
            "2020-01-26 08:28:15,257 Validation result (greedy) at epoch  67, step     3000: bleu:   5.81, loss: 79436.3047, ppl:  33.8273, duration: 46.2752s\n",
            "2020-01-26 08:28:16,796 Epoch  67: total training loss 70.84\n",
            "2020-01-26 08:28:16,796 EPOCH 68\n",
            "2020-01-26 08:28:23,845 Epoch  68: total training loss 70.11\n",
            "2020-01-26 08:28:23,846 EPOCH 69\n",
            "2020-01-26 08:28:30,885 Epoch  69 Step:     3100 Batch Loss:     1.464702 Tokens per Sec:    12948, Lr: 0.000147\n",
            "2020-01-26 08:29:17,118 Example #0\n",
            "2020-01-26 08:29:17,119 \tSource:     I WAS raised in Graz , Austria .\n",
            "2020-01-26 08:29:17,120 \tReference:  AGBAẸBHO natiọle Graz bhi Austria , ọle mẹn da wanre .\n",
            "2020-01-26 08:29:17,120 \tHypothesis: Mẹn da wo ha ghọnghọn .\n",
            "2020-01-26 08:29:17,120 Example #1\n",
            "2020-01-26 08:29:17,120 \tSource:     In contrast with the people who show the widespread lack of love today , those who worship Jehovah have genuine love for their fellow man .\n",
            "2020-01-26 08:29:17,121 \tReference:  Ene ga iJehova ẹlẹnan wo mhọn oyẹẹ da ibo ele , ele bha diabe ene iga Jehova ne bha hoẹmhọn ibo ele .\n",
            "2020-01-26 08:29:17,121 \tHypothesis: Ene ikpẹ nan wo rẹkpa ene ga iJehova bhi ẹghe nin ele rẹ wo ha mhọn okpẹhio , ele wo mun ekpẹn nin ẹbho ne bunbun .\n",
            "2020-01-26 08:29:17,121 Example #2\n",
            "2020-01-26 08:29:17,121 \tSource:     Today , we live as foreigners , as it were , in a world that has been morally and spiritually corrupted by Babylon the Great , the world empire of false religion , “ a dwelling place of demons . ”\n",
            "2020-01-26 08:29:17,121 \tReference:  Inian mhan diabi eriọbhe bhi ẹkẹ ọne agbọn nan nin oga ohoghe ria a . Babylon nọn khua a tie ene oga ohoghe nan , ele da dọ kiẹn eji ẹlinmhin ne imhẹn da nyẹnlẹn . ( Rev .\n",
            "2020-01-26 08:29:17,121 \tHypothesis: Ẹlẹnan nian , mhan ki dọ lẹn sẹbhọ ghe , Jehova da re ọne isẹhoa nan rẹ lu emhin rebhe , nin mhan rẹ re izebhudu nin ẹbho ne ribhi ọne agbọn nan , ọle da sabọ re ọne otọ nan rebhe . ”\n",
            "2020-01-26 08:29:17,122 Example #3\n",
            "2020-01-26 08:29:17,122 \tSource:     We should also strive to help others spiritually .\n",
            "2020-01-26 08:29:17,122 \tReference:  Ahamiẹn mhan re ẹghe bhi otọ rẹ ha luẹ iBaibo , yẹ deba ene gene guanọ nin ele ga iJehova ha muobọ , ọ dẹ rẹkpa mhan rẹ ziẹn ikolu nin mhan bi Jehova koko mhọnlẹn .\n",
            "2020-01-26 08:29:17,122 \tHypothesis: Ọkhẹke nin mhan dọnmhegbe rẹ ha tuẹn okugbe nọnsẹmhan okhun .\n",
            "2020-01-26 08:29:17,122 Validation result (greedy) at epoch  69, step     3100: bleu:   5.59, loss: 80199.3047, ppl:  34.9910, duration: 46.2372s\n",
            "2020-01-26 08:29:17,126 Epoch  69: total training loss 69.29\n",
            "2020-01-26 08:29:17,126 EPOCH 70\n",
            "2020-01-26 08:29:24,193 Epoch  70: total training loss 68.78\n",
            "2020-01-26 08:29:24,193 EPOCH 71\n",
            "2020-01-26 08:29:31,245 Epoch  71: total training loss 68.11\n",
            "2020-01-26 08:29:31,245 EPOCH 72\n",
            "2020-01-26 08:29:32,829 Epoch  72 Step:     3200 Batch Loss:     1.396934 Tokens per Sec:    12896, Lr: 0.000147\n",
            "2020-01-26 08:30:18,993 Example #0\n",
            "2020-01-26 08:30:18,994 \tSource:     I WAS raised in Graz , Austria .\n",
            "2020-01-26 08:30:18,994 \tReference:  AGBAẸBHO natiọle Graz bhi Austria , ọle mẹn da wanre .\n",
            "2020-01-26 08:30:18,994 \tHypothesis: Mẹn da yẹ ha ghọnghọn ranmhude mẹn ki munhẹn ha lu .\n",
            "2020-01-26 08:30:18,994 Example #1\n",
            "2020-01-26 08:30:18,994 \tSource:     In contrast with the people who show the widespread lack of love today , those who worship Jehovah have genuine love for their fellow man .\n",
            "2020-01-26 08:30:18,995 \tReference:  Ene ga iJehova ẹlẹnan wo mhọn oyẹẹ da ibo ele , ele bha diabe ene iga Jehova ne bha hoẹmhọn ibo ele .\n",
            "2020-01-26 08:30:18,995 \tHypothesis: Ene ikpẹ nan wo rẹkpa ene ga iJehova bhi ẹghe nin ele rẹ dọ lẹn ghe Osẹnobulua wo hoẹmhọn ẹbho nekẹle . Ọle wo ha mhọn eji ele rẹ ka ka tẹmhọnlẹn .\n",
            "2020-01-26 08:30:18,995 Example #2\n",
            "2020-01-26 08:30:18,995 \tSource:     Today , we live as foreigners , as it were , in a world that has been morally and spiritually corrupted by Babylon the Great , the world empire of false religion , “ a dwelling place of demons . ”\n",
            "2020-01-26 08:30:18,996 \tReference:  Inian mhan diabi eriọbhe bhi ẹkẹ ọne agbọn nan nin oga ohoghe ria a . Babylon nọn khua a tie ene oga ohoghe nan , ele da dọ kiẹn eji ẹlinmhin ne imhẹn da nyẹnlẹn . ( Rev .\n",
            "2020-01-26 08:30:18,996 \tHypothesis: Ẹlẹnan nian , mhan ki dọ lẹn ghe , mhan da ha re oyẹẹ man ẹbho , yẹ daghe ghe , nin ele rẹ ha ribhi ọne agbọn nan , ọle hi : “ ene ga ọle a da miẹn elele bhi ọne agbọn nan . ”\n",
            "2020-01-26 08:30:18,996 Example #3\n",
            "2020-01-26 08:30:18,996 \tSource:     We should also strive to help others spiritually .\n",
            "2020-01-26 08:30:18,996 \tReference:  Ahamiẹn mhan re ẹghe bhi otọ rẹ ha luẹ iBaibo , yẹ deba ene gene guanọ nin ele ga iJehova ha muobọ , ọ dẹ rẹkpa mhan rẹ ziẹn ikolu nin mhan bi Jehova koko mhọnlẹn .\n",
            "2020-01-26 08:30:18,997 \tHypothesis: Mhan dẹ yẹ sabọ rẹkpa mhan rẹ ha mun oga mhọn nọnsẹn .\n",
            "2020-01-26 08:30:18,997 Validation result (greedy) at epoch  72, step     3200: bleu:   5.48, loss: 80505.1406, ppl:  35.4686, duration: 46.1670s\n",
            "2020-01-26 08:30:24,488 Epoch  72: total training loss 67.09\n",
            "2020-01-26 08:30:24,489 EPOCH 73\n",
            "2020-01-26 08:30:31,521 Epoch  73: total training loss 66.03\n",
            "2020-01-26 08:30:31,522 EPOCH 74\n",
            "2020-01-26 08:30:34,707 Epoch  74 Step:     3300 Batch Loss:     1.702576 Tokens per Sec:    13220, Lr: 0.000103\n",
            "Traceback (most recent call last):\n",
            "  File \"/usr/lib/python3.6/runpy.py\", line 193, in _run_module_as_main\n",
            "    \"__main__\", mod_spec)\n",
            "  File \"/usr/lib/python3.6/runpy.py\", line 85, in _run_code\n",
            "    exec(code, run_globals)\n",
            "  File \"/usr/local/lib/python3.6/dist-packages/joeynmt/__main__.py\", line 41, in <module>\n",
            "    main()\n",
            "  File \"/usr/local/lib/python3.6/dist-packages/joeynmt/__main__.py\", line 29, in main\n",
            "    train(cfg_file=args.config_path)\n",
            "  File \"/usr/local/lib/python3.6/dist-packages/joeynmt/training.py\", line 596, in train\n",
            "    trainer.train_and_validate(train_data=train_data, valid_data=dev_data)\n",
            "  File \"/usr/local/lib/python3.6/dist-packages/joeynmt/training.py\", line 338, in train_and_validate\n",
            "    batch_type=self.eval_batch_type\n",
            "  File \"/usr/local/lib/python3.6/dist-packages/joeynmt/prediction.py\", line 106, in validate_on_data\n",
            "    max_output_length=max_output_length)\n",
            "  File \"/usr/local/lib/python3.6/dist-packages/joeynmt/model.py\", line 170, in run_batch\n",
            "    max_output_length=max_output_length)\n",
            "  File \"/usr/local/lib/python3.6/dist-packages/joeynmt/search.py\", line 43, in greedy\n",
            "    decoder, encoder_output, encoder_hidden)\n",
            "  File \"/usr/local/lib/python3.6/dist-packages/joeynmt/search.py\", line 139, in transformer_greedy\n",
            "    trg_mask=trg_mask\n",
            "  File \"/usr/local/lib/python3.6/dist-packages/torch/nn/modules/module.py\", line 541, in __call__\n",
            "    result = self.forward(*input, **kwargs)\n",
            "  File \"/usr/local/lib/python3.6/dist-packages/joeynmt/decoders.py\", line 514, in forward\n",
            "    trg_embed.size(1)).type_as(trg_mask)\n",
            "KeyboardInterrupt\n"
          ],
          "name": "stdout"
        }
      ]
    },
    {
      "cell_type": "code",
      "metadata": {
        "colab_type": "code",
        "id": "n94wlrCjVc17",
        "outputId": "a42675ce-50be-4ad1-ee11-877f6abfc194",
        "colab": {
          "base_uri": "https://localhost:8080/",
          "height": 561
        }
      },
      "source": [
        "# Output our validation accuracy epoch 1-74\n",
        "! cat \"$gdrive_path/models/${src}${tgt}_transformer/validations.txt\""
      ],
      "execution_count": 10,
      "outputs": [
        {
          "output_type": "stream",
          "text": [
            "Steps: 100\tLoss: 110740.54688\tPPL: 135.49428\tbleu: 0.00000\tLR: 0.00030000\t*\n",
            "Steps: 200\tLoss: 103501.96875\tPPL: 98.30320\tbleu: 0.00000\tLR: 0.00030000\t*\n",
            "Steps: 300\tLoss: 96958.10156\tPPL: 73.55095\tbleu: 0.00000\tLR: 0.00030000\t*\n",
            "Steps: 400\tLoss: 90492.06250\tPPL: 55.22141\tbleu: 0.17124\tLR: 0.00030000\t*\n",
            "Steps: 500\tLoss: 86351.70312\tPPL: 45.96205\tbleu: 0.76432\tLR: 0.00030000\t*\n",
            "Steps: 600\tLoss: 83069.73438\tPPL: 39.73896\tbleu: 0.55221\tLR: 0.00030000\t*\n",
            "Steps: 700\tLoss: 79955.37500\tPPL: 34.61469\tbleu: 1.23362\tLR: 0.00030000\t*\n",
            "Steps: 800\tLoss: 78357.02344\tPPL: 32.24704\tbleu: 2.14242\tLR: 0.00030000\t*\n",
            "Steps: 900\tLoss: 76491.79688\tPPL: 29.68803\tbleu: 2.67077\tLR: 0.00030000\t*\n",
            "Steps: 1000\tLoss: 75343.29688\tPPL: 28.21441\tbleu: 2.41983\tLR: 0.00030000\t*\n",
            "Steps: 1100\tLoss: 74969.68750\tPPL: 27.75099\tbleu: 2.74535\tLR: 0.00030000\t*\n",
            "Steps: 1200\tLoss: 73839.72656\tPPL: 26.39521\tbleu: 3.15579\tLR: 0.00030000\t*\n",
            "Steps: 1300\tLoss: 73582.29688\tPPL: 26.09572\tbleu: 3.21157\tLR: 0.00030000\t*\n",
            "Steps: 1400\tLoss: 72614.81250\tPPL: 25.00021\tbleu: 3.39397\tLR: 0.00030000\t*\n",
            "Steps: 1500\tLoss: 72724.75781\tPPL: 25.12235\tbleu: 3.90548\tLR: 0.00030000\t\n",
            "Steps: 1600\tLoss: 72694.67188\tPPL: 25.08887\tbleu: 3.29865\tLR: 0.00030000\t\n",
            "Steps: 1700\tLoss: 72884.24219\tPPL: 25.30059\tbleu: 4.02374\tLR: 0.00030000\t\n",
            "Steps: 1800\tLoss: 73121.85938\tPPL: 25.56849\tbleu: 4.19265\tLR: 0.00030000\t\n",
            "Steps: 1900\tLoss: 73039.21875\tPPL: 25.47499\tbleu: 4.41915\tLR: 0.00030000\t\n",
            "Steps: 2000\tLoss: 74022.84375\tPPL: 26.61034\tbleu: 4.26710\tLR: 0.00021000\t\n",
            "Steps: 2100\tLoss: 74151.10156\tPPL: 26.76206\tbleu: 4.64173\tLR: 0.00021000\t\n",
            "Steps: 2200\tLoss: 74790.09375\tPPL: 27.53094\tbleu: 4.80778\tLR: 0.00021000\t\n",
            "Steps: 2300\tLoss: 75371.00000\tPPL: 28.24909\tbleu: 4.99349\tLR: 0.00021000\t\n",
            "Steps: 2400\tLoss: 76095.46094\tPPL: 29.17100\tbleu: 5.14330\tLR: 0.00021000\t\n",
            "Steps: 2500\tLoss: 76564.31250\tPPL: 29.78362\tbleu: 5.45634\tLR: 0.00021000\t\n",
            "Steps: 2600\tLoss: 77054.53125\tPPL: 30.43791\tbleu: 5.29034\tLR: 0.00014700\t\n",
            "Steps: 2700\tLoss: 77714.92188\tPPL: 31.34212\tbleu: 5.54971\tLR: 0.00014700\t\n",
            "Steps: 2800\tLoss: 78130.30469\tPPL: 31.92457\tbleu: 5.55277\tLR: 0.00014700\t\n",
            "Steps: 2900\tLoss: 78853.45312\tPPL: 32.96452\tbleu: 5.42751\tLR: 0.00014700\t\n",
            "Steps: 3000\tLoss: 79436.30469\tPPL: 33.82732\tbleu: 5.81458\tLR: 0.00014700\t\n",
            "Steps: 3100\tLoss: 80199.30469\tPPL: 34.99101\tbleu: 5.58647\tLR: 0.00014700\t\n",
            "Steps: 3200\tLoss: 80505.14062\tPPL: 35.46862\tbleu: 5.48380\tLR: 0.00010290\t\n"
          ],
          "name": "stdout"
        }
      ]
    },
    {
      "cell_type": "code",
      "metadata": {
        "colab_type": "code",
        "id": "66WhRE9lIhoD",
        "outputId": "e2a7d710-9045-4c5c-b5c9-3ae8a1b944bf",
        "colab": {
          "base_uri": "https://localhost:8080/",
          "height": 68
        }
      },
      "source": [
        "# Test our model\n",
        "! cd joeynmt; python3 -m joeynmt test \"$gdrive_path/models/${src}${tgt}_transformer/config.yaml\""
      ],
      "execution_count": 11,
      "outputs": [
        {
          "output_type": "stream",
          "text": [
            "2020-01-26 08:31:49,176 Hello! This is Joey-NMT.\n",
            "2020-01-26 08:32:09,525  dev bleu:   3.39 [Beam search decoding with beam size = 5 and alpha = 1.0]\n",
            "2020-01-26 08:32:13,914 test bleu:   5.30 [Beam search decoding with beam size = 5 and alpha = 1.0]\n"
          ],
          "name": "stdout"
        }
      ]
    }
  ]
}