File size: 189,728 Bytes
78aa4ee |
1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27 28 29 30 31 32 33 34 35 36 37 38 39 40 41 42 43 44 45 46 47 48 49 50 51 52 53 54 55 56 57 58 59 60 61 62 63 64 65 66 67 68 69 70 71 72 73 74 75 76 77 78 79 80 81 82 83 84 85 86 87 88 89 90 91 92 93 94 95 96 97 98 99 100 101 102 103 104 105 106 107 108 109 110 111 112 113 114 115 116 117 118 119 120 121 122 123 124 125 126 127 128 129 130 131 132 133 134 135 136 137 138 139 140 141 142 143 144 145 146 147 148 149 150 151 152 153 154 155 156 157 158 159 160 161 162 163 164 165 166 167 168 169 170 171 172 173 174 175 176 177 178 179 180 181 182 183 184 185 186 187 188 189 190 191 192 193 194 195 196 197 198 199 200 201 202 203 204 205 206 207 208 209 210 211 212 213 214 215 216 217 218 219 220 221 222 223 224 225 226 227 228 229 230 231 232 233 234 235 236 237 238 239 240 241 242 243 244 245 246 247 248 249 250 251 252 253 254 255 256 257 258 259 260 261 262 263 264 265 266 267 268 269 270 271 272 273 274 275 276 277 278 279 280 281 282 283 284 285 286 287 288 289 290 291 292 293 294 295 296 297 298 299 300 301 302 303 304 305 306 307 308 309 310 311 312 313 314 315 316 317 318 319 320 321 322 323 324 325 326 327 328 329 330 331 332 333 334 335 336 337 338 339 340 341 342 343 344 345 346 347 348 349 350 351 352 353 354 355 356 357 358 359 360 361 362 363 364 365 366 367 368 369 370 371 372 373 374 375 376 377 378 379 380 381 382 383 384 385 386 387 388 389 390 391 392 393 394 395 396 397 398 399 400 401 402 403 404 405 406 407 408 409 410 411 412 413 414 415 416 417 418 419 420 421 422 423 424 425 426 427 428 429 430 431 432 433 434 435 436 437 438 439 440 441 442 443 444 445 446 447 448 449 450 451 452 453 454 455 456 457 458 459 460 461 462 463 464 465 466 467 468 469 470 471 472 473 474 475 476 477 478 479 480 481 482 483 484 485 486 487 488 489 490 491 492 493 494 495 496 497 498 499 500 501 502 503 504 505 506 507 508 509 510 511 512 513 514 515 516 517 518 519 520 521 522 523 524 525 526 527 528 529 530 531 532 533 534 535 536 537 538 539 540 541 542 543 544 545 546 547 548 549 550 551 552 553 554 555 556 557 558 559 560 561 562 563 564 565 566 567 568 569 570 571 572 573 574 575 576 577 578 579 580 581 582 583 584 585 586 587 588 589 590 591 592 593 594 595 596 597 598 599 600 601 602 603 604 605 606 607 608 609 610 611 612 613 614 615 616 617 618 619 620 621 622 623 624 625 626 627 628 629 630 631 632 633 634 635 636 637 638 639 640 641 642 643 644 645 646 647 648 649 650 651 652 653 654 655 656 657 658 659 660 661 662 663 664 665 666 667 668 669 670 671 672 673 674 675 676 677 678 679 680 681 682 683 684 685 686 687 688 689 690 691 692 693 694 695 696 697 698 699 700 701 702 703 704 705 706 707 708 709 710 711 712 713 714 715 716 717 718 719 720 721 722 723 724 725 726 727 728 729 730 731 732 733 734 735 736 737 738 739 740 741 742 743 744 745 746 747 748 749 750 751 752 753 754 755 756 757 758 759 760 761 762 763 764 765 766 767 768 769 770 771 772 773 774 775 776 777 778 779 780 781 782 783 784 785 786 787 788 789 790 791 792 793 794 795 796 797 798 799 800 801 802 803 804 805 806 807 808 809 810 811 812 813 814 815 816 817 818 819 820 821 822 823 824 825 826 827 828 829 830 831 832 833 834 835 836 837 838 839 840 841 842 843 844 845 846 847 848 849 850 851 852 853 854 855 856 857 858 859 860 861 862 863 864 865 866 867 868 869 870 871 872 873 874 875 876 877 878 879 880 881 882 883 884 885 886 887 888 889 890 891 892 893 894 895 896 897 898 899 900 901 902 903 904 905 906 907 908 909 910 911 912 913 914 915 916 917 918 919 920 921 922 923 924 925 926 927 928 929 930 931 932 933 934 935 936 937 938 939 940 941 942 943 944 945 946 947 948 949 950 951 952 953 954 955 956 957 958 959 960 961 962 963 964 965 966 967 968 969 970 971 972 973 974 975 976 977 978 979 980 981 982 983 984 985 986 987 988 989 990 991 992 993 994 995 996 997 998 999 1000 1001 1002 1003 1004 1005 1006 1007 1008 1009 1010 1011 1012 1013 1014 1015 1016 1017 1018 1019 1020 1021 1022 1023 1024 1025 1026 1027 1028 1029 1030 1031 1032 1033 1034 1035 1036 1037 1038 1039 1040 1041 1042 1043 1044 1045 1046 1047 1048 1049 1050 1051 1052 1053 1054 1055 1056 1057 1058 1059 1060 1061 1062 1063 1064 1065 1066 1067 1068 1069 1070 1071 1072 1073 1074 1075 1076 1077 1078 1079 1080 1081 1082 1083 1084 1085 1086 1087 1088 1089 1090 1091 1092 1093 1094 1095 1096 1097 1098 1099 1100 1101 1102 1103 1104 1105 1106 1107 1108 1109 1110 1111 1112 1113 1114 1115 1116 1117 1118 1119 1120 1121 1122 1123 1124 1125 1126 1127 1128 1129 1130 1131 1132 1133 1134 1135 1136 1137 1138 1139 1140 1141 1142 1143 1144 1145 1146 1147 1148 1149 1150 1151 1152 1153 1154 1155 1156 1157 1158 1159 1160 1161 1162 1163 1164 1165 1166 1167 1168 1169 1170 1171 1172 1173 1174 1175 1176 1177 1178 1179 1180 1181 1182 1183 1184 1185 1186 1187 1188 1189 1190 1191 1192 1193 1194 1195 1196 1197 1198 1199 1200 1201 1202 1203 1204 1205 1206 1207 1208 1209 1210 1211 1212 1213 1214 1215 1216 1217 1218 1219 1220 1221 1222 1223 1224 1225 1226 1227 1228 1229 1230 1231 1232 1233 1234 1235 1236 1237 1238 1239 1240 1241 1242 1243 1244 1245 1246 1247 1248 1249 1250 1251 1252 1253 1254 1255 1256 1257 1258 1259 1260 1261 1262 1263 1264 1265 1266 1267 1268 1269 1270 1271 1272 1273 1274 1275 1276 1277 1278 1279 1280 1281 1282 1283 1284 1285 1286 1287 1288 1289 1290 1291 1292 1293 1294 1295 1296 1297 1298 1299 1300 1301 1302 1303 1304 1305 1306 1307 1308 1309 1310 1311 1312 1313 1314 1315 1316 1317 1318 1319 1320 1321 1322 1323 1324 1325 1326 1327 1328 1329 1330 1331 1332 1333 1334 1335 1336 1337 1338 1339 1340 1341 1342 1343 1344 1345 1346 1347 1348 1349 1350 1351 1352 1353 1354 1355 1356 1357 1358 1359 1360 1361 1362 1363 1364 1365 1366 1367 1368 1369 1370 1371 1372 1373 1374 1375 1376 1377 1378 1379 1380 1381 1382 1383 1384 1385 1386 1387 1388 1389 1390 1391 1392 1393 1394 1395 1396 1397 1398 1399 1400 1401 1402 1403 1404 1405 1406 1407 1408 1409 1410 1411 1412 1413 1414 1415 1416 1417 1418 1419 1420 1421 1422 1423 1424 1425 1426 1427 1428 1429 1430 1431 1432 1433 1434 1435 1436 1437 1438 1439 1440 1441 1442 1443 1444 1445 1446 1447 1448 1449 1450 1451 1452 1453 1454 1455 1456 1457 1458 1459 1460 1461 1462 1463 1464 1465 1466 1467 1468 1469 1470 1471 1472 1473 1474 1475 1476 1477 1478 1479 1480 1481 1482 1483 1484 1485 1486 1487 1488 1489 1490 1491 1492 1493 1494 1495 1496 1497 1498 1499 1500 1501 1502 1503 1504 1505 1506 1507 1508 1509 1510 1511 1512 1513 1514 1515 1516 1517 1518 1519 1520 1521 1522 1523 1524 1525 1526 1527 1528 1529 1530 1531 1532 1533 1534 1535 1536 1537 1538 1539 1540 1541 1542 1543 1544 1545 1546 1547 1548 1549 1550 1551 1552 1553 1554 1555 1556 1557 1558 1559 1560 1561 1562 1563 1564 1565 1566 1567 1568 1569 1570 1571 1572 1573 1574 1575 1576 1577 1578 1579 1580 1581 1582 1583 1584 1585 1586 1587 1588 1589 1590 1591 1592 1593 1594 1595 1596 1597 1598 1599 1600 1601 1602 1603 1604 1605 1606 1607 1608 1609 1610 1611 1612 1613 1614 1615 1616 1617 1618 1619 1620 1621 1622 1623 1624 1625 1626 1627 1628 1629 1630 1631 1632 1633 1634 1635 1636 1637 1638 1639 1640 1641 1642 1643 1644 1645 1646 1647 1648 1649 1650 1651 1652 1653 1654 1655 1656 1657 1658 1659 1660 1661 1662 1663 1664 1665 1666 1667 1668 1669 1670 1671 1672 1673 1674 1675 1676 1677 1678 1679 1680 1681 1682 1683 1684 1685 1686 1687 1688 1689 1690 1691 1692 1693 1694 1695 1696 1697 1698 1699 1700 1701 1702 1703 1704 1705 1706 1707 1708 1709 1710 1711 1712 1713 1714 1715 1716 1717 1718 1719 1720 1721 1722 1723 1724 1725 1726 1727 1728 1729 1730 1731 1732 1733 1734 1735 1736 1737 1738 1739 1740 1741 1742 1743 1744 1745 1746 1747 1748 1749 1750 1751 1752 1753 1754 1755 1756 1757 1758 1759 1760 1761 1762 1763 1764 1765 1766 1767 1768 1769 1770 1771 1772 1773 1774 1775 1776 1777 1778 1779 1780 1781 1782 1783 1784 1785 1786 1787 1788 1789 1790 1791 1792 1793 1794 1795 1796 1797 1798 1799 1800 1801 1802 1803 1804 1805 1806 1807 1808 1809 1810 1811 1812 1813 1814 1815 1816 1817 1818 1819 1820 1821 1822 1823 1824 1825 1826 1827 1828 1829 1830 1831 1832 1833 1834 1835 1836 1837 1838 1839 1840 1841 1842 1843 1844 1845 1846 1847 1848 1849 1850 1851 1852 1853 1854 1855 1856 1857 1858 1859 1860 1861 1862 1863 1864 1865 1866 1867 1868 1869 1870 1871 1872 1873 1874 1875 1876 1877 1878 1879 1880 1881 1882 1883 1884 1885 1886 1887 1888 1889 1890 1891 1892 1893 1894 1895 1896 1897 1898 1899 1900 1901 1902 1903 1904 1905 1906 1907 1908 1909 1910 1911 1912 1913 1914 1915 1916 1917 1918 1919 1920 1921 1922 1923 1924 1925 1926 1927 1928 1929 1930 1931 1932 1933 1934 1935 1936 1937 1938 1939 1940 1941 1942 1943 1944 1945 1946 1947 1948 1949 1950 1951 1952 1953 1954 1955 1956 1957 1958 1959 1960 1961 1962 1963 1964 1965 1966 1967 1968 1969 1970 1971 1972 1973 1974 1975 1976 1977 1978 1979 1980 1981 1982 1983 1984 1985 1986 1987 1988 1989 1990 1991 1992 1993 1994 1995 1996 1997 1998 1999 2000 2001 2002 2003 2004 2005 2006 2007 2008 2009 2010 2011 2012 2013 2014 2015 2016 2017 2018 2019 2020 2021 2022 2023 2024 2025 2026 2027 2028 2029 2030 2031 2032 2033 2034 2035 2036 2037 2038 2039 2040 2041 2042 2043 2044 2045 2046 2047 2048 2049 2050 2051 2052 2053 2054 2055 2056 2057 2058 2059 2060 2061 2062 2063 2064 2065 2066 2067 2068 2069 2070 2071 2072 2073 2074 2075 2076 2077 2078 2079 2080 2081 2082 2083 2084 2085 2086 2087 2088 2089 2090 2091 2092 2093 2094 2095 2096 2097 2098 2099 2100 2101 2102 2103 2104 2105 2106 2107 2108 2109 2110 2111 2112 2113 2114 2115 2116 2117 2118 2119 2120 2121 2122 2123 2124 2125 2126 2127 2128 2129 2130 2131 2132 2133 2134 2135 2136 2137 2138 2139 2140 2141 2142 2143 2144 2145 2146 2147 2148 2149 2150 2151 2152 2153 2154 2155 2156 2157 2158 2159 2160 2161 2162 2163 2164 2165 2166 2167 2168 2169 2170 2171 2172 2173 2174 2175 2176 2177 2178 2179 2180 2181 2182 2183 2184 2185 2186 2187 2188 2189 2190 2191 2192 2193 2194 2195 2196 2197 2198 2199 2200 2201 2202 2203 2204 2205 2206 2207 2208 2209 2210 2211 2212 2213 2214 2215 2216 2217 2218 2219 2220 2221 2222 2223 2224 2225 2226 2227 2228 2229 2230 2231 2232 2233 2234 2235 2236 2237 2238 2239 2240 2241 2242 2243 2244 2245 2246 2247 2248 2249 2250 2251 2252 2253 2254 2255 2256 2257 2258 2259 2260 2261 2262 2263 2264 2265 2266 2267 2268 2269 2270 2271 2272 2273 2274 2275 2276 2277 2278 2279 2280 2281 2282 2283 2284 2285 2286 2287 2288 2289 2290 2291 2292 2293 2294 2295 2296 2297 2298 2299 2300 2301 2302 2303 2304 2305 |
{
"nbformat": 4,
"nbformat_minor": 0,
"metadata": {
"accelerator": "GPU",
"colab": {
"name": "starter_notebook.ipynb",
"provenance": [],
"collapsed_sections": [],
"toc_visible": true,
"include_colab_link": true
},
"kernelspec": {
"display_name": "Python 3",
"language": "python",
"name": "python3"
},
"language_info": {
"codemirror_mode": {
"name": "ipython",
"version": 3
},
"file_extension": ".py",
"mimetype": "text/x-python",
"name": "python",
"nbconvert_exporter": "python",
"pygments_lexer": "ipython3",
"version": "3.5.6"
}
},
"cells": [
{
"cell_type": "markdown",
"metadata": {
"id": "view-in-github",
"colab_type": "text"
},
"source": [
"<a href=\"https://colab.research.google.com/github/ruohoruotsi/masakhane/blob/master/en-ish/jw300-baseline/English_to_Esan_Word-level_notebook.ipynb\" target=\"_parent\"><img src=\"https://colab.research.google.com/assets/colab-badge.svg\" alt=\"Open In Colab\"/></a>"
]
},
{
"cell_type": "markdown",
"metadata": {
"colab_type": "text",
"id": "Igc5itf-xMGj"
},
"source": [
"# Masakhane - Machine Translation for African Languages (Using JoeyNMT)"
]
},
{
"cell_type": "markdown",
"metadata": {
"colab_type": "text",
"id": "x4fXCKCf36IK"
},
"source": [
"## Note before beginning:\n",
"### - The idea is that you should be able to make minimal changes to this in order to get SOME result for your own translation corpus. \n",
"\n",
"### - The tl;dr: Go to the **\"TODO\"** comments which will tell you what to update to get up and running\n",
"\n",
"### - If you actually want to have a clue what you're doing, read the text and peek at the links\n",
"\n",
"### - With 100 epochs, it should take around 7 hours to run in Google Colab\n",
"\n",
"### - Once you've gotten a result for your language, please attach and email your notebook that generated it to [email protected]\n",
"\n",
"### - If you care enough and get a chance, doing a brief background on your language would be amazing. See examples in [(Martinus, 2019)](https://arxiv.org/abs/1906.05685)"
]
},
{
"cell_type": "markdown",
"metadata": {
"colab_type": "text",
"id": "l929HimrxS0a"
},
"source": [
"## Retrieve your data & make a parallel corpus\n",
"\n",
"If you are wanting to use the JW300 data referenced on the Masakhane website or in our GitHub repo, you can use `opus-tools` to convert the data into a convenient format. `opus_read` from that package provides a convenient tool for reading the native aligned XML files and to convert them to TMX format. The tool can also be used to fetch relevant files from OPUS on the fly and to filter the data as necessary. [Read the documentation](https://pypi.org/project/opustools-pkg/) for more details.\n",
"\n",
"Once you have your corpus files in TMX format (an xml structure which will include the sentences in your target language and your source language in a single file), we recommend reading them into a pandas dataframe. Thankfully, Jade wrote a silly `tmx2dataframe` package which converts your tmx file to a pandas dataframe. "
]
},
{
"cell_type": "code",
"metadata": {
"colab_type": "code",
"id": "oGRmDELn7Az0",
"outputId": "2a02d3ea-3f1a-46b9-bd56-f439adb91530",
"colab": {
"base_uri": "https://localhost:8080/",
"height": 122
}
},
"source": [
"from google.colab import drive\n",
"drive.mount('/content/drive')"
],
"execution_count": 1,
"outputs": [
{
"output_type": "stream",
"text": [
"Go to this URL in a browser: https://accounts.google.com/o/oauth2/auth?client_id=947318989803-6bn6qk8qdgf4n4g3pfee6491hc0brc4i.apps.googleusercontent.com&redirect_uri=urn%3aietf%3awg%3aoauth%3a2.0%3aoob&response_type=code&scope=email%20https%3a%2f%2fwww.googleapis.com%2fauth%2fdocs.test%20https%3a%2f%2fwww.googleapis.com%2fauth%2fdrive%20https%3a%2f%2fwww.googleapis.com%2fauth%2fdrive.photos.readonly%20https%3a%2f%2fwww.googleapis.com%2fauth%2fpeopleapi.readonly\n",
"\n",
"Enter your authorization code:\n",
"··········\n",
"Mounted at /content/drive\n"
],
"name": "stdout"
}
]
},
{
"cell_type": "code",
"metadata": {
"colab_type": "code",
"id": "Cn3tgQLzUxwn",
"colab": {}
},
"source": [
"# TODO: Set your source and target languages. Keep in mind, these traditionally use language codes as found here:\n",
"# These will also become the suffix's of all vocab and corpus files used throughout\n",
"import os\n",
"source_language = \"en\"\n",
"target_language = \"ish\" \n",
"lc = False # If True, lowercase the data.\n",
"seed = 42 # Random seed for shuffling.\n",
"tag = \"baseline\" # Give a unique name to your folder - this is to ensure you don't rewrite any models you've already submitted\n",
"\n",
"os.environ[\"src\"] = source_language # Sets them in bash as well, since we often use bash scripts\n",
"os.environ[\"tgt\"] = target_language\n",
"os.environ[\"tag\"] = tag\n",
"\n",
"# This will save it to a folder in our gdrive instead!\n",
"!mkdir -p \"/content/drive/My Drive/masakhane/$src-$tgt-$tag\"\n",
"os.environ[\"gdrive_path\"] = \"/content/drive/My Drive/masakhane/%s-%s-%s\" % (source_language, target_language, tag)"
],
"execution_count": 0,
"outputs": []
},
{
"cell_type": "code",
"metadata": {
"colab_type": "code",
"id": "kBSgJHEw7Nvx",
"outputId": "b79d00f5-b467-4493-cd76-26dc880ca2bf",
"colab": {
"base_uri": "https://localhost:8080/",
"height": 34
}
},
"source": [
"!echo $gdrive_path"
],
"execution_count": 4,
"outputs": [
{
"output_type": "stream",
"text": [
"/content/drive/My Drive/masakhane/en-ish-baseline\n"
],
"name": "stdout"
}
]
},
{
"cell_type": "code",
"metadata": {
"colab_type": "code",
"id": "gA75Fs9ys8Y9",
"outputId": "85f1a7de-5ab8-45b9-cdb0-9ae3199df91b",
"colab": {
"base_uri": "https://localhost:8080/",
"height": 102
}
},
"source": [
"# Install opus-tools\n",
"! pip install opustools-pkg"
],
"execution_count": 0,
"outputs": [
{
"output_type": "stream",
"text": [
"Collecting opustools-pkg\n",
"\u001b[?25l Downloading https://files.pythonhosted.org/packages/6c/9f/e829a0cceccc603450cd18e1ff80807b6237a88d9a8df2c0bb320796e900/opustools_pkg-0.0.52-py3-none-any.whl (80kB)\n",
"\r\u001b[K |████ | 10kB 23.8MB/s eta 0:00:01\r\u001b[K |████████ | 20kB 1.7MB/s eta 0:00:01\r\u001b[K |████████████▏ | 30kB 2.5MB/s eta 0:00:01\r\u001b[K |████████████████▏ | 40kB 1.7MB/s eta 0:00:01\r\u001b[K |████████████████████▎ | 51kB 2.1MB/s eta 0:00:01\r\u001b[K |████████████████████████▎ | 61kB 2.5MB/s eta 0:00:01\r\u001b[K |████████████████████████████▎ | 71kB 2.9MB/s eta 0:00:01\r\u001b[K |████████████████████████████████| 81kB 2.5MB/s \n",
"\u001b[?25hInstalling collected packages: opustools-pkg\n",
"Successfully installed opustools-pkg-0.0.52\n"
],
"name": "stdout"
}
]
},
{
"cell_type": "code",
"metadata": {
"colab_type": "code",
"id": "xq-tDZVks7ZD",
"outputId": "9d17c9e1-b6a7-43f4-ee1e-3ea9a8559c27",
"colab": {
"base_uri": "https://localhost:8080/",
"height": 204
}
},
"source": [
"# Downloading our corpus\n",
"! opus_read -d JW300 -s $src -t $tgt -wm moses -w jw300.$src jw300.$tgt -q\n",
"\n",
"# extract the corpus file\n",
"! gunzip JW300_latest_xml_$src-$tgt.xml.gz"
],
"execution_count": 0,
"outputs": [
{
"output_type": "stream",
"text": [
"\n",
"Alignment file /proj/nlpl/data/OPUS/JW300/latest/xml/en-iso.xml.gz not found. The following files are available for downloading:\n",
"\n",
" 2 MB https://object.pouta.csc.fi/OPUS-JW300/v1/xml/en-iso.xml.gz\n",
" 263 MB https://object.pouta.csc.fi/OPUS-JW300/v1/xml/en.zip\n",
" 26 MB https://object.pouta.csc.fi/OPUS-JW300/v1/xml/iso.zip\n",
"\n",
" 291 MB Total size\n",
"./JW300_latest_xml_en-iso.xml.gz ... 100% of 2 MB\n",
"./JW300_latest_xml_en.zip ... 100% of 263 MB\n",
"./JW300_latest_xml_iso.zip ... 100% of 26 MB\n"
],
"name": "stdout"
}
]
},
{
"cell_type": "code",
"metadata": {
"id": "n48GDRnP8y2G",
"colab_type": "code",
"outputId": "8949fb1b-854c-4644-a03c-43fdb68dbc42",
"colab": {
"base_uri": "https://localhost:8080/",
"height": 578
}
},
"source": [
"# Download the global test set.\n",
"! wget https://raw.githubusercontent.com/juliakreutzer/masakhane/master/jw300_utils/test/test.en-any.en\n",
" \n",
"# And the specific test set for this language pair.\n",
"os.environ[\"trg\"] = target_language \n",
"os.environ[\"src\"] = source_language \n",
"\n",
"! wget https://raw.githubusercontent.com/juliakreutzer/masakhane/master/jw300_utils/test/test.en-$trg.en \n",
"! mv test.en-$trg.en test.en\n",
"! wget https://raw.githubusercontent.com/juliakreutzer/masakhane/master/jw300_utils/test/test.en-$trg.$trg \n",
"! mv test.en-$trg.$trg test.$trg"
],
"execution_count": 0,
"outputs": [
{
"output_type": "stream",
"text": [
"--2020-01-17 04:59:50-- https://raw.githubusercontent.com/juliakreutzer/masakhane/master/jw300_utils/test/test.en-any.en\n",
"Resolving raw.githubusercontent.com (raw.githubusercontent.com)... 151.101.0.133, 151.101.64.133, 151.101.128.133, ...\n",
"Connecting to raw.githubusercontent.com (raw.githubusercontent.com)|151.101.0.133|:443... connected.\n",
"HTTP request sent, awaiting response... 200 OK\n",
"Length: 277791 (271K) [text/plain]\n",
"Saving to: ‘test.en-any.en’\n",
"\n",
"\rtest.en-any.en 0%[ ] 0 --.-KB/s \rtest.en-any.en 100%[===================>] 271.28K --.-KB/s in 0.05s \n",
"\n",
"2020-01-17 04:59:51 (5.15 MB/s) - ‘test.en-any.en’ saved [277791/277791]\n",
"\n",
"--2020-01-17 04:59:52-- https://raw.githubusercontent.com/juliakreutzer/masakhane/master/jw300_utils/test/test.en-iso.en\n",
"Resolving raw.githubusercontent.com (raw.githubusercontent.com)... 151.101.0.133, 151.101.64.133, 151.101.128.133, ...\n",
"Connecting to raw.githubusercontent.com (raw.githubusercontent.com)|151.101.0.133|:443... connected.\n",
"HTTP request sent, awaiting response... 200 OK\n",
"Length: 205488 (201K) [text/plain]\n",
"Saving to: ‘test.en-iso.en’\n",
"\n",
"test.en-iso.en 100%[===================>] 200.67K --.-KB/s in 0.04s \n",
"\n",
"2020-01-17 04:59:52 (5.30 MB/s) - ‘test.en-iso.en’ saved [205488/205488]\n",
"\n",
"--2020-01-17 04:59:54-- https://raw.githubusercontent.com/juliakreutzer/masakhane/master/jw300_utils/test/test.en-iso.iso\n",
"Resolving raw.githubusercontent.com (raw.githubusercontent.com)... 151.101.0.133, 151.101.64.133, 151.101.128.133, ...\n",
"Connecting to raw.githubusercontent.com (raw.githubusercontent.com)|151.101.0.133|:443... connected.\n",
"HTTP request sent, awaiting response... 200 OK\n",
"Length: 251918 (246K) [text/plain]\n",
"Saving to: ‘test.en-iso.iso’\n",
"\n",
"test.en-iso.iso 100%[===================>] 246.01K --.-KB/s in 0.05s \n",
"\n",
"2020-01-17 04:59:55 (4.68 MB/s) - ‘test.en-iso.iso’ saved [251918/251918]\n",
"\n"
],
"name": "stdout"
}
]
},
{
"cell_type": "code",
"metadata": {
"id": "NqDG-CI28y2L",
"colab_type": "code",
"outputId": "44ef9271-b0fc-418d-dc5f-04c90e4e38cd",
"colab": {
"base_uri": "https://localhost:8080/",
"height": 34
}
},
"source": [
"# Read the test data to filter from train and dev splits.\n",
"# Store english portion in set for quick filtering checks.\n",
"en_test_sents = set()\n",
"filter_test_sents = \"test.en-any.en\"\n",
"j = 0\n",
"with open(filter_test_sents) as f:\n",
" for line in f:\n",
" en_test_sents.add(line.strip())\n",
" j += 1\n",
"print('Loaded {} global test sentences to filter from the training/dev data.'.format(j))"
],
"execution_count": 0,
"outputs": [
{
"output_type": "stream",
"text": [
"Loaded 3571 global test sentences to filter from the training/dev data.\n"
],
"name": "stdout"
}
]
},
{
"cell_type": "code",
"metadata": {
"colab_type": "code",
"id": "3CNdwLBCfSIl",
"outputId": "fcf09810-26de-481b-8ba0-39853c4378b0",
"colab": {
"base_uri": "https://localhost:8080/",
"height": 159
}
},
"source": [
"import pandas as pd\n",
"\n",
"# TMX file to dataframe\n",
"source_file = 'jw300.' + source_language\n",
"target_file = 'jw300.' + target_language\n",
"\n",
"source = []\n",
"target = []\n",
"skip_lines = [] # Collect the line numbers of the source portion to skip the same lines for the target portion.\n",
"with open(source_file) as f:\n",
" for i, line in enumerate(f):\n",
" # Skip sentences that are contained in the test set.\n",
" if line.strip() not in en_test_sents:\n",
" source.append(line.strip())\n",
" else:\n",
" skip_lines.append(i) \n",
"with open(target_file) as f:\n",
" for j, line in enumerate(f):\n",
" # Only add to corpus if corresponding source was not skipped.\n",
" if j not in skip_lines:\n",
" target.append(line.strip())\n",
" \n",
"print('Loaded data and skipped {}/{} lines since contained in test set.'.format(len(skip_lines), i))\n",
" \n",
"df = pd.DataFrame(zip(source, target), columns=['source_sentence', 'target_sentence'])\n",
"# if you get TypeError: data argument can't be an iterator is because of your zip version run this below\n",
"#df = pd.DataFrame(list(zip(source, target)), columns=['source_sentence', 'target_sentence'])\n",
"df.head(3)"
],
"execution_count": 0,
"outputs": [
{
"output_type": "stream",
"text": [
"Loaded data and skipped 5685/243487 lines since contained in test set.\n"
],
"name": "stdout"
},
{
"output_type": "execute_result",
"data": {
"text/html": [
"<div>\n",
"<style scoped>\n",
" .dataframe tbody tr th:only-of-type {\n",
" vertical-align: middle;\n",
" }\n",
"\n",
" .dataframe tbody tr th {\n",
" vertical-align: top;\n",
" }\n",
"\n",
" .dataframe thead th {\n",
" text-align: right;\n",
" }\n",
"</style>\n",
"<table border=\"1\" class=\"dataframe\">\n",
" <thead>\n",
" <tr style=\"text-align: right;\">\n",
" <th></th>\n",
" <th>source_sentence</th>\n",
" <th>target_sentence</th>\n",
" </tr>\n",
" </thead>\n",
" <tbody>\n",
" <tr>\n",
" <th>0</th>\n",
" <td>“ Only One of the Many Lives That You Touched ”</td>\n",
" <td>“ Omọvo Ahwo Buobu nọ Who Duobọ te Uzuazọ Riẹ ”</td>\n",
" </tr>\n",
" <tr>\n",
" <th>1</th>\n",
" <td>BACK in January 1996 , Carol was sick with a b...</td>\n",
" <td>EVAỌ January 1996 , Carol ọ jẹ mọ ẹyao ẹvori .</td>\n",
" </tr>\n",
" <tr>\n",
" <th>2</th>\n",
" <td>She was in her 60 ’ s and until then had alway...</td>\n",
" <td>Ọ kpako te ikpe 60 no yọ oke yena kpobi ọ jọ a...</td>\n",
" </tr>\n",
" </tbody>\n",
"</table>\n",
"</div>"
],
"text/plain": [
" source_sentence target_sentence\n",
"0 “ Only One of the Many Lives That You Touched ” “ Omọvo Ahwo Buobu nọ Who Duobọ te Uzuazọ Riẹ ”\n",
"1 BACK in January 1996 , Carol was sick with a b... EVAỌ January 1996 , Carol ọ jẹ mọ ẹyao ẹvori .\n",
"2 She was in her 60 ’ s and until then had alway... Ọ kpako te ikpe 60 no yọ oke yena kpobi ọ jọ a..."
]
},
"metadata": {
"tags": []
},
"execution_count": 11
}
]
},
{
"cell_type": "markdown",
"metadata": {
"colab_type": "text",
"id": "YkuK3B4p2AkN"
},
"source": [
"## Pre-processing and export\n",
"\n",
"It is generally a good idea to remove duplicate translations and conflicting translations from the corpus. In practice, these public corpora include some number of these that need to be cleaned.\n",
"\n",
"In addition we will split our data into dev/test/train and export to the filesystem."
]
},
{
"cell_type": "code",
"metadata": {
"colab_type": "code",
"id": "M_2ouEOH1_1q",
"outputId": "b109ef42-7557-4c8c-8952-874ac33ed667",
"colab": {
"base_uri": "https://localhost:8080/",
"height": 187
}
},
"source": [
"# drop duplicate translations\n",
"df_pp = df.drop_duplicates()\n",
"\n",
"# drop conflicting translations\n",
"# (this is optional and something that you might want to comment out \n",
"# depending on the size of your corpus)\n",
"df_pp.drop_duplicates(subset='source_sentence', inplace=True)\n",
"df_pp.drop_duplicates(subset='target_sentence', inplace=True)\n",
"\n",
"# Shuffle the data to remove bias in dev set selection.\n",
"df_pp = df_pp.sample(frac=1, random_state=seed).reset_index(drop=True)"
],
"execution_count": 0,
"outputs": [
{
"output_type": "stream",
"text": [
"/usr/local/lib/python3.6/dist-packages/ipykernel_launcher.py:6: SettingWithCopyWarning: \n",
"A value is trying to be set on a copy of a slice from a DataFrame\n",
"\n",
"See the caveats in the documentation: http://pandas.pydata.org/pandas-docs/stable/user_guide/indexing.html#returning-a-view-versus-a-copy\n",
" \n",
"/usr/local/lib/python3.6/dist-packages/ipykernel_launcher.py:7: SettingWithCopyWarning: \n",
"A value is trying to be set on a copy of a slice from a DataFrame\n",
"\n",
"See the caveats in the documentation: http://pandas.pydata.org/pandas-docs/stable/user_guide/indexing.html#returning-a-view-versus-a-copy\n",
" import sys\n"
],
"name": "stderr"
}
]
},
{
"cell_type": "code",
"metadata": {
"id": "Z_1BwAApEtMk",
"colab_type": "code",
"outputId": "175b8c38-2c43-47f7-bccc-0cffe0336959",
"colab": {
"base_uri": "https://localhost:8080/",
"height": 1000
}
},
"source": [
"# Install fuzzy wuzzy to remove \"almost duplicate\" sentences in the\n",
"# test and training sets.\n",
"! pip install fuzzywuzzy\n",
"! pip install python-Levenshtein\n",
"import time\n",
"from fuzzywuzzy import process\n",
"import numpy as np\n",
"\n",
"# reset the index of the training set after previous filtering\n",
"df_pp.reset_index(drop=False, inplace=True)\n",
"\n",
"# Remove samples from the training data set if they \"almost overlap\" with the\n",
"# samples in the test set.\n",
"\n",
"# Filtering function. Adjust pad to narrow down the candidate matches to\n",
"# within a certain length of characters of the given sample.\n",
"def fuzzfilter(sample, candidates, pad):\n",
" candidates = [x for x in candidates if len(x) <= len(sample)+pad and len(x) >= len(sample)-pad] \n",
" if len(candidates) > 0:\n",
" return process.extractOne(sample, candidates)[1]\n",
" else:\n",
" return np.nan\n",
"\n",
"# NOTE - This might run slow depending on the size of your training set. We are\n",
"# printing some information to help you track how long it would take. \n",
"scores = []\n",
"start_time = time.time()\n",
"for idx, row in df_pp.iterrows():\n",
" scores.append(fuzzfilter(row['source_sentence'], list(en_test_sents), 5))\n",
" if idx % 1000 == 0:\n",
" hours, rem = divmod(time.time() - start_time, 3600)\n",
" minutes, seconds = divmod(rem, 60)\n",
" print(\"{:0>2}:{:0>2}:{:05.2f}\".format(int(hours),int(minutes),seconds), \"%0.2f percent complete\" % (100.0*float(idx)/float(len(df_pp))))\n",
"\n",
"# Filter out \"almost overlapping samples\"\n",
"df_pp['scores'] = scores\n",
"df_pp = df_pp[df_pp['scores'] < 95]"
],
"execution_count": 0,
"outputs": [
{
"output_type": "stream",
"text": [
"Collecting fuzzywuzzy\n",
" Downloading https://files.pythonhosted.org/packages/d8/f1/5a267addb30ab7eaa1beab2b9323073815da4551076554ecc890a3595ec9/fuzzywuzzy-0.17.0-py2.py3-none-any.whl\n",
"Installing collected packages: fuzzywuzzy\n",
"Successfully installed fuzzywuzzy-0.17.0\n",
"Collecting python-Levenshtein\n",
"\u001b[?25l Downloading https://files.pythonhosted.org/packages/42/a9/d1785c85ebf9b7dfacd08938dd028209c34a0ea3b1bcdb895208bd40a67d/python-Levenshtein-0.12.0.tar.gz (48kB)\n",
"\u001b[K |████████████████████████████████| 51kB 1.7MB/s \n",
"\u001b[?25hRequirement already satisfied: setuptools in /usr/local/lib/python3.6/dist-packages (from python-Levenshtein) (42.0.2)\n",
"Building wheels for collected packages: python-Levenshtein\n",
" Building wheel for python-Levenshtein (setup.py) ... \u001b[?25l\u001b[?25hdone\n",
" Created wheel for python-Levenshtein: filename=python_Levenshtein-0.12.0-cp36-cp36m-linux_x86_64.whl size=144672 sha256=27cc679925e9ea7d499147fe08f2564ad8e4295a570a1a075b46139a669d35bc\n",
" Stored in directory: /root/.cache/pip/wheels/de/c2/93/660fd5f7559049268ad2dc6d81c4e39e9e36518766eaf7e342\n",
"Successfully built python-Levenshtein\n",
"Installing collected packages: python-Levenshtein\n",
"Successfully installed python-Levenshtein-0.12.0\n",
"00:00:00.10 0.00 percent complete\n",
"00:00:23.78 0.46 percent complete\n"
],
"name": "stdout"
},
{
"output_type": "stream",
"text": [
"WARNING:root:Applied processor reduces input query to empty string, all comparisons will have score 0. [Query: '']\n"
],
"name": "stderr"
},
{
"output_type": "stream",
"text": [
"00:00:47.40 0.92 percent complete\n",
"00:01:10.57 1.39 percent complete\n"
],
"name": "stdout"
},
{
"output_type": "stream",
"text": [
"WARNING:root:Applied processor reduces input query to empty string, all comparisons will have score 0. [Query: '*']\n"
],
"name": "stderr"
},
{
"output_type": "stream",
"text": [
"00:01:33.67 1.85 percent complete\n",
"00:01:56.94 2.31 percent complete\n",
"00:02:20.72 2.77 percent complete\n",
"00:02:43.97 3.23 percent complete\n",
"00:03:07.38 3.70 percent complete\n",
"00:03:31.62 4.16 percent complete\n",
"00:03:56.02 4.62 percent complete\n",
"00:04:19.06 5.08 percent complete\n",
"00:04:42.39 5.54 percent complete\n",
"00:05:06.25 6.00 percent complete\n",
"00:05:30.46 6.47 percent complete\n",
"00:05:53.63 6.93 percent complete\n",
"00:06:17.23 7.39 percent complete\n",
"00:06:41.67 7.85 percent complete\n",
"00:07:05.22 8.31 percent complete\n",
"00:07:29.08 8.78 percent complete\n",
"00:07:52.78 9.24 percent complete\n",
"00:08:16.19 9.70 percent complete\n",
"00:08:39.44 10.16 percent complete\n",
"00:09:03.31 10.62 percent complete\n",
"00:09:26.40 11.09 percent complete\n",
"00:09:51.25 11.55 percent complete\n",
"00:10:15.14 12.01 percent complete\n",
"00:10:38.52 12.47 percent complete\n",
"00:11:02.41 12.93 percent complete\n",
"00:11:26.41 13.40 percent complete\n",
"00:11:50.05 13.86 percent complete\n",
"00:12:13.38 14.32 percent complete\n"
],
"name": "stdout"
},
{
"output_type": "stream",
"text": [
"WARNING:root:Applied processor reduces input query to empty string, all comparisons will have score 0. [Query: '․ ․ ․ ․ ․']\n"
],
"name": "stderr"
},
{
"output_type": "stream",
"text": [
"00:12:37.46 14.78 percent complete\n",
"00:13:01.81 15.24 percent complete\n",
"00:13:25.69 15.70 percent complete\n",
"00:13:49.63 16.17 percent complete\n",
"00:14:13.48 16.63 percent complete\n",
"00:14:37.29 17.09 percent complete\n",
"00:15:01.50 17.55 percent complete\n",
"00:15:25.57 18.01 percent complete\n",
"00:15:49.18 18.48 percent complete\n",
"00:16:13.51 18.94 percent complete\n",
"00:16:37.01 19.40 percent complete\n",
"00:17:00.10 19.86 percent complete\n",
"00:17:23.41 20.32 percent complete\n",
"00:17:47.00 20.79 percent complete\n",
"00:18:10.96 21.25 percent complete\n",
"00:18:34.67 21.71 percent complete\n",
"00:18:59.32 22.17 percent complete\n",
"00:19:23.61 22.63 percent complete\n",
"00:19:47.81 23.10 percent complete\n",
"00:20:12.35 23.56 percent complete\n",
"00:20:36.05 24.02 percent complete\n",
"00:20:59.50 24.48 percent complete\n",
"00:21:23.22 24.94 percent complete\n",
"00:21:47.62 25.40 percent complete\n",
"00:22:11.51 25.87 percent complete\n",
"00:22:35.28 26.33 percent complete\n",
"00:22:58.71 26.79 percent complete\n",
"00:23:22.48 27.25 percent complete\n",
"00:23:46.81 27.71 percent complete\n"
],
"name": "stdout"
},
{
"output_type": "stream",
"text": [
"WARNING:root:Applied processor reduces input query to empty string, all comparisons will have score 0. [Query: '․ ․ ․ ․ ․ ․ ․ ․']\n"
],
"name": "stderr"
},
{
"output_type": "stream",
"text": [
"00:24:10.94 28.18 percent complete\n",
"00:24:34.16 28.64 percent complete\n",
"00:24:58.34 29.10 percent complete\n",
"00:25:22.14 29.56 percent complete\n",
"00:25:46.52 30.02 percent complete\n",
"00:26:09.90 30.49 percent complete\n",
"00:26:34.10 30.95 percent complete\n",
"00:26:58.06 31.41 percent complete\n",
"00:27:21.26 31.87 percent complete\n",
"00:27:45.50 32.33 percent complete\n",
"00:28:09.00 32.79 percent complete\n",
"00:28:32.87 33.26 percent complete\n",
"00:28:57.11 33.72 percent complete\n",
"00:29:21.37 34.18 percent complete\n",
"00:29:45.41 34.64 percent complete\n",
"00:30:08.93 35.10 percent complete\n",
"00:30:32.97 35.57 percent complete\n",
"00:30:56.46 36.03 percent complete\n",
"00:31:19.93 36.49 percent complete\n",
"00:31:44.33 36.95 percent complete\n",
"00:32:07.88 37.41 percent complete\n",
"00:32:32.08 37.88 percent complete\n",
"00:32:56.34 38.34 percent complete\n",
"00:33:20.79 38.80 percent complete\n",
"00:33:44.59 39.26 percent complete\n",
"00:34:08.98 39.72 percent complete\n",
"00:34:32.93 40.19 percent complete\n",
"00:34:56.72 40.65 percent complete\n",
"00:35:21.12 41.11 percent complete\n",
"00:35:45.38 41.57 percent complete\n",
"00:36:09.10 42.03 percent complete\n",
"00:36:33.30 42.49 percent complete\n",
"00:36:57.68 42.96 percent complete\n",
"00:37:21.90 43.42 percent complete\n",
"00:37:45.21 43.88 percent complete\n",
"00:38:09.01 44.34 percent complete\n",
"00:38:33.14 44.80 percent complete\n",
"00:38:57.65 45.27 percent complete\n",
"00:39:21.34 45.73 percent complete\n",
"00:39:45.27 46.19 percent complete\n",
"00:40:09.16 46.65 percent complete\n"
],
"name": "stdout"
},
{
"output_type": "stream",
"text": [
"WARNING:root:Applied processor reduces input query to empty string, all comparisons will have score 0. [Query: '․ ․']\n"
],
"name": "stderr"
},
{
"output_type": "stream",
"text": [
"00:40:32.51 47.11 percent complete\n",
"00:40:56.64 47.58 percent complete\n",
"00:41:20.36 48.04 percent complete\n",
"00:41:44.61 48.50 percent complete\n",
"00:42:08.32 48.96 percent complete\n",
"00:42:31.93 49.42 percent complete\n",
"00:42:56.28 49.89 percent complete\n",
"00:43:20.24 50.35 percent complete\n",
"00:43:44.62 50.81 percent complete\n",
"00:44:08.91 51.27 percent complete\n",
"00:44:32.54 51.73 percent complete\n",
"00:44:56.09 52.19 percent complete\n",
"00:45:20.95 52.66 percent complete\n",
"00:45:44.71 53.12 percent complete\n",
"00:46:08.30 53.58 percent complete\n",
"00:46:32.61 54.04 percent complete\n",
"00:46:56.86 54.50 percent complete\n",
"00:47:20.82 54.97 percent complete\n",
"00:47:44.99 55.43 percent complete\n",
"00:48:08.38 55.89 percent complete\n",
"00:48:32.48 56.35 percent complete\n",
"00:48:56.67 56.81 percent complete\n",
"00:49:20.35 57.28 percent complete\n",
"00:49:44.61 57.74 percent complete\n",
"00:50:08.07 58.20 percent complete\n",
"00:50:32.40 58.66 percent complete\n",
"00:50:56.51 59.12 percent complete\n",
"00:51:20.65 59.59 percent complete\n",
"00:51:44.56 60.05 percent complete\n",
"00:52:08.95 60.51 percent complete\n",
"00:52:32.77 60.97 percent complete\n",
"00:52:56.32 61.43 percent complete\n",
"00:53:20.96 61.89 percent complete\n",
"00:53:45.01 62.36 percent complete\n",
"00:54:08.62 62.82 percent complete\n",
"00:54:32.80 63.28 percent complete\n",
"00:54:56.52 63.74 percent complete\n",
"00:55:20.42 64.20 percent complete\n",
"00:55:44.48 64.67 percent complete\n",
"00:56:08.38 65.13 percent complete\n",
"00:56:32.50 65.59 percent complete\n",
"00:56:56.41 66.05 percent complete\n",
"00:57:20.00 66.51 percent complete\n",
"00:57:43.52 66.98 percent complete\n",
"00:58:07.51 67.44 percent complete\n",
"00:58:31.43 67.90 percent complete\n",
"00:58:55.35 68.36 percent complete\n",
"00:59:19.06 68.82 percent complete\n",
"00:59:42.85 69.29 percent complete\n",
"01:00:07.00 69.75 percent complete\n",
"01:00:30.53 70.21 percent complete\n",
"01:00:54.45 70.67 percent complete\n",
"01:01:18.35 71.13 percent complete\n",
"01:01:42.37 71.59 percent complete\n",
"01:02:06.05 72.06 percent complete\n",
"01:02:29.54 72.52 percent complete\n",
"01:02:53.79 72.98 percent complete\n",
"01:03:17.95 73.44 percent complete\n",
"01:03:41.78 73.90 percent complete\n",
"01:04:05.36 74.37 percent complete\n",
"01:04:29.49 74.83 percent complete\n",
"01:04:54.40 75.29 percent complete\n",
"01:05:18.19 75.75 percent complete\n",
"01:05:41.97 76.21 percent complete\n",
"01:06:05.42 76.68 percent complete\n",
"01:06:29.65 77.14 percent complete\n",
"01:06:53.24 77.60 percent complete\n",
"01:07:16.62 78.06 percent complete\n",
"01:07:40.89 78.52 percent complete\n",
"01:08:05.22 78.98 percent complete\n",
"01:08:28.49 79.45 percent complete\n",
"01:08:52.56 79.91 percent complete\n",
"01:09:16.44 80.37 percent complete\n",
"01:09:40.34 80.83 percent complete\n",
"01:10:04.15 81.29 percent complete\n",
"01:10:28.28 81.76 percent complete\n",
"01:10:51.83 82.22 percent complete\n",
"01:11:15.87 82.68 percent complete\n",
"01:11:39.95 83.14 percent complete\n",
"01:12:03.72 83.60 percent complete\n",
"01:12:26.92 84.07 percent complete\n",
"01:12:51.37 84.53 percent complete\n"
],
"name": "stdout"
},
{
"output_type": "stream",
"text": [
"WARNING:root:Applied processor reduces input query to empty string, all comparisons will have score 0. [Query: '⇩']\n"
],
"name": "stderr"
},
{
"output_type": "stream",
"text": [
"01:13:15.72 84.99 percent complete\n",
"01:13:39.67 85.45 percent complete\n",
"01:14:03.39 85.91 percent complete\n",
"01:14:27.32 86.38 percent complete\n",
"01:14:51.76 86.84 percent complete\n",
"01:15:15.58 87.30 percent complete\n",
"01:15:39.33 87.76 percent complete\n",
"01:16:03.85 88.22 percent complete\n",
"01:16:27.71 88.68 percent complete\n",
"01:16:51.58 89.15 percent complete\n",
"01:17:15.41 89.61 percent complete\n",
"01:17:39.83 90.07 percent complete\n",
"01:18:04.13 90.53 percent complete\n",
"01:18:28.67 90.99 percent complete\n",
"01:18:53.01 91.46 percent complete\n",
"01:19:16.73 91.92 percent complete\n",
"01:19:41.87 92.38 percent complete\n",
"01:20:05.67 92.84 percent complete\n",
"01:20:29.44 93.30 percent complete\n",
"01:20:53.86 93.77 percent complete\n",
"01:21:18.33 94.23 percent complete\n",
"01:21:42.36 94.69 percent complete\n",
"01:22:06.26 95.15 percent complete\n",
"01:22:29.82 95.61 percent complete\n",
"01:22:53.83 96.08 percent complete\n",
"01:23:17.51 96.54 percent complete\n",
"01:23:41.70 97.00 percent complete\n",
"01:24:05.69 97.46 percent complete\n",
"01:24:30.08 97.92 percent complete\n",
"01:24:53.94 98.38 percent complete\n",
"01:25:17.57 98.85 percent complete\n",
"01:25:41.43 99.31 percent complete\n",
"01:26:05.41 99.77 percent complete\n"
],
"name": "stdout"
}
]
},
{
"cell_type": "code",
"metadata": {
"colab_type": "code",
"id": "hxxBOCA-xXhy",
"colab": {}
},
"source": [
"# This section does the split between train/dev for the parallel corpora then saves them as separate files\n",
"# We use 1000 dev test and the given test set.\n",
"import csv\n",
"\n",
"# Do the split between dev/train and create parallel corpora\n",
"num_dev_patterns = 1000\n",
"\n",
"# Optional: lower case the corpora - this will make it easier to generalize, but without proper casing.\n",
"if lc: # Julia: making lowercasing optional\n",
" df_pp[\"source_sentence\"] = df_pp[\"source_sentence\"].str.lower()\n",
" df_pp[\"target_sentence\"] = df_pp[\"target_sentence\"].str.lower()\n",
"\n",
"# Julia: test sets are already generated\n",
"dev = df_pp.tail(num_dev_patterns) # Herman: Error in original\n",
"stripped = df_pp.drop(df_pp.tail(num_dev_patterns).index)\n",
"\n",
"with open(\"train.\"+source_language, \"w\") as src_file, open(\"train.\"+target_language, \"w\") as trg_file:\n",
" for index, row in stripped.iterrows():\n",
" src_file.write(row[\"source_sentence\"]+\"\\n\")\n",
" trg_file.write(row[\"target_sentence\"]+\"\\n\")\n",
" \n",
"with open(\"dev.\"+source_language, \"w\") as src_file, open(\"dev.\"+target_language, \"w\") as trg_file:\n",
" for index, row in dev.iterrows():\n",
" src_file.write(row[\"source_sentence\"]+\"\\n\")\n",
" trg_file.write(row[\"target_sentence\"]+\"\\n\")\n",
"\n",
"#stripped[[\"source_sentence\"]].to_csv(\"train.\"+source_language, header=False, index=False) # Herman: Added `header=False` everywhere\n",
"#stripped[[\"target_sentence\"]].to_csv(\"train.\"+target_language, header=False, index=False) # Julia: Problematic handling of quotation marks.\n",
"\n",
"#dev[[\"source_sentence\"]].to_csv(\"dev.\"+source_language, header=False, index=False)\n",
"#dev[[\"target_sentence\"]].to_csv(\"dev.\"+target_language, header=False, index=False)\n",
"\n",
"# Doublecheck the format below. There should be no extra quotation marks or weird characters.\n",
"! head train.*\n",
"! head dev.*"
],
"execution_count": 0,
"outputs": []
},
{
"cell_type": "markdown",
"metadata": {
"colab_type": "text",
"id": "epeCydmCyS8X"
},
"source": [
"\n",
"\n",
"---\n",
"\n",
"\n",
"## Installation of JoeyNMT\n",
"\n",
"JoeyNMT is a simple, minimalist NMT package which is useful for learning and teaching. Check out the documentation for JoeyNMT [here](https://joeynmt.readthedocs.io) "
]
},
{
"cell_type": "code",
"metadata": {
"colab_type": "code",
"id": "iBRMm4kMxZ8L",
"outputId": "bff98114-48cb-4762-9a92-c29167222bbc",
"colab": {
"base_uri": "https://localhost:8080/",
"height": 1000
}
},
"source": [
"# Install JoeyNMT\n",
"! git clone https://github.com/joeynmt/joeynmt.git\n",
"! cd joeynmt; pip3 install ."
],
"execution_count": 5,
"outputs": [
{
"output_type": "stream",
"text": [
"Cloning into 'joeynmt'...\n",
"remote: Enumerating objects: 61, done.\u001b[K\n",
"remote: Counting objects: 100% (61/61), done.\u001b[K\n",
"remote: Compressing objects: 100% (39/39), done.\u001b[K\n",
"remote: Total 2245 (delta 34), reused 34 (delta 22), pack-reused 2184\u001b[K\n",
"Receiving objects: 100% (2245/2245), 2.63 MiB | 1.95 MiB/s, done.\n",
"Resolving deltas: 100% (1555/1555), done.\n",
"Processing /content/joeynmt\n",
"Requirement already satisfied: future in /usr/local/lib/python3.6/dist-packages (from joeynmt==0.0.1) (0.16.0)\n",
"Requirement already satisfied: pillow in /usr/local/lib/python3.6/dist-packages (from joeynmt==0.0.1) (6.2.2)\n",
"Requirement already satisfied: numpy<2.0,>=1.14.5 in /usr/local/lib/python3.6/dist-packages (from joeynmt==0.0.1) (1.17.5)\n",
"Requirement already satisfied: setuptools>=41.0.0 in /usr/local/lib/python3.6/dist-packages (from joeynmt==0.0.1) (42.0.2)\n",
"Requirement already satisfied: torch>=1.1 in /usr/local/lib/python3.6/dist-packages (from joeynmt==0.0.1) (1.3.1)\n",
"Requirement already satisfied: tensorflow>=1.14 in /usr/local/lib/python3.6/dist-packages (from joeynmt==0.0.1) (1.15.0)\n",
"Requirement already satisfied: torchtext in /usr/local/lib/python3.6/dist-packages (from joeynmt==0.0.1) (0.3.1)\n",
"Collecting sacrebleu>=1.3.6\n",
" Downloading https://files.pythonhosted.org/packages/45/31/1a135b964c169984b27fb2f7a50280fa7f8e6d9d404d8a9e596180487fd1/sacrebleu-1.4.3-py3-none-any.whl\n",
"Collecting subword-nmt\n",
" Downloading https://files.pythonhosted.org/packages/74/60/6600a7bc09e7ab38bc53a48a20d8cae49b837f93f5842a41fe513a694912/subword_nmt-0.3.7-py2.py3-none-any.whl\n",
"Requirement already satisfied: matplotlib in /usr/local/lib/python3.6/dist-packages (from joeynmt==0.0.1) (3.1.2)\n",
"Requirement already satisfied: seaborn in /usr/local/lib/python3.6/dist-packages (from joeynmt==0.0.1) (0.9.0)\n",
"Collecting pyyaml>=5.1\n",
"\u001b[?25l Downloading https://files.pythonhosted.org/packages/3d/d9/ea9816aea31beeadccd03f1f8b625ecf8f645bd66744484d162d84803ce5/PyYAML-5.3.tar.gz (268kB)\n",
"\u001b[K |████████████████████████████████| 276kB 34.6MB/s \n",
"\u001b[?25hCollecting pylint\n",
"\u001b[?25l Downloading https://files.pythonhosted.org/packages/e9/59/43fc36c5ee316bb9aeb7cf5329cdbdca89e5749c34d5602753827c0aa2dc/pylint-2.4.4-py3-none-any.whl (302kB)\n",
"\u001b[K |████████████████████████████████| 307kB 50.7MB/s \n",
"\u001b[?25hRequirement already satisfied: six==1.12 in /usr/local/lib/python3.6/dist-packages (from joeynmt==0.0.1) (1.12.0)\n",
"Requirement already satisfied: tensorflow-estimator==1.15.1 in /usr/local/lib/python3.6/dist-packages (from tensorflow>=1.14->joeynmt==0.0.1) (1.15.1)\n",
"Requirement already satisfied: gast==0.2.2 in /usr/local/lib/python3.6/dist-packages (from tensorflow>=1.14->joeynmt==0.0.1) (0.2.2)\n",
"Requirement already satisfied: astor>=0.6.0 in /usr/local/lib/python3.6/dist-packages (from tensorflow>=1.14->joeynmt==0.0.1) (0.8.1)\n",
"Requirement already satisfied: keras-preprocessing>=1.0.5 in /usr/local/lib/python3.6/dist-packages (from tensorflow>=1.14->joeynmt==0.0.1) (1.1.0)\n",
"Requirement already satisfied: tensorboard<1.16.0,>=1.15.0 in /usr/local/lib/python3.6/dist-packages (from tensorflow>=1.14->joeynmt==0.0.1) (1.15.0)\n",
"Requirement already satisfied: google-pasta>=0.1.6 in /usr/local/lib/python3.6/dist-packages (from tensorflow>=1.14->joeynmt==0.0.1) (0.1.8)\n",
"Requirement already satisfied: opt-einsum>=2.3.2 in /usr/local/lib/python3.6/dist-packages (from tensorflow>=1.14->joeynmt==0.0.1) (3.1.0)\n",
"Requirement already satisfied: wrapt>=1.11.1 in /usr/local/lib/python3.6/dist-packages (from tensorflow>=1.14->joeynmt==0.0.1) (1.11.2)\n",
"Requirement already satisfied: protobuf>=3.6.1 in /usr/local/lib/python3.6/dist-packages (from tensorflow>=1.14->joeynmt==0.0.1) (3.10.0)\n",
"Requirement already satisfied: grpcio>=1.8.6 in /usr/local/lib/python3.6/dist-packages (from tensorflow>=1.14->joeynmt==0.0.1) (1.15.0)\n",
"Requirement already satisfied: absl-py>=0.7.0 in /usr/local/lib/python3.6/dist-packages (from tensorflow>=1.14->joeynmt==0.0.1) (0.9.0)\n",
"Requirement already satisfied: wheel>=0.26 in /usr/local/lib/python3.6/dist-packages (from tensorflow>=1.14->joeynmt==0.0.1) (0.33.6)\n",
"Requirement already satisfied: termcolor>=1.1.0 in /usr/local/lib/python3.6/dist-packages (from tensorflow>=1.14->joeynmt==0.0.1) (1.1.0)\n",
"Requirement already satisfied: keras-applications>=1.0.8 in /usr/local/lib/python3.6/dist-packages (from tensorflow>=1.14->joeynmt==0.0.1) (1.0.8)\n",
"Requirement already satisfied: tqdm in /usr/local/lib/python3.6/dist-packages (from torchtext->joeynmt==0.0.1) (4.28.1)\n",
"Requirement already satisfied: requests in /usr/local/lib/python3.6/dist-packages (from torchtext->joeynmt==0.0.1) (2.21.0)\n",
"Collecting portalocker\n",
" Downloading https://files.pythonhosted.org/packages/91/db/7bc703c0760df726839e0699b7f78a4d8217fdc9c7fcb1b51b39c5a22a4e/portalocker-1.5.2-py2.py3-none-any.whl\n",
"Requirement already satisfied: typing in /usr/local/lib/python3.6/dist-packages (from sacrebleu>=1.3.6->joeynmt==0.0.1) (3.6.6)\n",
"Requirement already satisfied: pyparsing!=2.0.4,!=2.1.2,!=2.1.6,>=2.0.1 in /usr/local/lib/python3.6/dist-packages (from matplotlib->joeynmt==0.0.1) (2.4.6)\n",
"Requirement already satisfied: cycler>=0.10 in /usr/local/lib/python3.6/dist-packages (from matplotlib->joeynmt==0.0.1) (0.10.0)\n",
"Requirement already satisfied: python-dateutil>=2.1 in /usr/local/lib/python3.6/dist-packages (from matplotlib->joeynmt==0.0.1) (2.6.1)\n",
"Requirement already satisfied: kiwisolver>=1.0.1 in /usr/local/lib/python3.6/dist-packages (from matplotlib->joeynmt==0.0.1) (1.1.0)\n",
"Requirement already satisfied: pandas>=0.15.2 in /usr/local/lib/python3.6/dist-packages (from seaborn->joeynmt==0.0.1) (0.25.3)\n",
"Requirement already satisfied: scipy>=0.14.0 in /usr/local/lib/python3.6/dist-packages (from seaborn->joeynmt==0.0.1) (1.4.1)\n",
"Collecting mccabe<0.7,>=0.6\n",
" Downloading https://files.pythonhosted.org/packages/87/89/479dc97e18549e21354893e4ee4ef36db1d237534982482c3681ee6e7b57/mccabe-0.6.1-py2.py3-none-any.whl\n",
"Collecting isort<5,>=4.2.5\n",
"\u001b[?25l Downloading https://files.pythonhosted.org/packages/e5/b0/c121fd1fa3419ea9bfd55c7f9c4fedfec5143208d8c7ad3ce3db6c623c21/isort-4.3.21-py2.py3-none-any.whl (42kB)\n",
"\u001b[K |████████████████████████████████| 51kB 9.4MB/s \n",
"\u001b[?25hCollecting astroid<2.4,>=2.3.0\n",
"\u001b[?25l Downloading https://files.pythonhosted.org/packages/ad/ae/86734823047962e7b8c8529186a1ac4a7ca19aaf1aa0c7713c022ef593fd/astroid-2.3.3-py3-none-any.whl (205kB)\n",
"\u001b[K |████████████████████████████████| 215kB 53.2MB/s \n",
"\u001b[?25hRequirement already satisfied: markdown>=2.6.8 in /usr/local/lib/python3.6/dist-packages (from tensorboard<1.16.0,>=1.15.0->tensorflow>=1.14->joeynmt==0.0.1) (3.1.1)\n",
"Requirement already satisfied: werkzeug>=0.11.15 in /usr/local/lib/python3.6/dist-packages (from tensorboard<1.16.0,>=1.15.0->tensorflow>=1.14->joeynmt==0.0.1) (0.16.0)\n",
"Requirement already satisfied: h5py in /usr/local/lib/python3.6/dist-packages (from keras-applications>=1.0.8->tensorflow>=1.14->joeynmt==0.0.1) (2.8.0)\n",
"Requirement already satisfied: chardet<3.1.0,>=3.0.2 in /usr/local/lib/python3.6/dist-packages (from requests->torchtext->joeynmt==0.0.1) (3.0.4)\n",
"Requirement already satisfied: certifi>=2017.4.17 in /usr/local/lib/python3.6/dist-packages (from requests->torchtext->joeynmt==0.0.1) (2019.11.28)\n",
"Requirement already satisfied: urllib3<1.25,>=1.21.1 in /usr/local/lib/python3.6/dist-packages (from requests->torchtext->joeynmt==0.0.1) (1.24.3)\n",
"Requirement already satisfied: idna<2.9,>=2.5 in /usr/local/lib/python3.6/dist-packages (from requests->torchtext->joeynmt==0.0.1) (2.8)\n",
"Requirement already satisfied: pytz>=2017.2 in /usr/local/lib/python3.6/dist-packages (from pandas>=0.15.2->seaborn->joeynmt==0.0.1) (2018.9)\n",
"Collecting typed-ast<1.5,>=1.4.0; implementation_name == \"cpython\" and python_version < \"3.8\"\n",
"\u001b[?25l Downloading https://files.pythonhosted.org/packages/90/ed/5459080d95eb87a02fe860d447197be63b6e2b5e9ff73c2b0a85622994f4/typed_ast-1.4.1-cp36-cp36m-manylinux1_x86_64.whl (737kB)\n",
"\u001b[K |████████████████████████████████| 747kB 55.9MB/s \n",
"\u001b[?25hCollecting lazy-object-proxy==1.4.*\n",
"\u001b[?25l Downloading https://files.pythonhosted.org/packages/0b/dd/b1e3407e9e6913cf178e506cd0dee818e58694d9a5cd1984e3f6a8b9a10f/lazy_object_proxy-1.4.3-cp36-cp36m-manylinux1_x86_64.whl (55kB)\n",
"\u001b[K |████████████████████████████████| 61kB 10.3MB/s \n",
"\u001b[?25hBuilding wheels for collected packages: joeynmt, pyyaml\n",
" Building wheel for joeynmt (setup.py) ... \u001b[?25l\u001b[?25hdone\n",
" Created wheel for joeynmt: filename=joeynmt-0.0.1-cp36-none-any.whl size=72136 sha256=0dd2eb8283fc02915ba7744edd0efbcfa015c5bde8a28d89e2a61f6bda0083bc\n",
" Stored in directory: /tmp/pip-ephem-wheel-cache-c6jfu0up/wheels/db/01/db/751cc9f3e7f6faec127c43644ba250a3ea7ad200594aeda70a\n",
" Building wheel for pyyaml (setup.py) ... \u001b[?25l\u001b[?25hdone\n",
" Created wheel for pyyaml: filename=PyYAML-5.3-cp36-cp36m-linux_x86_64.whl size=44229 sha256=df87aadcc50a400dc278a40afc1ffa777492a692efd93def19fcb776e5656e14\n",
" Stored in directory: /root/.cache/pip/wheels/e4/76/4d/a95b8dd7b452b69e8ed4f68b69e1b55e12c9c9624dd962b191\n",
"Successfully built joeynmt pyyaml\n",
"Installing collected packages: portalocker, sacrebleu, subword-nmt, pyyaml, mccabe, isort, typed-ast, lazy-object-proxy, astroid, pylint, joeynmt\n",
" Found existing installation: PyYAML 3.13\n",
" Uninstalling PyYAML-3.13:\n",
" Successfully uninstalled PyYAML-3.13\n",
"Successfully installed astroid-2.3.3 isort-4.3.21 joeynmt-0.0.1 lazy-object-proxy-1.4.3 mccabe-0.6.1 portalocker-1.5.2 pylint-2.4.4 pyyaml-5.3 sacrebleu-1.4.3 subword-nmt-0.3.7 typed-ast-1.4.1\n"
],
"name": "stdout"
}
]
},
{
"cell_type": "markdown",
"metadata": {
"colab_type": "text",
"id": "AaE77Tcppex9"
},
"source": [
"# Preprocessing the Data into Subword BPE Tokens\n",
"\n",
"- One of the most powerful improvements for agglutinative languages (a feature of most Bantu languages) is using BPE tokenization [ (Sennrich, 2015) ](https://arxiv.org/abs/1508.07909).\n",
"\n",
"- It was also shown that by optimizing the umber of BPE codes we significantly improve results for low-resourced languages [(Sennrich, 2019)](https://www.aclweb.org/anthology/P19-1021) [(Martinus, 2019)](https://arxiv.org/abs/1906.05685)\n",
"\n",
"- Below we have the scripts for doing BPE tokenization of our data. We use 4000 tokens as recommended by [(Sennrich, 2019)](https://www.aclweb.org/anthology/P19-1021). You do not need to change anything. Simply running the below will be suitable. "
]
},
{
"cell_type": "code",
"metadata": {
"colab_type": "code",
"id": "H-TyjtmXB1mL",
"colab": {}
},
"source": [
"# # One of the huge boosts in NMT performance was to use a different method of tokenizing. \n",
"# # Usually, NMT would tokenize by words. However, using a method called BPE gave amazing boosts to performance\n",
"\n",
"# # Do subword NMT\n",
"# from os import path\n",
"# os.environ[\"src\"] = source_language # Sets them in bash as well, since we often use bash scripts\n",
"# os.environ[\"tgt\"] = target_language\n",
"\n",
"# # Learn BPEs on the training data.\n",
"# os.environ[\"data_path\"] = path.join(\"joeynmt\", \"data\", source_language + target_language) # Herman! \n",
"# ! subword-nmt learn-joint-bpe-and-vocab --input train.$src train.$tgt -s 4000 -o bpe.codes.4000 --write-vocabulary vocab.$src vocab.$tgt\n",
"\n",
"# # Apply BPE splits to the development and test data.\n",
"# ! subword-nmt apply-bpe -c bpe.codes.4000 --vocabulary vocab.$src < train.$src > train.bpe.$src\n",
"# ! subword-nmt apply-bpe -c bpe.codes.4000 --vocabulary vocab.$tgt < train.$tgt > train.bpe.$tgt\n",
"\n",
"# ! subword-nmt apply-bpe -c bpe.codes.4000 --vocabulary vocab.$src < dev.$src > dev.bpe.$src\n",
"# ! subword-nmt apply-bpe -c bpe.codes.4000 --vocabulary vocab.$tgt < dev.$tgt > dev.bpe.$tgt\n",
"# ! subword-nmt apply-bpe -c bpe.codes.4000 --vocabulary vocab.$src < test.$src > test.bpe.$src\n",
"# ! subword-nmt apply-bpe -c bpe.codes.4000 --vocabulary vocab.$tgt < test.$tgt > test.bpe.$tgt\n",
"\n",
"# # Create directory, move everyone we care about to the correct location\n",
"# ! mkdir -p $data_path\n",
"# ! cp train.* $data_path\n",
"# ! cp test.* $data_path\n",
"# ! cp dev.* $data_path\n",
"# ! cp bpe.codes.4000 $data_path\n",
"# ! ls $data_path\n",
"\n",
"# # Also move everything we care about to a mounted location in google drive (relevant if running in colab) at gdrive_path\n",
"# ! cp train.* \"$gdrive_path\"\n",
"# ! cp test.* \"$gdrive_path\"\n",
"# ! cp dev.* \"$gdrive_path\"\n",
"# ! cp bpe.codes.4000 \"$gdrive_path\"\n",
"# ! ls \"$gdrive_path\"\n",
"\n",
"# # Create that vocab using build_vocab\n",
"# ! sudo chmod 777 joeynmt/scripts/build_vocab.py\n",
"# ! joeynmt/scripts/build_vocab.py joeynmt/data/$src$tgt/train.bpe.$src joeynmt/data/$src$tgt/train.bpe.$tgt --output_path joeynmt/data/$src$tgt/vocab.txt\n",
"\n",
"# # Some output\n",
"# ! echo \"BPE Isoko Sentences\"\n",
"# ! tail -n 5 test.bpe.$tgt\n",
"# ! echo \"Combined BPE Vocab\"\n",
"# ! tail -n 10 joeynmt/data/$src$tgt/vocab.txt # Herman\n",
"# ! cp joeynmt/data/$src$tgt/vocab.txt \"$gdrive_path\""
],
"execution_count": 0,
"outputs": []
},
{
"cell_type": "code",
"metadata": {
"id": "4OkAKSIK7Eg4",
"colab_type": "code",
"outputId": "51b9e870-a6cd-4089-f92f-427a5bc3a43d",
"colab": {
"base_uri": "https://localhost:8080/",
"height": 306
}
},
"source": [
"###### IOHAVOC MODIFICATIONS ==>> CREATE THE VOCAB FOR NON-BPE EXPERIMENTS\n",
"from os import path\n",
"\n",
"os.environ[\"src\"] = source_language # Sets them in bash as well, since we often use bash scripts\n",
"os.environ[\"tgt\"] = target_language\n",
"\n",
"! sudo chmod 777 joeynmt/scripts/build_vocab.py\n",
"! joeynmt/scripts/build_vocab.py \"$gdrive_path/train.$src\" \"$gdrive_path/train.$tgt\" --output_path \"$gdrive_path/vocab-nonBPE.txt\"\n",
"\n",
"# Some output\n",
"! echo \"Ẹ̀sán test Sentences\"\n",
"! tail -n 5 \"$gdrive_path/test.$tgt\"\n",
"! echo \"Combined Vocab\"\n",
"! tail -n 10 \"$gdrive_path/vocab-nonBPE.txt\" # iroro"
],
"execution_count": 6,
"outputs": [
{
"output_type": "stream",
"text": [
"Ẹ̀sán test Sentences\n",
"Agbada ọsi ẹlinmhin nọn khiale ( Fẹ uduọle 19 - 20 ghe )\n",
"Jehova dẹ rẹkpa mhan nin mhan da sabọ nin ọle suan .\n",
"( b ) Emhin nela mhan ha zilo nyan bhi uhọmhọn - ọta nọn ki sẹ ọle bhi egbe ?\n",
"Uwẹ be gbẹlokotọ tie ene ebe Ọkhẹughe nọn bha sẹ buẹ gbe nan ne dagbare ?\n",
"Fẹghe si uwẹ dẹ sabọ re ewanniẹn ọbhi ene inọnta nan :\n",
"Combined Vocab\n",
"reassured\n",
"devote\n",
"thrill\n",
"commendable\n",
"worthwhile\n",
"loyally\n",
"testifying\n",
"perishes\n",
"opposite\n",
"inactive\n"
],
"name": "stdout"
}
]
},
{
"cell_type": "markdown",
"metadata": {
"colab_type": "text",
"id": "Ixmzi60WsUZ8"
},
"source": [
"# Creating the JoeyNMT Config\n",
"\n",
"JoeyNMT requires a yaml config. We provide a template below. We've also set a number of defaults with it, that you may play with!\n",
"\n",
"- We used Transformer architecture \n",
"- We set our dropout to reasonably high: 0.3 (recommended in [(Sennrich, 2019)](https://www.aclweb.org/anthology/P19-1021))\n",
"\n",
"Things worth playing with:\n",
"- The batch size (also recommended to change for low-resourced languages)\n",
"- The number of epochs (we've set it at 30 just so it runs in about an hour, for testing purposes)\n",
"- The decoder options (beam_size, alpha)\n",
"- Evaluation metrics (BLEU versus Crhf4)"
]
},
{
"cell_type": "code",
"metadata": {
"colab_type": "code",
"id": "PIs1lY2hxMsl",
"colab": {}
},
"source": [
"# This creates the config file for our JoeyNMT system. It might seem overwhelming so we've provided a couple of useful parameters you'll need to update\n",
"# (You can of course play with all the parameters if you'd like!)\n",
"\n",
"name = '%s%s' % (source_language, target_language)\n",
"gdrive_path = os.environ[\"gdrive_path\"]\n",
"\n",
"# Create the config\n",
"config = \"\"\"\n",
"name: \"{name}_transformer\"\n",
"\n",
"data:\n",
" src: \"{source_language}\"\n",
" trg: \"{target_language}\"\n",
" train: \"{gdrive_path}/train\"\n",
" dev: \"{gdrive_path}/dev\"\n",
" test: \"{gdrive_path}/test\"\n",
" level: \"bpe\"\n",
" lowercase: False\n",
" max_sent_length: 100\n",
" src_vocab: \"{gdrive_path}/vocab-nonBPE.txt\"\n",
" trg_vocab: \"{gdrive_path}/vocab-nonBPE.txt\"\n",
"\n",
"testing:\n",
" beam_size: 5\n",
" alpha: 1.0\n",
"\n",
"training:\n",
" # load_model: \"{gdrive_path}/models/{name}_transformer_orig/142000.ckpt\" # if uncommented, load a pre-trained model from this checkpoint\n",
" random_seed: 42\n",
" optimizer: \"adam\"\n",
" normalization: \"tokens\"\n",
" adam_betas: [0.9, 0.999] \n",
" scheduling: \"plateau\" # TODO: try switching from plateau to Noam scheduling\n",
" patience: 5 # For plateau: decrease learning rate by decrease_factor if validation score has not improved for this many validation rounds.\n",
" learning_rate_factor: 0.5 # factor for Noam scheduler (used with Transformer)\n",
" learning_rate_warmup: 1000 # warmup steps for Noam scheduler (used with Transformer)\n",
" decrease_factor: 0.7\n",
" loss: \"crossentropy\"\n",
" learning_rate: 0.0003\n",
" learning_rate_min: 0.00000001\n",
" weight_decay: 0.0\n",
" label_smoothing: 0.1\n",
" batch_size: 4096\n",
" batch_type: \"token\"\n",
" eval_batch_size: 3600\n",
" eval_batch_type: \"token\"\n",
" batch_multiplier: 1\n",
" early_stopping_metric: \"ppl\"\n",
" epochs: 120 # TODO: Decrease for when playing around and checking of working. Around 30 is sufficient to check if its working at all\n",
" validation_freq: 100 # TODO: Set to at least once per epoch.\n",
" logging_freq: 100\n",
" eval_metric: \"bleu\"\n",
" model_dir: \"{gdrive_path}/models/{name}_transformer\"\n",
" overwrite: True # TODO: Set to True if you want to overwrite possibly existing models. \n",
" shuffle: True\n",
" use_cuda: True\n",
" max_output_length: 100\n",
" print_valid_sents: [0, 1, 2, 3]\n",
" keep_last_ckpts: 3\n",
"\n",
"model:\n",
" initializer: \"xavier\"\n",
" bias_initializer: \"zeros\"\n",
" init_gain: 1.0\n",
" embed_initializer: \"xavier\"\n",
" embed_init_gain: 1.0\n",
" tied_embeddings: True\n",
" tied_softmax: True\n",
" encoder:\n",
" type: \"transformer\"\n",
" num_layers: 6\n",
" num_heads: 4 # TODO: Increase to 8 for larger data.\n",
" embeddings:\n",
" embedding_dim: 256 # TODO: Increase to 512 for larger data.\n",
" scale: True\n",
" dropout: 0.2\n",
" # typically ff_size = 4 x hidden_size\n",
" hidden_size: 256 # TODO: Increase to 512 for larger data.\n",
" ff_size: 1024 # TODO: Increase to 2048 for larger data.\n",
" dropout: 0.3\n",
" decoder:\n",
" type: \"transformer\"\n",
" num_layers: 6\n",
" num_heads: 4 # TODO: Increase to 8 for larger data.\n",
" embeddings:\n",
" embedding_dim: 256 # TODO: Increase to 512 for larger data.\n",
" scale: True\n",
" dropout: 0.2\n",
" # typically ff_size = 4 x hidden_size\n",
" hidden_size: 256 # TODO: Increase to 512 for larger data.\n",
" ff_size: 1024 # TODO: Increase to 2048 for larger data.\n",
" dropout: 0.3\n",
"\"\"\".format(name=name, gdrive_path=os.environ[\"gdrive_path\"], source_language=source_language, target_language=target_language)\n",
"with open(\"joeynmt/configs/transformer_{name}.yaml\".format(name=name),'w') as f:\n",
" f.write(config)\n",
"\n",
"! cp joeynmt/configs/transformer_$src$tgt.yaml \"$gdrive_path\""
],
"execution_count": 0,
"outputs": []
},
{
"cell_type": "markdown",
"metadata": {
"colab_type": "text",
"id": "pIifxE3Qzuvs"
},
"source": [
"# Train the Model\n",
"\n",
"This single line of joeynmt runs the training using the config we made above"
]
},
{
"cell_type": "code",
"metadata": {
"colab_type": "code",
"id": "6ZBPFwT94WpI",
"outputId": "b5c806b5-e0f5-4d40-d5ab-f1d019a0b289",
"colab": {
"base_uri": "https://localhost:8080/",
"height": 1000
}
},
"source": [
"# Train the model\n",
"# You can press Ctrl-C to stop. And then run the next cell to save your checkpoints! \n",
"# !cd joeynmt; python3 -m joeynmt train configs/transformer_$src$tgt.yaml\n",
"!python3 -m joeynmt train \"$gdrive_path/transformer_$src$tgt.yaml\""
],
"execution_count": 8,
"outputs": [
{
"output_type": "stream",
"text": [
"2020-01-26 07:56:54,581 Hello! This is Joey-NMT.\n",
"2020-01-26 07:56:56,002 Total params: 13244928\n",
"2020-01-26 07:56:56,003 Trainable parameters: ['decoder.layer_norm.bias', 'decoder.layer_norm.weight', 'decoder.layers.0.dec_layer_norm.bias', 'decoder.layers.0.dec_layer_norm.weight', 'decoder.layers.0.feed_forward.layer_norm.bias', 'decoder.layers.0.feed_forward.layer_norm.weight', 'decoder.layers.0.feed_forward.pwff_layer.0.bias', 'decoder.layers.0.feed_forward.pwff_layer.0.weight', 'decoder.layers.0.feed_forward.pwff_layer.3.bias', 'decoder.layers.0.feed_forward.pwff_layer.3.weight', 'decoder.layers.0.src_trg_att.k_layer.bias', 'decoder.layers.0.src_trg_att.k_layer.weight', 'decoder.layers.0.src_trg_att.output_layer.bias', 'decoder.layers.0.src_trg_att.output_layer.weight', 'decoder.layers.0.src_trg_att.q_layer.bias', 'decoder.layers.0.src_trg_att.q_layer.weight', 'decoder.layers.0.src_trg_att.v_layer.bias', 'decoder.layers.0.src_trg_att.v_layer.weight', 'decoder.layers.0.trg_trg_att.k_layer.bias', 'decoder.layers.0.trg_trg_att.k_layer.weight', 'decoder.layers.0.trg_trg_att.output_layer.bias', 'decoder.layers.0.trg_trg_att.output_layer.weight', 'decoder.layers.0.trg_trg_att.q_layer.bias', 'decoder.layers.0.trg_trg_att.q_layer.weight', 'decoder.layers.0.trg_trg_att.v_layer.bias', 'decoder.layers.0.trg_trg_att.v_layer.weight', 'decoder.layers.0.x_layer_norm.bias', 'decoder.layers.0.x_layer_norm.weight', 'decoder.layers.1.dec_layer_norm.bias', 'decoder.layers.1.dec_layer_norm.weight', 'decoder.layers.1.feed_forward.layer_norm.bias', 'decoder.layers.1.feed_forward.layer_norm.weight', 'decoder.layers.1.feed_forward.pwff_layer.0.bias', 'decoder.layers.1.feed_forward.pwff_layer.0.weight', 'decoder.layers.1.feed_forward.pwff_layer.3.bias', 'decoder.layers.1.feed_forward.pwff_layer.3.weight', 'decoder.layers.1.src_trg_att.k_layer.bias', 'decoder.layers.1.src_trg_att.k_layer.weight', 'decoder.layers.1.src_trg_att.output_layer.bias', 'decoder.layers.1.src_trg_att.output_layer.weight', 'decoder.layers.1.src_trg_att.q_layer.bias', 'decoder.layers.1.src_trg_att.q_layer.weight', 'decoder.layers.1.src_trg_att.v_layer.bias', 'decoder.layers.1.src_trg_att.v_layer.weight', 'decoder.layers.1.trg_trg_att.k_layer.bias', 'decoder.layers.1.trg_trg_att.k_layer.weight', 'decoder.layers.1.trg_trg_att.output_layer.bias', 'decoder.layers.1.trg_trg_att.output_layer.weight', 'decoder.layers.1.trg_trg_att.q_layer.bias', 'decoder.layers.1.trg_trg_att.q_layer.weight', 'decoder.layers.1.trg_trg_att.v_layer.bias', 'decoder.layers.1.trg_trg_att.v_layer.weight', 'decoder.layers.1.x_layer_norm.bias', 'decoder.layers.1.x_layer_norm.weight', 'decoder.layers.2.dec_layer_norm.bias', 'decoder.layers.2.dec_layer_norm.weight', 'decoder.layers.2.feed_forward.layer_norm.bias', 'decoder.layers.2.feed_forward.layer_norm.weight', 'decoder.layers.2.feed_forward.pwff_layer.0.bias', 'decoder.layers.2.feed_forward.pwff_layer.0.weight', 'decoder.layers.2.feed_forward.pwff_layer.3.bias', 'decoder.layers.2.feed_forward.pwff_layer.3.weight', 'decoder.layers.2.src_trg_att.k_layer.bias', 'decoder.layers.2.src_trg_att.k_layer.weight', 'decoder.layers.2.src_trg_att.output_layer.bias', 'decoder.layers.2.src_trg_att.output_layer.weight', 'decoder.layers.2.src_trg_att.q_layer.bias', 'decoder.layers.2.src_trg_att.q_layer.weight', 'decoder.layers.2.src_trg_att.v_layer.bias', 'decoder.layers.2.src_trg_att.v_layer.weight', 'decoder.layers.2.trg_trg_att.k_layer.bias', 'decoder.layers.2.trg_trg_att.k_layer.weight', 'decoder.layers.2.trg_trg_att.output_layer.bias', 'decoder.layers.2.trg_trg_att.output_layer.weight', 'decoder.layers.2.trg_trg_att.q_layer.bias', 'decoder.layers.2.trg_trg_att.q_layer.weight', 'decoder.layers.2.trg_trg_att.v_layer.bias', 'decoder.layers.2.trg_trg_att.v_layer.weight', 'decoder.layers.2.x_layer_norm.bias', 'decoder.layers.2.x_layer_norm.weight', 'decoder.layers.3.dec_layer_norm.bias', 'decoder.layers.3.dec_layer_norm.weight', 'decoder.layers.3.feed_forward.layer_norm.bias', 'decoder.layers.3.feed_forward.layer_norm.weight', 'decoder.layers.3.feed_forward.pwff_layer.0.bias', 'decoder.layers.3.feed_forward.pwff_layer.0.weight', 'decoder.layers.3.feed_forward.pwff_layer.3.bias', 'decoder.layers.3.feed_forward.pwff_layer.3.weight', 'decoder.layers.3.src_trg_att.k_layer.bias', 'decoder.layers.3.src_trg_att.k_layer.weight', 'decoder.layers.3.src_trg_att.output_layer.bias', 'decoder.layers.3.src_trg_att.output_layer.weight', 'decoder.layers.3.src_trg_att.q_layer.bias', 'decoder.layers.3.src_trg_att.q_layer.weight', 'decoder.layers.3.src_trg_att.v_layer.bias', 'decoder.layers.3.src_trg_att.v_layer.weight', 'decoder.layers.3.trg_trg_att.k_layer.bias', 'decoder.layers.3.trg_trg_att.k_layer.weight', 'decoder.layers.3.trg_trg_att.output_layer.bias', 'decoder.layers.3.trg_trg_att.output_layer.weight', 'decoder.layers.3.trg_trg_att.q_layer.bias', 'decoder.layers.3.trg_trg_att.q_layer.weight', 'decoder.layers.3.trg_trg_att.v_layer.bias', 'decoder.layers.3.trg_trg_att.v_layer.weight', 'decoder.layers.3.x_layer_norm.bias', 'decoder.layers.3.x_layer_norm.weight', 'decoder.layers.4.dec_layer_norm.bias', 'decoder.layers.4.dec_layer_norm.weight', 'decoder.layers.4.feed_forward.layer_norm.bias', 'decoder.layers.4.feed_forward.layer_norm.weight', 'decoder.layers.4.feed_forward.pwff_layer.0.bias', 'decoder.layers.4.feed_forward.pwff_layer.0.weight', 'decoder.layers.4.feed_forward.pwff_layer.3.bias', 'decoder.layers.4.feed_forward.pwff_layer.3.weight', 'decoder.layers.4.src_trg_att.k_layer.bias', 'decoder.layers.4.src_trg_att.k_layer.weight', 'decoder.layers.4.src_trg_att.output_layer.bias', 'decoder.layers.4.src_trg_att.output_layer.weight', 'decoder.layers.4.src_trg_att.q_layer.bias', 'decoder.layers.4.src_trg_att.q_layer.weight', 'decoder.layers.4.src_trg_att.v_layer.bias', 'decoder.layers.4.src_trg_att.v_layer.weight', 'decoder.layers.4.trg_trg_att.k_layer.bias', 'decoder.layers.4.trg_trg_att.k_layer.weight', 'decoder.layers.4.trg_trg_att.output_layer.bias', 'decoder.layers.4.trg_trg_att.output_layer.weight', 'decoder.layers.4.trg_trg_att.q_layer.bias', 'decoder.layers.4.trg_trg_att.q_layer.weight', 'decoder.layers.4.trg_trg_att.v_layer.bias', 'decoder.layers.4.trg_trg_att.v_layer.weight', 'decoder.layers.4.x_layer_norm.bias', 'decoder.layers.4.x_layer_norm.weight', 'decoder.layers.5.dec_layer_norm.bias', 'decoder.layers.5.dec_layer_norm.weight', 'decoder.layers.5.feed_forward.layer_norm.bias', 'decoder.layers.5.feed_forward.layer_norm.weight', 'decoder.layers.5.feed_forward.pwff_layer.0.bias', 'decoder.layers.5.feed_forward.pwff_layer.0.weight', 'decoder.layers.5.feed_forward.pwff_layer.3.bias', 'decoder.layers.5.feed_forward.pwff_layer.3.weight', 'decoder.layers.5.src_trg_att.k_layer.bias', 'decoder.layers.5.src_trg_att.k_layer.weight', 'decoder.layers.5.src_trg_att.output_layer.bias', 'decoder.layers.5.src_trg_att.output_layer.weight', 'decoder.layers.5.src_trg_att.q_layer.bias', 'decoder.layers.5.src_trg_att.q_layer.weight', 'decoder.layers.5.src_trg_att.v_layer.bias', 'decoder.layers.5.src_trg_att.v_layer.weight', 'decoder.layers.5.trg_trg_att.k_layer.bias', 'decoder.layers.5.trg_trg_att.k_layer.weight', 'decoder.layers.5.trg_trg_att.output_layer.bias', 'decoder.layers.5.trg_trg_att.output_layer.weight', 'decoder.layers.5.trg_trg_att.q_layer.bias', 'decoder.layers.5.trg_trg_att.q_layer.weight', 'decoder.layers.5.trg_trg_att.v_layer.bias', 'decoder.layers.5.trg_trg_att.v_layer.weight', 'decoder.layers.5.x_layer_norm.bias', 'decoder.layers.5.x_layer_norm.weight', 'encoder.layer_norm.bias', 'encoder.layer_norm.weight', 'encoder.layers.0.feed_forward.layer_norm.bias', 'encoder.layers.0.feed_forward.layer_norm.weight', 'encoder.layers.0.feed_forward.pwff_layer.0.bias', 'encoder.layers.0.feed_forward.pwff_layer.0.weight', 'encoder.layers.0.feed_forward.pwff_layer.3.bias', 'encoder.layers.0.feed_forward.pwff_layer.3.weight', 'encoder.layers.0.layer_norm.bias', 'encoder.layers.0.layer_norm.weight', 'encoder.layers.0.src_src_att.k_layer.bias', 'encoder.layers.0.src_src_att.k_layer.weight', 'encoder.layers.0.src_src_att.output_layer.bias', 'encoder.layers.0.src_src_att.output_layer.weight', 'encoder.layers.0.src_src_att.q_layer.bias', 'encoder.layers.0.src_src_att.q_layer.weight', 'encoder.layers.0.src_src_att.v_layer.bias', 'encoder.layers.0.src_src_att.v_layer.weight', 'encoder.layers.1.feed_forward.layer_norm.bias', 'encoder.layers.1.feed_forward.layer_norm.weight', 'encoder.layers.1.feed_forward.pwff_layer.0.bias', 'encoder.layers.1.feed_forward.pwff_layer.0.weight', 'encoder.layers.1.feed_forward.pwff_layer.3.bias', 'encoder.layers.1.feed_forward.pwff_layer.3.weight', 'encoder.layers.1.layer_norm.bias', 'encoder.layers.1.layer_norm.weight', 'encoder.layers.1.src_src_att.k_layer.bias', 'encoder.layers.1.src_src_att.k_layer.weight', 'encoder.layers.1.src_src_att.output_layer.bias', 'encoder.layers.1.src_src_att.output_layer.weight', 'encoder.layers.1.src_src_att.q_layer.bias', 'encoder.layers.1.src_src_att.q_layer.weight', 'encoder.layers.1.src_src_att.v_layer.bias', 'encoder.layers.1.src_src_att.v_layer.weight', 'encoder.layers.2.feed_forward.layer_norm.bias', 'encoder.layers.2.feed_forward.layer_norm.weight', 'encoder.layers.2.feed_forward.pwff_layer.0.bias', 'encoder.layers.2.feed_forward.pwff_layer.0.weight', 'encoder.layers.2.feed_forward.pwff_layer.3.bias', 'encoder.layers.2.feed_forward.pwff_layer.3.weight', 'encoder.layers.2.layer_norm.bias', 'encoder.layers.2.layer_norm.weight', 'encoder.layers.2.src_src_att.k_layer.bias', 'encoder.layers.2.src_src_att.k_layer.weight', 'encoder.layers.2.src_src_att.output_layer.bias', 'encoder.layers.2.src_src_att.output_layer.weight', 'encoder.layers.2.src_src_att.q_layer.bias', 'encoder.layers.2.src_src_att.q_layer.weight', 'encoder.layers.2.src_src_att.v_layer.bias', 'encoder.layers.2.src_src_att.v_layer.weight', 'encoder.layers.3.feed_forward.layer_norm.bias', 'encoder.layers.3.feed_forward.layer_norm.weight', 'encoder.layers.3.feed_forward.pwff_layer.0.bias', 'encoder.layers.3.feed_forward.pwff_layer.0.weight', 'encoder.layers.3.feed_forward.pwff_layer.3.bias', 'encoder.layers.3.feed_forward.pwff_layer.3.weight', 'encoder.layers.3.layer_norm.bias', 'encoder.layers.3.layer_norm.weight', 'encoder.layers.3.src_src_att.k_layer.bias', 'encoder.layers.3.src_src_att.k_layer.weight', 'encoder.layers.3.src_src_att.output_layer.bias', 'encoder.layers.3.src_src_att.output_layer.weight', 'encoder.layers.3.src_src_att.q_layer.bias', 'encoder.layers.3.src_src_att.q_layer.weight', 'encoder.layers.3.src_src_att.v_layer.bias', 'encoder.layers.3.src_src_att.v_layer.weight', 'encoder.layers.4.feed_forward.layer_norm.bias', 'encoder.layers.4.feed_forward.layer_norm.weight', 'encoder.layers.4.feed_forward.pwff_layer.0.bias', 'encoder.layers.4.feed_forward.pwff_layer.0.weight', 'encoder.layers.4.feed_forward.pwff_layer.3.bias', 'encoder.layers.4.feed_forward.pwff_layer.3.weight', 'encoder.layers.4.layer_norm.bias', 'encoder.layers.4.layer_norm.weight', 'encoder.layers.4.src_src_att.k_layer.bias', 'encoder.layers.4.src_src_att.k_layer.weight', 'encoder.layers.4.src_src_att.output_layer.bias', 'encoder.layers.4.src_src_att.output_layer.weight', 'encoder.layers.4.src_src_att.q_layer.bias', 'encoder.layers.4.src_src_att.q_layer.weight', 'encoder.layers.4.src_src_att.v_layer.bias', 'encoder.layers.4.src_src_att.v_layer.weight', 'encoder.layers.5.feed_forward.layer_norm.bias', 'encoder.layers.5.feed_forward.layer_norm.weight', 'encoder.layers.5.feed_forward.pwff_layer.0.bias', 'encoder.layers.5.feed_forward.pwff_layer.0.weight', 'encoder.layers.5.feed_forward.pwff_layer.3.bias', 'encoder.layers.5.feed_forward.pwff_layer.3.weight', 'encoder.layers.5.layer_norm.bias', 'encoder.layers.5.layer_norm.weight', 'encoder.layers.5.src_src_att.k_layer.bias', 'encoder.layers.5.src_src_att.k_layer.weight', 'encoder.layers.5.src_src_att.output_layer.bias', 'encoder.layers.5.src_src_att.output_layer.weight', 'encoder.layers.5.src_src_att.q_layer.bias', 'encoder.layers.5.src_src_att.q_layer.weight', 'encoder.layers.5.src_src_att.v_layer.bias', 'encoder.layers.5.src_src_att.v_layer.weight', 'src_embed.lut.weight']\n",
"2020-01-26 07:57:05,950 cfg.name : enish_transformer\n",
"2020-01-26 07:57:05,950 cfg.data.src : en\n",
"2020-01-26 07:57:05,950 cfg.data.trg : ish\n",
"2020-01-26 07:57:05,950 cfg.data.train : /content/drive/My Drive/masakhane/en-ish-baseline/train\n",
"2020-01-26 07:57:05,950 cfg.data.dev : /content/drive/My Drive/masakhane/en-ish-baseline/dev\n",
"2020-01-26 07:57:05,950 cfg.data.test : /content/drive/My Drive/masakhane/en-ish-baseline/test\n",
"2020-01-26 07:57:05,951 cfg.data.level : bpe\n",
"2020-01-26 07:57:05,951 cfg.data.lowercase : False\n",
"2020-01-26 07:57:05,951 cfg.data.max_sent_length : 100\n",
"2020-01-26 07:57:05,951 cfg.data.src_vocab : /content/drive/My Drive/masakhane/en-ish-baseline/vocab-nonBPE.txt\n",
"2020-01-26 07:57:05,951 cfg.data.trg_vocab : /content/drive/My Drive/masakhane/en-ish-baseline/vocab-nonBPE.txt\n",
"2020-01-26 07:57:05,951 cfg.testing.beam_size : 5\n",
"2020-01-26 07:57:05,951 cfg.testing.alpha : 1.0\n",
"2020-01-26 07:57:05,951 cfg.training.random_seed : 42\n",
"2020-01-26 07:57:05,952 cfg.training.optimizer : adam\n",
"2020-01-26 07:57:05,952 cfg.training.normalization : tokens\n",
"2020-01-26 07:57:05,952 cfg.training.adam_betas : [0.9, 0.999]\n",
"2020-01-26 07:57:05,952 cfg.training.scheduling : plateau\n",
"2020-01-26 07:57:05,952 cfg.training.patience : 5\n",
"2020-01-26 07:57:05,952 cfg.training.learning_rate_factor : 0.5\n",
"2020-01-26 07:57:05,952 cfg.training.learning_rate_warmup : 1000\n",
"2020-01-26 07:57:05,953 cfg.training.decrease_factor : 0.7\n",
"2020-01-26 07:57:05,953 cfg.training.loss : crossentropy\n",
"2020-01-26 07:57:05,953 cfg.training.learning_rate : 0.0003\n",
"2020-01-26 07:57:05,953 cfg.training.learning_rate_min : 1e-08\n",
"2020-01-26 07:57:05,953 cfg.training.weight_decay : 0.0\n",
"2020-01-26 07:57:05,953 cfg.training.label_smoothing : 0.1\n",
"2020-01-26 07:57:05,953 cfg.training.batch_size : 4096\n",
"2020-01-26 07:57:05,954 cfg.training.batch_type : token\n",
"2020-01-26 07:57:05,954 cfg.training.eval_batch_size : 3600\n",
"2020-01-26 07:57:05,954 cfg.training.eval_batch_type : token\n",
"2020-01-26 07:57:05,954 cfg.training.batch_multiplier : 1\n",
"2020-01-26 07:57:05,954 cfg.training.early_stopping_metric : ppl\n",
"2020-01-26 07:57:05,954 cfg.training.epochs : 120\n",
"2020-01-26 07:57:05,955 cfg.training.validation_freq : 100\n",
"2020-01-26 07:57:05,955 cfg.training.logging_freq : 100\n",
"2020-01-26 07:57:05,955 cfg.training.eval_metric : bleu\n",
"2020-01-26 07:57:05,955 cfg.training.model_dir : /content/drive/My Drive/masakhane/en-ish-baseline/models/enish_transformer\n",
"2020-01-26 07:57:05,955 cfg.training.overwrite : True\n",
"2020-01-26 07:57:05,955 cfg.training.shuffle : True\n",
"2020-01-26 07:57:05,956 cfg.training.use_cuda : True\n",
"2020-01-26 07:57:05,956 cfg.training.max_output_length : 100\n",
"2020-01-26 07:57:05,956 cfg.training.print_valid_sents : [0, 1, 2, 3]\n",
"2020-01-26 07:57:05,956 cfg.training.keep_last_ckpts : 3\n",
"2020-01-26 07:57:05,956 cfg.model.initializer : xavier\n",
"2020-01-26 07:57:05,956 cfg.model.bias_initializer : zeros\n",
"2020-01-26 07:57:05,957 cfg.model.init_gain : 1.0\n",
"2020-01-26 07:57:05,957 cfg.model.embed_initializer : xavier\n",
"2020-01-26 07:57:05,957 cfg.model.embed_init_gain : 1.0\n",
"2020-01-26 07:57:05,957 cfg.model.tied_embeddings : True\n",
"2020-01-26 07:57:05,957 cfg.model.tied_softmax : True\n",
"2020-01-26 07:57:05,957 cfg.model.encoder.type : transformer\n",
"2020-01-26 07:57:05,958 cfg.model.encoder.num_layers : 6\n",
"2020-01-26 07:57:05,958 cfg.model.encoder.num_heads : 4\n",
"2020-01-26 07:57:05,958 cfg.model.encoder.embeddings.embedding_dim : 256\n",
"2020-01-26 07:57:05,958 cfg.model.encoder.embeddings.scale : True\n",
"2020-01-26 07:57:05,958 cfg.model.encoder.embeddings.dropout : 0.2\n",
"2020-01-26 07:57:05,958 cfg.model.encoder.hidden_size : 256\n",
"2020-01-26 07:57:05,958 cfg.model.encoder.ff_size : 1024\n",
"2020-01-26 07:57:05,959 cfg.model.encoder.dropout : 0.3\n",
"2020-01-26 07:57:05,959 cfg.model.decoder.type : transformer\n",
"2020-01-26 07:57:05,959 cfg.model.decoder.num_layers : 6\n",
"2020-01-26 07:57:05,959 cfg.model.decoder.num_heads : 4\n",
"2020-01-26 07:57:05,959 cfg.model.decoder.embeddings.embedding_dim : 256\n",
"2020-01-26 07:57:05,959 cfg.model.decoder.embeddings.scale : True\n",
"2020-01-26 07:57:05,960 cfg.model.decoder.embeddings.dropout : 0.2\n",
"2020-01-26 07:57:05,960 cfg.model.decoder.hidden_size : 256\n",
"2020-01-26 07:57:05,960 cfg.model.decoder.ff_size : 1024\n",
"2020-01-26 07:57:05,960 cfg.model.decoder.dropout : 0.3\n",
"2020-01-26 07:57:05,960 Data set sizes: \n",
"\ttrain 4126,\n",
"\tvalid 1000,\n",
"\ttest 343\n",
"2020-01-26 07:57:05,960 First training example:\n",
"\t[SRC] Their unity would give a powerful witness , offering clear evidence that Jehovah had sent Jesus to the earth to do God’s will .\n",
"\t[TRG] Okugbe nọnsele dẹ wo sabọ sọsali ọbhọ ghe , Jehova gene ji Jesu re bhi ọne otọ nan nin ọle dọ lu iho nọnsole . Ahoẹmhọn - egbe hi iyaman nan ha rẹ gene lẹn edibo nesi Jesu .\n",
"2020-01-26 07:57:05,961 First 10 words (src): (0) <unk> (1) <pad> (2) <s> (3) </s> (4) . (5) , (6) nin (7) ha (8) the (9) mhan\n",
"2020-01-26 07:57:05,961 First 10 words (trg): (0) <unk> (1) <pad> (2) <s> (3) </s> (4) . (5) , (6) nin (7) ha (8) the (9) mhan\n",
"2020-01-26 07:57:05,961 Number of Src words (types): 8534\n",
"2020-01-26 07:57:05,962 Number of Trg words (types): 8534\n",
"2020-01-26 07:57:05,962 Model(\n",
"\tencoder=TransformerEncoder(num_layers=6, num_heads=4),\n",
"\tdecoder=TransformerDecoder(num_layers=6, num_heads=4),\n",
"\tsrc_embed=Embeddings(embedding_dim=256, vocab_size=8534),\n",
"\ttrg_embed=Embeddings(embedding_dim=256, vocab_size=8534))\n",
"2020-01-26 07:57:05,975 EPOCH 1\n",
"2020-01-26 07:57:12,898 Epoch 1: total training loss 273.35\n",
"2020-01-26 07:57:12,898 EPOCH 2\n",
"2020-01-26 07:57:19,618 Epoch 2: total training loss 222.69\n",
"2020-01-26 07:57:19,619 EPOCH 3\n",
"2020-01-26 07:57:21,144 Epoch 3 Step: 100 Batch Loss: 4.997618 Tokens per Sec: 13210, Lr: 0.000300\n",
"2020-01-26 07:58:03,963 Hooray! New best validation result [ppl]!\n",
"2020-01-26 07:58:03,963 Saving new checkpoint.\n",
"2020-01-26 07:58:05,059 Example #0\n",
"2020-01-26 07:58:05,060 \tSource: I WAS raised in Graz , Austria .\n",
"2020-01-26 07:58:05,060 \tReference: AGBAẸBHO natiọle Graz bhi Austria , ọle mẹn da wanre .\n",
"2020-01-26 07:58:05,060 \tHypothesis: , , , , , , .\n",
"2020-01-26 07:58:05,060 Example #1\n",
"2020-01-26 07:58:05,061 \tSource: In contrast with the people who show the widespread lack of love today , those who worship Jehovah have genuine love for their fellow man .\n",
"2020-01-26 07:58:05,061 \tReference: Ene ga iJehova ẹlẹnan wo mhọn oyẹẹ da ibo ele , ele bha diabe ene iga Jehova ne bha hoẹmhọn ibo ele .\n",
"2020-01-26 07:58:05,061 \tHypothesis: , , , , , , , ,\n",
"2020-01-26 07:58:05,061 Example #2\n",
"2020-01-26 07:58:05,062 \tSource: Today , we live as foreigners , as it were , in a world that has been morally and spiritually corrupted by Babylon the Great , the world empire of false religion , “ a dwelling place of demons . ”\n",
"2020-01-26 07:58:05,062 \tReference: Inian mhan diabi eriọbhe bhi ẹkẹ ọne agbọn nan nin oga ohoghe ria a . Babylon nọn khua a tie ene oga ohoghe nan , ele da dọ kiẹn eji ẹlinmhin ne imhẹn da nyẹnlẹn . ( Rev .\n",
"2020-01-26 07:58:05,062 \tHypothesis: , , , , , , , ,\n",
"2020-01-26 07:58:05,062 Example #3\n",
"2020-01-26 07:58:05,062 \tSource: We should also strive to help others spiritually .\n",
"2020-01-26 07:58:05,063 \tReference: Ahamiẹn mhan re ẹghe bhi otọ rẹ ha luẹ iBaibo , yẹ deba ene gene guanọ nin ele ga iJehova ha muobọ , ọ dẹ rẹkpa mhan rẹ ziẹn ikolu nin mhan bi Jehova koko mhọnlẹn .\n",
"2020-01-26 07:58:05,063 \tHypothesis: , , , , , , ,\n",
"2020-01-26 07:58:05,063 Validation result (greedy) at epoch 3, step 100: bleu: 0.00, loss: 110740.5469, ppl: 135.4943, duration: 43.9188s\n",
"2020-01-26 07:58:10,428 Epoch 3: total training loss 219.20\n",
"2020-01-26 07:58:10,429 EPOCH 4\n",
"2020-01-26 07:58:17,485 Epoch 4: total training loss 211.90\n",
"2020-01-26 07:58:17,485 EPOCH 5\n",
"2020-01-26 07:58:20,481 Epoch 5 Step: 200 Batch Loss: 4.402267 Tokens per Sec: 13032, Lr: 0.000300\n",
"2020-01-26 07:59:04,482 Hooray! New best validation result [ppl]!\n",
"2020-01-26 07:59:04,482 Saving new checkpoint.\n",
"2020-01-26 07:59:05,588 Example #0\n",
"2020-01-26 07:59:05,588 \tSource: I WAS raised in Graz , Austria .\n",
"2020-01-26 07:59:05,588 \tReference: AGBAẸBHO natiọle Graz bhi Austria , ọle mẹn da wanre .\n",
"2020-01-26 07:59:05,589 \tHypothesis: ( : : : : : : : : : : : : : : : : : : : : : : : : : : : : : : : : : : : : : : : : : : : : : : : : : : : : : : : : : : : : : : : : : : : : : : : : : : : : : : : : : : : : : : : : : : : : : : : : : : :\n",
"2020-01-26 07:59:05,589 Example #1\n",
"2020-01-26 07:59:05,589 \tSource: In contrast with the people who show the widespread lack of love today , those who worship Jehovah have genuine love for their fellow man .\n",
"2020-01-26 07:59:05,589 \tReference: Ene ga iJehova ẹlẹnan wo mhọn oyẹẹ da ibo ele , ele bha diabe ene iga Jehova ne bha hoẹmhọn ibo ele .\n",
"2020-01-26 07:59:05,589 \tHypothesis: ( : : : : : : : : : : : : : : : : : : : : : : : : : : : : : : : : : : : : : : : : : : : : : : : : : : : : : : : : : : : : : : : : : : : : : : : : : : : : : : : : : : : : : : : : : : : : : : : : : : :\n",
"2020-01-26 07:59:05,589 Example #2\n",
"2020-01-26 07:59:05,590 \tSource: Today , we live as foreigners , as it were , in a world that has been morally and spiritually corrupted by Babylon the Great , the world empire of false religion , “ a dwelling place of demons . ”\n",
"2020-01-26 07:59:05,590 \tReference: Inian mhan diabi eriọbhe bhi ẹkẹ ọne agbọn nan nin oga ohoghe ria a . Babylon nọn khua a tie ene oga ohoghe nan , ele da dọ kiẹn eji ẹlinmhin ne imhẹn da nyẹnlẹn . ( Rev .\n",
"2020-01-26 07:59:05,590 \tHypothesis: ( : : : : : : : : : : : : : : : : : : : : : : : : : : : : : : : : : : : : : : : : : : : : : : : : : : : : : : : : : : : : : : : : : : : : : : : : : : : : : : : : : : : : : : : : : : : : : : : : : : :\n",
"2020-01-26 07:59:05,590 Example #3\n",
"2020-01-26 07:59:05,590 \tSource: We should also strive to help others spiritually .\n",
"2020-01-26 07:59:05,590 \tReference: Ahamiẹn mhan re ẹghe bhi otọ rẹ ha luẹ iBaibo , yẹ deba ene gene guanọ nin ele ga iJehova ha muobọ , ọ dẹ rẹkpa mhan rẹ ziẹn ikolu nin mhan bi Jehova koko mhọnlẹn .\n",
"2020-01-26 07:59:05,590 \tHypothesis: ( : : : : : : : : : : : : : : : : : : : : : : : : : : : : : : : : : : : : : : : : : : : : : : : : : : : : : : : : : : : : : : : : : : : : : : : : : : : : : : : : : : : : : : : : : : : : : : : : : : :\n",
"2020-01-26 07:59:05,590 Validation result (greedy) at epoch 5, step 200: bleu: 0.00, loss: 103501.9688, ppl: 98.3032, duration: 45.1093s\n",
"2020-01-26 07:59:09,498 Epoch 5: total training loss 205.32\n",
"2020-01-26 07:59:09,498 EPOCH 6\n",
"2020-01-26 07:59:16,666 Epoch 6: total training loss 200.77\n",
"2020-01-26 07:59:16,666 EPOCH 7\n",
"2020-01-26 07:59:21,318 Epoch 7 Step: 300 Batch Loss: 4.303302 Tokens per Sec: 13440, Lr: 0.000300\n",
"2020-01-26 08:00:06,391 Hooray! New best validation result [ppl]!\n",
"2020-01-26 08:00:06,392 Saving new checkpoint.\n",
"2020-01-26 08:00:07,987 Example #0\n",
"2020-01-26 08:00:07,988 \tSource: I WAS raised in Graz , Austria .\n",
"2020-01-26 08:00:07,988 \tReference: AGBAẸBHO natiọle Graz bhi Austria , ọle mẹn da wanre .\n",
"2020-01-26 08:00:07,988 \tHypothesis: Be mhan ha ha ha ha ha ha ha ha ha ha ha ha ha ha ha ha ha ha ha ha ha ha ha ha ha ha ha ha ha ha ha ha ha ha ha ha ha ha ha ha ha ha ha ha ha ha ha ha ha ha ha ha ha ha ha ha ha ha ha ha ha ha ha ha ha ha ha ha ha ha ha ha ha ha ha ha ha ha ha ha ha ha ha ha ha ha ha ha ha ha ha ha ha ha ha ha ha ha\n",
"2020-01-26 08:00:07,988 Example #1\n",
"2020-01-26 08:00:07,989 \tSource: In contrast with the people who show the widespread lack of love today , those who worship Jehovah have genuine love for their fellow man .\n",
"2020-01-26 08:00:07,989 \tReference: Ene ga iJehova ẹlẹnan wo mhọn oyẹẹ da ibo ele , ele bha diabe ene iga Jehova ne bha hoẹmhọn ibo ele .\n",
"2020-01-26 08:00:07,989 \tHypothesis: ( : ( ) ( ) ( ) ( ) ( ( ( ( ( ( ( ( ( ( ( ( ( ( ( ( ( ( ( ( ( ( ( ( ( ( ( ( ( ( ( ( ( ( ( ( ( ( ( ( ( ( ( ( ( ( ( ( ( ( ( ( ( ( ( ( ( ( ( ( ( ( ( ( ( ( ( ( ( ( ( ( ( ( ( ( ( ( ( ( ( ( ( ( ( ( ( ( ( (\n",
"2020-01-26 08:00:07,989 Example #2\n",
"2020-01-26 08:00:07,990 \tSource: Today , we live as foreigners , as it were , in a world that has been morally and spiritually corrupted by Babylon the Great , the world empire of false religion , “ a dwelling place of demons . ”\n",
"2020-01-26 08:00:07,990 \tReference: Inian mhan diabi eriọbhe bhi ẹkẹ ọne agbọn nan nin oga ohoghe ria a . Babylon nọn khua a tie ene oga ohoghe nan , ele da dọ kiẹn eji ẹlinmhin ne imhẹn da nyẹnlẹn . ( Rev .\n",
"2020-01-26 08:00:07,990 \tHypothesis: ( : ( ) ( ) ( ) ( ) ( ( ( ( ( ( ( ( ( ( ( ( ( ( ( ( ( ( ( ( ( ( ( ( ( ( ( ( ( ( ( ( ( ( ( ( ( ( ( ( ( ( ( ( ( ( ( ( ( ( ( ( ( ( ( ( ( ( ( ( ( ( ( ( ( ( ( ( ( ( ( ( ( ( ( ( ( ( ( ( ( ( ( ( ( ( ( ( ( (\n",
"2020-01-26 08:00:07,990 Example #3\n",
"2020-01-26 08:00:07,991 \tSource: We should also strive to help others spiritually .\n",
"2020-01-26 08:00:07,991 \tReference: Ahamiẹn mhan re ẹghe bhi otọ rẹ ha luẹ iBaibo , yẹ deba ene gene guanọ nin ele ga iJehova ha muobọ , ọ dẹ rẹkpa mhan rẹ ziẹn ikolu nin mhan bi Jehova koko mhọnlẹn .\n",
"2020-01-26 08:00:07,991 \tHypothesis: ( : Be , : Be , : Be , mhan ha ha ha ha ha ha ha ha ha ha ha ha ha ha ha ha ha ha ha ha ha ha ha ha ha ha ha ha ha ha ha ha ha ha ha ha ha ha ha ha ha ha ha ha ha ha ha ha ha ha ha ha ha ha ha ha ha ha ha ha ha ha ha ha ha ha ha ha ha ha ha ha ha ha ha ha ha ha ha ha ha ha ha ha ha ha ha ha ha\n",
"2020-01-26 08:00:07,991 Validation result (greedy) at epoch 7, step 300: bleu: 0.00, loss: 96958.1016, ppl: 73.5509, duration: 46.6734s\n",
"2020-01-26 08:00:10,417 Epoch 7: total training loss 194.45\n",
"2020-01-26 08:00:10,418 EPOCH 8\n",
"2020-01-26 08:00:17,533 Epoch 8: total training loss 187.50\n",
"2020-01-26 08:00:17,533 EPOCH 9\n",
"2020-01-26 08:00:23,991 Epoch 9 Step: 400 Batch Loss: 4.006420 Tokens per Sec: 12786, Lr: 0.000300\n",
"2020-01-26 08:01:09,696 Hooray! New best validation result [ppl]!\n",
"2020-01-26 08:01:09,696 Saving new checkpoint.\n",
"2020-01-26 08:01:10,867 Example #0\n",
"2020-01-26 08:01:10,868 \tSource: I WAS raised in Graz , Austria .\n",
"2020-01-26 08:01:10,868 \tReference: AGBAẸBHO natiọle Graz bhi Austria , ọle mẹn da wanre .\n",
"2020-01-26 08:01:10,868 \tHypothesis: ( : : 1 : 1 : 1 : 1 : (\n",
"2020-01-26 08:01:10,868 Example #1\n",
"2020-01-26 08:01:10,869 \tSource: In contrast with the people who show the widespread lack of love today , those who worship Jehovah have genuine love for their fellow man .\n",
"2020-01-26 08:01:10,869 \tReference: Ene ga iJehova ẹlẹnan wo mhọn oyẹẹ da ibo ele , ele bha diabe ene iga Jehova ne bha hoẹmhọn ibo ele .\n",
"2020-01-26 08:01:10,869 \tHypothesis: ( : : 1 ) ( ) ( ) ( ) ( ) ( ) ( ) ( ) ( ) ( ) ( ) ( 1 ) ( ) ( 1 ) ( ) ( 1 ) ( 1 ) ( 1 ) ( 1 ) ( 1 ) ( 1 ) ( ) ( 1 ) ( 1 ) ( 1 ) ( 1 ) ( 1 ) ( 1 ) ( 1 ) ( 1 ) ( 1 ) ( 1 ) ( ( ( ( ( ( ( ( 1 ) ( 1 ) ( 1\n",
"2020-01-26 08:01:10,869 Example #2\n",
"2020-01-26 08:01:10,870 \tSource: Today , we live as foreigners , as it were , in a world that has been morally and spiritually corrupted by Babylon the Great , the world empire of false religion , “ a dwelling place of demons . ”\n",
"2020-01-26 08:01:10,870 \tReference: Inian mhan diabi eriọbhe bhi ẹkẹ ọne agbọn nan nin oga ohoghe ria a . Babylon nọn khua a tie ene oga ohoghe nan , ele da dọ kiẹn eji ẹlinmhin ne imhẹn da nyẹnlẹn . ( Rev .\n",
"2020-01-26 08:01:10,870 \tHypothesis: ( ) ( ) Bhi , mhan ha ha ha ha ha ha ha ha ha ha ha ha ha ha re emhin nin mhan ha ha ha ha ha ha re emhin nin mhan ha re emhin nin mhan ha re egbe bhi egbe .\n",
"2020-01-26 08:01:10,870 Example #3\n",
"2020-01-26 08:01:10,871 \tSource: We should also strive to help others spiritually .\n",
"2020-01-26 08:01:10,871 \tReference: Ahamiẹn mhan re ẹghe bhi otọ rẹ ha luẹ iBaibo , yẹ deba ene gene guanọ nin ele ga iJehova ha muobọ , ọ dẹ rẹkpa mhan rẹ ziẹn ikolu nin mhan bi Jehova koko mhọnlẹn .\n",
"2020-01-26 08:01:10,871 \tHypothesis: ( : : 1 ) ( ) Be ha ha ha ha ha ha ha re egbe .\n",
"2020-01-26 08:01:10,872 Validation result (greedy) at epoch 9, step 400: bleu: 0.17, loss: 90492.0625, ppl: 55.2214, duration: 46.8799s\n",
"2020-01-26 08:01:11,652 Epoch 9: total training loss 181.92\n",
"2020-01-26 08:01:11,652 EPOCH 10\n",
"2020-01-26 08:01:18,998 Epoch 10: total training loss 176.76\n",
"2020-01-26 08:01:18,998 EPOCH 11\n",
"2020-01-26 08:01:26,067 Epoch 11: total training loss 171.99\n",
"2020-01-26 08:01:26,068 EPOCH 12\n",
"2020-01-26 08:01:26,855 Epoch 12 Step: 500 Batch Loss: 3.999224 Tokens per Sec: 12500, Lr: 0.000300\n",
"2020-01-26 08:02:12,940 Hooray! New best validation result [ppl]!\n",
"2020-01-26 08:02:12,940 Saving new checkpoint.\n",
"2020-01-26 08:02:14,106 Example #0\n",
"2020-01-26 08:02:14,107 \tSource: I WAS raised in Graz , Austria .\n",
"2020-01-26 08:02:14,107 \tReference: AGBAẸBHO natiọle Graz bhi Austria , ọle mẹn da wanre .\n",
"2020-01-26 08:02:14,107 \tHypothesis: Bhi , ọle da ha ha ha re egbe .\n",
"2020-01-26 08:02:14,107 Example #1\n",
"2020-01-26 08:02:14,107 \tSource: In contrast with the people who show the widespread lack of love today , those who worship Jehovah have genuine love for their fellow man .\n",
"2020-01-26 08:02:14,108 \tReference: Ene ga iJehova ẹlẹnan wo mhọn oyẹẹ da ibo ele , ele bha diabe ene iga Jehova ne bha hoẹmhọn ibo ele .\n",
"2020-01-26 08:02:14,108 \tHypothesis: ( 1 : 1 ) Be ha ha ha ha ha ha ha ha ha ha re egbe .\n",
"2020-01-26 08:02:14,108 Example #2\n",
"2020-01-26 08:02:14,108 \tSource: Today , we live as foreigners , as it were , in a world that has been morally and spiritually corrupted by Babylon the Great , the world empire of false religion , “ a dwelling place of demons . ”\n",
"2020-01-26 08:02:14,108 \tReference: Inian mhan diabi eriọbhe bhi ẹkẹ ọne agbọn nan nin oga ohoghe ria a . Babylon nọn khua a tie ene oga ohoghe nan , ele da dọ kiẹn eji ẹlinmhin ne imhẹn da nyẹnlẹn . ( Rev .\n",
"2020-01-26 08:02:14,109 \tHypothesis: ( 1 : 1 ) Bhi nin mhan ha ha ha ha ha ha ha ha ha ha ha ha ha re egbe .\n",
"2020-01-26 08:02:14,109 Example #3\n",
"2020-01-26 08:02:14,109 \tSource: We should also strive to help others spiritually .\n",
"2020-01-26 08:02:14,109 \tReference: Ahamiẹn mhan re ẹghe bhi otọ rẹ ha luẹ iBaibo , yẹ deba ene gene guanọ nin ele ga iJehova ha muobọ , ọ dẹ rẹkpa mhan rẹ ziẹn ikolu nin mhan bi Jehova koko mhọnlẹn .\n",
"2020-01-26 08:02:14,110 \tHypothesis: ( 1 : 1 ) Be ha ha ha rẹkpa mhan rẹ ha rẹkpa mhan rẹ ha rẹkpa mhan .\n",
"2020-01-26 08:02:14,110 Validation result (greedy) at epoch 12, step 500: bleu: 0.76, loss: 86351.7031, ppl: 45.9621, duration: 47.2545s\n",
"2020-01-26 08:02:20,383 Epoch 12: total training loss 168.13\n",
"2020-01-26 08:02:20,383 EPOCH 13\n",
"2020-01-26 08:02:27,709 Epoch 13: total training loss 164.23\n",
"2020-01-26 08:02:27,710 EPOCH 14\n",
"2020-01-26 08:02:30,008 Epoch 14 Step: 600 Batch Loss: 3.553907 Tokens per Sec: 11914, Lr: 0.000300\n",
"2020-01-26 08:03:16,042 Hooray! New best validation result [ppl]!\n",
"2020-01-26 08:03:16,043 Saving new checkpoint.\n",
"2020-01-26 08:03:17,215 Example #0\n",
"2020-01-26 08:03:17,216 \tSource: I WAS raised in Graz , Austria .\n",
"2020-01-26 08:03:17,216 \tReference: AGBAẸBHO natiọle Graz bhi Austria , ọle mẹn da wanre .\n",
"2020-01-26 08:03:17,216 \tHypothesis: Bhi ọsi ọne ọne ọne ọne ọne ọne ọne ọne ọne ọne ọne ọne ọne ọne ọne ọne ọne oga .\n",
"2020-01-26 08:03:17,216 Example #1\n",
"2020-01-26 08:03:17,216 \tSource: In contrast with the people who show the widespread lack of love today , those who worship Jehovah have genuine love for their fellow man .\n",
"2020-01-26 08:03:17,216 \tReference: Ene ga iJehova ẹlẹnan wo mhọn oyẹẹ da ibo ele , ele bha diabe ene iga Jehova ne bha hoẹmhọn ibo ele .\n",
"2020-01-26 08:03:17,217 \tHypothesis: Mhan da ha ha ha ha ha ha re emhin nin mhan rẹ ha ha ha re egbe .\n",
"2020-01-26 08:03:17,217 Example #2\n",
"2020-01-26 08:03:17,217 \tSource: Today , we live as foreigners , as it were , in a world that has been morally and spiritually corrupted by Babylon the Great , the world empire of false religion , “ a dwelling place of demons . ”\n",
"2020-01-26 08:03:17,217 \tReference: Inian mhan diabi eriọbhe bhi ẹkẹ ọne agbọn nan nin oga ohoghe ria a . Babylon nọn khua a tie ene oga ohoghe nan , ele da dọ kiẹn eji ẹlinmhin ne imhẹn da nyẹnlẹn . ( Rev .\n",
"2020-01-26 08:03:17,217 \tHypothesis: Bhi ọsi ọne ọne ọne ọne ọne ọne ọne ọne ọne ọne ọne ọne ọne ọne ọne ọne ọne ọne ọne ọne ọne ọne ọne ọne ọne ọne ọne ọne ọne ọne ọne ọne ọne ọne ọne ọne ọne ọne ọne ọne ọne ọne ọne ọne ọne ọne ọne ọne ọne ọne ọne ọne ọne ọne ọne ọne ọne ọne ọne ọne ọne ọne ọne ọne ọne ọne ọne ọne ọne ọne ọne ọne ọne ọne ọne ọne ọne ọne ọne ọne ọne ọne ọne ọne ọne ọne ọne ọne ọne ọne ọne ọne ọne ọne ọne ọne ọne ọne\n",
"2020-01-26 08:03:17,217 Example #3\n",
"2020-01-26 08:03:17,217 \tSource: We should also strive to help others spiritually .\n",
"2020-01-26 08:03:17,217 \tReference: Ahamiẹn mhan re ẹghe bhi otọ rẹ ha luẹ iBaibo , yẹ deba ene gene guanọ nin ele ga iJehova ha muobọ , ọ dẹ rẹkpa mhan rẹ ziẹn ikolu nin mhan bi Jehova koko mhọnlẹn .\n",
"2020-01-26 08:03:17,218 \tHypothesis: Be bhọ mhan ha ha sabọ sabọ sabọ sabọ sabọ ha lu egbe ?\n",
"2020-01-26 08:03:17,218 Validation result (greedy) at epoch 14, step 600: bleu: 0.55, loss: 83069.7344, ppl: 39.7390, duration: 47.2095s\n",
"2020-01-26 08:03:22,015 Epoch 14: total training loss 160.68\n",
"2020-01-26 08:03:22,016 EPOCH 15\n",
"2020-01-26 08:03:29,243 Epoch 15: total training loss 156.83\n",
"2020-01-26 08:03:29,244 EPOCH 16\n",
"2020-01-26 08:03:33,296 Epoch 16 Step: 700 Batch Loss: 3.292420 Tokens per Sec: 12327, Lr: 0.000300\n",
"2020-01-26 08:04:19,411 Hooray! New best validation result [ppl]!\n",
"2020-01-26 08:04:19,411 Saving new checkpoint.\n",
"2020-01-26 08:04:20,600 Example #0\n",
"2020-01-26 08:04:20,600 \tSource: I WAS raised in Graz , Austria .\n",
"2020-01-26 08:04:20,600 \tReference: AGBAẸBHO natiọle Graz bhi Austria , ọle mẹn da wanre .\n",
"2020-01-26 08:04:20,600 \tHypothesis: Ọle da wo ha lu .\n",
"2020-01-26 08:04:20,601 Example #1\n",
"2020-01-26 08:04:20,601 \tSource: In contrast with the people who show the widespread lack of love today , those who worship Jehovah have genuine love for their fellow man .\n",
"2020-01-26 08:04:20,601 \tReference: Ene ga iJehova ẹlẹnan wo mhọn oyẹẹ da ibo ele , ele bha diabe ene iga Jehova ne bha hoẹmhọn ibo ele .\n",
"2020-01-26 08:04:20,601 \tHypothesis: Mhan da ha rẹ ha rẹ ha rẹ ha rẹ ha rẹ ha rẹ ha lu bhi egbe .\n",
"2020-01-26 08:04:20,601 Example #2\n",
"2020-01-26 08:04:20,601 \tSource: Today , we live as foreigners , as it were , in a world that has been morally and spiritually corrupted by Babylon the Great , the world empire of false religion , “ a dwelling place of demons . ”\n",
"2020-01-26 08:04:20,602 \tReference: Inian mhan diabi eriọbhe bhi ẹkẹ ọne agbọn nan nin oga ohoghe ria a . Babylon nọn khua a tie ene oga ohoghe nan , ele da dọ kiẹn eji ẹlinmhin ne imhẹn da nyẹnlẹn . ( Rev .\n",
"2020-01-26 08:04:20,602 \tHypothesis: Bhi ọsi ijiẹmhin , ọle da ha rẹ ha yi ene biẹ mhan rẹ ha re obọ bhi ọne ọne agbọn nan , ọle da ha re obọ bhi ọne agbọn nan , ọle da ha re obọ bhi ọne ọne agbọn nan .\n",
"2020-01-26 08:04:20,602 Example #3\n",
"2020-01-26 08:04:20,602 \tSource: We should also strive to help others spiritually .\n",
"2020-01-26 08:04:20,602 \tReference: Ahamiẹn mhan re ẹghe bhi otọ rẹ ha luẹ iBaibo , yẹ deba ene gene guanọ nin ele ga iJehova ha muobọ , ọ dẹ rẹkpa mhan rẹ ziẹn ikolu nin mhan bi Jehova koko mhọnlẹn .\n",
"2020-01-26 08:04:20,602 \tHypothesis: Be bhọ mhan rẹ sabọ sabọ sabọ sabọ sabọ sabọ sabọ ha lu emhin nin mhan rẹ ha lu .\n",
"2020-01-26 08:04:20,602 Validation result (greedy) at epoch 16, step 700: bleu: 1.23, loss: 79955.3750, ppl: 34.6147, duration: 47.3065s\n",
"2020-01-26 08:04:23,769 Epoch 16: total training loss 153.85\n",
"2020-01-26 08:04:23,769 EPOCH 17\n",
"2020-01-26 08:04:31,068 Epoch 17: total training loss 150.37\n",
"2020-01-26 08:04:31,068 EPOCH 18\n",
"2020-01-26 08:04:36,604 Epoch 18 Step: 800 Batch Loss: 3.116080 Tokens per Sec: 12800, Lr: 0.000300\n",
"2020-01-26 08:05:22,668 Hooray! New best validation result [ppl]!\n",
"2020-01-26 08:05:22,668 Saving new checkpoint.\n",
"2020-01-26 08:05:23,789 Example #0\n",
"2020-01-26 08:05:23,790 \tSource: I WAS raised in Graz , Austria .\n",
"2020-01-26 08:05:23,790 \tReference: AGBAẸBHO natiọle Graz bhi Austria , ọle mẹn da wanre .\n",
"2020-01-26 08:05:23,790 \tHypothesis: Ọle da wo ha yi mẹn .\n",
"2020-01-26 08:05:23,790 Example #1\n",
"2020-01-26 08:05:23,791 \tSource: In contrast with the people who show the widespread lack of love today , those who worship Jehovah have genuine love for their fellow man .\n",
"2020-01-26 08:05:23,791 \tReference: Ene ga iJehova ẹlẹnan wo mhọn oyẹẹ da ibo ele , ele bha diabe ene iga Jehova ne bha hoẹmhọn ibo ele .\n",
"2020-01-26 08:05:23,791 \tHypothesis: Mhan da ha rẹ ha re egbe nin ele rẹ ha lu emhin nin ele rẹ ha lu .\n",
"2020-01-26 08:05:23,791 Example #2\n",
"2020-01-26 08:05:23,791 \tSource: Today , we live as foreigners , as it were , in a world that has been morally and spiritually corrupted by Babylon the Great , the world empire of false religion , “ a dwelling place of demons . ”\n",
"2020-01-26 08:05:23,791 \tReference: Inian mhan diabi eriọbhe bhi ẹkẹ ọne agbọn nan nin oga ohoghe ria a . Babylon nọn khua a tie ene oga ohoghe nan , ele da dọ kiẹn eji ẹlinmhin ne imhẹn da nyẹnlẹn . ( Rev .\n",
"2020-01-26 08:05:23,791 \tHypothesis: Bhi ọsi ẹmhọanta , mhan da yọle : “ “ “ “ “ “ “ “ “ “ “ “ “ “ “ “ “ “ “ “ “ “ “ “ “ “ “ “ “ “ “ “ “ “ “ “ “ “ “ “ “ “ “ “ “ “ “ “ “ “ “ “ “ “ “ “ “ “ “ “ “ “ “ “ “ “ “ “ “ “ “ “ Ẹghe nin mhan rẹ ha re re obọ nin mhan rẹ ha re obọ , ọle rẹ ha re obọ\n",
"2020-01-26 08:05:23,792 Example #3\n",
"2020-01-26 08:05:23,792 \tSource: We should also strive to help others spiritually .\n",
"2020-01-26 08:05:23,792 \tReference: Ahamiẹn mhan re ẹghe bhi otọ rẹ ha luẹ iBaibo , yẹ deba ene gene guanọ nin ele ga iJehova ha muobọ , ọ dẹ rẹkpa mhan rẹ ziẹn ikolu nin mhan bi Jehova koko mhọnlẹn .\n",
"2020-01-26 08:05:23,792 \tHypothesis: Be bhọ mhan ha rẹ ha rẹkpa mhan rẹ ha lu emhin nin mhan rẹ ha lu .\n",
"2020-01-26 08:05:23,792 Validation result (greedy) at epoch 18, step 800: bleu: 2.14, loss: 78357.0234, ppl: 32.2470, duration: 47.1879s\n",
"2020-01-26 08:05:25,377 Epoch 18: total training loss 148.45\n",
"2020-01-26 08:05:25,378 EPOCH 19\n",
"2020-01-26 08:05:32,521 Epoch 19: total training loss 145.88\n",
"2020-01-26 08:05:32,521 EPOCH 20\n",
"2020-01-26 08:05:39,749 Epoch 20 Step: 900 Batch Loss: 2.919087 Tokens per Sec: 12611, Lr: 0.000300\n",
"2020-01-26 08:06:25,750 Hooray! New best validation result [ppl]!\n",
"2020-01-26 08:06:25,751 Saving new checkpoint.\n",
"2020-01-26 08:06:26,905 Example #0\n",
"2020-01-26 08:06:26,906 \tSource: I WAS raised in Graz , Austria .\n",
"2020-01-26 08:06:26,906 \tReference: AGBAẸBHO natiọle Graz bhi Austria , ọle mẹn da wanre .\n",
"2020-01-26 08:06:26,906 \tHypothesis: Ọle da wo ha yi mẹn .\n",
"2020-01-26 08:06:26,906 Example #1\n",
"2020-01-26 08:06:26,907 \tSource: In contrast with the people who show the widespread lack of love today , those who worship Jehovah have genuine love for their fellow man .\n",
"2020-01-26 08:06:26,907 \tReference: Ene ga iJehova ẹlẹnan wo mhọn oyẹẹ da ibo ele , ele bha diabe ene iga Jehova ne bha hoẹmhọn ibo ele .\n",
"2020-01-26 08:06:26,907 \tHypothesis: Bhi ọsi ijiẹmhin , ene biẹ ọmọn nan rẹ ha mhọn ọne agbọn nan .\n",
"2020-01-26 08:06:26,907 Example #2\n",
"2020-01-26 08:06:26,907 \tSource: Today , we live as foreigners , as it were , in a world that has been morally and spiritually corrupted by Babylon the Great , the world empire of false religion , “ a dwelling place of demons . ”\n",
"2020-01-26 08:06:26,907 \tReference: Inian mhan diabi eriọbhe bhi ẹkẹ ọne agbọn nan nin oga ohoghe ria a . Babylon nọn khua a tie ene oga ohoghe nan , ele da dọ kiẹn eji ẹlinmhin ne imhẹn da nyẹnlẹn . ( Rev .\n",
"2020-01-26 08:06:26,907 \tHypothesis: Bhi ọsi ẹmhọanta , mhan da ha yi eria ne ribhi ọne agbọn nan , ọle da ha yi eria ne bunbun .\n",
"2020-01-26 08:06:26,907 Example #3\n",
"2020-01-26 08:06:26,908 \tSource: We should also strive to help others spiritually .\n",
"2020-01-26 08:06:26,908 \tReference: Ahamiẹn mhan re ẹghe bhi otọ rẹ ha luẹ iBaibo , yẹ deba ene gene guanọ nin ele ga iJehova ha muobọ , ọ dẹ rẹkpa mhan rẹ ziẹn ikolu nin mhan bi Jehova koko mhọnlẹn .\n",
"2020-01-26 08:06:26,908 \tHypothesis: Mhan dẹ sabọ ha rẹ ha rẹ ha mhọn emhin nin mhan rẹ ha mhọn emhin ne ribhi oga .\n",
"2020-01-26 08:06:26,908 Validation result (greedy) at epoch 20, step 900: bleu: 2.67, loss: 76491.7969, ppl: 29.6880, duration: 47.1589s\n",
"2020-01-26 08:06:26,913 Epoch 20: total training loss 143.58\n",
"2020-01-26 08:06:26,913 EPOCH 21\n",
"2020-01-26 08:06:34,001 Epoch 21: total training loss 142.98\n",
"2020-01-26 08:06:34,002 EPOCH 22\n",
"2020-01-26 08:06:41,290 Epoch 22: total training loss 138.97\n",
"2020-01-26 08:06:41,290 EPOCH 23\n",
"2020-01-26 08:06:42,875 Epoch 23 Step: 1000 Batch Loss: 2.856789 Tokens per Sec: 12842, Lr: 0.000300\n",
"2020-01-26 08:07:29,024 Hooray! New best validation result [ppl]!\n",
"2020-01-26 08:07:29,024 Saving new checkpoint.\n",
"2020-01-26 08:07:30,244 Example #0\n",
"2020-01-26 08:07:30,245 \tSource: I WAS raised in Graz , Austria .\n",
"2020-01-26 08:07:30,245 \tReference: AGBAẸBHO natiọle Graz bhi Austria , ọle mẹn da wanre .\n",
"2020-01-26 08:07:30,245 \tHypothesis: Ọle da wo ha yi mẹn bhi ọne otọ nan .\n",
"2020-01-26 08:07:30,245 Example #1\n",
"2020-01-26 08:07:30,246 \tSource: In contrast with the people who show the widespread lack of love today , those who worship Jehovah have genuine love for their fellow man .\n",
"2020-01-26 08:07:30,246 \tReference: Ene ga iJehova ẹlẹnan wo mhọn oyẹẹ da ibo ele , ele bha diabe ene iga Jehova ne bha hoẹmhọn ibo ele .\n",
"2020-01-26 08:07:30,246 \tHypothesis: Mhan dẹ sabọ ha re obọ rẹkhan emhin nin ele rẹ ha mhọn emhin ne bunbun , ele ki sabọ ha mhọn obọ bhi oga .\n",
"2020-01-26 08:07:30,246 Example #2\n",
"2020-01-26 08:07:30,247 \tSource: Today , we live as foreigners , as it were , in a world that has been morally and spiritually corrupted by Babylon the Great , the world empire of false religion , “ a dwelling place of demons . ”\n",
"2020-01-26 08:07:30,247 \tReference: Inian mhan diabi eriọbhe bhi ẹkẹ ọne agbọn nan nin oga ohoghe ria a . Babylon nọn khua a tie ene oga ohoghe nan , ele da dọ kiẹn eji ẹlinmhin ne imhẹn da nyẹnlẹn . ( Rev .\n",
"2020-01-26 08:07:30,247 \tHypothesis: ( John 4 : 1 ) Mhan da ha yi eria ne bunbun , ọle ki ha yi eria ne bunbun , ọle ki ha yi eria ne bunbun bhi ọne agbọn nan , ọle ki ha yi eria ne bunbun .\n",
"2020-01-26 08:07:30,247 Example #3\n",
"2020-01-26 08:07:30,248 \tSource: We should also strive to help others spiritually .\n",
"2020-01-26 08:07:30,248 \tReference: Ahamiẹn mhan re ẹghe bhi otọ rẹ ha luẹ iBaibo , yẹ deba ene gene guanọ nin ele ga iJehova ha muobọ , ọ dẹ rẹkpa mhan rẹ ziẹn ikolu nin mhan bi Jehova koko mhọnlẹn .\n",
"2020-01-26 08:07:30,248 \tHypothesis: Be bhọ mhan ha rẹ sabọ ha mhọn emhin nọn khẹke nin mhan rẹ ha mhọn emhin nin mhan rẹ ha lu ?\n",
"2020-01-26 08:07:30,249 Validation result (greedy) at epoch 23, step 1000: bleu: 2.42, loss: 75343.2969, ppl: 28.2144, duration: 47.3732s\n",
"2020-01-26 08:07:35,735 Epoch 23: total training loss 136.94\n",
"2020-01-26 08:07:35,735 EPOCH 24\n",
"2020-01-26 08:07:43,066 Epoch 24: total training loss 135.12\n",
"2020-01-26 08:07:43,067 EPOCH 25\n",
"2020-01-26 08:07:46,254 Epoch 25 Step: 1100 Batch Loss: 2.725771 Tokens per Sec: 12922, Lr: 0.000300\n",
"2020-01-26 08:08:32,261 Hooray! New best validation result [ppl]!\n",
"2020-01-26 08:08:32,262 Saving new checkpoint.\n",
"2020-01-26 08:08:33,379 Example #0\n",
"2020-01-26 08:08:33,380 \tSource: I WAS raised in Graz , Austria .\n",
"2020-01-26 08:08:33,380 \tReference: AGBAẸBHO natiọle Graz bhi Austria , ọle mẹn da wanre .\n",
"2020-01-26 08:08:33,380 \tHypothesis: Ọle da wo ha yi mẹn .\n",
"2020-01-26 08:08:33,380 Example #1\n",
"2020-01-26 08:08:33,380 \tSource: In contrast with the people who show the widespread lack of love today , those who worship Jehovah have genuine love for their fellow man .\n",
"2020-01-26 08:08:33,380 \tReference: Ene ga iJehova ẹlẹnan wo mhọn oyẹẹ da ibo ele , ele bha diabe ene iga Jehova ne bha hoẹmhọn ibo ele .\n",
"2020-01-26 08:08:33,380 \tHypothesis: Ọ dẹ sabọ ha re egbe khọkhọ eria ne bunbun , ele ki sabọ ha re egbe khọkhọ eria ne bunbun .\n",
"2020-01-26 08:08:33,381 Example #2\n",
"2020-01-26 08:08:33,381 \tSource: Today , we live as foreigners , as it were , in a world that has been morally and spiritually corrupted by Babylon the Great , the world empire of false religion , “ a dwelling place of demons . ”\n",
"2020-01-26 08:08:33,381 \tReference: Inian mhan diabi eriọbhe bhi ẹkẹ ọne agbọn nan nin oga ohoghe ria a . Babylon nọn khua a tie ene oga ohoghe nan , ele da dọ kiẹn eji ẹlinmhin ne imhẹn da nyẹnlẹn . ( Rev .\n",
"2020-01-26 08:08:33,381 \tHypothesis: Mhan da ha yi eria ne bunbun , mhan ki ha re obọ kpa bhi ọne agbọn nan , ọle da ha yi eria ne bunbun .\n",
"2020-01-26 08:08:33,381 Example #3\n",
"2020-01-26 08:08:33,381 \tSource: We should also strive to help others spiritually .\n",
"2020-01-26 08:08:33,381 \tReference: Ahamiẹn mhan re ẹghe bhi otọ rẹ ha luẹ iBaibo , yẹ deba ene gene guanọ nin ele ga iJehova ha muobọ , ọ dẹ rẹkpa mhan rẹ ziẹn ikolu nin mhan bi Jehova koko mhọnlẹn .\n",
"2020-01-26 08:08:33,381 \tHypothesis: Mhan ha sabọ rẹkpa mhan rẹ sabọ ha lu emhin nin mhan ha lu .\n",
"2020-01-26 08:08:33,381 Validation result (greedy) at epoch 25, step 1100: bleu: 2.75, loss: 74969.6875, ppl: 27.7510, duration: 47.1269s\n",
"2020-01-26 08:08:37,239 Epoch 25: total training loss 129.85\n",
"2020-01-26 08:08:37,240 EPOCH 26\n",
"2020-01-26 08:08:44,469 Epoch 26: total training loss 131.09\n",
"2020-01-26 08:08:44,469 EPOCH 27\n",
"2020-01-26 08:08:49,356 Epoch 27 Step: 1200 Batch Loss: 2.751511 Tokens per Sec: 12659, Lr: 0.000300\n",
"2020-01-26 08:09:35,517 Hooray! New best validation result [ppl]!\n",
"2020-01-26 08:09:35,517 Saving new checkpoint.\n",
"2020-01-26 08:09:36,808 Example #0\n",
"2020-01-26 08:09:36,809 \tSource: I WAS raised in Graz , Austria .\n",
"2020-01-26 08:09:36,809 \tReference: AGBAẸBHO natiọle Graz bhi Austria , ọle mẹn da wanre .\n",
"2020-01-26 08:09:36,809 \tHypothesis: Ọle da wo ha yi ọria nọn ha lu iwẹnna ọkanẹfan .\n",
"2020-01-26 08:09:36,809 Example #1\n",
"2020-01-26 08:09:36,809 \tSource: In contrast with the people who show the widespread lack of love today , those who worship Jehovah have genuine love for their fellow man .\n",
"2020-01-26 08:09:36,809 \tReference: Ene ga iJehova ẹlẹnan wo mhọn oyẹẹ da ibo ele , ele bha diabe ene iga Jehova ne bha hoẹmhọn ibo ele .\n",
"2020-01-26 08:09:36,810 \tHypothesis: Mhan ha sabọ miẹn ghe , uwẹ dẹ sabọ ha re egbe khọkhọ eria ne bunbun .\n",
"2020-01-26 08:09:36,810 Example #2\n",
"2020-01-26 08:09:36,810 \tSource: Today , we live as foreigners , as it were , in a world that has been morally and spiritually corrupted by Babylon the Great , the world empire of false religion , “ a dwelling place of demons . ”\n",
"2020-01-26 08:09:36,810 \tReference: Inian mhan diabi eriọbhe bhi ẹkẹ ọne agbọn nan nin oga ohoghe ria a . Babylon nọn khua a tie ene oga ohoghe nan , ele da dọ kiẹn eji ẹlinmhin ne imhẹn da nyẹnlẹn . ( Rev .\n",
"2020-01-26 08:09:36,810 \tHypothesis: Mhan da yọle : “ Mhan dẹ ha re obọ rẹkhan uhi nọn ribhi Baibo , mhan ki ha yi ẹbho ne bunbun , mhan ki ha re obọ rẹkhan ọlẹn . ” ” ” ” ( Matt .\n",
"2020-01-26 08:09:36,811 Example #3\n",
"2020-01-26 08:09:36,811 \tSource: We should also strive to help others spiritually .\n",
"2020-01-26 08:09:36,811 \tReference: Ahamiẹn mhan re ẹghe bhi otọ rẹ ha luẹ iBaibo , yẹ deba ene gene guanọ nin ele ga iJehova ha muobọ , ọ dẹ rẹkpa mhan rẹ ziẹn ikolu nin mhan bi Jehova koko mhọnlẹn .\n",
"2020-01-26 08:09:36,811 \tHypothesis: Mhan ha sabọ miẹn emhin ne bunbun bhi egbe .\n",
"2020-01-26 08:09:36,811 Validation result (greedy) at epoch 27, step 1200: bleu: 3.16, loss: 73839.7266, ppl: 26.3952, duration: 47.4554s\n",
"2020-01-26 08:09:39,028 Epoch 27: total training loss 129.69\n",
"2020-01-26 08:09:39,028 EPOCH 28\n",
"2020-01-26 08:09:46,304 Epoch 28: total training loss 127.06\n",
"2020-01-26 08:09:46,304 EPOCH 29\n",
"2020-01-26 08:09:52,660 Epoch 29 Step: 1300 Batch Loss: 2.944221 Tokens per Sec: 12920, Lr: 0.000300\n",
"2020-01-26 08:10:38,727 Hooray! New best validation result [ppl]!\n",
"2020-01-26 08:10:38,727 Saving new checkpoint.\n",
"2020-01-26 08:10:39,878 Example #0\n",
"2020-01-26 08:10:39,879 \tSource: I WAS raised in Graz , Austria .\n",
"2020-01-26 08:10:39,879 \tReference: AGBAẸBHO natiọle Graz bhi Austria , ọle mẹn da wanre .\n",
"2020-01-26 08:10:39,879 \tHypothesis: Ọle da ha mhọn ọne iwẹnna nan .\n",
"2020-01-26 08:10:39,879 Example #1\n",
"2020-01-26 08:10:39,879 \tSource: In contrast with the people who show the widespread lack of love today , those who worship Jehovah have genuine love for their fellow man .\n",
"2020-01-26 08:10:39,880 \tReference: Ene ga iJehova ẹlẹnan wo mhọn oyẹẹ da ibo ele , ele bha diabe ene iga Jehova ne bha hoẹmhọn ibo ele .\n",
"2020-01-26 08:10:39,880 \tHypothesis: Bhiriọ , uwẹ dẹ sabọ rẹkpa uwẹ rẹ ha mhọn emhin nin uwẹ rẹ ha mhọn nọnsẹn .\n",
"2020-01-26 08:10:39,880 Example #2\n",
"2020-01-26 08:10:39,880 \tSource: Today , we live as foreigners , as it were , in a world that has been morally and spiritually corrupted by Babylon the Great , the world empire of false religion , “ a dwelling place of demons . ”\n",
"2020-01-26 08:10:39,880 \tReference: Inian mhan diabi eriọbhe bhi ẹkẹ ọne agbọn nan nin oga ohoghe ria a . Babylon nọn khua a tie ene oga ohoghe nan , ele da dọ kiẹn eji ẹlinmhin ne imhẹn da nyẹnlẹn . ( Rev .\n",
"2020-01-26 08:10:39,880 \tHypothesis: Mhan da ha re obọ rẹkhan uhi nọn ribhi Baibo , mhan ki ha re obọ rẹkhan adia nesi Jehova , bi ene ga Osẹnobulua .\n",
"2020-01-26 08:10:39,880 Example #3\n",
"2020-01-26 08:10:39,881 \tSource: We should also strive to help others spiritually .\n",
"2020-01-26 08:10:39,881 \tReference: Ahamiẹn mhan re ẹghe bhi otọ rẹ ha luẹ iBaibo , yẹ deba ene gene guanọ nin ele ga iJehova ha muobọ , ọ dẹ rẹkpa mhan rẹ ziẹn ikolu nin mhan bi Jehova koko mhọnlẹn .\n",
"2020-01-26 08:10:39,881 \tHypothesis: Mhan dẹ sabọ rẹkpa mhan rẹ sabọ ha mhọn emhin nin mhan ha mhọn nọnsẹn .\n",
"2020-01-26 08:10:39,881 Validation result (greedy) at epoch 29, step 1300: bleu: 3.21, loss: 73582.2969, ppl: 26.0957, duration: 47.2207s\n",
"2020-01-26 08:10:40,551 Epoch 29: total training loss 125.88\n",
"2020-01-26 08:10:40,551 EPOCH 30\n",
"2020-01-26 08:10:47,611 Epoch 30: total training loss 123.65\n",
"2020-01-26 08:10:47,611 EPOCH 31\n",
"2020-01-26 08:10:54,774 Epoch 31: total training loss 122.03\n",
"2020-01-26 08:10:54,775 EPOCH 32\n",
"2020-01-26 08:10:55,747 Epoch 32 Step: 1400 Batch Loss: 2.719724 Tokens per Sec: 12781, Lr: 0.000300\n",
"2020-01-26 08:11:41,993 Hooray! New best validation result [ppl]!\n",
"2020-01-26 08:11:41,994 Saving new checkpoint.\n",
"2020-01-26 08:11:43,161 Example #0\n",
"2020-01-26 08:11:43,162 \tSource: I WAS raised in Graz , Austria .\n",
"2020-01-26 08:11:43,162 \tReference: AGBAẸBHO natiọle Graz bhi Austria , ọle mẹn da wanre .\n",
"2020-01-26 08:11:43,162 \tHypothesis: Ọle da ha yi ikpe eva nin mẹn ha lu iwẹnna ọkanẹfan .\n",
"2020-01-26 08:11:43,162 Example #1\n",
"2020-01-26 08:11:43,162 \tSource: In contrast with the people who show the widespread lack of love today , those who worship Jehovah have genuine love for their fellow man .\n",
"2020-01-26 08:11:43,162 \tReference: Ene ga iJehova ẹlẹnan wo mhọn oyẹẹ da ibo ele , ele bha diabe ene iga Jehova ne bha hoẹmhọn ibo ele .\n",
"2020-01-26 08:11:43,162 \tHypothesis: Ene biẹ ọmọn nan wo ha mhọn ẹmhọn Agbejele nọnsi Jehova , ele da sabọ ha mhọn isẹhoa nin ele rẹ ha mhọn nọnsẹn .\n",
"2020-01-26 08:11:43,163 Example #2\n",
"2020-01-26 08:11:43,163 \tSource: Today , we live as foreigners , as it were , in a world that has been morally and spiritually corrupted by Babylon the Great , the world empire of false religion , “ a dwelling place of demons . ”\n",
"2020-01-26 08:11:43,163 \tReference: Inian mhan diabi eriọbhe bhi ẹkẹ ọne agbọn nan nin oga ohoghe ria a . Babylon nọn khua a tie ene oga ohoghe nan , ele da dọ kiẹn eji ẹlinmhin ne imhẹn da nyẹnlẹn . ( Rev .\n",
"2020-01-26 08:11:43,163 \tHypothesis: Mhan da ha re obọ rẹkhan uhi nọn ribhi Baibo yọle : “ Bha ji mhan rẹ ha re obọ rẹkhan adia nesi Jehova , ranmhude mhan ki ha re obọ rẹkhan ọlẹn , ranmhude mhan ki ha re obọ rẹkhan ọlẹn . ”\n",
"2020-01-26 08:11:43,163 Example #3\n",
"2020-01-26 08:11:43,163 \tSource: We should also strive to help others spiritually .\n",
"2020-01-26 08:11:43,163 \tReference: Ahamiẹn mhan re ẹghe bhi otọ rẹ ha luẹ iBaibo , yẹ deba ene gene guanọ nin ele ga iJehova ha muobọ , ọ dẹ rẹkpa mhan rẹ ziẹn ikolu nin mhan bi Jehova koko mhọnlẹn .\n",
"2020-01-26 08:11:43,163 \tHypothesis: Mhan dẹ sabọ ha re egbe khọkhọ eria ne bunbun .\n",
"2020-01-26 08:11:43,164 Validation result (greedy) at epoch 32, step 1400: bleu: 3.39, loss: 72614.8125, ppl: 25.0002, duration: 47.4159s\n",
"2020-01-26 08:11:49,257 Epoch 32: total training loss 120.11\n",
"2020-01-26 08:11:49,257 EPOCH 33\n",
"2020-01-26 08:11:56,537 Epoch 33: total training loss 118.35\n",
"2020-01-26 08:11:56,537 EPOCH 34\n",
"2020-01-26 08:11:59,151 Epoch 34 Step: 1500 Batch Loss: 2.812595 Tokens per Sec: 12506, Lr: 0.000300\n",
"2020-01-26 08:12:45,318 Example #0\n",
"2020-01-26 08:12:45,319 \tSource: I WAS raised in Graz , Austria .\n",
"2020-01-26 08:12:45,319 \tReference: AGBAẸBHO natiọle Graz bhi Austria , ọle mẹn da wanre .\n",
"2020-01-26 08:12:45,319 \tHypothesis: Mẹn da wo ha mhọn ẹmhọn oga .\n",
"2020-01-26 08:12:45,320 Example #1\n",
"2020-01-26 08:12:45,320 \tSource: In contrast with the people who show the widespread lack of love today , those who worship Jehovah have genuine love for their fellow man .\n",
"2020-01-26 08:12:45,320 \tReference: Ene ga iJehova ẹlẹnan wo mhọn oyẹẹ da ibo ele , ele bha diabe ene iga Jehova ne bha hoẹmhọn ibo ele .\n",
"2020-01-26 08:12:45,320 \tHypothesis: Ọnan wo manman re egbe khọkhọ iJehova bhi ẹghe nin uwẹ rẹ ha mhọn isẹhoa nin ọle rẹ ha mhọn idegbere .\n",
"2020-01-26 08:12:45,321 Example #2\n",
"2020-01-26 08:12:45,321 \tSource: Today , we live as foreigners , as it were , in a world that has been morally and spiritually corrupted by Babylon the Great , the world empire of false religion , “ a dwelling place of demons . ”\n",
"2020-01-26 08:12:45,321 \tReference: Inian mhan diabi eriọbhe bhi ẹkẹ ọne agbọn nan nin oga ohoghe ria a . Babylon nọn khua a tie ene oga ohoghe nan , ele da dọ kiẹn eji ẹlinmhin ne imhẹn da nyẹnlẹn . ( Rev .\n",
"2020-01-26 08:12:45,321 \tHypothesis: Mhan da yọle : “ Mhan dẹ ha re obọ rẹkhan uhi nọn ribhi Baibo , mhan ki ha re obọ rẹkhan ọlẹn , mhan ki ha re obọ rẹkhan ọlẹn , ranmhude mhan da yọle : “ Bha ha re obọ rẹkhan emhin nin ele . ”\n",
"2020-01-26 08:12:45,321 Example #3\n",
"2020-01-26 08:12:45,322 \tSource: We should also strive to help others spiritually .\n",
"2020-01-26 08:12:45,322 \tReference: Ahamiẹn mhan re ẹghe bhi otọ rẹ ha luẹ iBaibo , yẹ deba ene gene guanọ nin ele ga iJehova ha muobọ , ọ dẹ rẹkpa mhan rẹ ziẹn ikolu nin mhan bi Jehova koko mhọnlẹn .\n",
"2020-01-26 08:12:45,322 \tHypothesis: Mhan dẹ sabọ rẹkpa mhan rẹ sabọ ha re egbe khọkhọ eria ne bunbun .\n",
"2020-01-26 08:12:45,322 Validation result (greedy) at epoch 34, step 1500: bleu: 3.91, loss: 72724.7578, ppl: 25.1224, duration: 46.1704s\n",
"2020-01-26 08:12:49,834 Epoch 34: total training loss 116.38\n",
"2020-01-26 08:12:49,834 EPOCH 35\n",
"2020-01-26 08:12:56,844 Epoch 35: total training loss 112.00\n",
"2020-01-26 08:12:56,844 EPOCH 36\n",
"2020-01-26 08:13:01,089 Epoch 36 Step: 1600 Batch Loss: 2.552213 Tokens per Sec: 12536, Lr: 0.000300\n",
"2020-01-26 08:13:47,232 Example #0\n",
"2020-01-26 08:13:47,233 \tSource: I WAS raised in Graz , Austria .\n",
"2020-01-26 08:13:47,233 \tReference: AGBAẸBHO natiọle Graz bhi Austria , ọle mẹn da wanre .\n",
"2020-01-26 08:13:47,233 \tHypothesis: Mẹn da wo ha mhọn ọne iwẹnna nan .\n",
"2020-01-26 08:13:47,233 Example #1\n",
"2020-01-26 08:13:47,234 \tSource: In contrast with the people who show the widespread lack of love today , those who worship Jehovah have genuine love for their fellow man .\n",
"2020-01-26 08:13:47,234 \tReference: Ene ga iJehova ẹlẹnan wo mhọn oyẹẹ da ibo ele , ele bha diabe ene iga Jehova ne bha hoẹmhọn ibo ele .\n",
"2020-01-26 08:13:47,234 \tHypothesis: Ọnan wo wo re ọne isẹhoa nan rẹ ha mhọn urẹọbhọ nọnsi Jehova .\n",
"2020-01-26 08:13:47,234 Example #2\n",
"2020-01-26 08:13:47,235 \tSource: Today , we live as foreigners , as it were , in a world that has been morally and spiritually corrupted by Babylon the Great , the world empire of false religion , “ a dwelling place of demons . ”\n",
"2020-01-26 08:13:47,235 \tReference: Inian mhan diabi eriọbhe bhi ẹkẹ ọne agbọn nan nin oga ohoghe ria a . Babylon nọn khua a tie ene oga ohoghe nan , ele da dọ kiẹn eji ẹlinmhin ne imhẹn da nyẹnlẹn . ( Rev .\n",
"2020-01-26 08:13:47,235 \tHypothesis: Mhan da ha yi ọkpa bhi ọne uhọnmhọn - ọta nan , mhan ki ha mhọn ọne ọta nan , mhan ki ha mhọn ọne otọ nan , ranmhude mhan da wo ha mhọn urẹọbhọ bi emhin ne bunbun .\n",
"2020-01-26 08:13:47,235 Example #3\n",
"2020-01-26 08:13:47,236 \tSource: We should also strive to help others spiritually .\n",
"2020-01-26 08:13:47,236 \tReference: Ahamiẹn mhan re ẹghe bhi otọ rẹ ha luẹ iBaibo , yẹ deba ene gene guanọ nin ele ga iJehova ha muobọ , ọ dẹ rẹkpa mhan rẹ ziẹn ikolu nin mhan bi Jehova koko mhọnlẹn .\n",
"2020-01-26 08:13:47,236 \tHypothesis: Mhan dẹ sabọ ha re egbe khọkhọ eria ne bunbun .\n",
"2020-01-26 08:13:47,236 Validation result (greedy) at epoch 36, step 1600: bleu: 3.30, loss: 72694.6719, ppl: 25.0889, duration: 46.1465s\n",
"2020-01-26 08:13:50,106 Epoch 36: total training loss 113.82\n",
"2020-01-26 08:13:50,106 EPOCH 37\n",
"2020-01-26 08:13:57,235 Epoch 37: total training loss 111.24\n",
"2020-01-26 08:13:57,236 EPOCH 38\n",
"2020-01-26 08:14:03,088 Epoch 38 Step: 1700 Batch Loss: 2.625222 Tokens per Sec: 12733, Lr: 0.000300\n",
"2020-01-26 08:14:49,243 Example #0\n",
"2020-01-26 08:14:49,245 \tSource: I WAS raised in Graz , Austria .\n",
"2020-01-26 08:14:49,245 \tReference: AGBAẸBHO natiọle Graz bhi Austria , ọle mẹn da wanre .\n",
"2020-01-26 08:14:49,245 \tHypothesis: Mẹn da ha yi ọkpa bhi ẹwẹ mẹn .\n",
"2020-01-26 08:14:49,245 Example #1\n",
"2020-01-26 08:14:49,245 \tSource: In contrast with the people who show the widespread lack of love today , those who worship Jehovah have genuine love for their fellow man .\n",
"2020-01-26 08:14:49,246 \tReference: Ene ga iJehova ẹlẹnan wo mhọn oyẹẹ da ibo ele , ele bha diabe ene iga Jehova ne bha hoẹmhọn ibo ele .\n",
"2020-01-26 08:14:49,246 \tHypothesis: Ene ikpẹ nan wo manman manman manman manman manman mun oga mhọn nọnsẹn .\n",
"2020-01-26 08:14:49,246 Example #2\n",
"2020-01-26 08:14:49,246 \tSource: Today , we live as foreigners , as it were , in a world that has been morally and spiritually corrupted by Babylon the Great , the world empire of false religion , “ a dwelling place of demons . ”\n",
"2020-01-26 08:14:49,246 \tReference: Inian mhan diabi eriọbhe bhi ẹkẹ ọne agbọn nan nin oga ohoghe ria a . Babylon nọn khua a tie ene oga ohoghe nan , ele da dọ kiẹn eji ẹlinmhin ne imhẹn da nyẹnlẹn . ( Rev .\n",
"2020-01-26 08:14:49,247 \tHypothesis: Mhan da ha yi ọkpa bhi Baibo yọle : “ Mhan dẹ ha mhọn urẹọbhọ bi ibhio mhan ne bunbun , ranmhude mhan khin , ranmhude mhan ki ha yi ọkpa bhi ọne otọ nan , ranmhude ọne agbọn nan ki vae . ”\n",
"2020-01-26 08:14:49,247 Example #3\n",
"2020-01-26 08:14:49,247 \tSource: We should also strive to help others spiritually .\n",
"2020-01-26 08:14:49,247 \tReference: Ahamiẹn mhan re ẹghe bhi otọ rẹ ha luẹ iBaibo , yẹ deba ene gene guanọ nin ele ga iJehova ha muobọ , ọ dẹ rẹkpa mhan rẹ ziẹn ikolu nin mhan bi Jehova koko mhọnlẹn .\n",
"2020-01-26 08:14:49,247 \tHypothesis: Mhan dẹ sabọ rẹkpa mhan rẹ ha mhọn ọfure bi emhin nin mhan ha sabọ ha mhọnlẹn .\n",
"2020-01-26 08:14:49,248 Validation result (greedy) at epoch 38, step 1700: bleu: 4.02, loss: 72884.2422, ppl: 25.3006, duration: 46.1595s\n",
"2020-01-26 08:14:50,516 Epoch 38: total training loss 109.40\n",
"2020-01-26 08:14:50,516 EPOCH 39\n",
"2020-01-26 08:14:57,608 Epoch 39: total training loss 107.30\n",
"2020-01-26 08:14:57,608 EPOCH 40\n",
"2020-01-26 08:15:04,717 Epoch 40: total training loss 106.05\n",
"2020-01-26 08:15:04,718 EPOCH 41\n",
"2020-01-26 08:15:05,024 Epoch 41 Step: 1800 Batch Loss: 2.495653 Tokens per Sec: 12513, Lr: 0.000300\n",
"2020-01-26 08:15:51,216 Example #0\n",
"2020-01-26 08:15:51,217 \tSource: I WAS raised in Graz , Austria .\n",
"2020-01-26 08:15:51,217 \tReference: AGBAẸBHO natiọle Graz bhi Austria , ọle mẹn da wanre .\n",
"2020-01-26 08:15:51,217 \tHypothesis: Mẹn da wo ha mhọn urẹọbhọ bi mẹn .\n",
"2020-01-26 08:15:51,217 Example #1\n",
"2020-01-26 08:15:51,218 \tSource: In contrast with the people who show the widespread lack of love today , those who worship Jehovah have genuine love for their fellow man .\n",
"2020-01-26 08:15:51,218 \tReference: Ene ga iJehova ẹlẹnan wo mhọn oyẹẹ da ibo ele , ele bha diabe ene iga Jehova ne bha hoẹmhọn ibo ele .\n",
"2020-01-26 08:15:51,218 \tHypothesis: Ene ga iJehova wo re izebhudu nin ele , ele wo ha mhọn ọne isẹhoa nan rẹ ha mhọn ọne otọ nan .\n",
"2020-01-26 08:15:51,218 Example #2\n",
"2020-01-26 08:15:51,219 \tSource: Today , we live as foreigners , as it were , in a world that has been morally and spiritually corrupted by Babylon the Great , the world empire of false religion , “ a dwelling place of demons . ”\n",
"2020-01-26 08:15:51,219 \tReference: Inian mhan diabi eriọbhe bhi ẹkẹ ọne agbọn nan nin oga ohoghe ria a . Babylon nọn khua a tie ene oga ohoghe nan , ele da dọ kiẹn eji ẹlinmhin ne imhẹn da nyẹnlẹn . ( Rev .\n",
"2020-01-26 08:15:51,219 \tHypothesis: Bhi ọsi ẹmhọanta , mhan da ha mhọn urẹọbhọ nọnsẹmhan , mhan ki dọ lẹn ghe mhan dẹ miẹn otọ , ranmhude mhan dẹ miẹn otọ , ranmhude mhan dẹ miẹn ọne isẹhoa nan rẹ re obọ rẹkhan ọlẹn . ”\n",
"2020-01-26 08:15:51,219 Example #3\n",
"2020-01-26 08:15:51,220 \tSource: We should also strive to help others spiritually .\n",
"2020-01-26 08:15:51,220 \tReference: Ahamiẹn mhan re ẹghe bhi otọ rẹ ha luẹ iBaibo , yẹ deba ene gene guanọ nin ele ga iJehova ha muobọ , ọ dẹ rẹkpa mhan rẹ ziẹn ikolu nin mhan bi Jehova koko mhọnlẹn .\n",
"2020-01-26 08:15:51,220 \tHypothesis: Mhan dẹ sabọ rẹkpa mhan rẹ ha mhọn urẹọbhọ bi ọkhọnlẹn ọsaje .\n",
"2020-01-26 08:15:51,220 Validation result (greedy) at epoch 41, step 1800: bleu: 4.19, loss: 73121.8594, ppl: 25.5685, duration: 46.1956s\n",
"2020-01-26 08:15:58,006 Epoch 41: total training loss 103.96\n",
"2020-01-26 08:15:58,006 EPOCH 42\n",
"2020-01-26 08:16:05,126 Epoch 42: total training loss 102.08\n",
"2020-01-26 08:16:05,126 EPOCH 43\n",
"2020-01-26 08:16:07,006 Epoch 43 Step: 1900 Batch Loss: 1.994727 Tokens per Sec: 12047, Lr: 0.000300\n",
"2020-01-26 08:16:53,220 Example #0\n",
"2020-01-26 08:16:53,221 \tSource: I WAS raised in Graz , Austria .\n",
"2020-01-26 08:16:53,221 \tReference: AGBAẸBHO natiọle Graz bhi Austria , ọle mẹn da wanre .\n",
"2020-01-26 08:16:53,221 \tHypothesis: Mẹn da wo ha mhọn urẹọbhọ bi ọdọ mẹn .\n",
"2020-01-26 08:16:53,222 Example #1\n",
"2020-01-26 08:16:53,222 \tSource: In contrast with the people who show the widespread lack of love today , those who worship Jehovah have genuine love for their fellow man .\n",
"2020-01-26 08:16:53,222 \tReference: Ene ga iJehova ẹlẹnan wo mhọn oyẹẹ da ibo ele , ele bha diabe ene iga Jehova ne bha hoẹmhọn ibo ele .\n",
"2020-01-26 08:16:53,222 \tHypothesis: Ene ikpẹ nan wo manman manman re egbe khọkhọ iJehova bhi uwedẹ nin ele rẹ ha mhọn ọne isẹhoa nan rẹ rẹkpa ẹbho ne bunbun .\n",
"2020-01-26 08:16:53,223 Example #2\n",
"2020-01-26 08:16:53,223 \tSource: Today , we live as foreigners , as it were , in a world that has been morally and spiritually corrupted by Babylon the Great , the world empire of false religion , “ a dwelling place of demons . ”\n",
"2020-01-26 08:16:53,223 \tReference: Inian mhan diabi eriọbhe bhi ẹkẹ ọne agbọn nan nin oga ohoghe ria a . Babylon nọn khua a tie ene oga ohoghe nan , ele da dọ kiẹn eji ẹlinmhin ne imhẹn da nyẹnlẹn . ( Rev .\n",
"2020-01-26 08:16:53,223 \tHypothesis: Mhan da yọle : “ Mhan dẹ ha mhọn urẹọbhọ bi ọdọ , mhan da dọ ha mhọn urẹọbhọ da ẹbho nin mhan da ha mhọn da ẹbho , ranmhude mhan da yẹ ha mhọn urẹọbhọ bi azagba - uwa nọnsọle . ” ( Matt .\n",
"2020-01-26 08:16:53,223 Example #3\n",
"2020-01-26 08:16:53,224 \tSource: We should also strive to help others spiritually .\n",
"2020-01-26 08:16:53,224 \tReference: Ahamiẹn mhan re ẹghe bhi otọ rẹ ha luẹ iBaibo , yẹ deba ene gene guanọ nin ele ga iJehova ha muobọ , ọ dẹ rẹkpa mhan rẹ ziẹn ikolu nin mhan bi Jehova koko mhọnlẹn .\n",
"2020-01-26 08:16:53,224 \tHypothesis: Mhan dẹ sabọ rẹkpa mhan rẹ ha mhọn isẹhoa nin mhan mhọnlẹn .\n",
"2020-01-26 08:16:53,224 Validation result (greedy) at epoch 43, step 1900: bleu: 4.42, loss: 73039.2188, ppl: 25.4750, duration: 46.2183s\n",
"2020-01-26 08:16:58,519 Epoch 43: total training loss 100.58\n",
"2020-01-26 08:16:58,520 EPOCH 44\n",
"2020-01-26 08:17:05,657 Epoch 44: total training loss 98.74\n",
"2020-01-26 08:17:05,657 EPOCH 45\n",
"2020-01-26 08:17:09,150 Epoch 45 Step: 2000 Batch Loss: 2.053864 Tokens per Sec: 12719, Lr: 0.000300\n",
"2020-01-26 08:17:55,279 Example #0\n",
"2020-01-26 08:17:55,280 \tSource: I WAS raised in Graz , Austria .\n",
"2020-01-26 08:17:55,280 \tReference: AGBAẸBHO natiọle Graz bhi Austria , ọle mẹn da wanre .\n",
"2020-01-26 08:17:55,280 \tHypothesis: Mẹn da wo ha mhọn ọne ẹmhọn nan .\n",
"2020-01-26 08:17:55,281 Example #1\n",
"2020-01-26 08:17:55,281 \tSource: In contrast with the people who show the widespread lack of love today , those who worship Jehovah have genuine love for their fellow man .\n",
"2020-01-26 08:17:55,281 \tReference: Ene ga iJehova ẹlẹnan wo mhọn oyẹẹ da ibo ele , ele bha diabe ene iga Jehova ne bha hoẹmhọn ibo ele .\n",
"2020-01-26 08:17:55,281 \tHypothesis: Emhin nọn mun oga mhọn nọnsẹn wo ha mhọn nọnsẹn rẹ ha mhọn urẹọbhọ bi emhin esili ne bunbun .\n",
"2020-01-26 08:17:55,281 Example #2\n",
"2020-01-26 08:17:55,282 \tSource: Today , we live as foreigners , as it were , in a world that has been morally and spiritually corrupted by Babylon the Great , the world empire of false religion , “ a dwelling place of demons . ”\n",
"2020-01-26 08:17:55,282 \tReference: Inian mhan diabi eriọbhe bhi ẹkẹ ọne agbọn nan nin oga ohoghe ria a . Babylon nọn khua a tie ene oga ohoghe nan , ele da dọ kiẹn eji ẹlinmhin ne imhẹn da nyẹnlẹn . ( Rev .\n",
"2020-01-26 08:17:55,282 \tHypothesis: Mhan da ha yi ọkpa bhi Baibo yọle : “ Mhan dẹ ha re obọ rẹkhan uhi bi emhin ne bunbun , ranmhude mhan mhọn urẹọbhọ bi azagba - uwa nọnsọle , ranmhude emhin nin ọle rẹ miẹn ọne otọ nan rebhe . ”\n",
"2020-01-26 08:17:55,282 Example #3\n",
"2020-01-26 08:17:55,283 \tSource: We should also strive to help others spiritually .\n",
"2020-01-26 08:17:55,283 \tReference: Ahamiẹn mhan re ẹghe bhi otọ rẹ ha luẹ iBaibo , yẹ deba ene gene guanọ nin ele ga iJehova ha muobọ , ọ dẹ rẹkpa mhan rẹ ziẹn ikolu nin mhan bi Jehova koko mhọnlẹn .\n",
"2020-01-26 08:17:55,283 \tHypothesis: Mhan dẹ sabọ rẹkpa mhan rẹ ha mhọn ọfure ọsaje .\n",
"2020-01-26 08:17:55,283 Validation result (greedy) at epoch 45, step 2000: bleu: 4.27, loss: 74022.8438, ppl: 26.6103, duration: 46.1327s\n",
"2020-01-26 08:17:58,903 Epoch 45: total training loss 96.71\n",
"2020-01-26 08:17:58,904 EPOCH 46\n",
"2020-01-26 08:18:05,952 Epoch 46: total training loss 94.58\n",
"2020-01-26 08:18:05,952 EPOCH 47\n",
"2020-01-26 08:18:11,035 Epoch 47 Step: 2100 Batch Loss: 2.177901 Tokens per Sec: 13025, Lr: 0.000210\n",
"2020-01-26 08:18:57,192 Example #0\n",
"2020-01-26 08:18:57,193 \tSource: I WAS raised in Graz , Austria .\n",
"2020-01-26 08:18:57,193 \tReference: AGBAẸBHO natiọle Graz bhi Austria , ọle mẹn da wanre .\n",
"2020-01-26 08:18:57,194 \tHypothesis: Mẹn da wo ha mhọn ẹmhọn mẹn .\n",
"2020-01-26 08:18:57,194 Example #1\n",
"2020-01-26 08:18:57,194 \tSource: In contrast with the people who show the widespread lack of love today , those who worship Jehovah have genuine love for their fellow man .\n",
"2020-01-26 08:18:57,194 \tReference: Ene ga iJehova ẹlẹnan wo mhọn oyẹẹ da ibo ele , ele bha diabe ene iga Jehova ne bha hoẹmhọn ibo ele .\n",
"2020-01-26 08:18:57,194 \tHypothesis: Ene ikpẹ nan wo manman re egbe khọkhọ iJehova bhi iẹnlẹn nọnsele , ọle hi ene ga iJehova wo manman mun oga mhọn nọnsẹn . Ọle da wo ha mhọn ọne ahu nan .\n",
"2020-01-26 08:18:57,195 Example #2\n",
"2020-01-26 08:18:57,195 \tSource: Today , we live as foreigners , as it were , in a world that has been morally and spiritually corrupted by Babylon the Great , the world empire of false religion , “ a dwelling place of demons . ”\n",
"2020-01-26 08:18:57,195 \tReference: Inian mhan diabi eriọbhe bhi ẹkẹ ọne agbọn nan nin oga ohoghe ria a . Babylon nọn khua a tie ene oga ohoghe nan , ele da dọ kiẹn eji ẹlinmhin ne imhẹn da nyẹnlẹn . ( Rev .\n",
"2020-01-26 08:18:57,195 \tHypothesis: Ẹlẹnan nian , mhan ki dọ lẹn ghe , mhan dẹ sabọ re obọ rẹkhan ọlẹn , mhan ki dọ ha mhọn ọne isẹhoa nan rẹ sẹbhi eji ọle da yọle : “ Bha ha yi ikpe ne bunbun . ”\n",
"2020-01-26 08:18:57,196 Example #3\n",
"2020-01-26 08:18:57,196 \tSource: We should also strive to help others spiritually .\n",
"2020-01-26 08:18:57,196 \tReference: Ahamiẹn mhan re ẹghe bhi otọ rẹ ha luẹ iBaibo , yẹ deba ene gene guanọ nin ele ga iJehova ha muobọ , ọ dẹ rẹkpa mhan rẹ ziẹn ikolu nin mhan bi Jehova koko mhọnlẹn .\n",
"2020-01-26 08:18:57,196 \tHypothesis: Mhan dẹ sabọ rẹkpa mhan rẹ ha mhọn ọfure ọsaje nin mhan mhọnlẹn .\n",
"2020-01-26 08:18:57,196 Validation result (greedy) at epoch 47, step 2100: bleu: 4.64, loss: 74151.1016, ppl: 26.7621, duration: 46.1614s\n",
"2020-01-26 08:18:59,148 Epoch 47: total training loss 90.88\n",
"2020-01-26 08:18:59,148 EPOCH 48\n",
"2020-01-26 08:19:06,191 Epoch 48: total training loss 89.59\n",
"2020-01-26 08:19:06,192 EPOCH 49\n",
"2020-01-26 08:19:13,173 Epoch 49 Step: 2200 Batch Loss: 2.089329 Tokens per Sec: 12720, Lr: 0.000210\n",
"2020-01-26 08:19:59,355 Example #0\n",
"2020-01-26 08:19:59,357 \tSource: I WAS raised in Graz , Austria .\n",
"2020-01-26 08:19:59,357 \tReference: AGBAẸBHO natiọle Graz bhi Austria , ọle mẹn da wanre .\n",
"2020-01-26 08:19:59,357 \tHypothesis: Mẹn da wo ha mhọn ẹmhọn mẹn .\n",
"2020-01-26 08:19:59,357 Example #1\n",
"2020-01-26 08:19:59,358 \tSource: In contrast with the people who show the widespread lack of love today , those who worship Jehovah have genuine love for their fellow man .\n",
"2020-01-26 08:19:59,358 \tReference: Ene ga iJehova ẹlẹnan wo mhọn oyẹẹ da ibo ele , ele bha diabe ene iga Jehova ne bha hoẹmhọn ibo ele .\n",
"2020-01-26 08:19:59,358 \tHypothesis: Ene ikpẹ nan wo re izebhudu nin ele , ele wo manman mun udu nyan iJehova bhi iẹnlẹn nọnsele . Ọle da wo ha mhọn idegbere .\n",
"2020-01-26 08:19:59,358 Example #2\n",
"2020-01-26 08:19:59,359 \tSource: Today , we live as foreigners , as it were , in a world that has been morally and spiritually corrupted by Babylon the Great , the world empire of false religion , “ a dwelling place of demons . ”\n",
"2020-01-26 08:19:59,359 \tReference: Inian mhan diabi eriọbhe bhi ẹkẹ ọne agbọn nan nin oga ohoghe ria a . Babylon nọn khua a tie ene oga ohoghe nan , ele da dọ kiẹn eji ẹlinmhin ne imhẹn da nyẹnlẹn . ( Rev .\n",
"2020-01-26 08:19:59,359 \tHypothesis: Ẹlẹnan nian , mhan ki dọ kere ghe , Jehova mhọn urẹọbhọ bi emhin nin ọle rẹ ha ribhi ẹkẹ agbotu nọnsọle , ọle ki dọ ha mhọn ọlẹn bhi otọ ghe , ranmhude mhan da yẹ re ọne otọ nan rebhe . ” ( Matt .\n",
"2020-01-26 08:19:59,359 Example #3\n",
"2020-01-26 08:19:59,360 \tSource: We should also strive to help others spiritually .\n",
"2020-01-26 08:19:59,360 \tReference: Ahamiẹn mhan re ẹghe bhi otọ rẹ ha luẹ iBaibo , yẹ deba ene gene guanọ nin ele ga iJehova ha muobọ , ọ dẹ rẹkpa mhan rẹ ziẹn ikolu nin mhan bi Jehova koko mhọnlẹn .\n",
"2020-01-26 08:19:59,360 \tHypothesis: Mhan dẹ sabọ rẹkpa mhan rẹ ha mhọn urẹọbhọ bi ọkhọnlẹn ọsaje .\n",
"2020-01-26 08:19:59,360 Validation result (greedy) at epoch 49, step 2200: bleu: 4.81, loss: 74790.0938, ppl: 27.5309, duration: 46.1865s\n",
"2020-01-26 08:19:59,528 Epoch 49: total training loss 90.24\n",
"2020-01-26 08:19:59,528 EPOCH 50\n",
"2020-01-26 08:20:06,616 Epoch 50: total training loss 89.23\n",
"2020-01-26 08:20:06,616 EPOCH 51\n",
"2020-01-26 08:20:13,733 Epoch 51: total training loss 87.68\n",
"2020-01-26 08:20:13,733 EPOCH 52\n",
"2020-01-26 08:20:15,193 Epoch 52 Step: 2300 Batch Loss: 1.752498 Tokens per Sec: 13183, Lr: 0.000210\n",
"2020-01-26 08:21:01,361 Example #0\n",
"2020-01-26 08:21:01,362 \tSource: I WAS raised in Graz , Austria .\n",
"2020-01-26 08:21:01,362 \tReference: AGBAẸBHO natiọle Graz bhi Austria , ọle mẹn da wanre .\n",
"2020-01-26 08:21:01,362 \tHypothesis: Mẹn da ha mhọn urẹọbhọ bi mẹn .\n",
"2020-01-26 08:21:01,362 Example #1\n",
"2020-01-26 08:21:01,363 \tSource: In contrast with the people who show the widespread lack of love today , those who worship Jehovah have genuine love for their fellow man .\n",
"2020-01-26 08:21:01,363 \tReference: Ene ga iJehova ẹlẹnan wo mhọn oyẹẹ da ibo ele , ele bha diabe ene iga Jehova ne bha hoẹmhọn ibo ele .\n",
"2020-01-26 08:21:01,363 \tHypothesis: Ene ikpẹ nan wo manman re izebhudu nin ele , ele wo manman mun oga mhọn nọnsẹn rẹ ha mhọn nọnsẹn . Ọle da ene ẹbho nan erọnmhọn ji Jehova .\n",
"2020-01-26 08:21:01,363 Example #2\n",
"2020-01-26 08:21:01,364 \tSource: Today , we live as foreigners , as it were , in a world that has been morally and spiritually corrupted by Babylon the Great , the world empire of false religion , “ a dwelling place of demons . ”\n",
"2020-01-26 08:21:01,364 \tReference: Inian mhan diabi eriọbhe bhi ẹkẹ ọne agbọn nan nin oga ohoghe ria a . Babylon nọn khua a tie ene oga ohoghe nan , ele da dọ kiẹn eji ẹlinmhin ne imhẹn da nyẹnlẹn . ( Rev .\n",
"2020-01-26 08:21:01,364 \tHypothesis: Ẹlẹnan nian , mhan ki dọ lẹn ghe , mhan ki dọ lẹn otọ emhin rebhe ne ribhi Baibo , ranmhude mhan guanọ nin ọle dọ ha yi ọkpa bhi ọne agbọn nan , ranmhude ọne agbọn nan da sẹyẹ wo ha yi ojie . ( Matt .\n",
"2020-01-26 08:21:01,364 Example #3\n",
"2020-01-26 08:21:01,365 \tSource: We should also strive to help others spiritually .\n",
"2020-01-26 08:21:01,365 \tReference: Ahamiẹn mhan re ẹghe bhi otọ rẹ ha luẹ iBaibo , yẹ deba ene gene guanọ nin ele ga iJehova ha muobọ , ọ dẹ rẹkpa mhan rẹ ziẹn ikolu nin mhan bi Jehova koko mhọnlẹn .\n",
"2020-01-26 08:21:01,365 \tHypothesis: Mhan dẹ sabọ rẹkpa mhan rẹ ha mhọn ọfure ọsaje .\n",
"2020-01-26 08:21:01,365 Validation result (greedy) at epoch 52, step 2300: bleu: 4.99, loss: 75371.0000, ppl: 28.2491, duration: 46.1714s\n",
"2020-01-26 08:21:06,924 Epoch 52: total training loss 84.63\n",
"2020-01-26 08:21:06,924 EPOCH 53\n",
"2020-01-26 08:21:14,018 Epoch 53: total training loss 85.55\n",
"2020-01-26 08:21:14,018 EPOCH 54\n",
"2020-01-26 08:21:17,127 Epoch 54 Step: 2400 Batch Loss: 2.010780 Tokens per Sec: 13031, Lr: 0.000210\n",
"2020-01-26 08:22:03,302 Example #0\n",
"2020-01-26 08:22:03,303 \tSource: I WAS raised in Graz , Austria .\n",
"2020-01-26 08:22:03,303 \tReference: AGBAẸBHO natiọle Graz bhi Austria , ọle mẹn da wanre .\n",
"2020-01-26 08:22:03,303 \tHypothesis: Mẹn da ha mhọn emhanmhan nin mẹn ha mhọnlẹn .\n",
"2020-01-26 08:22:03,303 Example #1\n",
"2020-01-26 08:22:03,304 \tSource: In contrast with the people who show the widespread lack of love today , those who worship Jehovah have genuine love for their fellow man .\n",
"2020-01-26 08:22:03,304 \tReference: Ene ga iJehova ẹlẹnan wo mhọn oyẹẹ da ibo ele , ele bha diabe ene iga Jehova ne bha hoẹmhọn ibo ele .\n",
"2020-01-26 08:22:03,304 \tHypothesis: Ene ikpẹ nan wo manman re egbe khọkhọ iJehova bhi iẹnlẹn ọsi eria ne bunbun . Ọle wo manman ha mhọn urẹọbhọ bi ene ẹbho nan rebhe .\n",
"2020-01-26 08:22:03,304 Example #2\n",
"2020-01-26 08:22:03,305 \tSource: Today , we live as foreigners , as it were , in a world that has been morally and spiritually corrupted by Babylon the Great , the world empire of false religion , “ a dwelling place of demons . ”\n",
"2020-01-26 08:22:03,305 \tReference: Inian mhan diabi eriọbhe bhi ẹkẹ ọne agbọn nan nin oga ohoghe ria a . Babylon nọn khua a tie ene oga ohoghe nan , ele da dọ kiẹn eji ẹlinmhin ne imhẹn da nyẹnlẹn . ( Rev .\n",
"2020-01-26 08:22:03,305 \tHypothesis: Ẹlẹnan nian , mhan ki dọ lẹn ghe , Jehova da taman mhan ghe , nin mhan hẹi ha mhọn ọne isẹhoa nan rẹ lu emhin , ranmhude ọnan da yẹ re izebhudu nin ẹbho ne bunbun . ( Matt .\n",
"2020-01-26 08:22:03,305 Example #3\n",
"2020-01-26 08:22:03,306 \tSource: We should also strive to help others spiritually .\n",
"2020-01-26 08:22:03,306 \tReference: Ahamiẹn mhan re ẹghe bhi otọ rẹ ha luẹ iBaibo , yẹ deba ene gene guanọ nin ele ga iJehova ha muobọ , ọ dẹ rẹkpa mhan rẹ ziẹn ikolu nin mhan bi Jehova koko mhọnlẹn .\n",
"2020-01-26 08:22:03,306 \tHypothesis: Mhan dẹ sabọ rẹkpa mhan rẹ ha mhọn okugbe nọn khiale .\n",
"2020-01-26 08:22:03,306 Validation result (greedy) at epoch 54, step 2400: bleu: 5.14, loss: 76095.4609, ppl: 29.1710, duration: 46.1789s\n",
"2020-01-26 08:22:07,274 Epoch 54: total training loss 84.40\n",
"2020-01-26 08:22:07,275 EPOCH 55\n",
"2020-01-26 08:22:14,369 Epoch 55: total training loss 83.18\n",
"2020-01-26 08:22:14,369 EPOCH 56\n",
"2020-01-26 08:22:19,048 Epoch 56 Step: 2500 Batch Loss: 1.566270 Tokens per Sec: 12842, Lr: 0.000210\n",
"2020-01-26 08:23:05,241 Example #0\n",
"2020-01-26 08:23:05,242 \tSource: I WAS raised in Graz , Austria .\n",
"2020-01-26 08:23:05,242 \tReference: AGBAẸBHO natiọle Graz bhi Austria , ọle mẹn da wanre .\n",
"2020-01-26 08:23:05,243 \tHypothesis: Mẹn da ha riale ghe mẹn dẹ mun mẹn ọbhi egbe .\n",
"2020-01-26 08:23:05,243 Example #1\n",
"2020-01-26 08:23:05,243 \tSource: In contrast with the people who show the widespread lack of love today , those who worship Jehovah have genuine love for their fellow man .\n",
"2020-01-26 08:23:05,244 \tReference: Ene ga iJehova ẹlẹnan wo mhọn oyẹẹ da ibo ele , ele bha diabe ene iga Jehova ne bha hoẹmhọn ibo ele .\n",
"2020-01-26 08:23:05,244 \tHypothesis: Ene ikpẹ nan wo manman rẹkpa ele rẹ lẹn ghe , ele wo mun oga mhọn nọnsẹn nin ele rẹ ha mhọn ọne ahu nan . Ọle wo manman kaka .\n",
"2020-01-26 08:23:05,244 Example #2\n",
"2020-01-26 08:23:05,244 \tSource: Today , we live as foreigners , as it were , in a world that has been morally and spiritually corrupted by Babylon the Great , the world empire of false religion , “ a dwelling place of demons . ”\n",
"2020-01-26 08:23:05,244 \tReference: Inian mhan diabi eriọbhe bhi ẹkẹ ọne agbọn nan nin oga ohoghe ria a . Babylon nọn khua a tie ene oga ohoghe nan , ele da dọ kiẹn eji ẹlinmhin ne imhẹn da nyẹnlẹn . ( Rev .\n",
"2020-01-26 08:23:05,245 \tHypothesis: Ẹlẹnan nian , mhan ki dọ lẹn ghe , mhan dẹ sabọ re izebhudu nin ibhio mhan ne ribhi ọne agbọn nan , ranmhude mhan khin , ranmhude ọnan da yọle : “ Bha wo re ọne isẹhoa nan rẹ lu emhin ne imhẹn . ”\n",
"2020-01-26 08:23:05,245 Example #3\n",
"2020-01-26 08:23:05,245 \tSource: We should also strive to help others spiritually .\n",
"2020-01-26 08:23:05,245 \tReference: Ahamiẹn mhan re ẹghe bhi otọ rẹ ha luẹ iBaibo , yẹ deba ene gene guanọ nin ele ga iJehova ha muobọ , ọ dẹ rẹkpa mhan rẹ ziẹn ikolu nin mhan bi Jehova koko mhọnlẹn .\n",
"2020-01-26 08:23:05,245 \tHypothesis: Mhan dẹ sabọ rẹkpa mhan rẹ ha lu emhin kpataki .\n",
"2020-01-26 08:23:05,246 Validation result (greedy) at epoch 56, step 2500: bleu: 5.46, loss: 76564.3125, ppl: 29.7836, duration: 46.1973s\n",
"2020-01-26 08:23:07,622 Epoch 56: total training loss 82.02\n",
"2020-01-26 08:23:07,623 EPOCH 57\n",
"2020-01-26 08:23:14,710 Epoch 57: total training loss 80.56\n",
"2020-01-26 08:23:14,710 EPOCH 58\n",
"2020-01-26 08:23:20,983 Epoch 58 Step: 2600 Batch Loss: 2.045136 Tokens per Sec: 12897, Lr: 0.000210\n",
"2020-01-26 08:24:07,178 Example #0\n",
"2020-01-26 08:24:07,178 \tSource: I WAS raised in Graz , Austria .\n",
"2020-01-26 08:24:07,179 \tReference: AGBAẸBHO natiọle Graz bhi Austria , ọle mẹn da wanre .\n",
"2020-01-26 08:24:07,179 \tHypothesis: Mẹn da wo ha lu iwẹnna ọkanẹfan .\n",
"2020-01-26 08:24:07,179 Example #1\n",
"2020-01-26 08:24:07,179 \tSource: In contrast with the people who show the widespread lack of love today , those who worship Jehovah have genuine love for their fellow man .\n",
"2020-01-26 08:24:07,180 \tReference: Ene ga iJehova ẹlẹnan wo mhọn oyẹẹ da ibo ele , ele bha diabe ene iga Jehova ne bha hoẹmhọn ibo ele .\n",
"2020-01-26 08:24:07,180 \tHypothesis: Ene ikpẹ nan wo manman re izebhudu nin ele , ọle ene ga iJehova wo manman ha mhọn urẹọbhọ da ẹbho ne bunbun .\n",
"2020-01-26 08:24:07,180 Example #2\n",
"2020-01-26 08:24:07,180 \tSource: Today , we live as foreigners , as it were , in a world that has been morally and spiritually corrupted by Babylon the Great , the world empire of false religion , “ a dwelling place of demons . ”\n",
"2020-01-26 08:24:07,181 \tReference: Inian mhan diabi eriọbhe bhi ẹkẹ ọne agbọn nan nin oga ohoghe ria a . Babylon nọn khua a tie ene oga ohoghe nan , ele da dọ kiẹn eji ẹlinmhin ne imhẹn da nyẹnlẹn . ( Rev .\n",
"2020-01-26 08:24:07,181 \tHypothesis: Ẹlẹnan nian , mhan ki dọ lẹn ghe , mhan da ha mhọn oyẹẹ da ẹbho ne ribhi ẹkẹ agbotu nọnsọle , ranmhude mhan da ha yi ọmọẹ ọle . ( Matt .\n",
"2020-01-26 08:24:07,181 Example #3\n",
"2020-01-26 08:24:07,182 \tSource: We should also strive to help others spiritually .\n",
"2020-01-26 08:24:07,182 \tReference: Ahamiẹn mhan re ẹghe bhi otọ rẹ ha luẹ iBaibo , yẹ deba ene gene guanọ nin ele ga iJehova ha muobọ , ọ dẹ rẹkpa mhan rẹ ziẹn ikolu nin mhan bi Jehova koko mhọnlẹn .\n",
"2020-01-26 08:24:07,182 \tHypothesis: Mhan dẹ sabọ rẹkpa mhan rẹ ha lu emhin kpataki .\n",
"2020-01-26 08:24:07,182 Validation result (greedy) at epoch 58, step 2600: bleu: 5.29, loss: 77054.5312, ppl: 30.4379, duration: 46.1992s\n",
"2020-01-26 08:24:07,996 Epoch 58: total training loss 79.56\n",
"2020-01-26 08:24:07,996 EPOCH 59\n",
"2020-01-26 08:24:15,070 Epoch 59: total training loss 77.70\n",
"2020-01-26 08:24:15,070 EPOCH 60\n",
"2020-01-26 08:24:22,125 Epoch 60: total training loss 76.92\n",
"2020-01-26 08:24:22,125 EPOCH 61\n",
"2020-01-26 08:24:22,936 Epoch 61 Step: 2700 Batch Loss: 1.487003 Tokens per Sec: 11664, Lr: 0.000147\n",
"2020-01-26 08:25:09,161 Example #0\n",
"2020-01-26 08:25:09,162 \tSource: I WAS raised in Graz , Austria .\n",
"2020-01-26 08:25:09,162 \tReference: AGBAẸBHO natiọle Graz bhi Austria , ọle mẹn da wanre .\n",
"2020-01-26 08:25:09,163 \tHypothesis: Mẹn da wo ha mhọn emhanmhan nin mẹn ha mhọnlẹn .\n",
"2020-01-26 08:25:09,163 Example #1\n",
"2020-01-26 08:25:09,163 \tSource: In contrast with the people who show the widespread lack of love today , those who worship Jehovah have genuine love for their fellow man .\n",
"2020-01-26 08:25:09,163 \tReference: Ene ga iJehova ẹlẹnan wo mhọn oyẹẹ da ibo ele , ele bha diabe ene iga Jehova ne bha hoẹmhọn ibo ele .\n",
"2020-01-26 08:25:09,163 \tHypothesis: Ene ikpẹ nan wo manman re egbe khọkhọ iJehova bhi iẹnlẹn nọnsele , ọle hi ene ẹbho ne mhọn ọyẹẹ da ẹbho ne mhọn akan - ehọ .\n",
"2020-01-26 08:25:09,164 Example #2\n",
"2020-01-26 08:25:09,164 \tSource: Today , we live as foreigners , as it were , in a world that has been morally and spiritually corrupted by Babylon the Great , the world empire of false religion , “ a dwelling place of demons . ”\n",
"2020-01-26 08:25:09,164 \tReference: Inian mhan diabi eriọbhe bhi ẹkẹ ọne agbọn nan nin oga ohoghe ria a . Babylon nọn khua a tie ene oga ohoghe nan , ele da dọ kiẹn eji ẹlinmhin ne imhẹn da nyẹnlẹn . ( Rev .\n",
"2020-01-26 08:25:09,164 \tHypothesis: Ẹlẹnan nian , mhan ki dọ lẹn ghe , mhan da ha mhọn oyẹẹ da ẹbho ne ribhi ẹkẹ agbotu , ranmhude mhan wo ha mhọn elin ọsi Agbejele , ranmhude emhin nin ọle daghe ghe ọle daghe emhin nọn imhẹn . ( Matt .\n",
"2020-01-26 08:25:09,164 Example #3\n",
"2020-01-26 08:25:09,165 \tSource: We should also strive to help others spiritually .\n",
"2020-01-26 08:25:09,165 \tReference: Ahamiẹn mhan re ẹghe bhi otọ rẹ ha luẹ iBaibo , yẹ deba ene gene guanọ nin ele ga iJehova ha muobọ , ọ dẹ rẹkpa mhan rẹ ziẹn ikolu nin mhan bi Jehova koko mhọnlẹn .\n",
"2020-01-26 08:25:09,165 \tHypothesis: Mhan dẹ sabọ rẹkpa mhan rẹ ha mhọn okugbe nọn khua .\n",
"2020-01-26 08:25:09,165 Validation result (greedy) at epoch 61, step 2700: bleu: 5.55, loss: 77714.9219, ppl: 31.3421, duration: 46.2290s\n",
"2020-01-26 08:25:15,491 Epoch 61: total training loss 75.74\n",
"2020-01-26 08:25:15,492 EPOCH 62\n",
"2020-01-26 08:25:22,583 Epoch 62: total training loss 75.10\n",
"2020-01-26 08:25:22,583 EPOCH 63\n",
"2020-01-26 08:25:24,964 Epoch 63 Step: 2800 Batch Loss: 1.604341 Tokens per Sec: 12225, Lr: 0.000147\n",
"2020-01-26 08:26:11,199 Example #0\n",
"2020-01-26 08:26:11,200 \tSource: I WAS raised in Graz , Austria .\n",
"2020-01-26 08:26:11,200 \tReference: AGBAẸBHO natiọle Graz bhi Austria , ọle mẹn da wanre .\n",
"2020-01-26 08:26:11,200 \tHypothesis: Mẹn da wo ha ghọnghọn ranmhude mẹn guanọ nin mẹn rẹ lu .\n",
"2020-01-26 08:26:11,201 Example #1\n",
"2020-01-26 08:26:11,201 \tSource: In contrast with the people who show the widespread lack of love today , those who worship Jehovah have genuine love for their fellow man .\n",
"2020-01-26 08:26:11,201 \tReference: Ene ga iJehova ẹlẹnan wo mhọn oyẹẹ da ibo ele , ele bha diabe ene iga Jehova ne bha hoẹmhọn ibo ele .\n",
"2020-01-26 08:26:11,201 \tHypothesis: Ene ikpẹ nan wo manman rẹkpa ene ga iJehova bhi uwedẹ nin ele rẹ wo ha mhọn okpẹhio , ele wo wo mun ekpẹn nin ene ga iJehova .\n",
"2020-01-26 08:26:11,201 Example #2\n",
"2020-01-26 08:26:11,202 \tSource: Today , we live as foreigners , as it were , in a world that has been morally and spiritually corrupted by Babylon the Great , the world empire of false religion , “ a dwelling place of demons . ”\n",
"2020-01-26 08:26:11,202 \tReference: Inian mhan diabi eriọbhe bhi ẹkẹ ọne agbọn nan nin oga ohoghe ria a . Babylon nọn khua a tie ene oga ohoghe nan , ele da dọ kiẹn eji ẹlinmhin ne imhẹn da nyẹnlẹn . ( Rev .\n",
"2020-01-26 08:26:11,202 \tHypothesis: Ẹlẹnan nian , mhan ki dọ lẹn ghe , mhan da ha mhọn oyẹẹ da ẹbho ne ribhi ẹkẹ agbotu bi emhin rebhe , nin ọle da sẹyẹ ha yi ọkpa bhi ọne agbọn nan . ( Matt .\n",
"2020-01-26 08:26:11,202 Example #3\n",
"2020-01-26 08:26:11,203 \tSource: We should also strive to help others spiritually .\n",
"2020-01-26 08:26:11,203 \tReference: Ahamiẹn mhan re ẹghe bhi otọ rẹ ha luẹ iBaibo , yẹ deba ene gene guanọ nin ele ga iJehova ha muobọ , ọ dẹ rẹkpa mhan rẹ ziẹn ikolu nin mhan bi Jehova koko mhọnlẹn .\n",
"2020-01-26 08:26:11,203 \tHypothesis: Mhan dẹ sabọ rẹkpa mhan rẹ ha mhọn okugbe nọn khiale .\n",
"2020-01-26 08:26:11,203 Validation result (greedy) at epoch 63, step 2800: bleu: 5.55, loss: 78130.3047, ppl: 31.9246, duration: 46.2389s\n",
"2020-01-26 08:26:15,939 Epoch 63: total training loss 74.24\n",
"2020-01-26 08:26:15,939 EPOCH 64\n",
"2020-01-26 08:26:22,978 Epoch 64: total training loss 73.16\n",
"2020-01-26 08:26:22,979 EPOCH 65\n",
"2020-01-26 08:26:26,949 Epoch 65 Step: 2900 Batch Loss: 1.575985 Tokens per Sec: 12829, Lr: 0.000147\n",
"2020-01-26 08:27:13,220 Example #0\n",
"2020-01-26 08:27:13,221 \tSource: I WAS raised in Graz , Austria .\n",
"2020-01-26 08:27:13,222 \tReference: AGBAẸBHO natiọle Graz bhi Austria , ọle mẹn da wanre .\n",
"2020-01-26 08:27:13,222 \tHypothesis: Mẹn da wo ha ghọnghọn .\n",
"2020-01-26 08:27:13,222 Example #1\n",
"2020-01-26 08:27:13,223 \tSource: In contrast with the people who show the widespread lack of love today , those who worship Jehovah have genuine love for their fellow man .\n",
"2020-01-26 08:27:13,223 \tReference: Ene ga iJehova ẹlẹnan wo mhọn oyẹẹ da ibo ele , ele bha diabe ene iga Jehova ne bha hoẹmhọn ibo ele .\n",
"2020-01-26 08:27:13,223 \tHypothesis: Ene ikpẹ nan wo rẹkpa ene ga iJehova bhi iẹnlẹn nọnsele , ọle ene ga iJehova wo manman ha mhọn ahu nin ele rẹ wo ha mhọn okpẹhio .\n",
"2020-01-26 08:27:13,223 Example #2\n",
"2020-01-26 08:27:13,223 \tSource: Today , we live as foreigners , as it were , in a world that has been morally and spiritually corrupted by Babylon the Great , the world empire of false religion , “ a dwelling place of demons . ”\n",
"2020-01-26 08:27:13,224 \tReference: Inian mhan diabi eriọbhe bhi ẹkẹ ọne agbọn nan nin oga ohoghe ria a . Babylon nọn khua a tie ene oga ohoghe nan , ele da dọ kiẹn eji ẹlinmhin ne imhẹn da nyẹnlẹn . ( Rev .\n",
"2020-01-26 08:27:13,224 \tHypothesis: Ẹlẹnan nian , mhan ki dọ lẹn ghe , Jehova da re oyẹẹ man ẹbho , nin ele da sabọ ha yi ẹbho ne ribhi ọne agbọn nan , ranmhude ọnan da re izebhudu nin ele . ( Matt .\n",
"2020-01-26 08:27:13,224 Example #3\n",
"2020-01-26 08:27:13,224 \tSource: We should also strive to help others spiritually .\n",
"2020-01-26 08:27:13,225 \tReference: Ahamiẹn mhan re ẹghe bhi otọ rẹ ha luẹ iBaibo , yẹ deba ene gene guanọ nin ele ga iJehova ha muobọ , ọ dẹ rẹkpa mhan rẹ ziẹn ikolu nin mhan bi Jehova koko mhọnlẹn .\n",
"2020-01-26 08:27:13,225 \tHypothesis: Mhan dẹ sabọ rẹkpa mhan rẹ ha mun oga mhọn nọnsẹn .\n",
"2020-01-26 08:27:13,225 Validation result (greedy) at epoch 65, step 2900: bleu: 5.43, loss: 78853.4531, ppl: 32.9645, duration: 46.2759s\n",
"2020-01-26 08:27:16,394 Epoch 65: total training loss 72.62\n",
"2020-01-26 08:27:16,394 EPOCH 66\n",
"2020-01-26 08:27:23,459 Epoch 66: total training loss 71.77\n",
"2020-01-26 08:27:23,460 EPOCH 67\n",
"2020-01-26 08:27:28,981 Epoch 67 Step: 3000 Batch Loss: 1.416852 Tokens per Sec: 12840, Lr: 0.000147\n",
"2020-01-26 08:28:15,253 Example #0\n",
"2020-01-26 08:28:15,254 \tSource: I WAS raised in Graz , Austria .\n",
"2020-01-26 08:28:15,254 \tReference: AGBAẸBHO natiọle Graz bhi Austria , ọle mẹn da wanre .\n",
"2020-01-26 08:28:15,254 \tHypothesis: Mẹn da wo ha ghọnghọn .\n",
"2020-01-26 08:28:15,254 Example #1\n",
"2020-01-26 08:28:15,255 \tSource: In contrast with the people who show the widespread lack of love today , those who worship Jehovah have genuine love for their fellow man .\n",
"2020-01-26 08:28:15,255 \tReference: Ene ga iJehova ẹlẹnan wo mhọn oyẹẹ da ibo ele , ele bha diabe ene iga Jehova ne bha hoẹmhọn ibo ele .\n",
"2020-01-26 08:28:15,255 \tHypothesis: Ene ikpẹ nan wo rẹkpa ene biẹ ọmọn bi ibhio mhan nan wo lẹn ghe , ele wo hoẹmhọn iJehova . Ọle wo ha mhọn urẹọbhọ nin ele mhọnlẹn .\n",
"2020-01-26 08:28:15,255 Example #2\n",
"2020-01-26 08:28:15,256 \tSource: Today , we live as foreigners , as it were , in a world that has been morally and spiritually corrupted by Babylon the Great , the world empire of false religion , “ a dwelling place of demons . ”\n",
"2020-01-26 08:28:15,256 \tReference: Inian mhan diabi eriọbhe bhi ẹkẹ ọne agbọn nan nin oga ohoghe ria a . Babylon nọn khua a tie ene oga ohoghe nan , ele da dọ kiẹn eji ẹlinmhin ne imhẹn da nyẹnlẹn . ( Rev .\n",
"2020-01-26 08:28:15,256 \tHypothesis: Ẹlẹnan nian , mhan ki dọ lẹn ghe , Jehova wo re ọne isẹhoa nan rẹ lu iriọ yẹ , mhan ki dọ taman ele ghe , ọiyi ebe ebe rebhe nin ọle ha rẹ re obọ kpa bhi ọne agbọn nan . ” ( Matt .\n",
"2020-01-26 08:28:15,256 Example #3\n",
"2020-01-26 08:28:15,256 \tSource: We should also strive to help others spiritually .\n",
"2020-01-26 08:28:15,256 \tReference: Ahamiẹn mhan re ẹghe bhi otọ rẹ ha luẹ iBaibo , yẹ deba ene gene guanọ nin ele ga iJehova ha muobọ , ọ dẹ rẹkpa mhan rẹ ziẹn ikolu nin mhan bi Jehova koko mhọnlẹn .\n",
"2020-01-26 08:28:15,257 \tHypothesis: Emhin kpataki nọn nin mhan rẹ sabọ rẹkpa mhan rẹ ha mhọn okugbe .\n",
"2020-01-26 08:28:15,257 Validation result (greedy) at epoch 67, step 3000: bleu: 5.81, loss: 79436.3047, ppl: 33.8273, duration: 46.2752s\n",
"2020-01-26 08:28:16,796 Epoch 67: total training loss 70.84\n",
"2020-01-26 08:28:16,796 EPOCH 68\n",
"2020-01-26 08:28:23,845 Epoch 68: total training loss 70.11\n",
"2020-01-26 08:28:23,846 EPOCH 69\n",
"2020-01-26 08:28:30,885 Epoch 69 Step: 3100 Batch Loss: 1.464702 Tokens per Sec: 12948, Lr: 0.000147\n",
"2020-01-26 08:29:17,118 Example #0\n",
"2020-01-26 08:29:17,119 \tSource: I WAS raised in Graz , Austria .\n",
"2020-01-26 08:29:17,120 \tReference: AGBAẸBHO natiọle Graz bhi Austria , ọle mẹn da wanre .\n",
"2020-01-26 08:29:17,120 \tHypothesis: Mẹn da wo ha ghọnghọn .\n",
"2020-01-26 08:29:17,120 Example #1\n",
"2020-01-26 08:29:17,120 \tSource: In contrast with the people who show the widespread lack of love today , those who worship Jehovah have genuine love for their fellow man .\n",
"2020-01-26 08:29:17,121 \tReference: Ene ga iJehova ẹlẹnan wo mhọn oyẹẹ da ibo ele , ele bha diabe ene iga Jehova ne bha hoẹmhọn ibo ele .\n",
"2020-01-26 08:29:17,121 \tHypothesis: Ene ikpẹ nan wo rẹkpa ene ga iJehova bhi ẹghe nin ele rẹ wo ha mhọn okpẹhio , ele wo mun ekpẹn nin ẹbho ne bunbun .\n",
"2020-01-26 08:29:17,121 Example #2\n",
"2020-01-26 08:29:17,121 \tSource: Today , we live as foreigners , as it were , in a world that has been morally and spiritually corrupted by Babylon the Great , the world empire of false religion , “ a dwelling place of demons . ”\n",
"2020-01-26 08:29:17,121 \tReference: Inian mhan diabi eriọbhe bhi ẹkẹ ọne agbọn nan nin oga ohoghe ria a . Babylon nọn khua a tie ene oga ohoghe nan , ele da dọ kiẹn eji ẹlinmhin ne imhẹn da nyẹnlẹn . ( Rev .\n",
"2020-01-26 08:29:17,121 \tHypothesis: Ẹlẹnan nian , mhan ki dọ lẹn sẹbhọ ghe , Jehova da re ọne isẹhoa nan rẹ lu emhin rebhe , nin mhan rẹ re izebhudu nin ẹbho ne ribhi ọne agbọn nan , ọle da sabọ re ọne otọ nan rebhe . ”\n",
"2020-01-26 08:29:17,122 Example #3\n",
"2020-01-26 08:29:17,122 \tSource: We should also strive to help others spiritually .\n",
"2020-01-26 08:29:17,122 \tReference: Ahamiẹn mhan re ẹghe bhi otọ rẹ ha luẹ iBaibo , yẹ deba ene gene guanọ nin ele ga iJehova ha muobọ , ọ dẹ rẹkpa mhan rẹ ziẹn ikolu nin mhan bi Jehova koko mhọnlẹn .\n",
"2020-01-26 08:29:17,122 \tHypothesis: Ọkhẹke nin mhan dọnmhegbe rẹ ha tuẹn okugbe nọnsẹmhan okhun .\n",
"2020-01-26 08:29:17,122 Validation result (greedy) at epoch 69, step 3100: bleu: 5.59, loss: 80199.3047, ppl: 34.9910, duration: 46.2372s\n",
"2020-01-26 08:29:17,126 Epoch 69: total training loss 69.29\n",
"2020-01-26 08:29:17,126 EPOCH 70\n",
"2020-01-26 08:29:24,193 Epoch 70: total training loss 68.78\n",
"2020-01-26 08:29:24,193 EPOCH 71\n",
"2020-01-26 08:29:31,245 Epoch 71: total training loss 68.11\n",
"2020-01-26 08:29:31,245 EPOCH 72\n",
"2020-01-26 08:29:32,829 Epoch 72 Step: 3200 Batch Loss: 1.396934 Tokens per Sec: 12896, Lr: 0.000147\n",
"2020-01-26 08:30:18,993 Example #0\n",
"2020-01-26 08:30:18,994 \tSource: I WAS raised in Graz , Austria .\n",
"2020-01-26 08:30:18,994 \tReference: AGBAẸBHO natiọle Graz bhi Austria , ọle mẹn da wanre .\n",
"2020-01-26 08:30:18,994 \tHypothesis: Mẹn da yẹ ha ghọnghọn ranmhude mẹn ki munhẹn ha lu .\n",
"2020-01-26 08:30:18,994 Example #1\n",
"2020-01-26 08:30:18,994 \tSource: In contrast with the people who show the widespread lack of love today , those who worship Jehovah have genuine love for their fellow man .\n",
"2020-01-26 08:30:18,995 \tReference: Ene ga iJehova ẹlẹnan wo mhọn oyẹẹ da ibo ele , ele bha diabe ene iga Jehova ne bha hoẹmhọn ibo ele .\n",
"2020-01-26 08:30:18,995 \tHypothesis: Ene ikpẹ nan wo rẹkpa ene ga iJehova bhi ẹghe nin ele rẹ dọ lẹn ghe Osẹnobulua wo hoẹmhọn ẹbho nekẹle . Ọle wo ha mhọn eji ele rẹ ka ka tẹmhọnlẹn .\n",
"2020-01-26 08:30:18,995 Example #2\n",
"2020-01-26 08:30:18,995 \tSource: Today , we live as foreigners , as it were , in a world that has been morally and spiritually corrupted by Babylon the Great , the world empire of false religion , “ a dwelling place of demons . ”\n",
"2020-01-26 08:30:18,996 \tReference: Inian mhan diabi eriọbhe bhi ẹkẹ ọne agbọn nan nin oga ohoghe ria a . Babylon nọn khua a tie ene oga ohoghe nan , ele da dọ kiẹn eji ẹlinmhin ne imhẹn da nyẹnlẹn . ( Rev .\n",
"2020-01-26 08:30:18,996 \tHypothesis: Ẹlẹnan nian , mhan ki dọ lẹn ghe , mhan da ha re oyẹẹ man ẹbho , yẹ daghe ghe , nin ele rẹ ha ribhi ọne agbọn nan , ọle hi : “ ene ga ọle a da miẹn elele bhi ọne agbọn nan . ”\n",
"2020-01-26 08:30:18,996 Example #3\n",
"2020-01-26 08:30:18,996 \tSource: We should also strive to help others spiritually .\n",
"2020-01-26 08:30:18,996 \tReference: Ahamiẹn mhan re ẹghe bhi otọ rẹ ha luẹ iBaibo , yẹ deba ene gene guanọ nin ele ga iJehova ha muobọ , ọ dẹ rẹkpa mhan rẹ ziẹn ikolu nin mhan bi Jehova koko mhọnlẹn .\n",
"2020-01-26 08:30:18,997 \tHypothesis: Mhan dẹ yẹ sabọ rẹkpa mhan rẹ ha mun oga mhọn nọnsẹn .\n",
"2020-01-26 08:30:18,997 Validation result (greedy) at epoch 72, step 3200: bleu: 5.48, loss: 80505.1406, ppl: 35.4686, duration: 46.1670s\n",
"2020-01-26 08:30:24,488 Epoch 72: total training loss 67.09\n",
"2020-01-26 08:30:24,489 EPOCH 73\n",
"2020-01-26 08:30:31,521 Epoch 73: total training loss 66.03\n",
"2020-01-26 08:30:31,522 EPOCH 74\n",
"2020-01-26 08:30:34,707 Epoch 74 Step: 3300 Batch Loss: 1.702576 Tokens per Sec: 13220, Lr: 0.000103\n",
"Traceback (most recent call last):\n",
" File \"/usr/lib/python3.6/runpy.py\", line 193, in _run_module_as_main\n",
" \"__main__\", mod_spec)\n",
" File \"/usr/lib/python3.6/runpy.py\", line 85, in _run_code\n",
" exec(code, run_globals)\n",
" File \"/usr/local/lib/python3.6/dist-packages/joeynmt/__main__.py\", line 41, in <module>\n",
" main()\n",
" File \"/usr/local/lib/python3.6/dist-packages/joeynmt/__main__.py\", line 29, in main\n",
" train(cfg_file=args.config_path)\n",
" File \"/usr/local/lib/python3.6/dist-packages/joeynmt/training.py\", line 596, in train\n",
" trainer.train_and_validate(train_data=train_data, valid_data=dev_data)\n",
" File \"/usr/local/lib/python3.6/dist-packages/joeynmt/training.py\", line 338, in train_and_validate\n",
" batch_type=self.eval_batch_type\n",
" File \"/usr/local/lib/python3.6/dist-packages/joeynmt/prediction.py\", line 106, in validate_on_data\n",
" max_output_length=max_output_length)\n",
" File \"/usr/local/lib/python3.6/dist-packages/joeynmt/model.py\", line 170, in run_batch\n",
" max_output_length=max_output_length)\n",
" File \"/usr/local/lib/python3.6/dist-packages/joeynmt/search.py\", line 43, in greedy\n",
" decoder, encoder_output, encoder_hidden)\n",
" File \"/usr/local/lib/python3.6/dist-packages/joeynmt/search.py\", line 139, in transformer_greedy\n",
" trg_mask=trg_mask\n",
" File \"/usr/local/lib/python3.6/dist-packages/torch/nn/modules/module.py\", line 541, in __call__\n",
" result = self.forward(*input, **kwargs)\n",
" File \"/usr/local/lib/python3.6/dist-packages/joeynmt/decoders.py\", line 514, in forward\n",
" trg_embed.size(1)).type_as(trg_mask)\n",
"KeyboardInterrupt\n"
],
"name": "stdout"
}
]
},
{
"cell_type": "code",
"metadata": {
"colab_type": "code",
"id": "n94wlrCjVc17",
"outputId": "a42675ce-50be-4ad1-ee11-877f6abfc194",
"colab": {
"base_uri": "https://localhost:8080/",
"height": 561
}
},
"source": [
"# Output our validation accuracy epoch 1-74\n",
"! cat \"$gdrive_path/models/${src}${tgt}_transformer/validations.txt\""
],
"execution_count": 10,
"outputs": [
{
"output_type": "stream",
"text": [
"Steps: 100\tLoss: 110740.54688\tPPL: 135.49428\tbleu: 0.00000\tLR: 0.00030000\t*\n",
"Steps: 200\tLoss: 103501.96875\tPPL: 98.30320\tbleu: 0.00000\tLR: 0.00030000\t*\n",
"Steps: 300\tLoss: 96958.10156\tPPL: 73.55095\tbleu: 0.00000\tLR: 0.00030000\t*\n",
"Steps: 400\tLoss: 90492.06250\tPPL: 55.22141\tbleu: 0.17124\tLR: 0.00030000\t*\n",
"Steps: 500\tLoss: 86351.70312\tPPL: 45.96205\tbleu: 0.76432\tLR: 0.00030000\t*\n",
"Steps: 600\tLoss: 83069.73438\tPPL: 39.73896\tbleu: 0.55221\tLR: 0.00030000\t*\n",
"Steps: 700\tLoss: 79955.37500\tPPL: 34.61469\tbleu: 1.23362\tLR: 0.00030000\t*\n",
"Steps: 800\tLoss: 78357.02344\tPPL: 32.24704\tbleu: 2.14242\tLR: 0.00030000\t*\n",
"Steps: 900\tLoss: 76491.79688\tPPL: 29.68803\tbleu: 2.67077\tLR: 0.00030000\t*\n",
"Steps: 1000\tLoss: 75343.29688\tPPL: 28.21441\tbleu: 2.41983\tLR: 0.00030000\t*\n",
"Steps: 1100\tLoss: 74969.68750\tPPL: 27.75099\tbleu: 2.74535\tLR: 0.00030000\t*\n",
"Steps: 1200\tLoss: 73839.72656\tPPL: 26.39521\tbleu: 3.15579\tLR: 0.00030000\t*\n",
"Steps: 1300\tLoss: 73582.29688\tPPL: 26.09572\tbleu: 3.21157\tLR: 0.00030000\t*\n",
"Steps: 1400\tLoss: 72614.81250\tPPL: 25.00021\tbleu: 3.39397\tLR: 0.00030000\t*\n",
"Steps: 1500\tLoss: 72724.75781\tPPL: 25.12235\tbleu: 3.90548\tLR: 0.00030000\t\n",
"Steps: 1600\tLoss: 72694.67188\tPPL: 25.08887\tbleu: 3.29865\tLR: 0.00030000\t\n",
"Steps: 1700\tLoss: 72884.24219\tPPL: 25.30059\tbleu: 4.02374\tLR: 0.00030000\t\n",
"Steps: 1800\tLoss: 73121.85938\tPPL: 25.56849\tbleu: 4.19265\tLR: 0.00030000\t\n",
"Steps: 1900\tLoss: 73039.21875\tPPL: 25.47499\tbleu: 4.41915\tLR: 0.00030000\t\n",
"Steps: 2000\tLoss: 74022.84375\tPPL: 26.61034\tbleu: 4.26710\tLR: 0.00021000\t\n",
"Steps: 2100\tLoss: 74151.10156\tPPL: 26.76206\tbleu: 4.64173\tLR: 0.00021000\t\n",
"Steps: 2200\tLoss: 74790.09375\tPPL: 27.53094\tbleu: 4.80778\tLR: 0.00021000\t\n",
"Steps: 2300\tLoss: 75371.00000\tPPL: 28.24909\tbleu: 4.99349\tLR: 0.00021000\t\n",
"Steps: 2400\tLoss: 76095.46094\tPPL: 29.17100\tbleu: 5.14330\tLR: 0.00021000\t\n",
"Steps: 2500\tLoss: 76564.31250\tPPL: 29.78362\tbleu: 5.45634\tLR: 0.00021000\t\n",
"Steps: 2600\tLoss: 77054.53125\tPPL: 30.43791\tbleu: 5.29034\tLR: 0.00014700\t\n",
"Steps: 2700\tLoss: 77714.92188\tPPL: 31.34212\tbleu: 5.54971\tLR: 0.00014700\t\n",
"Steps: 2800\tLoss: 78130.30469\tPPL: 31.92457\tbleu: 5.55277\tLR: 0.00014700\t\n",
"Steps: 2900\tLoss: 78853.45312\tPPL: 32.96452\tbleu: 5.42751\tLR: 0.00014700\t\n",
"Steps: 3000\tLoss: 79436.30469\tPPL: 33.82732\tbleu: 5.81458\tLR: 0.00014700\t\n",
"Steps: 3100\tLoss: 80199.30469\tPPL: 34.99101\tbleu: 5.58647\tLR: 0.00014700\t\n",
"Steps: 3200\tLoss: 80505.14062\tPPL: 35.46862\tbleu: 5.48380\tLR: 0.00010290\t\n"
],
"name": "stdout"
}
]
},
{
"cell_type": "code",
"metadata": {
"colab_type": "code",
"id": "66WhRE9lIhoD",
"outputId": "e2a7d710-9045-4c5c-b5c9-3ae8a1b944bf",
"colab": {
"base_uri": "https://localhost:8080/",
"height": 68
}
},
"source": [
"# Test our model\n",
"! cd joeynmt; python3 -m joeynmt test \"$gdrive_path/models/${src}${tgt}_transformer/config.yaml\""
],
"execution_count": 11,
"outputs": [
{
"output_type": "stream",
"text": [
"2020-01-26 08:31:49,176 Hello! This is Joey-NMT.\n",
"2020-01-26 08:32:09,525 dev bleu: 3.39 [Beam search decoding with beam size = 5 and alpha = 1.0]\n",
"2020-01-26 08:32:13,914 test bleu: 5.30 [Beam search decoding with beam size = 5 and alpha = 1.0]\n"
],
"name": "stdout"
}
]
}
]
} |