File size: 135,753 Bytes
78aa4ee |
1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27 28 29 30 31 32 33 34 35 36 37 38 39 40 41 42 43 44 45 46 47 48 49 50 51 52 53 54 55 56 57 58 59 60 61 62 63 64 65 66 67 68 69 70 71 72 73 74 75 76 77 78 79 80 81 82 83 84 85 86 87 88 89 90 91 92 93 94 95 96 97 98 99 100 101 102 103 104 105 106 107 108 109 110 111 112 113 114 115 116 117 118 119 120 121 122 123 124 125 126 127 128 129 130 131 132 133 134 135 136 137 138 139 140 141 142 143 144 145 146 147 148 149 150 151 152 153 154 155 156 157 158 159 160 161 162 163 164 165 166 167 168 169 170 171 172 173 174 175 176 177 178 179 180 181 182 183 184 185 186 187 188 189 190 191 192 193 194 195 196 197 198 199 200 201 202 203 204 205 206 207 208 209 210 211 212 213 214 215 216 217 218 219 220 221 222 223 224 225 226 227 228 229 230 231 232 233 234 235 236 237 238 239 240 241 242 243 244 245 246 247 248 249 250 251 252 253 254 255 256 257 258 259 260 261 262 263 264 265 266 267 268 269 270 271 272 273 274 275 276 277 278 279 280 281 282 283 284 285 286 287 288 289 290 291 292 293 294 295 296 297 298 299 300 301 302 303 304 305 306 307 308 309 310 311 312 313 314 315 316 317 318 319 320 321 322 323 324 325 326 327 328 329 330 331 332 333 334 335 336 337 338 339 340 341 342 343 344 345 346 347 348 349 350 351 352 353 354 355 356 357 358 359 360 361 362 363 364 365 366 367 368 369 370 371 372 373 374 375 376 377 378 379 380 381 382 383 384 385 386 387 388 389 390 391 392 393 394 395 396 397 398 399 400 401 402 403 404 405 406 407 408 409 410 411 412 413 414 415 416 417 418 419 420 421 422 423 424 425 426 427 428 429 430 431 432 433 434 435 436 437 438 439 440 441 442 443 444 445 446 447 448 449 450 451 452 453 454 455 456 457 458 459 460 461 462 463 464 465 466 467 468 469 470 471 472 473 474 475 476 477 478 479 480 481 482 483 484 485 486 487 488 489 490 491 492 493 494 495 496 497 498 499 500 501 502 503 504 505 506 507 508 509 510 511 512 513 514 515 516 517 518 519 520 521 522 523 524 525 526 527 528 529 530 531 532 533 534 535 536 537 538 539 540 541 542 543 544 545 546 547 548 549 550 551 552 553 554 555 556 557 558 559 560 561 562 563 564 565 566 567 568 569 570 571 572 573 574 575 576 577 578 579 580 581 582 583 584 585 586 587 588 589 590 591 592 593 594 595 596 597 598 599 600 601 602 603 604 605 606 607 608 609 610 611 612 613 614 615 616 617 618 619 620 621 622 623 624 625 626 627 628 629 630 631 632 633 634 635 636 637 638 639 640 641 642 643 644 645 646 647 648 649 650 651 652 653 654 655 656 657 658 659 660 661 662 663 664 665 666 667 668 669 670 671 672 673 674 675 676 677 678 679 680 681 682 683 684 685 686 687 688 689 690 691 692 693 694 695 696 697 698 699 700 701 702 703 704 705 706 707 708 709 710 711 712 713 714 715 716 717 718 719 720 721 722 723 724 725 726 727 728 729 730 731 732 733 734 735 736 737 738 739 740 741 742 743 744 745 746 747 748 749 750 751 752 753 754 755 756 757 758 759 760 761 762 763 764 765 766 767 768 769 770 771 772 773 774 775 776 777 778 779 780 781 782 783 784 785 786 787 788 789 790 791 792 793 794 795 796 797 798 799 800 801 802 803 804 805 806 807 808 809 810 811 812 813 814 815 816 817 818 819 820 821 822 823 824 825 826 827 828 829 830 831 832 833 834 835 836 837 838 839 840 841 842 843 844 845 846 847 848 849 850 851 852 853 854 855 856 857 858 859 860 861 862 863 864 865 866 867 868 869 870 871 872 873 874 875 876 877 878 879 880 881 882 883 884 885 886 887 888 889 890 891 892 893 894 895 896 897 898 899 900 901 902 903 904 905 906 907 908 909 910 911 912 913 914 915 916 917 918 919 920 921 922 923 924 925 926 927 928 929 930 931 932 933 934 935 936 937 938 939 940 941 942 943 944 945 946 947 948 949 950 951 952 953 954 955 956 957 958 959 960 961 962 963 964 965 966 967 968 969 970 971 972 973 974 975 976 977 978 979 980 981 982 983 984 985 986 987 988 989 990 991 992 993 994 995 996 997 998 999 1000 1001 1002 1003 1004 1005 1006 1007 1008 1009 1010 1011 1012 1013 1014 1015 1016 1017 1018 1019 1020 1021 1022 1023 1024 1025 1026 1027 1028 1029 1030 1031 1032 1033 1034 1035 1036 1037 1038 1039 1040 1041 1042 1043 1044 1045 1046 1047 1048 1049 1050 1051 1052 1053 1054 1055 1056 1057 1058 1059 1060 1061 1062 1063 1064 1065 1066 1067 1068 1069 1070 1071 1072 1073 1074 1075 1076 1077 1078 1079 1080 1081 1082 1083 1084 1085 1086 1087 1088 1089 1090 1091 1092 1093 1094 1095 1096 1097 1098 1099 1100 1101 1102 1103 1104 1105 1106 1107 1108 1109 1110 1111 1112 1113 1114 1115 1116 1117 1118 1119 1120 1121 1122 1123 1124 1125 1126 1127 1128 1129 1130 1131 1132 1133 1134 1135 1136 1137 1138 1139 1140 1141 1142 1143 1144 1145 1146 1147 1148 1149 1150 1151 1152 1153 1154 1155 1156 1157 1158 1159 1160 1161 1162 1163 1164 1165 1166 1167 1168 1169 1170 1171 1172 1173 1174 1175 1176 1177 1178 1179 1180 1181 1182 1183 1184 1185 1186 1187 1188 1189 1190 1191 1192 1193 1194 1195 1196 1197 1198 1199 1200 1201 1202 1203 1204 1205 1206 1207 1208 1209 1210 1211 1212 1213 1214 1215 1216 1217 1218 1219 1220 1221 1222 1223 1224 1225 1226 1227 1228 1229 1230 1231 1232 1233 1234 1235 1236 1237 1238 1239 1240 1241 1242 1243 1244 1245 1246 1247 1248 1249 1250 1251 1252 1253 1254 1255 1256 1257 1258 1259 1260 1261 1262 1263 1264 1265 1266 1267 1268 1269 1270 1271 1272 1273 1274 1275 1276 1277 1278 1279 1280 1281 1282 1283 1284 1285 1286 1287 1288 1289 1290 1291 1292 1293 1294 1295 1296 1297 1298 1299 1300 1301 1302 1303 1304 1305 1306 1307 1308 1309 1310 1311 1312 1313 1314 1315 1316 1317 1318 1319 1320 1321 1322 1323 1324 1325 1326 1327 1328 1329 1330 1331 1332 1333 1334 1335 1336 1337 1338 1339 1340 1341 1342 1343 1344 1345 1346 1347 1348 1349 1350 1351 1352 1353 1354 1355 1356 1357 1358 1359 1360 1361 1362 1363 1364 1365 1366 1367 1368 1369 1370 1371 1372 1373 1374 1375 1376 1377 1378 1379 1380 1381 1382 1383 1384 1385 1386 1387 1388 1389 1390 1391 1392 1393 1394 1395 1396 1397 1398 1399 1400 1401 1402 1403 1404 1405 1406 1407 1408 1409 1410 1411 1412 1413 1414 1415 1416 1417 1418 1419 1420 1421 1422 1423 1424 1425 1426 1427 1428 1429 1430 1431 1432 1433 1434 1435 1436 1437 1438 1439 1440 1441 1442 1443 1444 1445 1446 1447 1448 1449 1450 1451 1452 1453 1454 1455 1456 1457 1458 1459 1460 1461 1462 1463 1464 1465 1466 1467 1468 1469 1470 1471 1472 1473 1474 1475 1476 1477 1478 1479 1480 1481 1482 1483 1484 1485 1486 1487 1488 1489 1490 1491 1492 1493 1494 1495 1496 1497 1498 1499 1500 1501 1502 1503 1504 1505 1506 1507 1508 1509 1510 1511 1512 1513 1514 1515 1516 1517 1518 1519 1520 1521 1522 1523 1524 1525 1526 1527 1528 1529 1530 1531 1532 1533 1534 1535 1536 1537 1538 1539 1540 1541 1542 1543 1544 1545 1546 1547 1548 1549 1550 1551 1552 1553 1554 1555 1556 1557 1558 1559 1560 1561 1562 1563 1564 1565 1566 1567 1568 1569 1570 1571 1572 1573 1574 1575 1576 1577 1578 1579 1580 1581 1582 1583 1584 1585 1586 1587 1588 1589 1590 1591 1592 1593 1594 1595 1596 1597 1598 1599 1600 1601 1602 1603 1604 1605 1606 1607 1608 1609 1610 1611 1612 1613 1614 1615 1616 1617 1618 1619 1620 1621 1622 1623 1624 1625 1626 1627 1628 1629 1630 1631 1632 1633 1634 1635 1636 1637 1638 1639 1640 1641 1642 1643 1644 1645 1646 1647 1648 1649 1650 1651 1652 1653 1654 1655 1656 1657 1658 1659 1660 1661 1662 1663 1664 1665 1666 1667 1668 1669 1670 1671 1672 1673 1674 1675 1676 1677 1678 1679 1680 1681 1682 1683 1684 1685 1686 1687 1688 1689 1690 1691 1692 1693 1694 1695 1696 1697 1698 1699 1700 1701 1702 1703 1704 1705 1706 1707 1708 1709 1710 1711 1712 1713 1714 1715 1716 1717 1718 1719 1720 1721 1722 1723 1724 1725 1726 1727 1728 1729 1730 1731 1732 1733 1734 1735 1736 1737 1738 1739 1740 1741 1742 1743 1744 1745 1746 1747 1748 1749 1750 1751 1752 1753 1754 1755 1756 1757 1758 1759 1760 1761 1762 1763 1764 1765 1766 1767 1768 1769 1770 1771 1772 1773 1774 1775 1776 1777 1778 1779 1780 1781 1782 1783 1784 1785 1786 1787 1788 1789 1790 1791 1792 1793 1794 1795 1796 1797 1798 1799 1800 1801 1802 1803 1804 1805 1806 1807 1808 1809 1810 1811 1812 1813 1814 1815 1816 1817 1818 1819 1820 1821 1822 1823 1824 1825 1826 1827 1828 1829 1830 1831 1832 1833 1834 1835 1836 1837 1838 1839 1840 1841 1842 1843 1844 1845 1846 1847 1848 1849 1850 1851 1852 1853 1854 1855 1856 1857 1858 1859 1860 1861 1862 1863 1864 1865 1866 1867 1868 1869 1870 1871 1872 1873 1874 1875 1876 1877 1878 1879 1880 1881 1882 1883 1884 1885 1886 1887 1888 1889 1890 1891 1892 1893 1894 1895 1896 1897 1898 1899 1900 1901 1902 1903 1904 1905 1906 1907 1908 1909 1910 1911 1912 1913 1914 1915 1916 1917 1918 1919 1920 1921 1922 1923 1924 1925 1926 1927 1928 1929 1930 1931 1932 1933 1934 1935 1936 1937 1938 1939 1940 1941 1942 1943 1944 1945 1946 1947 1948 1949 1950 1951 1952 1953 1954 1955 1956 1957 1958 1959 1960 1961 1962 1963 1964 1965 1966 1967 1968 1969 1970 1971 1972 1973 1974 1975 1976 1977 1978 1979 1980 1981 1982 1983 1984 1985 1986 1987 1988 1989 1990 1991 1992 1993 1994 1995 1996 1997 1998 1999 2000 2001 2002 2003 2004 2005 2006 2007 2008 2009 2010 2011 2012 2013 2014 2015 2016 2017 2018 2019 2020 2021 2022 2023 2024 2025 2026 2027 2028 2029 2030 2031 2032 2033 2034 2035 2036 2037 2038 2039 2040 2041 2042 2043 2044 2045 2046 2047 2048 2049 2050 2051 2052 2053 2054 2055 2056 2057 2058 2059 2060 2061 2062 2063 2064 2065 2066 2067 2068 2069 2070 2071 2072 2073 2074 2075 2076 2077 2078 2079 2080 2081 2082 2083 2084 2085 2086 2087 2088 2089 2090 2091 2092 2093 2094 2095 2096 2097 2098 2099 2100 2101 2102 2103 2104 2105 2106 2107 2108 2109 2110 2111 2112 2113 2114 2115 2116 2117 2118 2119 2120 2121 2122 2123 2124 2125 2126 2127 2128 2129 2130 2131 2132 2133 2134 2135 2136 2137 2138 2139 2140 2141 2142 2143 2144 2145 2146 2147 2148 2149 2150 2151 2152 2153 2154 2155 2156 2157 2158 2159 2160 2161 2162 2163 2164 |
{
"cells": [
{
"cell_type": "markdown",
"metadata": {
"colab_type": "text",
"id": "view-in-github"
},
"source": [
"<a href=\"https://colab.research.google.com/github/BlessingBassey/masakhane/blob/master/en_efi_jw300_notebook.ipynb\" target=\"_parent\"><img src=\"https://colab.research.google.com/assets/colab-badge.svg\" alt=\"Open In Colab\"/></a>"
]
},
{
"cell_type": "markdown",
"metadata": {
"colab_type": "text",
"id": "Igc5itf-xMGj"
},
"source": [
"# Masakhane - Machine Translation for African Languages (Using JoeyNMT)"
]
},
{
"cell_type": "markdown",
"metadata": {
"colab_type": "text",
"id": "x4fXCKCf36IK"
},
"source": [
"## Note before beginning:\n",
"### - The idea is that you should be able to make minimal changes to this in order to get SOME result for your own translation corpus. \n",
"\n",
"### - The tl;dr: Go to the **\"TODO\"** comments which will tell you what to update to get up and running\n",
"\n",
"### - If you actually want to have a clue what you're doing, read the text and peek at the links\n",
"\n",
"### - With 100 epochs, it should take around 7 hours to run in Google Colab\n",
"\n",
"### - Once you've gotten a result for your language, please attach and email your notebook that generated it to [email protected]\n",
"\n",
"### - If you care enough and get a chance, doing a brief background on your language would be amazing. See examples in [(Martinus, 2019)](https://arxiv.org/abs/1906.05685)"
]
},
{
"cell_type": "markdown",
"metadata": {
"colab_type": "text",
"id": "l929HimrxS0a"
},
"source": [
"## Retrieve your data & make a parallel corpus\n",
"\n",
"If you are wanting to use the JW300 data referenced on the Masakhane website or in our GitHub repo, you can use `opus-tools` to convert the data into a convenient format. `opus_read` from that package provides a convenient tool for reading the native aligned XML files and to convert them to TMX format. The tool can also be used to fetch relevant files from OPUS on the fly and to filter the data as necessary. [Read the documentation](https://pypi.org/project/opustools-pkg/) for more details.\n",
"\n",
"Once you have your corpus files in TMX format (an xml structure which will include the sentences in your target language and your source language in a single file), we recommend reading them into a pandas dataframe. Thankfully, Jade wrote a silly `tmx2dataframe` package which converts your tmx file to a pandas dataframe. "
]
},
{
"cell_type": "code",
"execution_count": 0,
"metadata": {
"colab": {
"base_uri": "https://localhost:8080/",
"height": 122
},
"colab_type": "code",
"id": "oGRmDELn7Az0",
"outputId": "ccea5c09-bc5a-4a84-9818-b4271b72dc38"
},
"outputs": [
{
"name": "stdout",
"output_type": "stream",
"text": [
"Go to this URL in a browser: https://accounts.google.com/o/oauth2/auth?client_id=947318989803-6bn6qk8qdgf4n4g3pfee6491hc0brc4i.apps.googleusercontent.com&redirect_uri=urn%3aietf%3awg%3aoauth%3a2.0%3aoob&response_type=code&scope=email%20https%3a%2f%2fwww.googleapis.com%2fauth%2fdocs.test%20https%3a%2f%2fwww.googleapis.com%2fauth%2fdrive%20https%3a%2f%2fwww.googleapis.com%2fauth%2fdrive.photos.readonly%20https%3a%2f%2fwww.googleapis.com%2fauth%2fpeopleapi.readonly\n",
"\n",
"Enter your authorization code:\n",
"··········\n",
"Mounted at /content/drive\n"
]
}
],
"source": [
"from google.colab import drive\n",
"drive.mount('/content/drive')"
]
},
{
"cell_type": "code",
"execution_count": 0,
"metadata": {
"colab": {},
"colab_type": "code",
"id": "Cn3tgQLzUxwn"
},
"outputs": [],
"source": [
"# TODO: Set your source and target languages. Keep in mind, these traditionally use language codes as found here:\n",
"# These will also become the suffix's of all vocab and corpus files used throughout\n",
"import os\n",
"source_language = \"en\"\n",
"target_language = \"efi\" \n",
"lc = False # If True, lowercase the data.\n",
"seed = 42 # Random seed for shuffling.\n",
"tag = \"baseline\" # Give a unique name to your folder - this is to ensure you don't rewrite any models you've already submitted\n",
"\n",
"os.environ[\"src\"] = source_language # Sets them in bash as well, since we often use bash scripts\n",
"os.environ[\"tgt\"] = target_language\n",
"os.environ[\"tag\"] = tag\n",
"\n",
"# This will save it to a folder in our gdrive instead! \n",
"!mkdir -p \"/content/drive/My Drive/masakhane/$src-$tgt-$tag\"\n",
"g_drive_path = \"/content/drive/My Drive/masakhane/%s-%s-%s\" % (source_language, target_language, tag)\n",
"os.environ[\"gdrive_path\"] = g_drive_path\n",
"models_path = '%s/models/%s%s_transformer'% (g_drive_path, source_language, target_language)\n",
"# model temporary directory for training\n",
"model_temp_dir = \"/content/drive/My Drive/masakhane/model-temp\"\n",
"# model permanent storage on the drive\n",
"!mkdir -p \"$gdrive_path/models/${src}${tgt}_transformer/\""
]
},
{
"cell_type": "code",
"execution_count": 0,
"metadata": {
"colab": {
"base_uri": "https://localhost:8080/",
"height": 34
},
"colab_type": "code",
"id": "kBSgJHEw7Nvx",
"outputId": "a3167fc9-7bfb-44c1-e0b2-6232350a7e20"
},
"outputs": [
{
"name": "stdout",
"output_type": "stream",
"text": [
"/content/drive/My Drive/masakhane/en-efi-baseline\n"
]
}
],
"source": [
"!echo $gdrive_path"
]
},
{
"cell_type": "code",
"execution_count": 0,
"metadata": {
"colab": {
"base_uri": "https://localhost:8080/",
"height": 34
},
"colab_type": "code",
"id": "gA75Fs9ys8Y9",
"outputId": "4286ba7f-2e11-4366-e034-abdb843c5593"
},
"outputs": [
{
"name": "stdout",
"output_type": "stream",
"text": [
"Requirement already satisfied: opustools-pkg in /usr/local/lib/python3.6/dist-packages (0.0.52)\n"
]
}
],
"source": [
"#TODO: Skip for retrain\n",
"# Install opus-tools\n",
"! pip install opustools-pkg "
]
},
{
"cell_type": "code",
"execution_count": 0,
"metadata": {
"colab": {
"base_uri": "https://localhost:8080/",
"height": 221
},
"colab_type": "code",
"id": "xq-tDZVks7ZD",
"outputId": "724f71b4-2db9-486e-93d2-56d2f3d495bc"
},
"outputs": [
{
"name": "stdout",
"output_type": "stream",
"text": [
"\n",
"Alignment file /proj/nlpl/data/OPUS/JW300/latest/xml/efi-en.xml.gz not found. The following files are available for downloading:\n",
"\n",
" 3 MB https://object.pouta.csc.fi/OPUS-JW300/v1/xml/efi-en.xml.gz\n",
" 36 MB https://object.pouta.csc.fi/OPUS-JW300/v1/xml/efi.zip\n",
" 263 MB https://object.pouta.csc.fi/OPUS-JW300/v1/xml/en.zip\n",
"\n",
" 303 MB Total size\n",
"./JW300_latest_xml_efi-en.xml.gz ... 100% of 3 MB\n",
"./JW300_latest_xml_efi.zip ... 100% of 36 MB\n",
"./JW300_latest_xml_en.zip ... 100% of 263 MB\n",
"gzip: JW300_latest_xml_en-efi.xml.gz: No such file or directory\n"
]
}
],
"source": [
"#TODO: Skip for retrain\n",
"# Downloading our corpus\n",
"! opus_read -d JW300 -s $src -t $tgt -wm moses -w jw300.$src jw300.$tgt -q\n",
"\n",
"# extract the corpus file\n",
"! gunzip JW300_latest_xml_$src-$tgt.xml.gz"
]
},
{
"cell_type": "code",
"execution_count": 0,
"metadata": {
"colab": {},
"colab_type": "code",
"id": "j2K6QK2NOaUX"
},
"outputs": [],
"source": [
"# extract the corpus file\n",
"! gunzip JW300_latest_xml_$tgt-$src.xml.gz"
]
},
{
"cell_type": "code",
"execution_count": 0,
"metadata": {
"colab": {
"base_uri": "https://localhost:8080/",
"height": 578
},
"colab_type": "code",
"id": "n48GDRnP8y2G",
"outputId": "3c765279-6999-4977-c553-17cc87982fc0"
},
"outputs": [
{
"name": "stdout",
"output_type": "stream",
"text": [
"--2020-04-07 10:41:12-- https://raw.githubusercontent.com/juliakreutzer/masakhane/master/jw300_utils/test/test.en-any.en\n",
"Resolving raw.githubusercontent.com (raw.githubusercontent.com)... 151.101.0.133, 151.101.64.133, 151.101.128.133, ...\n",
"Connecting to raw.githubusercontent.com (raw.githubusercontent.com)|151.101.0.133|:443... connected.\n",
"HTTP request sent, awaiting response... 200 OK\n",
"Length: 277791 (271K) [text/plain]\n",
"Saving to: ‘test.en-any.en’\n",
"\n",
"\r",
"test.en-any.en 0%[ ] 0 --.-KB/s \r",
"test.en-any.en 100%[===================>] 271.28K --.-KB/s in 0.1s \n",
"\n",
"2020-04-07 10:41:13 (2.35 MB/s) - ‘test.en-any.en’ saved [277791/277791]\n",
"\n",
"--2020-04-07 10:41:15-- https://raw.githubusercontent.com/juliakreutzer/masakhane/master/jw300_utils/test/test.en-efi.en\n",
"Resolving raw.githubusercontent.com (raw.githubusercontent.com)... 151.101.0.133, 151.101.64.133, 151.101.128.133, ...\n",
"Connecting to raw.githubusercontent.com (raw.githubusercontent.com)|151.101.0.133|:443... connected.\n",
"HTTP request sent, awaiting response... 200 OK\n",
"Length: 203603 (199K) [text/plain]\n",
"Saving to: ‘test.en-efi.en’\n",
"\n",
"test.en-efi.en 100%[===================>] 198.83K --.-KB/s in 0.09s \n",
"\n",
"2020-04-07 10:41:16 (2.07 MB/s) - ‘test.en-efi.en’ saved [203603/203603]\n",
"\n",
"--2020-04-07 10:41:20-- https://raw.githubusercontent.com/juliakreutzer/masakhane/master/jw300_utils/test/test.en-efi.efi\n",
"Resolving raw.githubusercontent.com (raw.githubusercontent.com)... 151.101.0.133, 151.101.64.133, 151.101.128.133, ...\n",
"Connecting to raw.githubusercontent.com (raw.githubusercontent.com)|151.101.0.133|:443... connected.\n",
"HTTP request sent, awaiting response... 200 OK\n",
"Length: 229202 (224K) [text/plain]\n",
"Saving to: ‘test.en-efi.efi’\n",
"\n",
"test.en-efi.efi 100%[===================>] 223.83K --.-KB/s in 0.1s \n",
"\n",
"2020-04-07 10:41:20 (2.19 MB/s) - ‘test.en-efi.efi’ saved [229202/229202]\n",
"\n"
]
}
],
"source": [
"#TODO: Skip for retrain\n",
"# Download the global test set.\n",
"! wget https://raw.githubusercontent.com/juliakreutzer/masakhane/master/jw300_utils/test/test.en-any.en\n",
" \n",
"# And the specific test set for this language pair.\n",
"os.environ[\"trg\"] = target_language \n",
"os.environ[\"src\"] = source_language \n",
"\n",
"! wget https://raw.githubusercontent.com/juliakreutzer/masakhane/master/jw300_utils/test/test.en-$trg.en \n",
"! mv test.en-$trg.en test.en\n",
"! wget https://raw.githubusercontent.com/juliakreutzer/masakhane/master/jw300_utils/test/test.en-$trg.$trg \n",
"! mv test.en-$trg.$trg test.$trg"
]
},
{
"cell_type": "code",
"execution_count": 0,
"metadata": {
"colab": {
"base_uri": "https://localhost:8080/",
"height": 34
},
"colab_type": "code",
"id": "NqDG-CI28y2L",
"outputId": "ae596401-d6d3-4bb0-84d1-b2955c623cf1"
},
"outputs": [
{
"name": "stdout",
"output_type": "stream",
"text": [
"Loaded 3571 global test sentences to filter from the training/dev data.\n"
]
}
],
"source": [
"#TODO: Skip for retrain\n",
"# Read the test data to filter from train and dev splits.\n",
"# Store english portion in set for quick filtering checks.\n",
"en_test_sents = set()\n",
"filter_test_sents = \"test.en-any.en\"\n",
"j = 0\n",
"with open(filter_test_sents) as f:\n",
" for line in f:\n",
" en_test_sents.add(line.strip())\n",
" j += 1\n",
"print('Loaded {} global test sentences to filter from the training/dev data.'.format(j))"
]
},
{
"cell_type": "code",
"execution_count": 0,
"metadata": {
"colab": {
"base_uri": "https://localhost:8080/",
"height": 159
},
"colab_type": "code",
"id": "3CNdwLBCfSIl",
"outputId": "51262d44-631c-494d-e3e8-c8547e74b8d9"
},
"outputs": [
{
"name": "stdout",
"output_type": "stream",
"text": [
"Loaded data and skipped 6113/377824 lines since contained in test set.\n"
]
},
{
"data": {
"text/html": [
"<div>\n",
"<style scoped>\n",
" .dataframe tbody tr th:only-of-type {\n",
" vertical-align: middle;\n",
" }\n",
"\n",
" .dataframe tbody tr th {\n",
" vertical-align: top;\n",
" }\n",
"\n",
" .dataframe thead th {\n",
" text-align: right;\n",
" }\n",
"</style>\n",
"<table border=\"1\" class=\"dataframe\">\n",
" <thead>\n",
" <tr style=\"text-align: right;\">\n",
" <th></th>\n",
" <th>source_sentence</th>\n",
" <th>target_sentence</th>\n",
" </tr>\n",
" </thead>\n",
" <tbody>\n",
" <tr>\n",
" <th>0</th>\n",
" <td>© 2013 Watch Tower Bible and Tract Society of ...</td>\n",
" <td>© 2013 Watch Tower Bible and Tract Society of ...</td>\n",
" </tr>\n",
" <tr>\n",
" <th>1</th>\n",
" <td>All rights reserved .</td>\n",
" <td>All rights reserved .</td>\n",
" </tr>\n",
" <tr>\n",
" <th>2</th>\n",
" <td>3 Watching the World</td>\n",
" <td>3 Se Itịbede ke Ererimbot</td>\n",
" </tr>\n",
" </tbody>\n",
"</table>\n",
"</div>"
],
"text/plain": [
" source_sentence target_sentence\n",
"0 © 2013 Watch Tower Bible and Tract Society of ... © 2013 Watch Tower Bible and Tract Society of ...\n",
"1 All rights reserved . All rights reserved .\n",
"2 3 Watching the World 3 Se Itịbede ke Ererimbot"
]
},
"execution_count": 22,
"metadata": {
"tags": []
},
"output_type": "execute_result"
}
],
"source": [
"#TODO: Skip for retrain\n",
"import pandas as pd\n",
"\n",
"# TMX file to dataframe\n",
"source_file = 'jw300.' + source_language\n",
"target_file = 'jw300.' + target_language\n",
"\n",
"source = []\n",
"target = []\n",
"skip_lines = [] # Collect the line numbers of the source portion to skip the same lines for the target portion.\n",
"with open(source_file) as f:\n",
" for i, line in enumerate(f):\n",
" # Skip sentences that are contained in the test set.\n",
" if line.strip() not in en_test_sents:\n",
" source.append(line.strip())\n",
" else:\n",
" skip_lines.append(i) \n",
"with open(target_file) as f:\n",
" for j, line in enumerate(f):\n",
" # Only add to corpus if corresponding source was not skipped.\n",
" if j not in skip_lines:\n",
" target.append(line.strip())\n",
" \n",
"print('Loaded data and skipped {}/{} lines since contained in test set.'.format(len(skip_lines), i))\n",
" \n",
"df = pd.DataFrame(zip(source, target), columns=['source_sentence', 'target_sentence'])\n",
"# if you get TypeError: data argument can't be an iterator is because of your zip version run this below\n",
"#df = pd.DataFrame(list(zip(source, target)), columns=['source_sentence', 'target_sentence'])\n",
"df.head(3)"
]
},
{
"cell_type": "markdown",
"metadata": {
"colab_type": "text",
"id": "YkuK3B4p2AkN"
},
"source": [
"## Pre-processing and export\n",
"\n",
"It is generally a good idea to remove duplicate translations and conflicting translations from the corpus. In practice, these public corpora include some number of these that need to be cleaned.\n",
"\n",
"In addition we will split our data into dev/test/train and export to the filesystem."
]
},
{
"cell_type": "code",
"execution_count": 0,
"metadata": {
"colab": {
"base_uri": "https://localhost:8080/",
"height": 187
},
"colab_type": "code",
"id": "M_2ouEOH1_1q",
"outputId": "35d2bc54-ffce-4d04-decd-5269409e8d0d"
},
"outputs": [
{
"name": "stderr",
"output_type": "stream",
"text": [
"/usr/local/lib/python3.6/dist-packages/ipykernel_launcher.py:6: SettingWithCopyWarning: \n",
"A value is trying to be set on a copy of a slice from a DataFrame\n",
"\n",
"See the caveats in the documentation: https://pandas.pydata.org/pandas-docs/stable/user_guide/indexing.html#returning-a-view-versus-a-copy\n",
" \n",
"/usr/local/lib/python3.6/dist-packages/ipykernel_launcher.py:7: SettingWithCopyWarning: \n",
"A value is trying to be set on a copy of a slice from a DataFrame\n",
"\n",
"See the caveats in the documentation: https://pandas.pydata.org/pandas-docs/stable/user_guide/indexing.html#returning-a-view-versus-a-copy\n",
" import sys\n"
]
}
],
"source": [
"#TODO: Skip for retrain\n",
"# drop duplicate translations\n",
"df_pp = df.drop_duplicates()\n",
"\n",
"# drop conflicting translations\n",
"# (this is optional and something that you might want to comment out \n",
"# depending on the size of your corpus)\n",
"df_pp.drop_duplicates(subset='source_sentence', inplace=True)\n",
"df_pp.drop_duplicates(subset='target_sentence', inplace=True)\n",
"\n",
"# Shuffle the data to remove bias in dev set selection.\n",
"df_pp = df_pp.sample(frac=1, random_state=seed).reset_index(drop=True)"
]
},
{
"cell_type": "code",
"execution_count": 0,
"metadata": {
"colab": {
"base_uri": "https://localhost:8080/",
"height": 1000
},
"colab_type": "code",
"id": "Z_1BwAApEtMk",
"outputId": "e2e52063-3afc-44d6-eb80-4593c78529d9"
},
"outputs": [
{
"name": "stdout",
"output_type": "stream",
"text": [
"Collecting fuzzywuzzy\n",
" Downloading https://files.pythonhosted.org/packages/43/ff/74f23998ad2f93b945c0309f825be92e04e0348e062026998b5eefef4c33/fuzzywuzzy-0.18.0-py2.py3-none-any.whl\n",
"Installing collected packages: fuzzywuzzy\n",
"Successfully installed fuzzywuzzy-0.18.0\n",
"Collecting python-Levenshtein\n",
"\u001b[?25l Downloading https://files.pythonhosted.org/packages/42/a9/d1785c85ebf9b7dfacd08938dd028209c34a0ea3b1bcdb895208bd40a67d/python-Levenshtein-0.12.0.tar.gz (48kB)\n",
"\u001b[K |████████████████████████████████| 51kB 911kB/s \n",
"\u001b[?25hRequirement already satisfied: setuptools in /usr/local/lib/python3.6/dist-packages (from python-Levenshtein) (46.1.3)\n",
"Building wheels for collected packages: python-Levenshtein\n",
" Building wheel for python-Levenshtein (setup.py) ... \u001b[?25l\u001b[?25hdone\n",
" Created wheel for python-Levenshtein: filename=python_Levenshtein-0.12.0-cp36-cp36m-linux_x86_64.whl size=144801 sha256=9a3225ef63aa0c469b1c17d2027ee01d92c08cfa2ceb1c887a5348413e5ae974\n",
" Stored in directory: /root/.cache/pip/wheels/de/c2/93/660fd5f7559049268ad2dc6d81c4e39e9e36518766eaf7e342\n",
"Successfully built python-Levenshtein\n",
"Installing collected packages: python-Levenshtein\n",
"Successfully installed python-Levenshtein-0.12.0\n",
"00:00:00.13 0.00 percent complete\n"
]
},
{
"name": "stderr",
"output_type": "stream",
"text": [
"WARNING:root:Applied processor reduces input query to empty string, all comparisons will have score 0. [Query: '— ― ― ― ― ― ― ―']\n"
]
},
{
"name": "stdout",
"output_type": "stream",
"text": [
"00:00:23.47 0.30 percent complete\n",
"00:00:47.23 0.59 percent complete\n",
"00:01:13.23 0.89 percent complete\n",
"00:01:37.25 1.19 percent complete\n",
"00:02:00.91 1.48 percent complete\n",
"00:02:25.30 1.78 percent complete\n",
"00:02:48.69 2.08 percent complete\n",
"00:03:12.44 2.37 percent complete\n",
"00:03:36.68 2.67 percent complete\n",
"00:04:00.63 2.97 percent complete\n",
"00:04:26.31 3.26 percent complete\n",
"00:04:50.18 3.56 percent complete\n",
"00:05:14.62 3.86 percent complete\n",
"00:05:38.29 4.15 percent complete\n",
"00:06:01.78 4.45 percent complete\n",
"00:06:25.15 4.75 percent complete\n",
"00:06:48.09 5.04 percent complete\n",
"00:07:11.21 5.34 percent complete\n",
"00:07:35.76 5.64 percent complete\n",
"00:07:58.99 5.93 percent complete\n",
"00:08:22.42 6.23 percent complete\n",
"00:08:46.08 6.53 percent complete\n"
]
},
{
"name": "stderr",
"output_type": "stream",
"text": [
"WARNING:root:Applied processor reduces input query to empty string, all comparisons will have score 0. [Query: '↓']\n"
]
},
{
"name": "stdout",
"output_type": "stream",
"text": [
"00:09:09.18 6.82 percent complete\n",
"00:09:32.55 7.12 percent complete\n",
"00:09:55.41 7.42 percent complete\n"
]
},
{
"name": "stderr",
"output_type": "stream",
"text": [
"WARNING:root:Applied processor reduces input query to empty string, all comparisons will have score 0. [Query: '( — )']\n"
]
},
{
"name": "stdout",
"output_type": "stream",
"text": [
"00:10:19.19 7.71 percent complete\n",
"00:10:44.31 8.01 percent complete\n",
"00:11:07.99 8.31 percent complete\n",
"00:11:31.20 8.60 percent complete\n",
"00:11:55.25 8.90 percent complete\n",
"00:12:18.14 9.20 percent complete\n",
"00:12:41.67 9.49 percent complete\n",
"00:13:05.32 9.79 percent complete\n",
"00:13:28.60 10.09 percent complete\n",
"00:13:53.16 10.38 percent complete\n"
]
},
{
"name": "stderr",
"output_type": "stream",
"text": [
"WARNING:root:Applied processor reduces input query to empty string, all comparisons will have score 0. [Query: '․ ․']\n"
]
},
{
"name": "stdout",
"output_type": "stream",
"text": [
"00:14:17.50 10.68 percent complete\n",
"00:14:40.37 10.98 percent complete\n",
"00:15:03.19 11.27 percent complete\n",
"00:15:25.76 11.57 percent complete\n",
"00:15:48.21 11.87 percent complete\n",
"00:16:09.87 12.16 percent complete\n",
"00:16:32.29 12.46 percent complete\n",
"00:16:54.84 12.76 percent complete\n",
"00:17:17.29 13.05 percent complete\n",
"00:17:39.13 13.35 percent complete\n",
"00:18:01.50 13.65 percent complete\n",
"00:18:23.71 13.94 percent complete\n",
"00:18:45.92 14.24 percent complete\n",
"00:19:08.43 14.54 percent complete\n",
"00:19:31.39 14.83 percent complete\n",
"00:19:54.26 15.13 percent complete\n",
"00:20:17.94 15.43 percent complete\n",
"00:20:40.82 15.72 percent complete\n",
"00:21:03.51 16.02 percent complete\n",
"00:21:26.55 16.32 percent complete\n",
"00:21:49.64 16.61 percent complete\n",
"00:22:13.80 16.91 percent complete\n",
"00:22:37.37 17.21 percent complete\n",
"00:23:00.26 17.50 percent complete\n",
"00:23:25.15 17.80 percent complete\n",
"00:23:48.26 18.10 percent complete\n",
"00:24:11.21 18.39 percent complete\n",
"00:24:34.04 18.69 percent complete\n",
"00:24:56.74 18.99 percent complete\n",
"00:25:19.01 19.28 percent complete\n",
"00:25:41.69 19.58 percent complete\n",
"00:26:04.84 19.88 percent complete\n",
"00:26:29.16 20.17 percent complete\n",
"00:26:52.43 20.47 percent complete\n",
"00:27:15.01 20.77 percent complete\n",
"00:27:37.87 21.06 percent complete\n",
"00:28:00.65 21.36 percent complete\n"
]
},
{
"name": "stderr",
"output_type": "stream",
"text": [
"WARNING:root:Applied processor reduces input query to empty string, all comparisons will have score 0. [Query: '” *']\n"
]
},
{
"name": "stdout",
"output_type": "stream",
"text": [
"00:28:23.40 21.66 percent complete\n",
"00:28:46.27 21.95 percent complete\n",
"00:29:09.06 22.25 percent complete\n",
"00:29:33.11 22.55 percent complete\n",
"00:29:57.11 22.84 percent complete\n",
"00:30:20.14 23.14 percent complete\n",
"00:30:43.82 23.44 percent complete\n",
"00:31:06.76 23.73 percent complete\n",
"00:31:29.88 24.03 percent complete\n"
]
},
{
"name": "stderr",
"output_type": "stream",
"text": [
"WARNING:root:Applied processor reduces input query to empty string, all comparisons will have score 0. [Query: '↓ ↓']\n"
]
},
{
"name": "stdout",
"output_type": "stream",
"text": [
"00:31:52.30 24.33 percent complete\n",
"00:32:15.66 24.62 percent complete\n",
"00:32:40.29 24.92 percent complete\n",
"00:33:02.85 25.22 percent complete\n",
"00:33:25.97 25.51 percent complete\n",
"00:33:48.88 25.81 percent complete\n",
"00:34:11.92 26.11 percent complete\n",
"00:34:35.40 26.40 percent complete\n",
"00:34:58.44 26.70 percent complete\n",
"00:35:20.72 27.00 percent complete\n",
"00:35:45.28 27.29 percent complete\n",
"00:36:08.34 27.59 percent complete\n",
"00:36:30.78 27.89 percent complete\n",
"00:36:53.86 28.18 percent complete\n",
"00:37:16.93 28.48 percent complete\n",
"00:37:39.37 28.78 percent complete\n",
"00:38:01.55 29.07 percent complete\n",
"00:38:24.13 29.37 percent complete\n",
"00:38:46.95 29.67 percent complete\n",
"00:39:09.10 29.96 percent complete\n",
"00:39:31.78 30.26 percent complete\n",
"00:39:54.70 30.56 percent complete\n",
"00:40:17.46 30.85 percent complete\n",
"00:40:39.90 31.15 percent complete\n",
"00:41:02.42 31.45 percent complete\n",
"00:41:25.00 31.74 percent complete\n",
"00:41:50.09 32.04 percent complete\n",
"00:42:13.37 32.34 percent complete\n",
"00:42:36.77 32.63 percent complete\n",
"00:42:59.84 32.93 percent complete\n",
"00:43:22.86 33.22 percent complete\n",
"00:43:45.40 33.52 percent complete\n",
"00:44:07.65 33.82 percent complete\n",
"00:44:30.24 34.11 percent complete\n",
"00:44:55.85 34.41 percent complete\n",
"00:45:19.59 34.71 percent complete\n",
"00:45:41.81 35.00 percent complete\n",
"00:46:04.30 35.30 percent complete\n",
"00:46:26.59 35.60 percent complete\n",
"00:46:49.92 35.89 percent complete\n",
"00:47:12.58 36.19 percent complete\n",
"00:47:34.90 36.49 percent complete\n",
"00:47:58.93 36.78 percent complete\n",
"00:48:22.48 37.08 percent complete\n",
"00:48:44.88 37.38 percent complete\n",
"00:49:07.35 37.67 percent complete\n",
"00:49:30.35 37.97 percent complete\n",
"00:49:52.94 38.27 percent complete\n",
"00:50:14.24 38.56 percent complete\n",
"00:50:36.92 38.86 percent complete\n",
"00:50:59.67 39.16 percent complete\n",
"00:51:24.09 39.45 percent complete\n",
"00:51:46.38 39.75 percent complete\n",
"00:52:09.23 40.05 percent complete\n",
"00:52:32.24 40.34 percent complete\n",
"00:52:54.81 40.64 percent complete\n",
"00:53:17.69 40.94 percent complete\n",
"00:53:39.72 41.23 percent complete\n",
"00:54:01.82 41.53 percent complete\n",
"00:54:26.20 41.83 percent complete\n",
"00:54:48.55 42.12 percent complete\n",
"00:55:10.52 42.42 percent complete\n",
"00:55:32.68 42.72 percent complete\n",
"00:55:55.67 43.01 percent complete\n",
"00:56:18.44 43.31 percent complete\n",
"00:56:40.94 43.61 percent complete\n",
"00:57:03.85 43.90 percent complete\n",
"00:57:27.84 44.20 percent complete\n",
"00:57:49.66 44.50 percent complete\n",
"00:58:11.60 44.79 percent complete\n",
"00:58:33.86 45.09 percent complete\n",
"00:58:55.68 45.39 percent complete\n",
"00:59:18.18 45.68 percent complete\n",
"00:59:40.52 45.98 percent complete\n",
"01:00:03.42 46.28 percent complete\n",
"01:00:27.65 46.57 percent complete\n",
"01:00:49.76 46.87 percent complete\n",
"01:01:12.39 47.17 percent complete\n",
"01:01:35.22 47.46 percent complete\n",
"01:01:58.23 47.76 percent complete\n",
"01:02:20.14 48.06 percent complete\n",
"01:02:42.49 48.35 percent complete\n",
"01:03:04.59 48.65 percent complete\n",
"01:03:28.70 48.95 percent complete\n",
"01:03:51.20 49.24 percent complete\n",
"01:04:13.59 49.54 percent complete\n",
"01:04:35.44 49.84 percent complete\n",
"01:04:58.54 50.13 percent complete\n",
"01:05:21.00 50.43 percent complete\n",
"01:05:43.43 50.73 percent complete\n",
"01:06:05.97 51.02 percent complete\n",
"01:06:30.57 51.32 percent complete\n",
"01:06:52.87 51.62 percent complete\n",
"01:07:15.94 51.91 percent complete\n",
"01:07:38.22 52.21 percent complete\n"
]
},
{
"name": "stderr",
"output_type": "stream",
"text": [
"WARNING:root:Applied processor reduces input query to empty string, all comparisons will have score 0. [Query: '']\n"
]
},
{
"name": "stdout",
"output_type": "stream",
"text": [
"01:08:00.90 52.51 percent complete\n",
"01:08:22.99 52.80 percent complete\n",
"01:08:45.79 53.10 percent complete\n",
"01:09:08.16 53.40 percent complete\n",
"01:09:32.58 53.69 percent complete\n",
"01:09:55.15 53.99 percent complete\n",
"01:10:18.09 54.29 percent complete\n",
"01:10:40.50 54.58 percent complete\n",
"01:11:02.40 54.88 percent complete\n",
"01:11:25.19 55.18 percent complete\n",
"01:11:47.70 55.47 percent complete\n",
"01:12:10.46 55.77 percent complete\n",
"01:12:34.70 56.07 percent complete\n",
"01:12:57.22 56.36 percent complete\n"
]
},
{
"name": "stderr",
"output_type": "stream",
"text": [
"WARNING:root:Applied processor reduces input query to empty string, all comparisons will have score 0. [Query: '․ ․ ․ ․ ․']\n"
]
},
{
"name": "stdout",
"output_type": "stream",
"text": [
"01:13:19.96 56.66 percent complete\n",
"01:13:42.75 56.96 percent complete\n",
"01:14:05.51 57.25 percent complete\n",
"01:14:27.86 57.55 percent complete\n",
"01:14:50.01 57.85 percent complete\n",
"01:15:12.64 58.14 percent complete\n",
"01:15:39.06 58.44 percent complete\n",
"01:16:01.64 58.74 percent complete\n",
"01:16:24.32 59.03 percent complete\n",
"01:16:47.36 59.33 percent complete\n",
"01:17:09.02 59.63 percent complete\n",
"01:17:32.17 59.92 percent complete\n",
"01:17:54.54 60.22 percent complete\n",
"01:18:17.28 60.52 percent complete\n",
"01:18:42.43 60.81 percent complete\n",
"01:19:05.78 61.11 percent complete\n",
"01:19:27.88 61.41 percent complete\n",
"01:19:49.97 61.70 percent complete\n",
"01:20:12.37 62.00 percent complete\n",
"01:20:34.77 62.30 percent complete\n",
"01:20:57.64 62.59 percent complete\n",
"01:21:20.01 62.89 percent complete\n",
"01:21:43.90 63.19 percent complete\n",
"01:22:06.63 63.48 percent complete\n",
"01:22:29.08 63.78 percent complete\n"
]
},
{
"name": "stderr",
"output_type": "stream",
"text": [
"WARNING:root:Applied processor reduces input query to empty string, all comparisons will have score 0. [Query: '*']\n"
]
},
{
"name": "stdout",
"output_type": "stream",
"text": [
"01:22:51.12 64.08 percent complete\n",
"01:23:14.11 64.37 percent complete\n",
"01:23:37.09 64.67 percent complete\n",
"01:24:00.07 64.97 percent complete\n",
"01:24:23.24 65.26 percent complete\n",
"01:24:46.84 65.56 percent complete\n",
"01:25:11.42 65.86 percent complete\n",
"01:25:34.14 66.15 percent complete\n",
"01:25:57.85 66.45 percent complete\n",
"01:26:21.15 66.75 percent complete\n",
"01:26:44.18 67.04 percent complete\n",
"01:27:06.11 67.34 percent complete\n",
"01:27:28.17 67.64 percent complete\n",
"01:27:50.68 67.93 percent complete\n",
"01:28:16.04 68.23 percent complete\n",
"01:28:38.68 68.53 percent complete\n",
"01:29:01.66 68.82 percent complete\n"
]
},
{
"name": "stderr",
"output_type": "stream",
"text": [
"WARNING:root:Applied processor reduces input query to empty string, all comparisons will have score 0. [Query: '”']\n"
]
},
{
"name": "stdout",
"output_type": "stream",
"text": [
"01:29:23.92 69.12 percent complete\n",
"01:29:47.07 69.42 percent complete\n",
"01:30:10.07 69.71 percent complete\n",
"01:30:34.07 70.01 percent complete\n",
"01:30:57.53 70.31 percent complete\n",
"01:31:24.58 70.60 percent complete\n",
"01:31:47.52 70.90 percent complete\n",
"01:32:10.81 71.20 percent complete\n",
"01:32:33.92 71.49 percent complete\n",
"01:32:57.01 71.79 percent complete\n",
"01:33:18.97 72.09 percent complete\n",
"01:33:41.68 72.38 percent complete\n",
"01:34:04.01 72.68 percent complete\n",
"01:34:29.55 72.98 percent complete\n",
"01:34:53.10 73.27 percent complete\n",
"01:35:16.17 73.57 percent complete\n"
]
},
{
"name": "stderr",
"output_type": "stream",
"text": [
"WARNING:root:Applied processor reduces input query to empty string, all comparisons will have score 0. [Query: '⇩']\n"
]
},
{
"name": "stdout",
"output_type": "stream",
"text": [
"01:35:39.54 73.87 percent complete\n",
"01:36:02.24 74.16 percent complete\n",
"01:36:25.48 74.46 percent complete\n",
"01:36:48.49 74.76 percent complete\n",
"01:37:10.46 75.05 percent complete\n",
"01:37:36.30 75.35 percent complete\n",
"01:37:59.14 75.65 percent complete\n",
"01:38:22.44 75.94 percent complete\n",
"01:38:44.61 76.24 percent complete\n",
"01:39:06.57 76.54 percent complete\n",
"01:39:29.21 76.83 percent complete\n",
"01:39:52.37 77.13 percent complete\n",
"01:40:15.33 77.43 percent complete\n"
]
},
{
"name": "stderr",
"output_type": "stream",
"text": [
"WARNING:root:Applied processor reduces input query to empty string, all comparisons will have score 0. [Query: '↓ ↓ ↓ ↓']\n"
]
},
{
"name": "stdout",
"output_type": "stream",
"text": [
"01:40:41.48 77.72 percent complete\n",
"01:41:04.55 78.02 percent complete\n",
"01:41:27.18 78.32 percent complete\n",
"01:41:51.03 78.61 percent complete\n",
"01:42:15.09 78.91 percent complete\n",
"01:42:39.00 79.21 percent complete\n",
"01:43:02.63 79.50 percent complete\n",
"01:43:25.90 79.80 percent complete\n",
"01:43:51.44 80.10 percent complete\n",
"01:44:14.54 80.39 percent complete\n",
"01:44:37.70 80.69 percent complete\n",
"01:45:01.10 80.99 percent complete\n",
"01:45:24.57 81.28 percent complete\n",
"01:45:48.03 81.58 percent complete\n",
"01:46:11.43 81.88 percent complete\n",
"01:46:34.64 82.17 percent complete\n",
"01:47:00.82 82.47 percent complete\n",
"01:47:23.07 82.77 percent complete\n",
"01:47:46.29 83.06 percent complete\n",
"01:48:08.38 83.36 percent complete\n",
"01:48:31.21 83.66 percent complete\n",
"01:48:53.93 83.95 percent complete\n",
"01:49:17.20 84.25 percent complete\n",
"01:49:39.98 84.55 percent complete\n",
"01:50:05.94 84.84 percent complete\n",
"01:50:28.82 85.14 percent complete\n",
"01:50:51.72 85.44 percent complete\n",
"01:51:15.22 85.73 percent complete\n",
"01:51:37.48 86.03 percent complete\n",
"01:52:00.25 86.33 percent complete\n",
"01:52:22.75 86.62 percent complete\n",
"01:52:46.56 86.92 percent complete\n",
"01:53:11.50 87.22 percent complete\n",
"01:53:34.44 87.51 percent complete\n",
"01:53:57.30 87.81 percent complete\n",
"01:54:20.34 88.11 percent complete\n",
"01:54:42.83 88.40 percent complete\n",
"01:55:05.72 88.70 percent complete\n",
"01:55:28.96 89.00 percent complete\n",
"01:55:51.42 89.29 percent complete\n",
"01:56:17.70 89.59 percent complete\n",
"01:56:42.54 89.89 percent complete\n",
"01:57:06.63 90.18 percent complete\n",
"01:57:30.01 90.48 percent complete\n",
"01:57:53.28 90.78 percent complete\n",
"01:58:16.94 91.07 percent complete\n",
"01:58:39.94 91.37 percent complete\n",
"01:59:03.14 91.67 percent complete\n"
]
},
{
"name": "stderr",
"output_type": "stream",
"text": [
"WARNING:root:Applied processor reduces input query to empty string, all comparisons will have score 0. [Query: '\\']\n"
]
},
{
"name": "stdout",
"output_type": "stream",
"text": [
"01:59:27.71 91.96 percent complete\n",
"01:59:53.34 92.26 percent complete\n",
"02:00:15.96 92.56 percent complete\n",
"02:00:38.31 92.85 percent complete\n",
"02:01:01.63 93.15 percent complete\n",
"02:01:25.17 93.45 percent complete\n",
"02:01:47.62 93.74 percent complete\n",
"02:02:10.33 94.04 percent complete\n",
"02:02:33.31 94.34 percent complete\n",
"02:02:57.88 94.63 percent complete\n",
"02:03:19.49 94.93 percent complete\n",
"02:03:42.46 95.23 percent complete\n",
"02:04:04.82 95.52 percent complete\n",
"02:04:27.72 95.82 percent complete\n",
"02:04:50.36 96.12 percent complete\n",
"02:05:13.34 96.41 percent complete\n",
"02:05:35.17 96.71 percent complete\n",
"02:06:00.93 97.01 percent complete\n",
"02:06:23.25 97.30 percent complete\n",
"02:06:45.72 97.60 percent complete\n",
"02:07:07.80 97.89 percent complete\n",
"02:07:30.31 98.19 percent complete\n",
"02:07:52.66 98.49 percent complete\n",
"02:08:14.26 98.78 percent complete\n",
"02:08:36.20 99.08 percent complete\n",
"02:09:01.21 99.38 percent complete\n",
"02:09:23.58 99.67 percent complete\n",
"02:09:46.32 99.97 percent complete\n"
]
}
],
"source": [
"#TODO: Skip for retrain\n",
"# Install fuzzy wuzzy to remove \"almost duplicate\" sentences in the\n",
"# test and training sets.\n",
"! pip install fuzzywuzzy\n",
"! pip install python-Levenshtein\n",
"import time\n",
"from fuzzywuzzy import process\n",
"import numpy as np\n",
"\n",
"# reset the index of the training set after previous filtering\n",
"df_pp.reset_index(drop=False, inplace=True)\n",
"\n",
"# Remove samples from the training data set if they \"almost overlap\" with the\n",
"# samples in the test set.\n",
"\n",
"# Filtering function. Adjust pad to narrow down the candidate matches to\n",
"# within a certain length of characters of the given sample.\n",
"def fuzzfilter(sample, candidates, pad):\n",
" candidates = [x for x in candidates if len(x) <= len(sample)+pad and len(x) >= len(sample)-pad] \n",
" if len(candidates) > 0:\n",
" return process.extractOne(sample, candidates)[1]\n",
" else:\n",
" return np.nan\n",
"\n",
"# NOTE - This might run slow depending on the size of your training set. We are\n",
"# printing some information to help you track how long it would take. \n",
"scores = []\n",
"start_time = time.time()\n",
"for idx, row in df_pp.iterrows():\n",
" scores.append(fuzzfilter(row['source_sentence'], list(en_test_sents), 5))\n",
" if idx % 1000 == 0:\n",
" hours, rem = divmod(time.time() - start_time, 3600)\n",
" minutes, seconds = divmod(rem, 60)\n",
" print(\"{:0>2}:{:0>2}:{:05.2f}\".format(int(hours),int(minutes),seconds), \"%0.2f percent complete\" % (100.0*float(idx)/float(len(df_pp))))\n",
"\n",
"# Filter out \"almost overlapping samples\"\n",
"df_pp['scores'] = scores\n",
"df_pp = df_pp[df_pp['scores'] < 95]"
]
},
{
"cell_type": "code",
"execution_count": 0,
"metadata": {
"colab": {
"base_uri": "https://localhost:8080/",
"height": 819
},
"colab_type": "code",
"id": "hxxBOCA-xXhy",
"outputId": "2280d2fc-21de-4059-f546-53412f256823"
},
"outputs": [
{
"name": "stdout",
"output_type": "stream",
"text": [
"==> train.efi <==\n",
"Isaiah 9 : 7 ọdọho ke Eyen Abasi edidi Edidem ye nte ke enye ayanam ediwak nti n̄kpọ ọnọ ubonowo . “ Ifịk Jehovah mme udịm edinam emi . ”\n",
"The New Encyclopædia Britannica ọdọhọ ke Mme Ntiense Jehovah “ ẹdu uwem nte Bible etemede . ”\n",
"Mmọ ẹkesụk ẹdu ke ini emi wheat ye mbiet ẹkọride ọtọkiet , ndien owo ikokụreke kan̄a ndutịm oro ẹkenamde man ẹnyene mbon emi ẹdisinọde mme owo udia eke spirit .\n",
"SIO INI NỊM NDINAM ITIE UFAN ỌKỌRI .\n",
"Ndien ami nyeben̄e ekụri nsiak ifia nnịm nnọ enye edida etem udia .\n",
"Ini kiet , mma ntọhọ nnyụn̄ n̄n̄wana ye owo unek emi eketiede ubi ubi , nnyụn̄ mmia unamikọt nsio ntop nduọk ko !\n",
"Edi Andibot ọmọn̄wọn̄ọ ete ke imọ iyọsọp ida utịt isọk ererimbot n̄kaowo oro odude ke emi ke idak ukara Satan kpa Devil .\n",
"Ami ye Roy ima idomo ndidu uwem ekekem ye enyịn̄ oro ebe ke ndibuana ke kpukpru usụn̄ ukwọrọikọ ye ubịnikọt oro esop ekesịnde udọn̄ ọnọ .\n",
"T .\n",
"Sylvia emi edide nurse ọdọhọ ete : “ Ediwak mbon oro ikakade n̄wed ntre ẹma ẹsika ufọkabasi .\n",
"\n",
"==> train.en <==\n",
"Referring to what the rulership of God’s Son will accomplish , Isaiah 9 : 7 says : “ The very zeal of Jehovah of armies will do this . ”\n",
"The New Encyclopædia Britannica observes that Jehovah’s Witnesses “ insist upon a high moral code in personal conduct . ”\n",
"They were still in the growing season , and the arrangement for a channel to provide spiritual food was still taking shape .\n",
"MAKE TIME TO CULTIVATE A FRIENDSHIP .\n",
"In the meantime , I would borrow an ax to chop firewood for cooking .\n",
"On one occasion , I got into a fight with a sinister - looking customer but handled him easily .\n",
"But the Creator has promised that he will soon bring an end to the present world society that is under the control of Satan the Devil .\n",
"Roy and I endeavored to live up to that name by sharing in all the preaching methods and campaigns that the organization encouraged .\n",
"T .\n",
"“ I went to college with many who claimed to be religious , ” says Sylvia , who works in the health - care business .\n",
"==> dev.efi <==\n",
"Edieke anamde ntre , ọwọrọ ke ememek mfọnn̄kan usụn̄ uwem .\n",
"Akam ekeme ndidi se ọkwọrọ ederi eketịn̄de ọnọ mmọ edi oro .\n",
"Ẹtịn̄ ukem ikọ oro ke 2 Chronicles 5 : 9 .\n",
"Ẹkọbi Paul ẹtem ke ufọk esie ke Rome ke isua iba ( ke n̄kpọ nte isua 59 esịm 61 E.N . ) , ndien enye oyom usụn̄ do ọkwọrọ Obio Ubọn̄ onyụn̄ ekpep mbon en̄wen “ mme n̄kpọ emi ẹban̄ade Ọbọn̄ Jesus Christ . ” — Utom 28 : 30 , 31 .\n",
"Jehovah ama odu ye enye . ”\n",
"Ikebịghike - bịghi , ye edisio A Facsimile Edition of the Dead Sea Scrolls ( Nsiondi Mme Ata Ata Ikpan̄wed Inyan̄ Inụn̄ ) , ẹma ẹkeme ndikụt mme ndise ikpan̄wed oro owo mîkosioho ke mbemiso mmemmem mmemmem .\n",
"Esịt ama enem enye etieti .\n",
"Ke 2014 , obufa ọfiọn̄ emi ekperede usen emi uwemeyo ye okoneyo ẹsidide ukem ukem ediduọ ke March 30 , ke ayakde minit 15 ndimia n̄kanika usụkkiet okoneyo ke Jerusalem .\n",
"Oro akanam iyom nditiene n̄kwọrọ etop emi .\n",
"Mbon oro ẹmade eti n̄kpọ kpọt ẹdinyịme .\n",
"\n",
"==> dev.en <==\n",
"If you do , you will be choosing the best possible way of life .\n",
"They may even have been told as much by a clergyman .\n",
"The same point is made at 2 Chronicles 5 : 9 .\n",
"59 - 61 C.E . ) , and from there he finds ways to preach about the Kingdom and teach “ the things concerning the Lord Jesus Christ . ” — Acts 28 : 30 , 31 .\n",
"Jehovah was with him . ”\n",
"Before long , with the publication of A Facsimile Edition of the Dead Sea Scrolls , photographs of the previously unpublished scrolls became easily accessible .\n",
"What joy that brought her !\n",
"( 20 : 45 ) , Jerusalem time . The following sunset in Jerusalem ( March 31 ) will come about 21 hours later .\n",
"All the more reason for us to join in the proclamation .\n",
"Only people who love what is good will accept him .\n"
]
}
],
"source": [
"#TODO: Skip for retrain\n",
"# This section does the split between train/dev for the parallel corpora then saves them as separate files\n",
"# We use 1000 dev test and the given test set.\n",
"import csv\n",
"\n",
"# Do the split between dev/train and create parallel corpora\n",
"num_dev_patterns = 1000\n",
"\n",
"# Optional: lower case the corpora - this will make it easier to generalize, but without proper casing.\n",
"if lc: # Julia: making lowercasing optional\n",
" df_pp[\"source_sentence\"] = df_pp[\"source_sentence\"].str.lower()\n",
" df_pp[\"target_sentence\"] = df_pp[\"target_sentence\"].str.lower()\n",
"\n",
"# Julia: test sets are already generated\n",
"dev = df_pp.tail(num_dev_patterns) # Herman: Error in original\n",
"stripped = df_pp.drop(df_pp.tail(num_dev_patterns).index)\n",
"\n",
"with open(\"train.\"+source_language, \"w\") as src_file, open(\"train.\"+target_language, \"w\") as trg_file:\n",
" for index, row in stripped.iterrows():\n",
" src_file.write(row[\"source_sentence\"]+\"\\n\")\n",
" trg_file.write(row[\"target_sentence\"]+\"\\n\")\n",
" \n",
"with open(\"dev.\"+source_language, \"w\") as src_file, open(\"dev.\"+target_language, \"w\") as trg_file:\n",
" for index, row in dev.iterrows():\n",
" src_file.write(row[\"source_sentence\"]+\"\\n\")\n",
" trg_file.write(row[\"target_sentence\"]+\"\\n\")\n",
"\n",
"#stripped[[\"source_sentence\"]].to_csv(\"train.\"+source_language, header=False, index=False) # Herman: Added `header=False` everywhere\n",
"#stripped[[\"target_sentence\"]].to_csv(\"train.\"+target_language, header=False, index=False) # Julia: Problematic handling of quotation marks.\n",
"\n",
"#dev[[\"source_sentence\"]].to_csv(\"dev.\"+source_language, header=False, index=False)\n",
"#dev[[\"target_sentence\"]].to_csv(\"dev.\"+target_language, header=False, index=False)\n",
"\n",
"# Doublecheck the format below. There should be no extra quotation marks or weird characters.\n",
"! head train.*\n",
"! head dev.*"
]
},
{
"cell_type": "markdown",
"metadata": {
"colab_type": "text",
"id": "epeCydmCyS8X"
},
"source": [
"\n",
"\n",
"---\n",
"\n",
"\n",
"## Installation of JoeyNMT\n",
"\n",
"JoeyNMT is a simple, minimalist NMT package which is useful for learning and teaching. Check out the documentation for JoeyNMT [here](https://joeynmt.readthedocs.io) "
]
},
{
"cell_type": "code",
"execution_count": 0,
"metadata": {
"colab": {
"base_uri": "https://localhost:8080/",
"height": 1000
},
"colab_type": "code",
"id": "iBRMm4kMxZ8L",
"outputId": "4cd872fa-ba2f-4764-b007-467bcd456fa5"
},
"outputs": [
{
"name": "stdout",
"output_type": "stream",
"text": [
"Cloning into 'joeynmt'...\n",
"remote: Enumerating objects: 3, done.\u001b[K\n",
"remote: Counting objects: 100% (3/3), done.\u001b[K\n",
"remote: Compressing objects: 100% (3/3), done.\u001b[K\n",
"remote: Total 2380 (delta 0), reused 0 (delta 0), pack-reused 2377\u001b[K\n",
"Receiving objects: 100% (2380/2380), 2.60 MiB | 2.31 MiB/s, done.\n",
"Resolving deltas: 100% (1670/1670), done.\n",
"Processing /content/joeynmt\n",
"Requirement already satisfied: future in /usr/local/lib/python3.6/dist-packages (from joeynmt==0.0.1) (0.16.0)\n",
"Requirement already satisfied: pillow in /usr/local/lib/python3.6/dist-packages (from joeynmt==0.0.1) (7.0.0)\n",
"Requirement already satisfied: numpy<2.0,>=1.14.5 in /usr/local/lib/python3.6/dist-packages (from joeynmt==0.0.1) (1.18.2)\n",
"Requirement already satisfied: setuptools>=41.0.0 in /usr/local/lib/python3.6/dist-packages (from joeynmt==0.0.1) (46.1.3)\n",
"Requirement already satisfied: torch>=1.1 in /usr/local/lib/python3.6/dist-packages (from joeynmt==0.0.1) (1.4.0)\n",
"Requirement already satisfied: tensorflow>=1.14 in /usr/local/lib/python3.6/dist-packages (from joeynmt==0.0.1) (2.2.0rc2)\n",
"Requirement already satisfied: torchtext in /usr/local/lib/python3.6/dist-packages (from joeynmt==0.0.1) (0.3.1)\n",
"Collecting sacrebleu>=1.3.6\n",
"\u001b[?25l Downloading https://files.pythonhosted.org/packages/f5/58/5c6cc352ea6271125325950715cf8b59b77abe5e93cf29f6e60b491a31d9/sacrebleu-1.4.6-py3-none-any.whl (59kB)\n",
"\u001b[K |████████████████████████████████| 61kB 1.1MB/s \n",
"\u001b[?25hCollecting subword-nmt\n",
" Downloading https://files.pythonhosted.org/packages/74/60/6600a7bc09e7ab38bc53a48a20d8cae49b837f93f5842a41fe513a694912/subword_nmt-0.3.7-py2.py3-none-any.whl\n",
"Requirement already satisfied: matplotlib in /usr/local/lib/python3.6/dist-packages (from joeynmt==0.0.1) (3.2.1)\n",
"Requirement already satisfied: seaborn in /usr/local/lib/python3.6/dist-packages (from joeynmt==0.0.1) (0.10.0)\n",
"Collecting pyyaml>=5.1\n",
"\u001b[?25l Downloading https://files.pythonhosted.org/packages/64/c2/b80047c7ac2478f9501676c988a5411ed5572f35d1beff9cae07d321512c/PyYAML-5.3.1.tar.gz (269kB)\n",
"\u001b[K |████████████████████████████████| 276kB 4.0MB/s \n",
"\u001b[?25hCollecting pylint\n",
"\u001b[?25l Downloading https://files.pythonhosted.org/packages/e9/59/43fc36c5ee316bb9aeb7cf5329cdbdca89e5749c34d5602753827c0aa2dc/pylint-2.4.4-py3-none-any.whl (302kB)\n",
"\u001b[K |████████████████████████████████| 307kB 57.3MB/s \n",
"\u001b[?25hRequirement already satisfied: six==1.12 in /usr/local/lib/python3.6/dist-packages (from joeynmt==0.0.1) (1.12.0)\n",
"Collecting wrapt==1.11.1\n",
" Downloading https://files.pythonhosted.org/packages/67/b2/0f71ca90b0ade7fad27e3d20327c996c6252a2ffe88f50a95bba7434eda9/wrapt-1.11.1.tar.gz\n",
"Requirement already satisfied: tensorflow-estimator<2.3.0,>=2.2.0rc0 in /usr/local/lib/python3.6/dist-packages (from tensorflow>=1.14->joeynmt==0.0.1) (2.2.0rc0)\n",
"Requirement already satisfied: termcolor>=1.1.0 in /usr/local/lib/python3.6/dist-packages (from tensorflow>=1.14->joeynmt==0.0.1) (1.1.0)\n",
"Requirement already satisfied: keras-preprocessing>=1.1.0 in /usr/local/lib/python3.6/dist-packages (from tensorflow>=1.14->joeynmt==0.0.1) (1.1.0)\n",
"Requirement already satisfied: astunparse==1.6.3 in /usr/local/lib/python3.6/dist-packages (from tensorflow>=1.14->joeynmt==0.0.1) (1.6.3)\n",
"Requirement already satisfied: grpcio>=1.8.6 in /usr/local/lib/python3.6/dist-packages (from tensorflow>=1.14->joeynmt==0.0.1) (1.27.2)\n",
"Requirement already satisfied: tensorboard<2.3.0,>=2.2.0 in /usr/local/lib/python3.6/dist-packages (from tensorflow>=1.14->joeynmt==0.0.1) (2.2.0)\n",
"Requirement already satisfied: opt-einsum>=2.3.2 in /usr/local/lib/python3.6/dist-packages (from tensorflow>=1.14->joeynmt==0.0.1) (3.2.0)\n",
"Requirement already satisfied: google-pasta>=0.1.8 in /usr/local/lib/python3.6/dist-packages (from tensorflow>=1.14->joeynmt==0.0.1) (0.2.0)\n",
"Requirement already satisfied: absl-py>=0.7.0 in /usr/local/lib/python3.6/dist-packages (from tensorflow>=1.14->joeynmt==0.0.1) (0.9.0)\n",
"Requirement already satisfied: h5py<2.11.0,>=2.10.0 in /usr/local/lib/python3.6/dist-packages (from tensorflow>=1.14->joeynmt==0.0.1) (2.10.0)\n",
"Requirement already satisfied: protobuf>=3.8.0 in /usr/local/lib/python3.6/dist-packages (from tensorflow>=1.14->joeynmt==0.0.1) (3.10.0)\n",
"Requirement already satisfied: wheel>=0.26; python_version >= \"3\" in /usr/local/lib/python3.6/dist-packages (from tensorflow>=1.14->joeynmt==0.0.1) (0.34.2)\n",
"Requirement already satisfied: scipy==1.4.1; python_version >= \"3\" in /usr/local/lib/python3.6/dist-packages (from tensorflow>=1.14->joeynmt==0.0.1) (1.4.1)\n",
"Requirement already satisfied: gast==0.3.3 in /usr/local/lib/python3.6/dist-packages (from tensorflow>=1.14->joeynmt==0.0.1) (0.3.3)\n",
"Requirement already satisfied: requests in /usr/local/lib/python3.6/dist-packages (from torchtext->joeynmt==0.0.1) (2.21.0)\n",
"Requirement already satisfied: tqdm in /usr/local/lib/python3.6/dist-packages (from torchtext->joeynmt==0.0.1) (4.38.0)\n",
"Collecting mecab-python3\n",
"\u001b[?25l Downloading https://files.pythonhosted.org/packages/18/49/b55a839a77189042960bf96490640c44816073f917d489acbc5d79fa5cc3/mecab_python3-0.996.5-cp36-cp36m-manylinux2010_x86_64.whl (17.1MB)\n",
"\u001b[K |████████████████████████████████| 17.1MB 200kB/s \n",
"\u001b[?25hCollecting portalocker\n",
" Downloading https://files.pythonhosted.org/packages/64/03/9abfb3374d67838daf24f1a388528714bec1debb1d13749f0abd7fb07cfb/portalocker-1.6.0-py2.py3-none-any.whl\n",
"Requirement already satisfied: typing in /usr/local/lib/python3.6/dist-packages (from sacrebleu>=1.3.6->joeynmt==0.0.1) (3.6.6)\n",
"Requirement already satisfied: pyparsing!=2.0.4,!=2.1.2,!=2.1.6,>=2.0.1 in /usr/local/lib/python3.6/dist-packages (from matplotlib->joeynmt==0.0.1) (2.4.6)\n",
"Requirement already satisfied: python-dateutil>=2.1 in /usr/local/lib/python3.6/dist-packages (from matplotlib->joeynmt==0.0.1) (2.8.1)\n",
"Requirement already satisfied: kiwisolver>=1.0.1 in /usr/local/lib/python3.6/dist-packages (from matplotlib->joeynmt==0.0.1) (1.2.0)\n",
"Requirement already satisfied: cycler>=0.10 in /usr/local/lib/python3.6/dist-packages (from matplotlib->joeynmt==0.0.1) (0.10.0)\n",
"Requirement already satisfied: pandas>=0.22.0 in /usr/local/lib/python3.6/dist-packages (from seaborn->joeynmt==0.0.1) (1.0.3)\n",
"Collecting astroid<2.4,>=2.3.0\n",
"\u001b[?25l Downloading https://files.pythonhosted.org/packages/ad/ae/86734823047962e7b8c8529186a1ac4a7ca19aaf1aa0c7713c022ef593fd/astroid-2.3.3-py3-none-any.whl (205kB)\n",
"\u001b[K |████████████████████████████████| 215kB 61.3MB/s \n",
"\u001b[?25hCollecting isort<5,>=4.2.5\n",
"\u001b[?25l Downloading https://files.pythonhosted.org/packages/e5/b0/c121fd1fa3419ea9bfd55c7f9c4fedfec5143208d8c7ad3ce3db6c623c21/isort-4.3.21-py2.py3-none-any.whl (42kB)\n",
"\u001b[K |████████████████████████████████| 51kB 7.8MB/s \n",
"\u001b[?25hCollecting mccabe<0.7,>=0.6\n",
" Downloading https://files.pythonhosted.org/packages/87/89/479dc97e18549e21354893e4ee4ef36db1d237534982482c3681ee6e7b57/mccabe-0.6.1-py2.py3-none-any.whl\n",
"Requirement already satisfied: markdown>=2.6.8 in /usr/local/lib/python3.6/dist-packages (from tensorboard<2.3.0,>=2.2.0->tensorflow>=1.14->joeynmt==0.0.1) (3.2.1)\n",
"Requirement already satisfied: google-auth<2,>=1.6.3 in /usr/local/lib/python3.6/dist-packages (from tensorboard<2.3.0,>=2.2.0->tensorflow>=1.14->joeynmt==0.0.1) (1.7.2)\n",
"Requirement already satisfied: werkzeug>=0.11.15 in /usr/local/lib/python3.6/dist-packages (from tensorboard<2.3.0,>=2.2.0->tensorflow>=1.14->joeynmt==0.0.1) (1.0.1)\n",
"Requirement already satisfied: tensorboard-plugin-wit>=1.6.0 in /usr/local/lib/python3.6/dist-packages (from tensorboard<2.3.0,>=2.2.0->tensorflow>=1.14->joeynmt==0.0.1) (1.6.0.post2)\n",
"Requirement already satisfied: google-auth-oauthlib<0.5,>=0.4.1 in /usr/local/lib/python3.6/dist-packages (from tensorboard<2.3.0,>=2.2.0->tensorflow>=1.14->joeynmt==0.0.1) (0.4.1)\n",
"Requirement already satisfied: urllib3<1.25,>=1.21.1 in /usr/local/lib/python3.6/dist-packages (from requests->torchtext->joeynmt==0.0.1) (1.24.3)\n",
"Requirement already satisfied: chardet<3.1.0,>=3.0.2 in /usr/local/lib/python3.6/dist-packages (from requests->torchtext->joeynmt==0.0.1) (3.0.4)\n",
"Requirement already satisfied: certifi>=2017.4.17 in /usr/local/lib/python3.6/dist-packages (from requests->torchtext->joeynmt==0.0.1) (2019.11.28)\n",
"Requirement already satisfied: idna<2.9,>=2.5 in /usr/local/lib/python3.6/dist-packages (from requests->torchtext->joeynmt==0.0.1) (2.8)\n",
"Requirement already satisfied: pytz>=2017.2 in /usr/local/lib/python3.6/dist-packages (from pandas>=0.22.0->seaborn->joeynmt==0.0.1) (2018.9)\n",
"Collecting lazy-object-proxy==1.4.*\n",
"\u001b[?25l Downloading https://files.pythonhosted.org/packages/0b/dd/b1e3407e9e6913cf178e506cd0dee818e58694d9a5cd1984e3f6a8b9a10f/lazy_object_proxy-1.4.3-cp36-cp36m-manylinux1_x86_64.whl (55kB)\n",
"\u001b[K |████████████████████████████████| 61kB 8.6MB/s \n",
"\u001b[?25hCollecting typed-ast<1.5,>=1.4.0; implementation_name == \"cpython\" and python_version < \"3.8\"\n",
"\u001b[?25l Downloading https://files.pythonhosted.org/packages/90/ed/5459080d95eb87a02fe860d447197be63b6e2b5e9ff73c2b0a85622994f4/typed_ast-1.4.1-cp36-cp36m-manylinux1_x86_64.whl (737kB)\n",
"\u001b[K |████████████████████████████████| 747kB 64.4MB/s \n",
"\u001b[?25hRequirement already satisfied: cachetools<3.2,>=2.0.0 in /usr/local/lib/python3.6/dist-packages (from google-auth<2,>=1.6.3->tensorboard<2.3.0,>=2.2.0->tensorflow>=1.14->joeynmt==0.0.1) (3.1.1)\n",
"Requirement already satisfied: rsa<4.1,>=3.1.4 in /usr/local/lib/python3.6/dist-packages (from google-auth<2,>=1.6.3->tensorboard<2.3.0,>=2.2.0->tensorflow>=1.14->joeynmt==0.0.1) (4.0)\n",
"Requirement already satisfied: pyasn1-modules>=0.2.1 in /usr/local/lib/python3.6/dist-packages (from google-auth<2,>=1.6.3->tensorboard<2.3.0,>=2.2.0->tensorflow>=1.14->joeynmt==0.0.1) (0.2.8)\n",
"Requirement already satisfied: requests-oauthlib>=0.7.0 in /usr/local/lib/python3.6/dist-packages (from google-auth-oauthlib<0.5,>=0.4.1->tensorboard<2.3.0,>=2.2.0->tensorflow>=1.14->joeynmt==0.0.1) (1.3.0)\n",
"Requirement already satisfied: pyasn1>=0.1.3 in /usr/local/lib/python3.6/dist-packages (from rsa<4.1,>=3.1.4->google-auth<2,>=1.6.3->tensorboard<2.3.0,>=2.2.0->tensorflow>=1.14->joeynmt==0.0.1) (0.4.8)\n",
"Requirement already satisfied: oauthlib>=3.0.0 in /usr/local/lib/python3.6/dist-packages (from requests-oauthlib>=0.7.0->google-auth-oauthlib<0.5,>=0.4.1->tensorboard<2.3.0,>=2.2.0->tensorflow>=1.14->joeynmt==0.0.1) (3.1.0)\n",
"Building wheels for collected packages: joeynmt, pyyaml, wrapt\n",
" Building wheel for joeynmt (setup.py) ... \u001b[?25l\u001b[?25hdone\n",
" Created wheel for joeynmt: filename=joeynmt-0.0.1-cp36-none-any.whl size=73768 sha256=89928a71dba6299fa590b2e3aa35c718986d92c848776139e99d4db0c8e19bf3\n",
" Stored in directory: /tmp/pip-ephem-wheel-cache-clor59d_/wheels/db/01/db/751cc9f3e7f6faec127c43644ba250a3ea7ad200594aeda70a\n",
" Building wheel for pyyaml (setup.py) ... \u001b[?25l\u001b[?25hdone\n",
" Created wheel for pyyaml: filename=PyYAML-5.3.1-cp36-cp36m-linux_x86_64.whl size=44621 sha256=2429b3effea1bb425377daef070f44a92967e98a656cc62766a78bb0b4b2b497\n",
" Stored in directory: /root/.cache/pip/wheels/a7/c1/ea/cf5bd31012e735dc1dfea3131a2d5eae7978b251083d6247bd\n",
" Building wheel for wrapt (setup.py) ... \u001b[?25l\u001b[?25hdone\n",
" Created wheel for wrapt: filename=wrapt-1.11.1-cp36-cp36m-linux_x86_64.whl size=67430 sha256=61f829831a03970770d2c7b2bec42178fd22cc683c18885c204fa19b3a0cf6b1\n",
" Stored in directory: /root/.cache/pip/wheels/89/67/41/63cbf0f6ac0a6156588b9587be4db5565f8c6d8ccef98202fc\n",
"Successfully built joeynmt pyyaml wrapt\n",
"Installing collected packages: mecab-python3, portalocker, sacrebleu, subword-nmt, pyyaml, wrapt, lazy-object-proxy, typed-ast, astroid, isort, mccabe, pylint, joeynmt\n",
" Found existing installation: PyYAML 3.13\n",
" Uninstalling PyYAML-3.13:\n",
" Successfully uninstalled PyYAML-3.13\n",
" Found existing installation: wrapt 1.12.1\n",
" Uninstalling wrapt-1.12.1:\n",
" Successfully uninstalled wrapt-1.12.1\n",
"Successfully installed astroid-2.3.3 isort-4.3.21 joeynmt-0.0.1 lazy-object-proxy-1.4.3 mccabe-0.6.1 mecab-python3-0.996.5 portalocker-1.6.0 pylint-2.4.4 pyyaml-5.3.1 sacrebleu-1.4.6 subword-nmt-0.3.7 typed-ast-1.4.1 wrapt-1.11.1\n"
]
}
],
"source": [
"# Install JoeyNMT\n",
"! git clone https://github.com/joeynmt/joeynmt.git\n",
"! cd joeynmt; pip3 install ."
]
},
{
"cell_type": "markdown",
"metadata": {
"colab_type": "text",
"id": "AaE77Tcppex9"
},
"source": [
"# Preprocessing the Data into Subword BPE Tokens\n",
"\n",
"- One of the most powerful improvements for agglutinative languages (a feature of most Bantu languages) is using BPE tokenization [ (Sennrich, 2015) ](https://arxiv.org/abs/1508.07909).\n",
"\n",
"- It was also shown that by optimizing the umber of BPE codes we significantly improve results for low-resourced languages [(Sennrich, 2019)](https://www.aclweb.org/anthology/P19-1021) [(Martinus, 2019)](https://arxiv.org/abs/1906.05685)\n",
"\n",
"- Below we have the scripts for doing BPE tokenization of our data. We use 4000 tokens as recommended by [(Sennrich, 2019)](https://www.aclweb.org/anthology/P19-1021). You do not need to change anything. Simply running the below will be suitable. "
]
},
{
"cell_type": "code",
"execution_count": 0,
"metadata": {
"colab": {
"base_uri": "https://localhost:8080/",
"height": 459
},
"colab_type": "code",
"id": "H-TyjtmXB1mL",
"outputId": "30ee4eff-3e72-4f7f-c0ac-f76f0dcf75b9"
},
"outputs": [
{
"name": "stdout",
"output_type": "stream",
"text": [
"bpe.codes.4000\tdev.efi test.bpe.en test.en-any.en train.efi\n",
"dev.bpe.efi\tdev.en\t test.efi\t train.bpe.efi train.en\n",
"dev.bpe.en\ttest.bpe.efi test.en\t train.bpe.en\n",
"1000.hyps 4000.hyps\t dev.efi\t test.bpe.en\t train.bpe.en\n",
"2000.ckpt best.ckpt\t dev.en\t test.efi\t train.efi\n",
"2000.hyps bpe.codes.4000 models\t test.en\t train.en\n",
"3000.ckpt config.yaml\t src_vocab.txt test.en-any.en train.log\n",
"3000.hyps dev.bpe.efi\t tensorboard\t test.en-any.en.1 trg_vocab.txt\n",
"4000.ckpt dev.bpe.en\t test.bpe.efi train.bpe.efi validations.txt\n",
"BPE Xhosa Sentences\n",
"18 , 19 . ( a ) Didie ke nditọete ke esop mbufo ẹkeme ndin̄wam fi ada san̄asan̄a ?\n",
"“ Ndi@@ tie n̄kere se Mme N̄ke 27 : 11 , Matthew 26 : 5@@ 2 , ye John 13 : 35 ẹdọhọde ama an̄wam mi nt@@ etịm mb@@ iere ke ndid@@ ụk@@ ke ekọn̄ .\n",
"Mme itie N̄wed Abasi emi ama anam esịt ana mi sụn̄ ke ini afanikọn̄ emi . ” — A@@ nd@@ ri@@ y emi otode Uk@@ ra@@ ine .\n",
"“ Isaiah 2 : 4 ama an̄wam mi n̄ka iso nda san̄asan̄a ke ini idomo .\n",
"Mma n@@ tie n̄kere nte uwem ed@@ inem@@ de ke obufa ererimbot , ke ini mme owo mîdi@@ d@@ aha n̄kpọ@@ ekọn̄ iw@@ ot owo . ” — W@@ il@@ m@@ er emi otode C@@ olo@@ mb@@ ia .\n",
"Combined BPE Vocab\n",
"ō\n",
"ι\n",
"⁄\n",
"◀\n",
"ˋ@@\n",
"/@@\n",
"ā\n",
"Α@@\n",
"bless@@\n",
";@@\n"
]
}
],
"source": [
"#TODO: Skip for retrain\n",
"# One of the huge boosts in NMT performance was to use a different method of tokenizing. \n",
"# Usually, NMT would tokenize by words. However, using a method called BPE gave amazing boosts to performance\n",
"\n",
"# Do subword NMT\n",
"from os import path\n",
"os.environ[\"src\"] = source_language # Sets them in bash as well, since we often use bash scripts\n",
"os.environ[\"tgt\"] = target_language\n",
"\n",
"# Learn BPEs on the training data.\n",
"os.environ[\"data_path\"] = path.join(\"joeynmt\", \"data\", source_language + target_language) # Herman! \n",
"! subword-nmt learn-joint-bpe-and-vocab --input train.$src train.$tgt -s 4000 -o bpe.codes.4000 --write-vocabulary vocab.$src vocab.$tgt\n",
"\n",
"# Apply BPE splits to the development and test data.\n",
"! subword-nmt apply-bpe -c bpe.codes.4000 --vocabulary vocab.$src < train.$src > train.bpe.$src\n",
"! subword-nmt apply-bpe -c bpe.codes.4000 --vocabulary vocab.$tgt < train.$tgt > train.bpe.$tgt\n",
"\n",
"! subword-nmt apply-bpe -c bpe.codes.4000 --vocabulary vocab.$src < dev.$src > dev.bpe.$src\n",
"! subword-nmt apply-bpe -c bpe.codes.4000 --vocabulary vocab.$tgt < dev.$tgt > dev.bpe.$tgt\n",
"! subword-nmt apply-bpe -c bpe.codes.4000 --vocabulary vocab.$src < test.$src > test.bpe.$src\n",
"! subword-nmt apply-bpe -c bpe.codes.4000 --vocabulary vocab.$tgt < test.$tgt > test.bpe.$tgt\n",
"\n",
"# Create directory, move everyone we care about to the correct location\n",
"! mkdir -p $data_path\n",
"! cp train.* $data_path\n",
"! cp test.* $data_path\n",
"! cp dev.* $data_path\n",
"! cp bpe.codes.4000 $data_path\n",
"! ls $data_path\n",
"\n",
"# Also move everything we care about to a mounted location in google drive (relevant if running in colab) at gdrive_path\n",
"! cp train.* \"$gdrive_path\"\n",
"! cp test.* \"$gdrive_path\"\n",
"! cp dev.* \"$gdrive_path\"\n",
"! cp bpe.codes.4000 \"$gdrive_path\"\n",
"! ls \"$gdrive_path\"\n",
"\n",
"# Create that vocab using build_vocab\n",
"! sudo chmod 777 joeynmt/scripts/build_vocab.py\n",
"! joeynmt/scripts/build_vocab.py joeynmt/data/$src$tgt/train.bpe.$src joeynmt/data/$src$tgt/train.bpe.$tgt --output_path \"$gdrive_path/vocab.txt\"\n",
"\n",
"# Some output\n",
"! echo \"BPE Xhosa Sentences\"\n",
"! tail -n 5 test.bpe.$tgt\n",
"! echo \"Combined BPE Vocab\"\n",
"! tail -n 10 \"$gdrive_path/vocab.txt\" # Herman"
]
},
{
"cell_type": "markdown",
"metadata": {
"colab_type": "text",
"id": "Ixmzi60WsUZ8"
},
"source": [
"# Creating the JoeyNMT Config\n",
"\n",
"JoeyNMT requires a yaml config. We provide a template below. We've also set a number of defaults with it, that you may play with!\n",
"\n",
"- We used Transformer architecture \n",
"- We set our dropout to reasonably high: 0.3 (recommended in [(Sennrich, 2019)](https://www.aclweb.org/anthology/P19-1021))\n",
"\n",
"Things worth playing with:\n",
"- The batch size (also recommended to change for low-resourced languages)\n",
"- The number of epochs (we've set it at 30 just so it runs in about an hour, for testing purposes)\n",
"- The decoder options (beam_size, alpha)\n",
"- Evaluation metrics (BLEU versus Crhf4)"
]
},
{
"cell_type": "code",
"execution_count": 0,
"metadata": {
"colab": {},
"colab_type": "code",
"id": "Wc47fvWqyxbd"
},
"outputs": [],
"source": [
"def get_last_checkpoint(directory):\n",
" last_checkpoint = ''\n",
" try:\n",
" for filename in os.listdir(directory):\n",
" if not 'best' in filename and filename.endswith(\".ckpt\"):\n",
" if not last_checkpoint or int(filename.split('.')[0]) > int(last_checkpoint.split('.')[0]):\n",
" last_checkpoint = filename\n",
" except FileNotFoundError as e:\n",
" print('Error Occur ', e)\n",
" return last_checkpoint"
]
},
{
"cell_type": "code",
"execution_count": 0,
"metadata": {
"colab": {
"base_uri": "https://localhost:8080/",
"height": 34
},
"colab_type": "code",
"id": "x_ffEoFdy1Qo",
"outputId": "b0bd7cd6-f1a5-4451-8ec1-bea975dfd14a"
},
"outputs": [
{
"name": "stdout",
"output_type": "stream",
"text": [
"Last checkpoint : 75000.ckpt\n"
]
}
],
"source": [
"# Copy the created models from the temporary storage to main storage on google drive for persistant storage \n",
"# the content of te folder will be overwrite when you start trainin\n",
"!cp -r \"/content/drive/My Drive/masakhane/model-temp/\"* \"$gdrive_path/models/${src}${tgt}_transformer/\"\n",
"last_checkpoint = get_last_checkpoint(models_path)\n",
"print('Last checkpoint :',last_checkpoint)"
]
},
{
"cell_type": "code",
"execution_count": 0,
"metadata": {
"colab": {},
"colab_type": "code",
"id": "PIs1lY2hxMsl"
},
"outputs": [],
"source": [
"# This creates the config file for our JoeyNMT system. It might seem overwhelming so we've provided a couple of useful parameters you'll need to update\n",
"# (You can of course play with all the parameters if you'd like!)\n",
"\n",
"name = '%s%s' % (source_language, target_language)\n",
"gdrive_path = os.environ[\"gdrive_path\"]\n",
"\n",
"# Create the config\n",
"config = \"\"\"\n",
"name: \"{name}_transformer\"\n",
"\n",
"data:\n",
" src: \"{source_language}\"\n",
" trg: \"{target_language}\"\n",
" train: \"{gdrive_path}/train.bpe\"\n",
" dev: \"{gdrive_path}/dev.bpe\"\n",
" test: \"{gdrive_path}/test.bpe\"\n",
" level: \"bpe\"\n",
" lowercase: False\n",
" max_sent_length: 100\n",
" src_vocab: \"{gdrive_path}/vocab.txt\"\n",
" trg_vocab: \"{gdrive_path}/vocab.txt\"\n",
"\n",
"testing:\n",
" beam_size: 5\n",
" alpha: 1.0\n",
"\n",
"training:\n",
" load_model: \"{gdrive_path}/models/{name}_transformer/{last_checkpoint}\" # TODO: uncommented to load a pre-trained model from last checkpoint\n",
" random_seed: 42\n",
" optimizer: \"adam\"\n",
" normalization: \"tokens\"\n",
" adam_betas: [0.9, 0.999] \n",
" scheduling: \"plateau\" # TODO: try switching from plateau to Noam scheduling\n",
" patience: 5 # For plateau: decrease learning rate by decrease_factor if validation score has not improved for this many validation rounds.\n",
" learning_rate_factor: 0.5 # factor for Noam scheduler (used with Transformer)\n",
" learning_rate_warmup: 1000 # warmup steps for Noam scheduler (used with Transformer)\n",
" decrease_factor: 0.7\n",
" loss: \"crossentropy\"\n",
" learning_rate: 0.0003\n",
" learning_rate_min: 0.00000001\n",
" weight_decay: 0.0\n",
" label_smoothing: 0.1\n",
" batch_size: 4096\n",
" batch_type: \"token\"\n",
" eval_batch_size: 3600\n",
" eval_batch_type: \"token\"\n",
" batch_multiplier: 1\n",
" early_stopping_metric: \"ppl\"\n",
" epochs: 3 # TODO: Decrease for when playing around and checking of working. Around 30 is sufficient to check if its working at all\n",
" validation_freq: 1000 # TODO: Set to at least once per epoch.\n",
" logging_freq: 100\n",
" eval_metric: \"bleu\"\n",
" model_dir: \"{model_temp_dir}\"\n",
" overwrite: True # TODO: Set to True if you want to overwrite possibly existing models. \n",
" shuffle: True\n",
" use_cuda: True\n",
" max_output_length: 100\n",
" print_valid_sents: [0, 1, 2, 3]\n",
" keep_last_ckpts: 3\n",
"\n",
"model:\n",
" initializer: \"xavier\"\n",
" bias_initializer: \"zeros\"\n",
" init_gain: 1.0\n",
" embed_initializer: \"xavier\"\n",
" embed_init_gain: 1.0\n",
" tied_embeddings: True\n",
" tied_softmax: True\n",
" encoder:\n",
" type: \"transformer\"\n",
" num_layers: 6\n",
" num_heads: 4 # TODO: Increase to 8 for larger data.\n",
" embeddings:\n",
" embedding_dim: 256 # TODO: Increase to 512 for larger data.\n",
" scale: True\n",
" dropout: 0.2\n",
" # typically ff_size = 4 x hidden_size\n",
" hidden_size: 256 # TODO: Increase to 512 for larger data.\n",
" ff_size: 1024 # TODO: Increase to 2048 for larger data.\n",
" dropout: 0.3\n",
" decoder:\n",
" type: \"transformer\"\n",
" num_layers: 6\n",
" num_heads: 4 # TODO: Increase to 8 for larger data.\n",
" embeddings:\n",
" embedding_dim: 256 # TODO: Increase to 512 for larger data.\n",
" scale: True\n",
" dropout: 0.2\n",
" # typically ff_size = 4 x hidden_size\n",
" hidden_size: 256 # TODO: Increase to 512 for larger data.\n",
" ff_size: 1024 # TODO: Increase to 2048 for larger data.\n",
" dropout: 0.3\n",
"\"\"\".format(name=name, gdrive_path=os.environ[\"gdrive_path\"], source_language=source_language, target_language=target_language, model_temp_dir=model_temp_dir, last_checkpoint=last_checkpoint)\n",
"with open(\"joeynmt/configs/transformer_{name}.yaml\".format(name=name),'w') as f:\n",
" f.write(config)"
]
},
{
"cell_type": "markdown",
"metadata": {
"colab_type": "text",
"id": "pIifxE3Qzuvs"
},
"source": [
"# Train the Model\n",
"\n",
"This single line of joeynmt runs the training using the config we made above"
]
},
{
"cell_type": "code",
"execution_count": 0,
"metadata": {
"colab": {
"base_uri": "https://localhost:8080/",
"height": 1000
},
"colab_type": "code",
"id": "6ZBPFwT94WpI",
"outputId": "ccce8245-45ef-4bd4-a81a-85fd57336ab4"
},
"outputs": [
{
"name": "stdout",
"output_type": "stream",
"text": [
"2020-04-07 20:54:03,168 Hello! This is Joey-NMT.\n",
"2020-04-07 20:54:03.318950: I tensorflow/stream_executor/platform/default/dso_loader.cc:44] Successfully opened dynamic library libcudart.so.10.1\n",
"2020-04-07 20:54:05,394 Total params: 12173824\n",
"2020-04-07 20:54:05,395 Trainable parameters: ['decoder.layer_norm.bias', 'decoder.layer_norm.weight', 'decoder.layers.0.dec_layer_norm.bias', 'decoder.layers.0.dec_layer_norm.weight', 'decoder.layers.0.feed_forward.layer_norm.bias', 'decoder.layers.0.feed_forward.layer_norm.weight', 'decoder.layers.0.feed_forward.pwff_layer.0.bias', 'decoder.layers.0.feed_forward.pwff_layer.0.weight', 'decoder.layers.0.feed_forward.pwff_layer.3.bias', 'decoder.layers.0.feed_forward.pwff_layer.3.weight', 'decoder.layers.0.src_trg_att.k_layer.bias', 'decoder.layers.0.src_trg_att.k_layer.weight', 'decoder.layers.0.src_trg_att.output_layer.bias', 'decoder.layers.0.src_trg_att.output_layer.weight', 'decoder.layers.0.src_trg_att.q_layer.bias', 'decoder.layers.0.src_trg_att.q_layer.weight', 'decoder.layers.0.src_trg_att.v_layer.bias', 'decoder.layers.0.src_trg_att.v_layer.weight', 'decoder.layers.0.trg_trg_att.k_layer.bias', 'decoder.layers.0.trg_trg_att.k_layer.weight', 'decoder.layers.0.trg_trg_att.output_layer.bias', 'decoder.layers.0.trg_trg_att.output_layer.weight', 'decoder.layers.0.trg_trg_att.q_layer.bias', 'decoder.layers.0.trg_trg_att.q_layer.weight', 'decoder.layers.0.trg_trg_att.v_layer.bias', 'decoder.layers.0.trg_trg_att.v_layer.weight', 'decoder.layers.0.x_layer_norm.bias', 'decoder.layers.0.x_layer_norm.weight', 'decoder.layers.1.dec_layer_norm.bias', 'decoder.layers.1.dec_layer_norm.weight', 'decoder.layers.1.feed_forward.layer_norm.bias', 'decoder.layers.1.feed_forward.layer_norm.weight', 'decoder.layers.1.feed_forward.pwff_layer.0.bias', 'decoder.layers.1.feed_forward.pwff_layer.0.weight', 'decoder.layers.1.feed_forward.pwff_layer.3.bias', 'decoder.layers.1.feed_forward.pwff_layer.3.weight', 'decoder.layers.1.src_trg_att.k_layer.bias', 'decoder.layers.1.src_trg_att.k_layer.weight', 'decoder.layers.1.src_trg_att.output_layer.bias', 'decoder.layers.1.src_trg_att.output_layer.weight', 'decoder.layers.1.src_trg_att.q_layer.bias', 'decoder.layers.1.src_trg_att.q_layer.weight', 'decoder.layers.1.src_trg_att.v_layer.bias', 'decoder.layers.1.src_trg_att.v_layer.weight', 'decoder.layers.1.trg_trg_att.k_layer.bias', 'decoder.layers.1.trg_trg_att.k_layer.weight', 'decoder.layers.1.trg_trg_att.output_layer.bias', 'decoder.layers.1.trg_trg_att.output_layer.weight', 'decoder.layers.1.trg_trg_att.q_layer.bias', 'decoder.layers.1.trg_trg_att.q_layer.weight', 'decoder.layers.1.trg_trg_att.v_layer.bias', 'decoder.layers.1.trg_trg_att.v_layer.weight', 'decoder.layers.1.x_layer_norm.bias', 'decoder.layers.1.x_layer_norm.weight', 'decoder.layers.2.dec_layer_norm.bias', 'decoder.layers.2.dec_layer_norm.weight', 'decoder.layers.2.feed_forward.layer_norm.bias', 'decoder.layers.2.feed_forward.layer_norm.weight', 'decoder.layers.2.feed_forward.pwff_layer.0.bias', 'decoder.layers.2.feed_forward.pwff_layer.0.weight', 'decoder.layers.2.feed_forward.pwff_layer.3.bias', 'decoder.layers.2.feed_forward.pwff_layer.3.weight', 'decoder.layers.2.src_trg_att.k_layer.bias', 'decoder.layers.2.src_trg_att.k_layer.weight', 'decoder.layers.2.src_trg_att.output_layer.bias', 'decoder.layers.2.src_trg_att.output_layer.weight', 'decoder.layers.2.src_trg_att.q_layer.bias', 'decoder.layers.2.src_trg_att.q_layer.weight', 'decoder.layers.2.src_trg_att.v_layer.bias', 'decoder.layers.2.src_trg_att.v_layer.weight', 'decoder.layers.2.trg_trg_att.k_layer.bias', 'decoder.layers.2.trg_trg_att.k_layer.weight', 'decoder.layers.2.trg_trg_att.output_layer.bias', 'decoder.layers.2.trg_trg_att.output_layer.weight', 'decoder.layers.2.trg_trg_att.q_layer.bias', 'decoder.layers.2.trg_trg_att.q_layer.weight', 'decoder.layers.2.trg_trg_att.v_layer.bias', 'decoder.layers.2.trg_trg_att.v_layer.weight', 'decoder.layers.2.x_layer_norm.bias', 'decoder.layers.2.x_layer_norm.weight', 'decoder.layers.3.dec_layer_norm.bias', 'decoder.layers.3.dec_layer_norm.weight', 'decoder.layers.3.feed_forward.layer_norm.bias', 'decoder.layers.3.feed_forward.layer_norm.weight', 'decoder.layers.3.feed_forward.pwff_layer.0.bias', 'decoder.layers.3.feed_forward.pwff_layer.0.weight', 'decoder.layers.3.feed_forward.pwff_layer.3.bias', 'decoder.layers.3.feed_forward.pwff_layer.3.weight', 'decoder.layers.3.src_trg_att.k_layer.bias', 'decoder.layers.3.src_trg_att.k_layer.weight', 'decoder.layers.3.src_trg_att.output_layer.bias', 'decoder.layers.3.src_trg_att.output_layer.weight', 'decoder.layers.3.src_trg_att.q_layer.bias', 'decoder.layers.3.src_trg_att.q_layer.weight', 'decoder.layers.3.src_trg_att.v_layer.bias', 'decoder.layers.3.src_trg_att.v_layer.weight', 'decoder.layers.3.trg_trg_att.k_layer.bias', 'decoder.layers.3.trg_trg_att.k_layer.weight', 'decoder.layers.3.trg_trg_att.output_layer.bias', 'decoder.layers.3.trg_trg_att.output_layer.weight', 'decoder.layers.3.trg_trg_att.q_layer.bias', 'decoder.layers.3.trg_trg_att.q_layer.weight', 'decoder.layers.3.trg_trg_att.v_layer.bias', 'decoder.layers.3.trg_trg_att.v_layer.weight', 'decoder.layers.3.x_layer_norm.bias', 'decoder.layers.3.x_layer_norm.weight', 'decoder.layers.4.dec_layer_norm.bias', 'decoder.layers.4.dec_layer_norm.weight', 'decoder.layers.4.feed_forward.layer_norm.bias', 'decoder.layers.4.feed_forward.layer_norm.weight', 'decoder.layers.4.feed_forward.pwff_layer.0.bias', 'decoder.layers.4.feed_forward.pwff_layer.0.weight', 'decoder.layers.4.feed_forward.pwff_layer.3.bias', 'decoder.layers.4.feed_forward.pwff_layer.3.weight', 'decoder.layers.4.src_trg_att.k_layer.bias', 'decoder.layers.4.src_trg_att.k_layer.weight', 'decoder.layers.4.src_trg_att.output_layer.bias', 'decoder.layers.4.src_trg_att.output_layer.weight', 'decoder.layers.4.src_trg_att.q_layer.bias', 'decoder.layers.4.src_trg_att.q_layer.weight', 'decoder.layers.4.src_trg_att.v_layer.bias', 'decoder.layers.4.src_trg_att.v_layer.weight', 'decoder.layers.4.trg_trg_att.k_layer.bias', 'decoder.layers.4.trg_trg_att.k_layer.weight', 'decoder.layers.4.trg_trg_att.output_layer.bias', 'decoder.layers.4.trg_trg_att.output_layer.weight', 'decoder.layers.4.trg_trg_att.q_layer.bias', 'decoder.layers.4.trg_trg_att.q_layer.weight', 'decoder.layers.4.trg_trg_att.v_layer.bias', 'decoder.layers.4.trg_trg_att.v_layer.weight', 'decoder.layers.4.x_layer_norm.bias', 'decoder.layers.4.x_layer_norm.weight', 'decoder.layers.5.dec_layer_norm.bias', 'decoder.layers.5.dec_layer_norm.weight', 'decoder.layers.5.feed_forward.layer_norm.bias', 'decoder.layers.5.feed_forward.layer_norm.weight', 'decoder.layers.5.feed_forward.pwff_layer.0.bias', 'decoder.layers.5.feed_forward.pwff_layer.0.weight', 'decoder.layers.5.feed_forward.pwff_layer.3.bias', 'decoder.layers.5.feed_forward.pwff_layer.3.weight', 'decoder.layers.5.src_trg_att.k_layer.bias', 'decoder.layers.5.src_trg_att.k_layer.weight', 'decoder.layers.5.src_trg_att.output_layer.bias', 'decoder.layers.5.src_trg_att.output_layer.weight', 'decoder.layers.5.src_trg_att.q_layer.bias', 'decoder.layers.5.src_trg_att.q_layer.weight', 'decoder.layers.5.src_trg_att.v_layer.bias', 'decoder.layers.5.src_trg_att.v_layer.weight', 'decoder.layers.5.trg_trg_att.k_layer.bias', 'decoder.layers.5.trg_trg_att.k_layer.weight', 'decoder.layers.5.trg_trg_att.output_layer.bias', 'decoder.layers.5.trg_trg_att.output_layer.weight', 'decoder.layers.5.trg_trg_att.q_layer.bias', 'decoder.layers.5.trg_trg_att.q_layer.weight', 'decoder.layers.5.trg_trg_att.v_layer.bias', 'decoder.layers.5.trg_trg_att.v_layer.weight', 'decoder.layers.5.x_layer_norm.bias', 'decoder.layers.5.x_layer_norm.weight', 'encoder.layer_norm.bias', 'encoder.layer_norm.weight', 'encoder.layers.0.feed_forward.layer_norm.bias', 'encoder.layers.0.feed_forward.layer_norm.weight', 'encoder.layers.0.feed_forward.pwff_layer.0.bias', 'encoder.layers.0.feed_forward.pwff_layer.0.weight', 'encoder.layers.0.feed_forward.pwff_layer.3.bias', 'encoder.layers.0.feed_forward.pwff_layer.3.weight', 'encoder.layers.0.layer_norm.bias', 'encoder.layers.0.layer_norm.weight', 'encoder.layers.0.src_src_att.k_layer.bias', 'encoder.layers.0.src_src_att.k_layer.weight', 'encoder.layers.0.src_src_att.output_layer.bias', 'encoder.layers.0.src_src_att.output_layer.weight', 'encoder.layers.0.src_src_att.q_layer.bias', 'encoder.layers.0.src_src_att.q_layer.weight', 'encoder.layers.0.src_src_att.v_layer.bias', 'encoder.layers.0.src_src_att.v_layer.weight', 'encoder.layers.1.feed_forward.layer_norm.bias', 'encoder.layers.1.feed_forward.layer_norm.weight', 'encoder.layers.1.feed_forward.pwff_layer.0.bias', 'encoder.layers.1.feed_forward.pwff_layer.0.weight', 'encoder.layers.1.feed_forward.pwff_layer.3.bias', 'encoder.layers.1.feed_forward.pwff_layer.3.weight', 'encoder.layers.1.layer_norm.bias', 'encoder.layers.1.layer_norm.weight', 'encoder.layers.1.src_src_att.k_layer.bias', 'encoder.layers.1.src_src_att.k_layer.weight', 'encoder.layers.1.src_src_att.output_layer.bias', 'encoder.layers.1.src_src_att.output_layer.weight', 'encoder.layers.1.src_src_att.q_layer.bias', 'encoder.layers.1.src_src_att.q_layer.weight', 'encoder.layers.1.src_src_att.v_layer.bias', 'encoder.layers.1.src_src_att.v_layer.weight', 'encoder.layers.2.feed_forward.layer_norm.bias', 'encoder.layers.2.feed_forward.layer_norm.weight', 'encoder.layers.2.feed_forward.pwff_layer.0.bias', 'encoder.layers.2.feed_forward.pwff_layer.0.weight', 'encoder.layers.2.feed_forward.pwff_layer.3.bias', 'encoder.layers.2.feed_forward.pwff_layer.3.weight', 'encoder.layers.2.layer_norm.bias', 'encoder.layers.2.layer_norm.weight', 'encoder.layers.2.src_src_att.k_layer.bias', 'encoder.layers.2.src_src_att.k_layer.weight', 'encoder.layers.2.src_src_att.output_layer.bias', 'encoder.layers.2.src_src_att.output_layer.weight', 'encoder.layers.2.src_src_att.q_layer.bias', 'encoder.layers.2.src_src_att.q_layer.weight', 'encoder.layers.2.src_src_att.v_layer.bias', 'encoder.layers.2.src_src_att.v_layer.weight', 'encoder.layers.3.feed_forward.layer_norm.bias', 'encoder.layers.3.feed_forward.layer_norm.weight', 'encoder.layers.3.feed_forward.pwff_layer.0.bias', 'encoder.layers.3.feed_forward.pwff_layer.0.weight', 'encoder.layers.3.feed_forward.pwff_layer.3.bias', 'encoder.layers.3.feed_forward.pwff_layer.3.weight', 'encoder.layers.3.layer_norm.bias', 'encoder.layers.3.layer_norm.weight', 'encoder.layers.3.src_src_att.k_layer.bias', 'encoder.layers.3.src_src_att.k_layer.weight', 'encoder.layers.3.src_src_att.output_layer.bias', 'encoder.layers.3.src_src_att.output_layer.weight', 'encoder.layers.3.src_src_att.q_layer.bias', 'encoder.layers.3.src_src_att.q_layer.weight', 'encoder.layers.3.src_src_att.v_layer.bias', 'encoder.layers.3.src_src_att.v_layer.weight', 'encoder.layers.4.feed_forward.layer_norm.bias', 'encoder.layers.4.feed_forward.layer_norm.weight', 'encoder.layers.4.feed_forward.pwff_layer.0.bias', 'encoder.layers.4.feed_forward.pwff_layer.0.weight', 'encoder.layers.4.feed_forward.pwff_layer.3.bias', 'encoder.layers.4.feed_forward.pwff_layer.3.weight', 'encoder.layers.4.layer_norm.bias', 'encoder.layers.4.layer_norm.weight', 'encoder.layers.4.src_src_att.k_layer.bias', 'encoder.layers.4.src_src_att.k_layer.weight', 'encoder.layers.4.src_src_att.output_layer.bias', 'encoder.layers.4.src_src_att.output_layer.weight', 'encoder.layers.4.src_src_att.q_layer.bias', 'encoder.layers.4.src_src_att.q_layer.weight', 'encoder.layers.4.src_src_att.v_layer.bias', 'encoder.layers.4.src_src_att.v_layer.weight', 'encoder.layers.5.feed_forward.layer_norm.bias', 'encoder.layers.5.feed_forward.layer_norm.weight', 'encoder.layers.5.feed_forward.pwff_layer.0.bias', 'encoder.layers.5.feed_forward.pwff_layer.0.weight', 'encoder.layers.5.feed_forward.pwff_layer.3.bias', 'encoder.layers.5.feed_forward.pwff_layer.3.weight', 'encoder.layers.5.layer_norm.bias', 'encoder.layers.5.layer_norm.weight', 'encoder.layers.5.src_src_att.k_layer.bias', 'encoder.layers.5.src_src_att.k_layer.weight', 'encoder.layers.5.src_src_att.output_layer.bias', 'encoder.layers.5.src_src_att.output_layer.weight', 'encoder.layers.5.src_src_att.q_layer.bias', 'encoder.layers.5.src_src_att.q_layer.weight', 'encoder.layers.5.src_src_att.v_layer.bias', 'encoder.layers.5.src_src_att.v_layer.weight', 'src_embed.lut.weight']\n",
"2020-04-07 20:54:20,764 Loading model from /content/drive/My Drive/masakhane/en-efi-baseline/models/enefi_transformer/75000.ckpt\n",
"2020-04-07 20:54:21,100 cfg.name : enefi_transformer\n",
"2020-04-07 20:54:21,100 cfg.data.src : en\n",
"2020-04-07 20:54:21,101 cfg.data.trg : efi\n",
"2020-04-07 20:54:21,101 cfg.data.train : /content/drive/My Drive/masakhane/en-efi-baseline/train.bpe\n",
"2020-04-07 20:54:21,101 cfg.data.dev : /content/drive/My Drive/masakhane/en-efi-baseline/dev.bpe\n",
"2020-04-07 20:54:21,101 cfg.data.test : /content/drive/My Drive/masakhane/en-efi-baseline/test.bpe\n",
"2020-04-07 20:54:21,101 cfg.data.level : bpe\n",
"2020-04-07 20:54:21,101 cfg.data.lowercase : False\n",
"2020-04-07 20:54:21,101 cfg.data.max_sent_length : 100\n",
"2020-04-07 20:54:21,102 cfg.data.src_vocab : /content/drive/My Drive/masakhane/en-efi-baseline/vocab.txt\n",
"2020-04-07 20:54:21,102 cfg.data.trg_vocab : /content/drive/My Drive/masakhane/en-efi-baseline/vocab.txt\n",
"2020-04-07 20:54:21,102 cfg.testing.beam_size : 5\n",
"2020-04-07 20:54:21,102 cfg.testing.alpha : 1.0\n",
"2020-04-07 20:54:21,102 cfg.training.load_model : /content/drive/My Drive/masakhane/en-efi-baseline/models/enefi_transformer/75000.ckpt\n",
"2020-04-07 20:54:21,102 cfg.training.random_seed : 42\n",
"2020-04-07 20:54:21,102 cfg.training.optimizer : adam\n",
"2020-04-07 20:54:21,102 cfg.training.normalization : tokens\n",
"2020-04-07 20:54:21,103 cfg.training.adam_betas : [0.9, 0.999]\n",
"2020-04-07 20:54:21,103 cfg.training.scheduling : plateau\n",
"2020-04-07 20:54:21,103 cfg.training.patience : 5\n",
"2020-04-07 20:54:21,103 cfg.training.learning_rate_factor : 0.5\n",
"2020-04-07 20:54:21,103 cfg.training.learning_rate_warmup : 1000\n",
"2020-04-07 20:54:21,103 cfg.training.decrease_factor : 0.7\n",
"2020-04-07 20:54:21,103 cfg.training.loss : crossentropy\n",
"2020-04-07 20:54:21,103 cfg.training.learning_rate : 0.0003\n",
"2020-04-07 20:54:21,103 cfg.training.learning_rate_min : 1e-08\n",
"2020-04-07 20:54:21,104 cfg.training.weight_decay : 0.0\n",
"2020-04-07 20:54:21,104 cfg.training.label_smoothing : 0.1\n",
"2020-04-07 20:54:21,104 cfg.training.batch_size : 4096\n",
"2020-04-07 20:54:21,104 cfg.training.batch_type : token\n",
"2020-04-07 20:54:21,104 cfg.training.eval_batch_size : 3600\n",
"2020-04-07 20:54:21,104 cfg.training.eval_batch_type : token\n",
"2020-04-07 20:54:21,104 cfg.training.batch_multiplier : 1\n",
"2020-04-07 20:54:21,105 cfg.training.early_stopping_metric : ppl\n",
"2020-04-07 20:54:21,105 cfg.training.epochs : 3\n",
"2020-04-07 20:54:21,105 cfg.training.validation_freq : 1000\n",
"2020-04-07 20:54:21,105 cfg.training.logging_freq : 100\n",
"2020-04-07 20:54:21,105 cfg.training.eval_metric : bleu\n",
"2020-04-07 20:54:21,105 cfg.training.model_dir : /content/drive/My Drive/masakhane/model-temp\n",
"2020-04-07 20:54:21,105 cfg.training.overwrite : True\n",
"2020-04-07 20:54:21,105 cfg.training.shuffle : True\n",
"2020-04-07 20:54:21,106 cfg.training.use_cuda : True\n",
"2020-04-07 20:54:21,106 cfg.training.max_output_length : 100\n",
"2020-04-07 20:54:21,106 cfg.training.print_valid_sents : [0, 1, 2, 3]\n",
"2020-04-07 20:54:21,106 cfg.training.keep_last_ckpts : 3\n",
"2020-04-07 20:54:21,106 cfg.model.initializer : xavier\n",
"2020-04-07 20:54:21,106 cfg.model.bias_initializer : zeros\n",
"2020-04-07 20:54:21,106 cfg.model.init_gain : 1.0\n",
"2020-04-07 20:54:21,106 cfg.model.embed_initializer : xavier\n",
"2020-04-07 20:54:21,106 cfg.model.embed_init_gain : 1.0\n",
"2020-04-07 20:54:21,107 cfg.model.tied_embeddings : True\n",
"2020-04-07 20:54:21,107 cfg.model.tied_softmax : True\n",
"2020-04-07 20:54:21,107 cfg.model.encoder.type : transformer\n",
"2020-04-07 20:54:21,107 cfg.model.encoder.num_layers : 6\n",
"2020-04-07 20:54:21,107 cfg.model.encoder.num_heads : 4\n",
"2020-04-07 20:54:21,107 cfg.model.encoder.embeddings.embedding_dim : 256\n",
"2020-04-07 20:54:21,107 cfg.model.encoder.embeddings.scale : True\n",
"2020-04-07 20:54:21,107 cfg.model.encoder.embeddings.dropout : 0.2\n",
"2020-04-07 20:54:21,108 cfg.model.encoder.hidden_size : 256\n",
"2020-04-07 20:54:21,108 cfg.model.encoder.ff_size : 1024\n",
"2020-04-07 20:54:21,108 cfg.model.encoder.dropout : 0.3\n",
"2020-04-07 20:54:21,108 cfg.model.decoder.type : transformer\n",
"2020-04-07 20:54:21,108 cfg.model.decoder.num_layers : 6\n",
"2020-04-07 20:54:21,108 cfg.model.decoder.num_heads : 4\n",
"2020-04-07 20:54:21,108 cfg.model.decoder.embeddings.embedding_dim : 256\n",
"2020-04-07 20:54:21,108 cfg.model.decoder.embeddings.scale : True\n",
"2020-04-07 20:54:21,108 cfg.model.decoder.embeddings.dropout : 0.2\n",
"2020-04-07 20:54:21,109 cfg.model.decoder.hidden_size : 256\n",
"2020-04-07 20:54:21,109 cfg.model.decoder.ff_size : 1024\n",
"2020-04-07 20:54:21,109 cfg.model.decoder.dropout : 0.3\n",
"2020-04-07 20:54:21,109 Data set sizes: \n",
"\ttrain 334651,\n",
"\tvalid 1000,\n",
"\ttest 2675\n",
"2020-04-07 20:54:21,109 First training example:\n",
"\t[SRC] R@@ ef@@ er@@ ring to what the rul@@ er@@ ship of God’s Son will accompl@@ ish , Isaiah 9 : 7 says : “ The very z@@ eal of Jehovah of ar@@ mi@@ es will do this . ”\n",
"\t[TRG] Isaiah 9 : 7 ọd@@ ọh@@ o ke Eyen Abasi edidi Edidem ye nte ke enye ayanam ediwak nti n̄kpọ ọnọ ubonowo . “ I@@ f@@ ịk Jehovah mme udịm edinam emi . ”\n",
"2020-04-07 20:54:21,109 First 10 words (src): (0) <unk> (1) <pad> (2) <s> (3) </s> (4) . (5) , (6) ke (7) the (8) to (9) of\n",
"2020-04-07 20:54:21,109 First 10 words (trg): (0) <unk> (1) <pad> (2) <s> (3) </s> (4) . (5) , (6) ke (7) the (8) to (9) of\n",
"2020-04-07 20:54:21,110 Number of Src words (types): 4350\n",
"2020-04-07 20:54:21,110 Number of Trg words (types): 4350\n",
"2020-04-07 20:54:21,110 Model(\n",
"\tencoder=TransformerEncoder(num_layers=6, num_heads=4),\n",
"\tdecoder=TransformerDecoder(num_layers=6, num_heads=4),\n",
"\tsrc_embed=Embeddings(embedding_dim=256, vocab_size=4350),\n",
"\ttrg_embed=Embeddings(embedding_dim=256, vocab_size=4350))\n",
"2020-04-07 20:54:21,253 EPOCH 1\n",
"2020-04-07 20:54:33,171 Epoch 1 Step: 75100 Batch Loss: 1.573272 Tokens per Sec: 19671, Lr: 0.000300\n",
"2020-04-07 20:54:44,301 Epoch 1 Step: 75200 Batch Loss: 1.599319 Tokens per Sec: 20553, Lr: 0.000300\n",
"2020-04-07 20:54:55,456 Epoch 1 Step: 75300 Batch Loss: 1.966765 Tokens per Sec: 20017, Lr: 0.000300\n",
"2020-04-07 20:55:06,573 Epoch 1 Step: 75400 Batch Loss: 1.750993 Tokens per Sec: 20776, Lr: 0.000300\n",
"2020-04-07 20:55:17,659 Epoch 1 Step: 75500 Batch Loss: 1.297595 Tokens per Sec: 20773, Lr: 0.000300\n",
"2020-04-07 20:55:28,903 Epoch 1 Step: 75600 Batch Loss: 1.379848 Tokens per Sec: 20993, Lr: 0.000300\n",
"2020-04-07 20:55:40,231 Epoch 1 Step: 75700 Batch Loss: 1.868639 Tokens per Sec: 20789, Lr: 0.000300\n",
"2020-04-07 20:55:51,380 Epoch 1 Step: 75800 Batch Loss: 1.783921 Tokens per Sec: 20867, Lr: 0.000300\n",
"2020-04-07 20:56:02,480 Epoch 1 Step: 75900 Batch Loss: 1.731708 Tokens per Sec: 20425, Lr: 0.000300\n",
"2020-04-07 20:56:13,727 Epoch 1 Step: 76000 Batch Loss: 1.620422 Tokens per Sec: 20738, Lr: 0.000300\n",
"2020-04-07 20:56:26,413 Example #0\n",
"2020-04-07 20:56:26,414 \tSource: If you do , you will be choosing the best possible way of life .\n",
"2020-04-07 20:56:26,414 \tReference: Edieke anamde ntre , ọwọrọ ke ememek mfọnn̄kan usụn̄ uwem .\n",
"2020-04-07 20:56:26,414 \tHypothesis: Edieke anamde emi , afo oyoyom mfọnn̄kan usụn̄ uwem .\n",
"2020-04-07 20:56:26,414 Example #1\n",
"2020-04-07 20:56:26,415 \tSource: They may even have been told as much by a clergyman .\n",
"2020-04-07 20:56:26,415 \tReference: Akam ekeme ndidi se ọkwọrọ ederi eketịn̄de ọnọ mmọ edi oro .\n",
"2020-04-07 20:56:26,415 \tHypothesis: Ekeme ndidi mme ọkwọrọ ederi ẹma ẹkam ẹdọhọ mmọ ke mmọ ẹma ẹkam ẹtịn̄ ẹban̄a mmimọ .\n",
"2020-04-07 20:56:26,415 Example #2\n",
"2020-04-07 20:56:26,416 \tSource: The same point is made at 2 Chronicles 5 : 9 .\n",
"2020-04-07 20:56:26,416 \tReference: Ẹtịn̄ ukem ikọ oro ke 2 Chronicles 5 : 9 .\n",
"2020-04-07 20:56:26,416 \tHypothesis: Ẹnam ukem n̄kpọ oro ke 2 Chronicles 5 : 9 .\n",
"2020-04-07 20:56:26,416 Example #3\n",
"2020-04-07 20:56:26,416 \tSource: 59 - 61 C.E . ) , and from there he finds ways to preach about the Kingdom and teach “ the things concerning the Lord Jesus Christ . ” — Acts 28 : 30 , 31 .\n",
"2020-04-07 20:56:26,416 \tReference: Ẹkọbi Paul ẹtem ke ufọk esie ke Rome ke isua iba ( ke n̄kpọ nte isua 59 esịm 61 E.N . ) , ndien enye oyom usụn̄ do ọkwọrọ Obio Ubọn̄ onyụn̄ ekpep mbon en̄wen “ mme n̄kpọ emi ẹban̄ade Ọbọn̄ Jesus Christ . ” — Utom 28 : 30 , 31 .\n",
"2020-04-07 20:56:26,416 \tHypothesis: 59 - 61 E.N . ) , ndien enye okụt usụn̄ ndikwọrọ mban̄a Obio Ubọn̄ nnyụn̄ n̄kpep “ mme n̄kpọ ẹban̄ade Ọbọn̄ Jesus Christ . ” — Utom 28 : 30 , 31 .\n",
"2020-04-07 20:56:26,417 Validation result (greedy) at epoch 1, step 76000: bleu: 30.37, loss: 36773.7344, ppl: 4.7829, duration: 12.6896s\n",
"2020-04-07 20:56:37,662 Epoch 1 Step: 76100 Batch Loss: 1.741713 Tokens per Sec: 20903, Lr: 0.000300\n",
"2020-04-07 20:56:48,936 Epoch 1 Step: 76200 Batch Loss: 1.694483 Tokens per Sec: 20845, Lr: 0.000300\n",
"2020-04-07 20:57:00,065 Epoch 1 Step: 76300 Batch Loss: 1.946359 Tokens per Sec: 20531, Lr: 0.000300\n",
"2020-04-07 20:57:11,188 Epoch 1 Step: 76400 Batch Loss: 1.772593 Tokens per Sec: 20213, Lr: 0.000300\n",
"2020-04-07 20:57:22,437 Epoch 1 Step: 76500 Batch Loss: 1.839959 Tokens per Sec: 20427, Lr: 0.000300\n",
"2020-04-07 20:57:33,594 Epoch 1 Step: 76600 Batch Loss: 1.706491 Tokens per Sec: 20898, Lr: 0.000300\n",
"2020-04-07 20:57:44,843 Epoch 1 Step: 76700 Batch Loss: 1.665444 Tokens per Sec: 20739, Lr: 0.000300\n",
"2020-04-07 20:57:56,066 Epoch 1 Step: 76800 Batch Loss: 1.606557 Tokens per Sec: 20781, Lr: 0.000300\n",
"2020-04-07 20:58:07,212 Epoch 1 Step: 76900 Batch Loss: 1.435567 Tokens per Sec: 20546, Lr: 0.000300\n",
"2020-04-07 20:58:18,399 Epoch 1 Step: 77000 Batch Loss: 1.803759 Tokens per Sec: 20899, Lr: 0.000300\n",
"2020-04-07 20:58:29,894 Example #0\n",
"2020-04-07 20:58:29,895 \tSource: If you do , you will be choosing the best possible way of life .\n",
"2020-04-07 20:58:29,895 \tReference: Edieke anamde ntre , ọwọrọ ke ememek mfọnn̄kan usụn̄ uwem .\n",
"2020-04-07 20:58:29,895 \tHypothesis: Edieke anamde emi , afo eyemek mfọnn̄kan usụn̄ uwem .\n",
"2020-04-07 20:58:29,895 Example #1\n",
"2020-04-07 20:58:29,896 \tSource: They may even have been told as much by a clergyman .\n",
"2020-04-07 20:58:29,896 \tReference: Akam ekeme ndidi se ọkwọrọ ederi eketịn̄de ọnọ mmọ edi oro .\n",
"2020-04-07 20:58:29,896 \tHypothesis: Ekeme ndidi mme ọkwọrọ ederi ẹma ẹkam ẹdọhọ mmọ ke mmimọ imọn̄ itịn̄ iban̄a mmọ .\n",
"2020-04-07 20:58:29,896 Example #2\n",
"2020-04-07 20:58:29,896 \tSource: The same point is made at 2 Chronicles 5 : 9 .\n",
"2020-04-07 20:58:29,897 \tReference: Ẹtịn̄ ukem ikọ oro ke 2 Chronicles 5 : 9 .\n",
"2020-04-07 20:58:29,897 \tHypothesis: Ẹnam ukem n̄kpọ oro ke 2 Chronicles 5 : 9 .\n",
"2020-04-07 20:58:29,897 Example #3\n",
"2020-04-07 20:58:29,897 \tSource: 59 - 61 C.E . ) , and from there he finds ways to preach about the Kingdom and teach “ the things concerning the Lord Jesus Christ . ” — Acts 28 : 30 , 31 .\n",
"2020-04-07 20:58:29,897 \tReference: Ẹkọbi Paul ẹtem ke ufọk esie ke Rome ke isua iba ( ke n̄kpọ nte isua 59 esịm 61 E.N . ) , ndien enye oyom usụn̄ do ọkwọrọ Obio Ubọn̄ onyụn̄ ekpep mbon en̄wen “ mme n̄kpọ emi ẹban̄ade Ọbọn̄ Jesus Christ . ” — Utom 28 : 30 , 31 .\n",
"2020-04-07 20:58:29,897 \tHypothesis: 59 - 61 E.N . ) , ndien enye okụt usụn̄ ndikwọrọ mban̄a Obio Ubọn̄ nnyụn̄ n̄kpep “ mme n̄kpọ ẹban̄ade Ọbọn̄ Jesus Christ . ” — Utom 28 : 30 , 31 .\n",
"2020-04-07 20:58:29,898 Validation result (greedy) at epoch 1, step 77000: bleu: 30.70, loss: 36633.9766, ppl: 4.7545, duration: 11.4985s\n",
"2020-04-07 20:58:41,130 Epoch 1 Step: 77100 Batch Loss: 1.740518 Tokens per Sec: 20146, Lr: 0.000300\n",
"2020-04-07 20:58:52,284 Epoch 1 Step: 77200 Batch Loss: 1.691751 Tokens per Sec: 20650, Lr: 0.000300\n",
"2020-04-07 20:59:03,536 Epoch 1 Step: 77300 Batch Loss: 1.737996 Tokens per Sec: 20715, Lr: 0.000300\n",
"2020-04-07 20:59:14,741 Epoch 1 Step: 77400 Batch Loss: 1.669374 Tokens per Sec: 20322, Lr: 0.000300\n",
"2020-04-07 20:59:26,092 Epoch 1 Step: 77500 Batch Loss: 1.812358 Tokens per Sec: 20963, Lr: 0.000300\n",
"2020-04-07 20:59:37,388 Epoch 1 Step: 77600 Batch Loss: 1.756553 Tokens per Sec: 20892, Lr: 0.000300\n",
"2020-04-07 20:59:48,438 Epoch 1 Step: 77700 Batch Loss: 1.184197 Tokens per Sec: 20854, Lr: 0.000300\n",
"2020-04-07 20:59:59,645 Epoch 1 Step: 77800 Batch Loss: 1.677460 Tokens per Sec: 20276, Lr: 0.000300\n",
"2020-04-07 21:00:10,955 Epoch 1 Step: 77900 Batch Loss: 1.585014 Tokens per Sec: 20550, Lr: 0.000300\n",
"2020-04-07 21:00:22,014 Epoch 1 Step: 78000 Batch Loss: 1.842488 Tokens per Sec: 20295, Lr: 0.000300\n",
"2020-04-07 21:00:33,058 Hooray! New best validation result [ppl]!\n",
"2020-04-07 21:00:33,059 Saving new checkpoint.\n",
"2020-04-07 21:00:34,268 Example #0\n",
"2020-04-07 21:00:34,268 \tSource: If you do , you will be choosing the best possible way of life .\n",
"2020-04-07 21:00:34,269 \tReference: Edieke anamde ntre , ọwọrọ ke ememek mfọnn̄kan usụn̄ uwem .\n",
"2020-04-07 21:00:34,269 \tHypothesis: Edieke anamde emi , afo eyemek mfọnn̄kan usụn̄ uwem .\n",
"2020-04-07 21:00:34,269 Example #1\n",
"2020-04-07 21:00:34,269 \tSource: They may even have been told as much by a clergyman .\n",
"2020-04-07 21:00:34,269 \tReference: Akam ekeme ndidi se ọkwọrọ ederi eketịn̄de ọnọ mmọ edi oro .\n",
"2020-04-07 21:00:34,270 \tHypothesis: Ekeme ndidi mme ọkwọrọ ederi ẹma ẹkam ẹdọhọ mmọ ke mmọ ẹma ẹkam ẹtịn̄ ẹban̄a mmimọ .\n",
"2020-04-07 21:00:34,270 Example #2\n",
"2020-04-07 21:00:34,270 \tSource: The same point is made at 2 Chronicles 5 : 9 .\n",
"2020-04-07 21:00:34,270 \tReference: Ẹtịn̄ ukem ikọ oro ke 2 Chronicles 5 : 9 .\n",
"2020-04-07 21:00:34,270 \tHypothesis: Ẹnam ukem oro ke 2 Chronicles 5 : 9 .\n",
"2020-04-07 21:00:34,272 Example #3\n",
"2020-04-07 21:00:34,274 \tSource: 59 - 61 C.E . ) , and from there he finds ways to preach about the Kingdom and teach “ the things concerning the Lord Jesus Christ . ” — Acts 28 : 30 , 31 .\n",
"2020-04-07 21:00:34,274 \tReference: Ẹkọbi Paul ẹtem ke ufọk esie ke Rome ke isua iba ( ke n̄kpọ nte isua 59 esịm 61 E.N . ) , ndien enye oyom usụn̄ do ọkwọrọ Obio Ubọn̄ onyụn̄ ekpep mbon en̄wen “ mme n̄kpọ emi ẹban̄ade Ọbọn̄ Jesus Christ . ” — Utom 28 : 30 , 31 .\n",
"2020-04-07 21:00:34,275 \tHypothesis: 59 - 61 E.N . ) , ndien enye okụt usụn̄ ndikwọrọ mban̄a Obio Ubọn̄ nnyụn̄ n̄kpep “ mme n̄kpọ eke ẹban̄ade Ọbọn̄ Jesus Christ . ” — Utom 28 : 30 , 31 .\n",
"2020-04-07 21:00:34,275 Validation result (greedy) at epoch 1, step 78000: bleu: 30.59, loss: 36591.0938, ppl: 4.7458, duration: 12.2599s\n",
"2020-04-07 21:00:45,811 Epoch 1 Step: 78100 Batch Loss: 1.472596 Tokens per Sec: 20392, Lr: 0.000300\n",
"2020-04-07 21:00:56,842 Epoch 1 Step: 78200 Batch Loss: 1.574353 Tokens per Sec: 20226, Lr: 0.000300\n",
"2020-04-07 21:01:07,948 Epoch 1 Step: 78300 Batch Loss: 1.786395 Tokens per Sec: 20939, Lr: 0.000300\n",
"2020-04-07 21:01:19,089 Epoch 1 Step: 78400 Batch Loss: 1.846857 Tokens per Sec: 20406, Lr: 0.000300\n",
"2020-04-07 21:01:22,017 Epoch 1: total training loss 5766.25\n",
"2020-04-07 21:01:22,018 EPOCH 2\n",
"2020-04-07 21:01:30,622 Epoch 2 Step: 78500 Batch Loss: 1.770589 Tokens per Sec: 19627, Lr: 0.000300\n",
"2020-04-07 21:01:41,762 Epoch 2 Step: 78600 Batch Loss: 1.378725 Tokens per Sec: 20754, Lr: 0.000300\n",
"2020-04-07 21:01:52,959 Epoch 2 Step: 78700 Batch Loss: 1.965990 Tokens per Sec: 20977, Lr: 0.000300\n",
"2020-04-07 21:02:04,061 Epoch 2 Step: 78800 Batch Loss: 1.896216 Tokens per Sec: 20856, Lr: 0.000300\n",
"2020-04-07 21:02:15,106 Epoch 2 Step: 78900 Batch Loss: 1.573402 Tokens per Sec: 20523, Lr: 0.000300\n",
"2020-04-07 21:02:26,252 Epoch 2 Step: 79000 Batch Loss: 1.179836 Tokens per Sec: 20752, Lr: 0.000300\n",
"2020-04-07 21:02:37,172 Hooray! New best validation result [ppl]!\n",
"2020-04-07 21:02:37,172 Saving new checkpoint.\n",
"2020-04-07 21:02:38,362 Example #0\n",
"2020-04-07 21:02:38,363 \tSource: If you do , you will be choosing the best possible way of life .\n",
"2020-04-07 21:02:38,363 \tReference: Edieke anamde ntre , ọwọrọ ke ememek mfọnn̄kan usụn̄ uwem .\n",
"2020-04-07 21:02:38,363 \tHypothesis: Edieke anamde emi , afo eyemek mfọnn̄kan usụn̄ uwem .\n",
"2020-04-07 21:02:38,363 Example #1\n",
"2020-04-07 21:02:38,363 \tSource: They may even have been told as much by a clergyman .\n",
"2020-04-07 21:02:38,364 \tReference: Akam ekeme ndidi se ọkwọrọ ederi eketịn̄de ọnọ mmọ edi oro .\n",
"2020-04-07 21:02:38,364 \tHypothesis: Ekeme ndidi ọkwọrọ ederi ama akam etịn̄ se mmọ ẹketịn̄de .\n",
"2020-04-07 21:02:38,364 Example #2\n",
"2020-04-07 21:02:38,364 \tSource: The same point is made at 2 Chronicles 5 : 9 .\n",
"2020-04-07 21:02:38,364 \tReference: Ẹtịn̄ ukem ikọ oro ke 2 Chronicles 5 : 9 .\n",
"2020-04-07 21:02:38,364 \tHypothesis: Ẹwet ukem n̄kpọ oro ke 2 Chronicles 5 : 9 .\n",
"2020-04-07 21:02:38,365 Example #3\n",
"2020-04-07 21:02:38,365 \tSource: 59 - 61 C.E . ) , and from there he finds ways to preach about the Kingdom and teach “ the things concerning the Lord Jesus Christ . ” — Acts 28 : 30 , 31 .\n",
"2020-04-07 21:02:38,365 \tReference: Ẹkọbi Paul ẹtem ke ufọk esie ke Rome ke isua iba ( ke n̄kpọ nte isua 59 esịm 61 E.N . ) , ndien enye oyom usụn̄ do ọkwọrọ Obio Ubọn̄ onyụn̄ ekpep mbon en̄wen “ mme n̄kpọ emi ẹban̄ade Ọbọn̄ Jesus Christ . ” — Utom 28 : 30 , 31 .\n",
"2020-04-07 21:02:38,365 \tHypothesis: 59 - 61 E.N . ) , ndien enye okụt usụn̄ ndikwọrọ mban̄a Obio Ubọn̄ nnyụn̄ n̄kpep “ mme n̄kpọ oro ẹban̄ade Ọbọn̄ Jesus Christ . ” — Utom 28 : 30 , 31 .\n",
"2020-04-07 21:02:38,365 Validation result (greedy) at epoch 2, step 79000: bleu: 30.31, loss: 36588.3047, ppl: 4.7453, duration: 12.1131s\n",
"2020-04-07 21:02:49,890 Epoch 2 Step: 79100 Batch Loss: 1.628276 Tokens per Sec: 20131, Lr: 0.000300\n",
"2020-04-07 21:03:01,063 Epoch 2 Step: 79200 Batch Loss: 1.773140 Tokens per Sec: 20635, Lr: 0.000300\n",
"2020-04-07 21:03:12,291 Epoch 2 Step: 79300 Batch Loss: 1.876546 Tokens per Sec: 20732, Lr: 0.000300\n",
"2020-04-07 21:03:23,725 Epoch 2 Step: 79400 Batch Loss: 1.926523 Tokens per Sec: 20328, Lr: 0.000300\n",
"2020-04-07 21:03:35,009 Epoch 2 Step: 79500 Batch Loss: 1.648053 Tokens per Sec: 20269, Lr: 0.000300\n",
"2020-04-07 21:03:46,388 Epoch 2 Step: 79600 Batch Loss: 1.593967 Tokens per Sec: 19602, Lr: 0.000300\n",
"2020-04-07 21:03:57,857 Epoch 2 Step: 79700 Batch Loss: 1.696361 Tokens per Sec: 20187, Lr: 0.000300\n",
"2020-04-07 21:04:09,187 Epoch 2 Step: 79800 Batch Loss: 1.760031 Tokens per Sec: 19984, Lr: 0.000300\n",
"2020-04-07 21:04:20,515 Epoch 2 Step: 79900 Batch Loss: 1.584432 Tokens per Sec: 19808, Lr: 0.000300\n",
"2020-04-07 21:04:31,860 Epoch 2 Step: 80000 Batch Loss: 1.820143 Tokens per Sec: 20865, Lr: 0.000300\n",
"2020-04-07 21:04:43,200 Hooray! New best validation result [ppl]!\n",
"2020-04-07 21:04:43,201 Saving new checkpoint.\n",
"2020-04-07 21:04:44,491 Example #0\n",
"2020-04-07 21:04:44,492 \tSource: If you do , you will be choosing the best possible way of life .\n",
"2020-04-07 21:04:44,492 \tReference: Edieke anamde ntre , ọwọrọ ke ememek mfọnn̄kan usụn̄ uwem .\n",
"2020-04-07 21:04:44,492 \tHypothesis: Edieke anamde emi , afo eyemek mfọnn̄kan usụn̄ uwem .\n",
"2020-04-07 21:04:44,493 Example #1\n",
"2020-04-07 21:04:44,493 \tSource: They may even have been told as much by a clergyman .\n",
"2020-04-07 21:04:44,493 \tReference: Akam ekeme ndidi se ọkwọrọ ederi eketịn̄de ọnọ mmọ edi oro .\n",
"2020-04-07 21:04:44,493 \tHypothesis: Ekeme ndidi mme ọkwọrọ ederi ẹma ẹkam ẹtịn̄ ẹban̄a mmọ ukem nte mme ọkwọrọ ederi .\n",
"2020-04-07 21:04:44,494 Example #2\n",
"2020-04-07 21:04:44,494 \tSource: The same point is made at 2 Chronicles 5 : 9 .\n",
"2020-04-07 21:04:44,494 \tReference: Ẹtịn̄ ukem ikọ oro ke 2 Chronicles 5 : 9 .\n",
"2020-04-07 21:04:44,494 \tHypothesis: Ẹwet ukem n̄kpọ oro ke 2 Chronicles 5 : 9 .\n",
"2020-04-07 21:04:44,495 Example #3\n",
"2020-04-07 21:04:44,495 \tSource: 59 - 61 C.E . ) , and from there he finds ways to preach about the Kingdom and teach “ the things concerning the Lord Jesus Christ . ” — Acts 28 : 30 , 31 .\n",
"2020-04-07 21:04:44,495 \tReference: Ẹkọbi Paul ẹtem ke ufọk esie ke Rome ke isua iba ( ke n̄kpọ nte isua 59 esịm 61 E.N . ) , ndien enye oyom usụn̄ do ọkwọrọ Obio Ubọn̄ onyụn̄ ekpep mbon en̄wen “ mme n̄kpọ emi ẹban̄ade Ọbọn̄ Jesus Christ . ” — Utom 28 : 30 , 31 .\n",
"2020-04-07 21:04:44,496 \tHypothesis: 59 - 61 E.N . ) , ndien enye okụt usụn̄ ndikwọrọ mban̄a Obio Ubọn̄ nnyụn̄ n̄kpep “ mme n̄kpọ eke ẹban̄ade Ọbọn̄ Jesus Christ . ” — Utom 28 : 30 , 31 .\n",
"2020-04-07 21:04:44,496 Validation result (greedy) at epoch 2, step 80000: bleu: 30.38, loss: 36509.8242, ppl: 4.7294, duration: 12.6358s\n",
"2020-04-07 21:04:56,039 Epoch 2 Step: 80100 Batch Loss: 1.555527 Tokens per Sec: 19992, Lr: 0.000300\n",
"2020-04-07 21:05:07,283 Epoch 2 Step: 80200 Batch Loss: 1.488823 Tokens per Sec: 20541, Lr: 0.000300\n",
"2020-04-07 21:05:18,485 Epoch 2 Step: 80300 Batch Loss: 1.738822 Tokens per Sec: 20119, Lr: 0.000300\n",
"2020-04-07 21:05:29,816 Epoch 2 Step: 80400 Batch Loss: 1.605760 Tokens per Sec: 20493, Lr: 0.000300\n",
"2020-04-07 21:05:41,042 Epoch 2 Step: 80500 Batch Loss: 1.637010 Tokens per Sec: 20369, Lr: 0.000300\n",
"2020-04-07 21:05:52,300 Epoch 2 Step: 80600 Batch Loss: 1.643769 Tokens per Sec: 20523, Lr: 0.000300\n",
"2020-04-07 21:06:03,557 Epoch 2 Step: 80700 Batch Loss: 1.717212 Tokens per Sec: 20824, Lr: 0.000300\n",
"2020-04-07 21:06:14,660 Epoch 2 Step: 80800 Batch Loss: 1.777844 Tokens per Sec: 20179, Lr: 0.000300\n",
"2020-04-07 21:06:25,715 Epoch 2 Step: 80900 Batch Loss: 1.996720 Tokens per Sec: 20187, Lr: 0.000300\n",
"2020-04-07 21:06:36,917 Epoch 2 Step: 81000 Batch Loss: 1.505029 Tokens per Sec: 20542, Lr: 0.000300\n",
"2020-04-07 21:06:48,173 Hooray! New best validation result [ppl]!\n",
"2020-04-07 21:06:48,173 Saving new checkpoint.\n",
"2020-04-07 21:06:49,499 Example #0\n",
"2020-04-07 21:06:49,500 \tSource: If you do , you will be choosing the best possible way of life .\n",
"2020-04-07 21:06:49,500 \tReference: Edieke anamde ntre , ọwọrọ ke ememek mfọnn̄kan usụn̄ uwem .\n",
"2020-04-07 21:06:49,500 \tHypothesis: Edieke anamde emi , afo eyemek mfọnn̄kan usụn̄ uwem .\n",
"2020-04-07 21:06:49,501 Example #1\n",
"2020-04-07 21:06:49,501 \tSource: They may even have been told as much by a clergyman .\n",
"2020-04-07 21:06:49,501 \tReference: Akam ekeme ndidi se ọkwọrọ ederi eketịn̄de ọnọ mmọ edi oro .\n",
"2020-04-07 21:06:49,501 \tHypothesis: Ekeme ndidi ọkwọrọ ederi ama akam ọdọhọ mmọ ke mmọ ẹma ẹkam ẹtịn̄ ẹban̄a mmimọ .\n",
"2020-04-07 21:06:49,502 Example #2\n",
"2020-04-07 21:06:49,504 \tSource: The same point is made at 2 Chronicles 5 : 9 .\n",
"2020-04-07 21:06:49,506 \tReference: Ẹtịn̄ ukem ikọ oro ke 2 Chronicles 5 : 9 .\n",
"2020-04-07 21:06:49,506 \tHypothesis: Ẹnam ukem n̄kpọ oro ke 2 Chronicle 5 : 9 .\n",
"2020-04-07 21:06:49,507 Example #3\n",
"2020-04-07 21:06:49,507 \tSource: 59 - 61 C.E . ) , and from there he finds ways to preach about the Kingdom and teach “ the things concerning the Lord Jesus Christ . ” — Acts 28 : 30 , 31 .\n",
"2020-04-07 21:06:49,507 \tReference: Ẹkọbi Paul ẹtem ke ufọk esie ke Rome ke isua iba ( ke n̄kpọ nte isua 59 esịm 61 E.N . ) , ndien enye oyom usụn̄ do ọkwọrọ Obio Ubọn̄ onyụn̄ ekpep mbon en̄wen “ mme n̄kpọ emi ẹban̄ade Ọbọn̄ Jesus Christ . ” — Utom 28 : 30 , 31 .\n",
"2020-04-07 21:06:49,508 \tHypothesis: 59 - 61 E.N . ) , ndien enye okụt usụn̄ ndikwọrọ Obio Ubọn̄ nnyụn̄ n̄kpep “ mme n̄kpọ ẹban̄ade Ọbọn̄ Jesus Christ . ” — Utom 28 : 30 , 31 .\n",
"2020-04-07 21:06:49,508 Validation result (greedy) at epoch 2, step 81000: bleu: 30.77, loss: 36469.5391, ppl: 4.7213, duration: 12.5905s\n",
"2020-04-07 21:07:01,162 Epoch 2 Step: 81100 Batch Loss: 1.795741 Tokens per Sec: 20264, Lr: 0.000300\n",
"2020-04-07 21:07:12,487 Epoch 2 Step: 81200 Batch Loss: 1.663168 Tokens per Sec: 20997, Lr: 0.000300\n",
"2020-04-07 21:07:23,728 Epoch 2 Step: 81300 Batch Loss: 1.696081 Tokens per Sec: 20511, Lr: 0.000300\n",
"2020-04-07 21:07:34,823 Epoch 2 Step: 81400 Batch Loss: 1.563580 Tokens per Sec: 20583, Lr: 0.000300\n",
"2020-04-07 21:07:46,048 Epoch 2 Step: 81500 Batch Loss: 1.545787 Tokens per Sec: 20787, Lr: 0.000300\n",
"2020-04-07 21:07:57,180 Epoch 2 Step: 81600 Batch Loss: 1.634702 Tokens per Sec: 20406, Lr: 0.000300\n",
"2020-04-07 21:08:08,468 Epoch 2 Step: 81700 Batch Loss: 1.769388 Tokens per Sec: 20685, Lr: 0.000300\n",
"2020-04-07 21:08:19,736 Epoch 2 Step: 81800 Batch Loss: 1.751492 Tokens per Sec: 20813, Lr: 0.000300\n",
"2020-04-07 21:08:26,597 Epoch 2: total training loss 5752.46\n",
"2020-04-07 21:08:26,597 EPOCH 3\n",
"2020-04-07 21:08:31,454 Epoch 3 Step: 81900 Batch Loss: 1.622603 Tokens per Sec: 18971, Lr: 0.000300\n",
"2020-04-07 21:08:42,744 Epoch 3 Step: 82000 Batch Loss: 1.742999 Tokens per Sec: 20507, Lr: 0.000300\n",
"2020-04-07 21:08:54,244 Example #0\n",
"2020-04-07 21:08:54,245 \tSource: If you do , you will be choosing the best possible way of life .\n",
"2020-04-07 21:08:54,245 \tReference: Edieke anamde ntre , ọwọrọ ke ememek mfọnn̄kan usụn̄ uwem .\n",
"2020-04-07 21:08:54,246 \tHypothesis: Edieke anamde emi , afo eyemek mfọnn̄kan usụn̄ uwem .\n",
"2020-04-07 21:08:54,246 Example #1\n",
"2020-04-07 21:08:54,246 \tSource: They may even have been told as much by a clergyman .\n",
"2020-04-07 21:08:54,246 \tReference: Akam ekeme ndidi se ọkwọrọ ederi eketịn̄de ọnọ mmọ edi oro .\n",
"2020-04-07 21:08:54,247 \tHypothesis: Ekeme ndidi ọkwọrọ ederi kiet ama akam ọdọhọ mmọ ke mmọ ẹma ẹkam ẹtịn̄ se mmọ ẹketịn̄de .\n",
"2020-04-07 21:08:54,247 Example #2\n",
"2020-04-07 21:08:54,247 \tSource: The same point is made at 2 Chronicles 5 : 9 .\n",
"2020-04-07 21:08:54,247 \tReference: Ẹtịn̄ ukem ikọ oro ke 2 Chronicles 5 : 9 .\n",
"2020-04-07 21:08:54,247 \tHypothesis: Ẹnam ukem n̄kpọ oro ke 2 Chronicles 5 : 9 .\n",
"2020-04-07 21:08:54,248 Example #3\n",
"2020-04-07 21:08:54,248 \tSource: 59 - 61 C.E . ) , and from there he finds ways to preach about the Kingdom and teach “ the things concerning the Lord Jesus Christ . ” — Acts 28 : 30 , 31 .\n",
"2020-04-07 21:08:54,248 \tReference: Ẹkọbi Paul ẹtem ke ufọk esie ke Rome ke isua iba ( ke n̄kpọ nte isua 59 esịm 61 E.N . ) , ndien enye oyom usụn̄ do ọkwọrọ Obio Ubọn̄ onyụn̄ ekpep mbon en̄wen “ mme n̄kpọ emi ẹban̄ade Ọbọn̄ Jesus Christ . ” — Utom 28 : 30 , 31 .\n",
"2020-04-07 21:08:54,248 \tHypothesis: 59 - 61 E.N . ) , ndien enye okụt usụn̄ ndikwọrọ mban̄a Obio Ubọn̄ nnyụn̄ n̄kpep “ mme n̄kpọ ẹban̄ade Ọbọn̄ Jesus Christ . ” — Utom 28 : 30 , 31 .\n",
"2020-04-07 21:08:54,248 Validation result (greedy) at epoch 3, step 82000: bleu: 30.70, loss: 36578.5469, ppl: 4.7433, duration: 11.5042s\n",
"2020-04-07 21:09:05,400 Epoch 3 Step: 82100 Batch Loss: 1.654117 Tokens per Sec: 20566, Lr: 0.000300\n",
"2020-04-07 21:09:16,698 Epoch 3 Step: 82200 Batch Loss: 2.097586 Tokens per Sec: 20356, Lr: 0.000300\n",
"2020-04-07 21:09:27,839 Epoch 3 Step: 82300 Batch Loss: 1.614651 Tokens per Sec: 20274, Lr: 0.000300\n",
"2020-04-07 21:09:39,090 Epoch 3 Step: 82400 Batch Loss: 1.883934 Tokens per Sec: 20091, Lr: 0.000300\n",
"2020-04-07 21:09:50,233 Epoch 3 Step: 82500 Batch Loss: 1.728126 Tokens per Sec: 20985, Lr: 0.000300\n",
"2020-04-07 21:10:01,409 Epoch 3 Step: 82600 Batch Loss: 1.831730 Tokens per Sec: 20477, Lr: 0.000300\n",
"2020-04-07 21:10:12,606 Epoch 3 Step: 82700 Batch Loss: 1.697250 Tokens per Sec: 20794, Lr: 0.000300\n",
"2020-04-07 21:10:23,809 Epoch 3 Step: 82800 Batch Loss: 1.662617 Tokens per Sec: 21062, Lr: 0.000300\n",
"2020-04-07 21:10:34,963 Epoch 3 Step: 82900 Batch Loss: 1.601122 Tokens per Sec: 20384, Lr: 0.000300\n",
"2020-04-07 21:10:46,195 Epoch 3 Step: 83000 Batch Loss: 1.814855 Tokens per Sec: 20695, Lr: 0.000300\n",
"2020-04-07 21:10:58,561 Hooray! New best validation result [ppl]!\n",
"2020-04-07 21:10:58,561 Saving new checkpoint.\n",
"2020-04-07 21:10:59,917 Example #0\n",
"2020-04-07 21:10:59,917 \tSource: If you do , you will be choosing the best possible way of life .\n",
"2020-04-07 21:10:59,917 \tReference: Edieke anamde ntre , ọwọrọ ke ememek mfọnn̄kan usụn̄ uwem .\n",
"2020-04-07 21:10:59,918 \tHypothesis: Edieke anamde emi , afo eyemek mfọnn̄kan usụn̄ uwem .\n",
"2020-04-07 21:10:59,918 Example #1\n",
"2020-04-07 21:10:59,918 \tSource: They may even have been told as much by a clergyman .\n",
"2020-04-07 21:10:59,918 \tReference: Akam ekeme ndidi se ọkwọrọ ederi eketịn̄de ọnọ mmọ edi oro .\n",
"2020-04-07 21:10:59,918 \tHypothesis: Ekeme ndidi ọkwọrọ ederi kiet ama akam ọdọhọ mmọ ke mmọ ẹma ẹkam ẹtịn̄ se mmọ ẹkekeme .\n",
"2020-04-07 21:10:59,919 Example #2\n",
"2020-04-07 21:10:59,919 \tSource: The same point is made at 2 Chronicles 5 : 9 .\n",
"2020-04-07 21:10:59,919 \tReference: Ẹtịn̄ ukem ikọ oro ke 2 Chronicles 5 : 9 .\n",
"2020-04-07 21:10:59,919 \tHypothesis: Ẹnam ukem n̄kpọ oro ke 2 Chronicles 5 : 9 .\n",
"2020-04-07 21:10:59,919 Example #3\n",
"2020-04-07 21:10:59,920 \tSource: 59 - 61 C.E . ) , and from there he finds ways to preach about the Kingdom and teach “ the things concerning the Lord Jesus Christ . ” — Acts 28 : 30 , 31 .\n",
"2020-04-07 21:10:59,920 \tReference: Ẹkọbi Paul ẹtem ke ufọk esie ke Rome ke isua iba ( ke n̄kpọ nte isua 59 esịm 61 E.N . ) , ndien enye oyom usụn̄ do ọkwọrọ Obio Ubọn̄ onyụn̄ ekpep mbon en̄wen “ mme n̄kpọ emi ẹban̄ade Ọbọn̄ Jesus Christ . ” — Utom 28 : 30 , 31 .\n",
"2020-04-07 21:10:59,920 \tHypothesis: 59 - 61 E.N . ) , ndien enye okụt usụn̄ ndikwọrọ Obio Ubọn̄ nnyụn̄ n̄kpep “ mme n̄kpọ ẹban̄ade Ọbọn̄ Jesus Christ . ” — Utom 28 : 30 , 31 .\n",
"2020-04-07 21:10:59,920 Validation result (greedy) at epoch 3, step 83000: bleu: 30.75, loss: 36308.5273, ppl: 4.6891, duration: 13.7245s\n",
"2020-04-07 21:11:11,420 Epoch 3 Step: 83100 Batch Loss: 1.809379 Tokens per Sec: 20280, Lr: 0.000300\n",
"2020-04-07 21:11:22,578 Epoch 3 Step: 83200 Batch Loss: 1.724175 Tokens per Sec: 20662, Lr: 0.000300\n",
"2020-04-07 21:11:33,631 Epoch 3 Step: 83300 Batch Loss: 1.757362 Tokens per Sec: 20542, Lr: 0.000300\n",
"2020-04-07 21:11:44,853 Epoch 3 Step: 83400 Batch Loss: 1.978654 Tokens per Sec: 20568, Lr: 0.000300\n",
"2020-04-07 21:11:56,189 Epoch 3 Step: 83500 Batch Loss: 1.734641 Tokens per Sec: 20209, Lr: 0.000300\n",
"2020-04-07 21:12:07,551 Epoch 3 Step: 83600 Batch Loss: 1.351897 Tokens per Sec: 20323, Lr: 0.000300\n",
"2020-04-07 21:12:18,959 Epoch 3 Step: 83700 Batch Loss: 1.648239 Tokens per Sec: 20271, Lr: 0.000300\n",
"2020-04-07 21:12:30,249 Epoch 3 Step: 83800 Batch Loss: 1.649844 Tokens per Sec: 20061, Lr: 0.000300\n",
"2020-04-07 21:12:41,664 Epoch 3 Step: 83900 Batch Loss: 1.705879 Tokens per Sec: 20261, Lr: 0.000300\n",
"2020-04-07 21:12:52,997 Epoch 3 Step: 84000 Batch Loss: 1.523355 Tokens per Sec: 20206, Lr: 0.000300\n",
"2020-04-07 21:13:04,286 Example #0\n",
"2020-04-07 21:13:04,287 \tSource: If you do , you will be choosing the best possible way of life .\n",
"2020-04-07 21:13:04,287 \tReference: Edieke anamde ntre , ọwọrọ ke ememek mfọnn̄kan usụn̄ uwem .\n",
"2020-04-07 21:13:04,287 \tHypothesis: Edieke anamde emi , afo eyemek mfọnn̄kan usụn̄ uwem .\n",
"2020-04-07 21:13:04,288 Example #1\n",
"2020-04-07 21:13:04,288 \tSource: They may even have been told as much by a clergyman .\n",
"2020-04-07 21:13:04,288 \tReference: Akam ekeme ndidi se ọkwọrọ ederi eketịn̄de ọnọ mmọ edi oro .\n",
"2020-04-07 21:13:04,288 \tHypothesis: Ekeme ndidi mme ọkwọrọ ederi ẹma ẹkam ẹdọhọ mmọ nte mme ọkwọrọ ederi .\n",
"2020-04-07 21:13:04,288 Example #2\n",
"2020-04-07 21:13:04,289 \tSource: The same point is made at 2 Chronicles 5 : 9 .\n",
"2020-04-07 21:13:04,289 \tReference: Ẹtịn̄ ukem ikọ oro ke 2 Chronicles 5 : 9 .\n",
"2020-04-07 21:13:04,289 \tHypothesis: Ẹnam ukem n̄kpọ oro ke 2 Chronicles 5 : 9 .\n",
"2020-04-07 21:13:04,289 Example #3\n",
"2020-04-07 21:13:04,289 \tSource: 59 - 61 C.E . ) , and from there he finds ways to preach about the Kingdom and teach “ the things concerning the Lord Jesus Christ . ” — Acts 28 : 30 , 31 .\n",
"2020-04-07 21:13:04,290 \tReference: Ẹkọbi Paul ẹtem ke ufọk esie ke Rome ke isua iba ( ke n̄kpọ nte isua 59 esịm 61 E.N . ) , ndien enye oyom usụn̄ do ọkwọrọ Obio Ubọn̄ onyụn̄ ekpep mbon en̄wen “ mme n̄kpọ emi ẹban̄ade Ọbọn̄ Jesus Christ . ” — Utom 28 : 30 , 31 .\n",
"2020-04-07 21:13:04,290 \tHypothesis: 59 - 61 E.N . ) , ndien enye okụt usụn̄ ndikwọrọ mban̄a Obio Ubọn̄ nnyụn̄ n̄kpep “ mme n̄kpọ eke ẹban̄ade Ọbọn̄ Jesus Christ . ” — Utom 28 : 30 , 31 .\n",
"2020-04-07 21:13:04,290 Validation result (greedy) at epoch 3, step 84000: bleu: 30.47, loss: 36337.9961, ppl: 4.6950, duration: 11.2926s\n",
"2020-04-07 21:13:15,691 Epoch 3 Step: 84100 Batch Loss: 1.707605 Tokens per Sec: 20388, Lr: 0.000300\n",
"2020-04-07 21:13:26,990 Epoch 3 Step: 84200 Batch Loss: 1.853164 Tokens per Sec: 20639, Lr: 0.000300\n",
"2020-04-07 21:13:38,427 Epoch 3 Step: 84300 Batch Loss: 1.644427 Tokens per Sec: 20566, Lr: 0.000300\n",
"2020-04-07 21:13:49,736 Epoch 3 Step: 84400 Batch Loss: 1.295440 Tokens per Sec: 20443, Lr: 0.000300\n",
"2020-04-07 21:14:01,029 Epoch 3 Step: 84500 Batch Loss: 1.628160 Tokens per Sec: 20248, Lr: 0.000300\n",
"2020-04-07 21:14:12,394 Epoch 3 Step: 84600 Batch Loss: 1.839830 Tokens per Sec: 20362, Lr: 0.000300\n",
"2020-04-07 21:14:23,701 Epoch 3 Step: 84700 Batch Loss: 1.710175 Tokens per Sec: 20039, Lr: 0.000300\n",
"2020-04-07 21:14:34,953 Epoch 3 Step: 84800 Batch Loss: 1.572069 Tokens per Sec: 20403, Lr: 0.000300\n",
"2020-04-07 21:14:46,371 Epoch 3 Step: 84900 Batch Loss: 1.901179 Tokens per Sec: 19940, Lr: 0.000300\n",
"2020-04-07 21:14:57,709 Epoch 3 Step: 85000 Batch Loss: 1.764309 Tokens per Sec: 20247, Lr: 0.000300\n",
"2020-04-07 21:15:08,815 Hooray! New best validation result [ppl]!\n",
"2020-04-07 21:15:08,815 Saving new checkpoint.\n",
"2020-04-07 21:15:10,161 Example #0\n",
"2020-04-07 21:15:10,161 \tSource: If you do , you will be choosing the best possible way of life .\n",
"2020-04-07 21:15:10,162 \tReference: Edieke anamde ntre , ọwọrọ ke ememek mfọnn̄kan usụn̄ uwem .\n",
"2020-04-07 21:15:10,162 \tHypothesis: Edieke anamde emi , afo eyemek mfọnn̄kan usụn̄ uwem .\n",
"2020-04-07 21:15:10,162 Example #1\n",
"2020-04-07 21:15:10,162 \tSource: They may even have been told as much by a clergyman .\n",
"2020-04-07 21:15:10,162 \tReference: Akam ekeme ndidi se ọkwọrọ ederi eketịn̄de ọnọ mmọ edi oro .\n",
"2020-04-07 21:15:10,163 \tHypothesis: Ekeme ndidi ọkwọrọ ederi ama akam ọdọhọ mmọ ke mmọ ẹma ẹkam ẹtịn̄ se mmọ ẹketịn̄de .\n",
"2020-04-07 21:15:10,163 Example #2\n",
"2020-04-07 21:15:10,163 \tSource: The same point is made at 2 Chronicles 5 : 9 .\n",
"2020-04-07 21:15:10,163 \tReference: Ẹtịn̄ ukem ikọ oro ke 2 Chronicles 5 : 9 .\n",
"2020-04-07 21:15:10,164 \tHypothesis: Ẹnam ukem n̄kpọ oro ke 2 Chronicles 5 : 9 .\n",
"2020-04-07 21:15:10,164 Example #3\n",
"2020-04-07 21:15:10,164 \tSource: 59 - 61 C.E . ) , and from there he finds ways to preach about the Kingdom and teach “ the things concerning the Lord Jesus Christ . ” — Acts 28 : 30 , 31 .\n",
"2020-04-07 21:15:10,164 \tReference: Ẹkọbi Paul ẹtem ke ufọk esie ke Rome ke isua iba ( ke n̄kpọ nte isua 59 esịm 61 E.N . ) , ndien enye oyom usụn̄ do ọkwọrọ Obio Ubọn̄ onyụn̄ ekpep mbon en̄wen “ mme n̄kpọ emi ẹban̄ade Ọbọn̄ Jesus Christ . ” — Utom 28 : 30 , 31 .\n",
"2020-04-07 21:15:10,164 \tHypothesis: 59 - 61 E.N . ) , ndien enye okụt usụn̄ ndikwọrọ Obio Ubọn̄ nnyụn̄ n̄kpep “ mme n̄kpọ ẹban̄ade Ọbọn̄ Jesus Christ . ” — Utom 28 : 30 , 31 .\n",
"2020-04-07 21:15:10,165 Validation result (greedy) at epoch 3, step 85000: bleu: 30.60, loss: 36262.0664, ppl: 4.6798, duration: 12.4547s\n",
"2020-04-07 21:15:21,876 Epoch 3 Step: 85100 Batch Loss: 1.628079 Tokens per Sec: 20062, Lr: 0.000300\n",
"2020-04-07 21:15:33,192 Epoch 3 Step: 85200 Batch Loss: 1.397948 Tokens per Sec: 20355, Lr: 0.000300\n",
"2020-04-07 21:15:43,922 Epoch 3: total training loss 5714.55\n",
"2020-04-07 21:15:43,922 Training ended after 3 epochs.\n",
"2020-04-07 21:15:43,922 Best validation result (greedy) at step 85000: 4.68 ppl.\n",
"2020-04-07 21:16:05,650 dev bleu: 31.00 [Beam search decoding with beam size = 5 and alpha = 1.0]\n",
"2020-04-07 21:16:05,655 Translations saved to: /content/drive/My Drive/masakhane/model-temp/00085000.hyps.dev\n",
"2020-04-07 21:16:35,421 test bleu: 33.48 [Beam search decoding with beam size = 5 and alpha = 1.0]\n",
"2020-04-07 21:16:35,428 Translations saved to: /content/drive/My Drive/masakhane/model-temp/00085000.hyps.test\n"
]
}
],
"source": [
"# Train the model\n",
"# You can press Ctrl-C to stop. And then run the next cell to save your checkpoints! \n",
"!cd joeynmt; python3 -m joeynmt train configs/transformer_$src$tgt.yaml"
]
},
{
"cell_type": "code",
"execution_count": 0,
"metadata": {
"colab": {},
"colab_type": "code",
"id": "MBoDS09JM807"
},
"outputs": [],
"source": [
"# Copy the created models from the temporary storage to main storage on google drive for persistant storage \n",
"!cp -r \"/content/drive/My Drive/masakhane/model-temp/\"* \"$gdrive_path/models/${src}${tgt}_transformer/\""
]
},
{
"cell_type": "code",
"execution_count": 0,
"metadata": {
"colab": {
"base_uri": "https://localhost:8080/",
"height": 187
},
"colab_type": "code",
"id": "n94wlrCjVc17",
"outputId": "1d2b2f10-e1cf-4a22-be10-4d4883f5a0d7"
},
"outputs": [
{
"name": "stdout",
"output_type": "stream",
"text": [
"Steps: 76000\tLoss: 36773.73438\tPPL: 4.78286\tbleu: 30.36739\tLR: 0.00030000\t\n",
"Steps: 77000\tLoss: 36633.97656\tPPL: 4.75450\tbleu: 30.70387\tLR: 0.00030000\t\n",
"Steps: 78000\tLoss: 36591.09375\tPPL: 4.74583\tbleu: 30.58997\tLR: 0.00030000\t*\n",
"Steps: 79000\tLoss: 36588.30469\tPPL: 4.74527\tbleu: 30.31250\tLR: 0.00030000\t*\n",
"Steps: 80000\tLoss: 36509.82422\tPPL: 4.72945\tbleu: 30.37741\tLR: 0.00030000\t*\n",
"Steps: 81000\tLoss: 36469.53906\tPPL: 4.72134\tbleu: 30.77292\tLR: 0.00030000\t*\n",
"Steps: 82000\tLoss: 36578.54688\tPPL: 4.74330\tbleu: 30.69861\tLR: 0.00030000\t\n",
"Steps: 83000\tLoss: 36308.52734\tPPL: 4.68910\tbleu: 30.75077\tLR: 0.00030000\t*\n",
"Steps: 84000\tLoss: 36337.99609\tPPL: 4.69499\tbleu: 30.46578\tLR: 0.00030000\t\n",
"Steps: 85000\tLoss: 36262.06641\tPPL: 4.67984\tbleu: 30.59531\tLR: 0.00030000\t*\n"
]
}
],
"source": [
"# Output our validation accuracy\n",
"! cat \"$gdrive_path/models/${src}${tgt}_transformer/validations.txt\""
]
},
{
"cell_type": "code",
"execution_count": 0,
"metadata": {
"colab": {
"base_uri": "https://localhost:8080/",
"height": 68
},
"colab_type": "code",
"id": "66WhRE9lIhoD",
"outputId": "bac423c3-182d-41a8-8ca2-cd0bd74196dc"
},
"outputs": [
{
"name": "stdout",
"output_type": "stream",
"text": [
"2020-04-07 21:16:45,174 Hello! This is Joey-NMT.\n",
"2020-04-07 21:17:10,964 dev bleu: 31.00 [Beam search decoding with beam size = 5 and alpha = 1.0]\n",
"2020-04-07 21:17:40,602 test bleu: 33.48 [Beam search decoding with beam size = 5 and alpha = 1.0]\n"
]
}
],
"source": [
"# Test our model\n",
"! cd joeynmt; python3 -m joeynmt test \"$gdrive_path/models/${src}${tgt}_transformer/config.yaml\"\n"
]
}
],
"metadata": {
"accelerator": "GPU",
"colab": {
"collapsed_sections": [],
"include_colab_link": true,
"name": "en_efi_jw300_notebook.ipynb",
"provenance": []
},
"kernelspec": {
"display_name": "Python 3",
"language": "python",
"name": "python3"
},
"language_info": {
"codemirror_mode": {
"name": "ipython",
"version": 3
},
"file_extension": ".py",
"mimetype": "text/x-python",
"name": "python",
"nbconvert_exporter": "python",
"pygments_lexer": "ipython3",
"version": "3.7.3"
}
},
"nbformat": 4,
"nbformat_minor": 1
}
|