File size: 134,942 Bytes
78aa4ee |
1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27 28 29 30 31 32 33 34 35 36 37 38 39 40 41 42 43 44 45 46 47 48 49 50 51 52 53 54 55 56 57 58 59 60 61 62 63 64 65 66 67 68 69 70 71 72 73 74 75 76 77 78 79 80 81 82 83 84 85 86 87 88 89 90 91 92 93 94 95 96 97 98 99 100 101 102 103 104 105 106 107 108 109 110 111 112 113 114 115 116 117 118 119 120 121 122 123 124 125 126 127 128 129 130 131 132 133 134 135 136 137 138 139 140 141 142 143 144 145 146 147 148 149 150 151 152 153 154 155 156 157 158 159 160 161 162 163 164 165 166 167 168 169 170 171 172 173 174 175 176 177 178 179 180 181 182 183 184 185 186 187 188 189 190 191 192 193 194 195 196 197 198 199 200 201 202 203 204 205 206 207 208 209 210 211 212 213 214 215 216 217 218 219 220 221 222 223 224 225 226 227 228 229 230 231 232 233 234 235 236 237 238 239 240 241 242 243 244 245 246 247 248 249 250 251 252 253 254 255 256 257 258 259 260 261 262 263 264 265 266 267 268 269 270 271 272 273 274 275 276 277 278 279 280 281 282 283 284 285 286 287 288 289 290 291 292 293 294 295 296 297 298 299 300 301 302 303 304 305 306 307 308 309 310 311 312 313 314 315 316 317 318 319 320 321 322 323 324 325 326 327 328 329 330 331 332 333 334 335 336 337 338 339 340 341 342 343 344 345 346 347 348 349 350 351 352 353 354 355 356 357 358 359 360 361 362 363 364 365 366 367 368 369 370 371 372 373 374 375 376 377 378 379 380 381 382 383 384 385 386 387 388 389 390 391 392 393 394 395 396 397 398 399 400 401 402 403 404 405 406 407 408 409 410 411 412 413 414 415 416 417 418 419 420 421 422 423 424 425 426 427 428 429 430 431 432 433 434 435 436 437 438 439 440 441 442 443 444 445 446 447 448 449 450 451 452 453 454 455 456 457 458 459 460 461 462 463 464 465 466 467 468 469 470 471 472 473 474 475 476 477 478 479 480 481 482 483 484 485 486 487 488 489 490 491 492 493 494 495 496 497 498 499 500 501 502 503 504 505 506 507 508 509 510 511 512 513 514 515 516 517 518 519 520 521 522 523 524 525 526 527 528 529 530 531 532 533 534 535 536 537 538 539 540 541 542 543 544 545 546 547 548 549 550 551 552 553 554 555 556 557 558 559 560 561 562 563 564 565 566 567 568 569 570 571 572 573 574 575 576 577 578 579 580 581 582 583 584 585 586 587 588 589 590 591 592 593 594 595 596 597 598 599 600 601 602 603 604 605 606 607 608 609 610 611 612 613 614 615 616 617 618 619 620 621 622 623 624 625 626 627 628 629 630 631 632 633 634 635 636 637 638 639 640 641 642 643 644 645 646 647 648 649 650 651 652 653 654 655 656 657 658 659 660 661 662 663 664 665 666 667 668 669 670 671 672 673 674 675 676 677 678 679 680 681 682 683 684 685 686 687 688 689 690 691 692 693 694 695 696 697 698 699 700 701 702 703 704 705 706 707 708 709 710 711 712 713 714 715 716 717 718 719 720 721 722 723 724 725 726 727 728 729 730 731 732 733 734 735 736 737 738 739 740 741 742 743 744 745 746 747 748 749 750 751 752 753 754 755 756 757 758 759 760 761 762 763 764 765 766 767 768 769 770 771 772 773 774 775 776 777 778 779 780 781 782 783 784 785 786 787 788 789 790 791 792 793 794 795 796 797 798 799 800 801 802 803 804 805 806 807 808 809 810 811 812 813 814 815 816 817 818 819 820 821 822 823 824 825 826 827 828 829 830 831 832 833 834 835 836 837 838 839 840 841 842 843 844 845 846 847 848 849 850 851 852 853 854 855 856 857 858 859 860 861 862 863 864 865 866 867 868 869 870 871 872 873 874 875 876 877 878 879 880 881 882 883 884 885 886 887 888 889 890 891 892 893 894 895 896 897 898 899 900 901 902 903 904 905 906 907 908 909 910 911 912 913 914 915 916 917 918 919 920 921 922 923 924 925 926 927 928 929 930 931 932 933 934 935 936 937 938 939 940 941 942 943 944 945 946 947 948 949 950 951 952 953 954 955 956 957 958 959 960 961 962 963 964 965 966 967 968 969 970 971 972 973 974 975 976 977 978 979 980 981 982 983 984 985 986 987 988 989 990 991 992 993 994 995 996 997 998 999 1000 1001 1002 1003 1004 1005 1006 1007 1008 1009 1010 1011 1012 1013 1014 1015 1016 1017 1018 1019 1020 1021 1022 1023 1024 1025 1026 1027 1028 1029 1030 1031 1032 1033 1034 1035 1036 1037 1038 1039 1040 1041 1042 1043 1044 1045 1046 1047 1048 1049 1050 1051 1052 1053 1054 1055 1056 1057 1058 1059 1060 1061 1062 1063 1064 1065 1066 1067 1068 1069 1070 1071 1072 1073 1074 1075 1076 1077 1078 1079 1080 1081 1082 1083 1084 1085 1086 1087 1088 1089 1090 1091 1092 1093 1094 1095 1096 1097 1098 1099 1100 1101 1102 1103 1104 1105 1106 1107 1108 1109 1110 1111 1112 1113 1114 1115 1116 1117 1118 1119 1120 1121 1122 1123 1124 1125 1126 1127 1128 1129 1130 1131 1132 1133 1134 1135 1136 1137 1138 1139 1140 1141 1142 1143 1144 1145 1146 1147 1148 1149 1150 1151 1152 1153 1154 1155 1156 1157 1158 1159 1160 1161 1162 1163 1164 1165 1166 1167 1168 1169 1170 1171 1172 1173 1174 1175 1176 1177 1178 1179 1180 1181 1182 1183 1184 1185 1186 1187 1188 1189 1190 1191 1192 1193 1194 1195 1196 1197 1198 1199 1200 1201 1202 1203 1204 1205 1206 1207 1208 1209 1210 1211 1212 1213 1214 1215 1216 1217 1218 1219 1220 1221 1222 1223 1224 1225 1226 1227 1228 1229 1230 1231 1232 1233 1234 1235 1236 1237 1238 1239 1240 1241 1242 1243 1244 1245 1246 1247 1248 1249 1250 1251 1252 1253 1254 1255 1256 1257 1258 1259 1260 1261 1262 1263 1264 1265 1266 1267 1268 1269 1270 1271 1272 1273 1274 1275 1276 1277 1278 1279 1280 1281 1282 1283 1284 1285 1286 1287 1288 1289 1290 1291 1292 1293 1294 1295 1296 1297 1298 1299 1300 1301 1302 1303 1304 1305 1306 1307 1308 1309 1310 1311 1312 1313 1314 1315 1316 1317 1318 1319 1320 1321 1322 1323 1324 1325 1326 1327 1328 1329 1330 1331 1332 1333 1334 1335 1336 1337 1338 1339 1340 1341 1342 1343 1344 1345 1346 1347 1348 1349 1350 1351 1352 1353 1354 1355 1356 1357 1358 1359 1360 1361 1362 1363 1364 1365 1366 1367 1368 1369 1370 1371 1372 1373 1374 1375 1376 1377 1378 1379 1380 1381 1382 1383 1384 1385 1386 1387 1388 1389 1390 1391 1392 1393 1394 1395 1396 1397 1398 1399 1400 1401 1402 1403 1404 1405 1406 1407 1408 1409 1410 1411 1412 1413 1414 1415 1416 1417 1418 1419 1420 1421 1422 1423 1424 1425 1426 1427 1428 1429 1430 1431 1432 1433 1434 1435 1436 1437 1438 1439 1440 1441 1442 1443 1444 1445 1446 1447 1448 1449 1450 1451 1452 1453 1454 1455 1456 1457 1458 1459 1460 1461 1462 1463 1464 1465 1466 1467 1468 1469 1470 1471 1472 1473 1474 1475 1476 1477 1478 1479 1480 1481 1482 1483 1484 1485 1486 1487 1488 1489 1490 1491 1492 1493 1494 1495 1496 1497 1498 1499 1500 1501 1502 1503 1504 1505 1506 1507 1508 1509 1510 1511 1512 1513 1514 1515 1516 1517 1518 1519 1520 1521 1522 1523 1524 1525 1526 1527 1528 1529 1530 1531 1532 1533 1534 1535 1536 1537 1538 1539 1540 1541 1542 1543 1544 1545 1546 1547 1548 1549 1550 1551 1552 1553 1554 1555 1556 1557 1558 1559 1560 1561 1562 1563 1564 1565 1566 1567 1568 1569 1570 1571 1572 1573 1574 1575 1576 1577 1578 1579 1580 1581 1582 1583 1584 1585 1586 1587 1588 1589 1590 1591 1592 1593 1594 1595 1596 1597 1598 1599 1600 1601 1602 1603 1604 1605 1606 1607 1608 1609 1610 1611 1612 1613 1614 1615 1616 1617 1618 1619 1620 1621 1622 1623 1624 1625 1626 1627 1628 1629 1630 1631 1632 1633 1634 1635 1636 1637 1638 1639 1640 1641 1642 1643 1644 1645 1646 1647 1648 1649 1650 1651 1652 1653 1654 1655 1656 1657 1658 1659 1660 1661 1662 1663 1664 1665 1666 1667 1668 1669 1670 1671 1672 1673 1674 1675 1676 1677 1678 1679 1680 1681 1682 1683 1684 1685 1686 1687 1688 1689 1690 1691 1692 1693 1694 1695 1696 1697 1698 1699 1700 1701 1702 1703 1704 1705 1706 1707 1708 1709 1710 1711 1712 1713 1714 1715 1716 1717 1718 1719 1720 1721 1722 1723 1724 1725 1726 1727 1728 1729 1730 1731 1732 1733 1734 1735 1736 1737 1738 1739 1740 1741 1742 1743 1744 1745 1746 1747 1748 1749 1750 1751 1752 1753 1754 1755 1756 1757 1758 1759 1760 1761 1762 1763 1764 1765 1766 1767 1768 |
{
"nbformat": 4,
"nbformat_minor": 0,
"metadata": {
"accelerator": "GPU",
"colab": {
"name": "English_To_Dendi_BPE_notebook_custom_data.ipynb",
"provenance": [],
"collapsed_sections": [],
"toc_visible": true,
"include_colab_link": true
},
"kernelspec": {
"display_name": "Python 3",
"language": "python",
"name": "python3"
},
"language_info": {
"codemirror_mode": {
"name": "ipython",
"version": 3
},
"file_extension": ".py",
"mimetype": "text/x-python",
"name": "python",
"nbconvert_exporter": "python",
"pygments_lexer": "ipython3",
"version": "3.5.8"
}
},
"cells": [
{
"cell_type": "markdown",
"metadata": {
"id": "view-in-github",
"colab_type": "text"
},
"source": [
"<a href=\"https://colab.research.google.com/github/Jamiil92/masakhane/blob/master/en-ddn/live.bible.is-baseline/English_To_Dendi_BPE_notebook_custom_data.ipynb\" target=\"_parent\"><img src=\"https://colab.research.google.com/assets/colab-badge.svg\" alt=\"Open In Colab\"/></a>"
]
},
{
"cell_type": "markdown",
"metadata": {
"colab_type": "text",
"id": "Igc5itf-xMGj"
},
"source": [
"# Masakhane - Machine Translation for African Languages (Using JoeyNMT)"
]
},
{
"cell_type": "markdown",
"metadata": {
"colab_type": "text",
"id": "x4fXCKCf36IK"
},
"source": [
"## Note before beginning:\n",
"### - The idea is that you should be able to make minimal changes to this in order to get SOME result for your own translation corpus. \n",
"\n",
"### - The tl;dr: Go to the **\"TODO\"** comments which will tell you what to update to get up and running\n",
"\n",
"### - If you actually want to have a clue what you're doing, read the text and peek at the links\n",
"\n",
"### - With 100 epochs, it should take around 7 hours to run in Google Colab\n",
"\n",
"### - Once you've gotten a result for your language, please attach and email your notebook that generated it to [email protected]\n",
"\n",
"### - If you care enough and get a chance, doing a brief background on your language would be amazing. See examples in [(Martinus, 2019)](https://arxiv.org/abs/1906.05685)\n",
"\n",
"### - This notebook is intended to be used with custom parallel data. That means that you need two files, where one is in your language, the other English, and the lines in the files are corresponding translations."
]
},
{
"cell_type": "markdown",
"metadata": {
"colab_type": "text",
"id": "l929HimrxS0a"
},
"source": [
"## Pre-process your data\n",
"\n",
"We assume here that you already have a data set. The format in which we will process it here requires that \n",
"1. you have two files, one for each language\n",
"2. the files are sentence-aligned, which means that each line should correspond to the same line in the other file.\n"
]
},
{
"cell_type": "code",
"metadata": {
"colab_type": "code",
"id": "oGRmDELn7Az0",
"outputId": "0ffd4c96-92c0-4630-ce07-e03bf4bc5f66",
"colab": {
"base_uri": "https://localhost:8080/",
"height": 124
}
},
"source": [
"from google.colab import drive\n",
"drive.mount('/content/drive')"
],
"execution_count": 1,
"outputs": [
{
"output_type": "stream",
"text": [
"Go to this URL in a browser: https://accounts.google.com/o/oauth2/auth?client_id=947318989803-6bn6qk8qdgf4n4g3pfee6491hc0brc4i.apps.googleusercontent.com&redirect_uri=urn%3aietf%3awg%3aoauth%3a2.0%3aoob&response_type=code&scope=email%20https%3a%2f%2fwww.googleapis.com%2fauth%2fdocs.test%20https%3a%2f%2fwww.googleapis.com%2fauth%2fdrive%20https%3a%2f%2fwww.googleapis.com%2fauth%2fdrive.photos.readonly%20https%3a%2f%2fwww.googleapis.com%2fauth%2fpeopleapi.readonly\n",
"\n",
"Enter your authorization code:\n",
"··········\n",
"Mounted at /content/drive\n"
],
"name": "stdout"
}
]
},
{
"cell_type": "code",
"metadata": {
"colab_type": "code",
"id": "Cn3tgQLzUxwn",
"colab": {}
},
"source": [
"# TODO: Set your source and target languages. Keep in mind, these traditionally use language codes as found here:\n",
"# These will also become the suffix's of all vocab and corpus files used throughout\n",
"import os\n",
"source_language = \"en\"\n",
"target_language = \"ddn\" \n",
"lc = False # If True, lowercase the data.\n",
"seed = 42 # Random seed for shuffling.\n",
"tag = \"baseline\" # Give a unique name to your folder - this is to ensure you don't rewrite any models you've already submitted\n",
"\n",
"os.environ[\"src\"] = source_language # Sets them in bash as well, since we often use bash scripts\n",
"os.environ[\"tgt\"] = target_language\n",
"os.environ[\"tag\"] = tag\n",
"\n",
"# This will save it to a folder in our gdrive instead!\n",
"!mkdir -p \"/content/drive/My Drive/masakhane/$src-$tgt-$tag\"\n",
"os.environ[\"gdrive_path\"] = \"/content/drive/My Drive/masakhane/%s-%s-%s\" % (source_language, target_language, tag)"
],
"execution_count": 0,
"outputs": []
},
{
"cell_type": "code",
"metadata": {
"colab_type": "code",
"id": "kBSgJHEw7Nvx",
"outputId": "daf07487-72e2-425f-fd48-fa07fc942446",
"colab": {
"base_uri": "https://localhost:8080/",
"height": 34
}
},
"source": [
"!echo $gdrive_path"
],
"execution_count": 3,
"outputs": [
{
"output_type": "stream",
"text": [
"/content/drive/My Drive/masakhane/en-ddn-baseline\n"
],
"name": "stdout"
}
]
},
{
"cell_type": "code",
"metadata": {
"colab_type": "code",
"id": "gA75Fs9ys8Y9",
"outputId": "4cd4ac9b-6e20-4212-de29-3c2fd7c02206",
"colab": {
"base_uri": "https://localhost:8080/",
"height": 104
}
},
"source": [
"# Install opus-tools\n",
"! pip install opustools-pkg"
],
"execution_count": 4,
"outputs": [
{
"output_type": "stream",
"text": [
"Collecting opustools-pkg\n",
"\u001b[?25l Downloading https://files.pythonhosted.org/packages/6c/9f/e829a0cceccc603450cd18e1ff80807b6237a88d9a8df2c0bb320796e900/opustools_pkg-0.0.52-py3-none-any.whl (80kB)\n",
"\r\u001b[K |████ | 10kB 21.3MB/s eta 0:00:01\r\u001b[K |████████ | 20kB 2.2MB/s eta 0:00:01\r\u001b[K |████████████▏ | 30kB 3.3MB/s eta 0:00:01\r\u001b[K |████████████████▏ | 40kB 2.1MB/s eta 0:00:01\r\u001b[K |████████████████████▎ | 51kB 2.6MB/s eta 0:00:01\r\u001b[K |████████████████████████▎ | 61kB 3.1MB/s eta 0:00:01\r\u001b[K |████████████████████████████▎ | 71kB 3.6MB/s eta 0:00:01\r\u001b[K |████████████████████████████████| 81kB 3.1MB/s \n",
"\u001b[?25hInstalling collected packages: opustools-pkg\n",
"Successfully installed opustools-pkg-0.0.52\n"
],
"name": "stdout"
}
]
},
{
"cell_type": "code",
"metadata": {
"colab_type": "code",
"id": "xq-tDZVks7ZD",
"outputId": "8ef197f9-aab8-48a0-c808-b802103dc366",
"colab": {
"base_uri": "https://localhost:8080/",
"height": 52
}
},
"source": [
"# TODO: specify the file paths here\n",
"source_file = \"/test.en\"\n",
"target_file = \"/test.ddn\"\n",
"\n",
"# They should both have the same length.\n",
"! wc -l $source_file\n",
"! wc -l $target_file"
],
"execution_count": 6,
"outputs": [
{
"output_type": "stream",
"text": [
"7943 /test.en\n",
"7943 /test.ddn\n"
],
"name": "stdout"
}
]
},
{
"cell_type": "code",
"metadata": {
"id": "BNmkusFfGorx",
"colab_type": "code",
"colab": {}
},
"source": [
"# TODO: Pre-processing! (OPTIONAL)\n",
"\n",
"# If your data contains weird symbols or the like, you might want to do some cleaning and normalization.\n",
"# We don't have the code in the notebook for that, but you can use sacremoses \"normalize\" for example for normalization punctuation: https://github.com/alvations/sacremoses.\n",
"\n",
"# We apply tokenization to separate punctuation marks from the actual words, split words at hyphens etc.\n",
"# If your data is already tokenized, that's great! Skip this cell.\n",
"# Otherwise we can use sacremoses to do the tokenization for us. \n",
"# We need the data to be tokenized such that it matches the global test set.\n",
"\n",
"#! pip install sacremoses\n",
"\n",
"#tok_source_file = source_file+\".tok\"\n",
"#tok_target_file = target_file+\".tok\"\n",
"\n",
"# Tokenize the source\n",
"#! sacremoses tokenize -l $source_language < $source_file > $tok_source_file\n",
"# Tokenize the target\n",
"#! sacremoses tokenize -l $target_language < $target_file > $tok_target_file\n",
"\n",
"# Let's take a look what tokenization did to the text.\n",
"#! head $source_file*\n",
"#! head $target_file*\n",
"\n",
"# Change the pointers to our files such that we continue to work with the tokenized data.\n",
"#source_file = tok_source_file\n",
"#target_file = tok_target_file"
],
"execution_count": 0,
"outputs": []
},
{
"cell_type": "code",
"metadata": {
"colab_type": "code",
"id": "n48GDRnP8y2G",
"colab": {}
},
"source": [
"# Download the global test set.\n",
"#! wget https://raw.githubusercontent.com/masakhane-io/masakhane/master/jw300_utils/test/test.en-any.en\n",
" \n",
"# And the specific test set for this language pair.\n",
"#os.environ[\"trg\"] = target_language \n",
"#os.environ[\"src\"] = target_language \n",
"\n",
"#! wget https://raw.githubusercontent.com/masakhane-io/masakhane/master/jw300_utils/test/test.en-$trg.en \n",
"#! mv test.en-$trg.en test.en\n",
"#! wget https://raw.githubusercontent.com/masakhane-io/masakhane/master/jw300_utils/test/test.en-$trg.$trg \n",
"#! mv test.en-$trg.$trg test.$trg\n",
"\n",
"# TODO: if this fails it means that there is NO test set for your language yet. It's on you to create one.\n",
"# A good idea would be to take a random subset of your data, and add it to https://raw.githubusercontent.com/masakhane-io/masakhane/master/jw300_utils/test/test.en-any.en.\n",
"# Make a Pull Request and get it approved and merged.\n",
"# Then repeat this cell to retrieve the new test set.\n",
"# Then proceed to the next cell that will filter out all duplicates from the training set, so that there is no overlap between training and test set."
],
"execution_count": 0,
"outputs": []
},
{
"cell_type": "code",
"metadata": {
"colab_type": "code",
"id": "NqDG-CI28y2L",
"colab": {}
},
"source": [
"# Read the test data to filter from train and dev splits.\n",
"# Store english portion in set for quick filtering checks.\n",
"#en_test_sents = set()\n",
"#filter_test_sents = \"test.en-any.en\"\n",
"#j = 0\n",
"#with open(filter_test_sents) as f:\n",
"# for line in f:\n",
"# en_test_sents.add(line.strip())\n",
"# j += 1\n",
"#print('Loaded {} global test sentences to filter from the training/dev data.'.format(j))"
],
"execution_count": 0,
"outputs": []
},
{
"cell_type": "code",
"metadata": {
"colab_type": "code",
"id": "3CNdwLBCfSIl",
"outputId": "dd4274db-a18a-4bcd-e301-7ef2d85fb842",
"colab": {
"base_uri": "https://localhost:8080/",
"height": 161
}
},
"source": [
"import pandas as pd\n",
"\n",
"source = []\n",
"target = []\n",
"skip_lines = [] # Collect the line numbers of the source portion to skip the same lines for the target portion.\n",
"with open(source_file) as f:\n",
" for i, line in enumerate(f):\n",
" # Skip sentences that are contained in the test set.\n",
" #if line.strip() not in en_test_sents:\n",
" source.append(line.strip())\n",
" #else:\n",
" # skip_lines.append(i) \n",
"with open(target_file) as f:\n",
" for j, line in enumerate(f):\n",
" # Only add to corpus if corresponding source was not skipped.\n",
" #if j not in skip_lines:\n",
" target.append(line.strip())\n",
" \n",
"print('Loaded data and skipped {}/{} lines since contained in test set.'.format(len(skip_lines), i))\n",
" \n",
"df = pd.DataFrame(zip(source, target), columns=['source_sentence', 'target_sentence'])\n",
"df.head(3)"
],
"execution_count": 10,
"outputs": [
{
"output_type": "stream",
"text": [
"Loaded data and skipped 0/7942 lines since contained in test set.\n"
],
"name": "stdout"
},
{
"output_type": "execute_result",
"data": {
"text/html": [
"<div>\n",
"<style scoped>\n",
" .dataframe tbody tr th:only-of-type {\n",
" vertical-align: middle;\n",
" }\n",
"\n",
" .dataframe tbody tr th {\n",
" vertical-align: top;\n",
" }\n",
"\n",
" .dataframe thead th {\n",
" text-align: right;\n",
" }\n",
"</style>\n",
"<table border=\"1\" class=\"dataframe\">\n",
" <thead>\n",
" <tr style=\"text-align: right;\">\n",
" <th></th>\n",
" <th>source_sentence</th>\n",
" <th>target_sentence</th>\n",
" </tr>\n",
" </thead>\n",
" <tbody>\n",
" <tr>\n",
" <th>0</th>\n",
" <td>The book of the generation of Jesus Christ, th...</td>\n",
" <td>Yesu Mɛsiyɑ ko ɑ̀ ci Dɑfidi ize, Abulɛmɑ ize, ...</td>\n",
" </tr>\n",
" <tr>\n",
" <th>1</th>\n",
" <td>Abraham begat Isaac; and Isaac begat Jacob; an...</td>\n",
" <td>Abulɛmɑ nɑ Isɑɑkɑ hɛi. Isɑɑkɑ nɑ Yɑkɔfu hɛi. Y...</td>\n",
" </tr>\n",
" <tr>\n",
" <th>2</th>\n",
" <td>and Judah begat Perez and Zerah of Tamar; and ...</td>\n",
" <td>Yudɑ mo nɑ Fɑresi ndɑ Zerɑ hɛi Tɑmɑrɑ gɑɑ. Fɑr...</td>\n",
" </tr>\n",
" </tbody>\n",
"</table>\n",
"</div>"
],
"text/plain": [
" source_sentence target_sentence\n",
"0 The book of the generation of Jesus Christ, th... Yesu Mɛsiyɑ ko ɑ̀ ci Dɑfidi ize, Abulɛmɑ ize, ...\n",
"1 Abraham begat Isaac; and Isaac begat Jacob; an... Abulɛmɑ nɑ Isɑɑkɑ hɛi. Isɑɑkɑ nɑ Yɑkɔfu hɛi. Y...\n",
"2 and Judah begat Perez and Zerah of Tamar; and ... Yudɑ mo nɑ Fɑresi ndɑ Zerɑ hɛi Tɑmɑrɑ gɑɑ. Fɑr..."
]
},
"metadata": {
"tags": []
},
"execution_count": 10
}
]
},
{
"cell_type": "markdown",
"metadata": {
"colab_type": "text",
"id": "YkuK3B4p2AkN"
},
"source": [
"## Pre-processing and export\n",
"\n",
"It is generally a good idea to remove duplicate translations and conflicting translations from the corpus. In practice, these public corpora include some number of these that need to be cleaned.\n",
"\n",
"In addition we will split our data into dev/test/train and export to the filesystem."
]
},
{
"cell_type": "code",
"metadata": {
"colab_type": "code",
"id": "M_2ouEOH1_1q",
"colab": {}
},
"source": [
"# drop duplicate translations\n",
"df_pp = df.drop_duplicates()\n",
"\n",
"# drop conflicting translations\n",
"#df_pp.drop_duplicates(subset='source_sentence', inplace=True)\n",
"#df_pp.drop_duplicates(subset='target_sentence', inplace=True)\n",
"\n",
"# Shuffle the data to remove bias in dev set selection.\n",
"df_pp = df_pp.sample(frac=1, random_state=seed).reset_index(drop=True)"
],
"execution_count": 0,
"outputs": []
},
{
"cell_type": "code",
"metadata": {
"id": "niVvXvLV0bkE",
"colab_type": "code",
"outputId": "df7805a7-4e56-4d83-b326-cdf0cc0734da",
"colab": {
"base_uri": "https://localhost:8080/",
"height": 34
}
},
"source": [
"df_pp.shape"
],
"execution_count": 12,
"outputs": [
{
"output_type": "execute_result",
"data": {
"text/plain": [
"(7937, 2)"
]
},
"metadata": {
"tags": []
},
"execution_count": 12
}
]
},
{
"cell_type": "code",
"metadata": {
"colab_type": "code",
"id": "hxxBOCA-xXhy",
"outputId": "05e690d4-6561-41c9-c058-d0facedcf7ba",
"colab": {
"base_uri": "https://localhost:8080/",
"height": 1000
}
},
"source": [
"# This section does the split between train/dev for the parallel corpora then saves them as separate files\n",
"# We use 1000 dev test and the given test set.\n",
"import csv\n",
"import numpy as np\n",
"\n",
"# TODO: if your corpus is smaller than 1000, reduce this number. With a corpus that small you might not obtain good results with NMT though :/\n",
"# Do the split between dev/train and create parallel corpora\n",
"num_dev_patterns = 1000\n",
"\n",
"# Optional: lower case the corpora - this will make it easier to generalize, but without proper casing.\n",
"if lc: # Julia: making lowercasing optional\n",
" df_pp[\"source_sentence\"] = df_pp[\"source_sentence\"].str.lower()\n",
" df_pp[\"target_sentence\"] = df_pp[\"target_sentence\"].str.lower()\n",
"\n",
"\n",
"#Divide df_pp into train and test sets\n",
"\n",
"msk = np.random.rand(len(df_pp)) < 0.98\n",
"train = df_pp[msk]\n",
"test_df = df_pp[~msk]\n",
"\n",
"# Julia: test sets are already generated\n",
"dev_df = df_pp.tail(num_dev_patterns) # Herman: Error in original\n",
"stripped_df = df_pp.drop(df_pp.tail(num_dev_patterns).index)\n",
"\n",
"with open(\"train.\"+source_language, \"w\") as src_file, open(\"train.\"+target_language, \"w\") as trg_file:\n",
" for index, row in stripped_df.iterrows():\n",
" src_file.write(row[\"source_sentence\"]+\"\\n\")\n",
" trg_file.write(row[\"target_sentence\"]+\"\\n\")\n",
" \n",
"with open(\"dev.\"+source_language, \"w\") as src_file, open(\"dev.\"+target_language, \"w\") as trg_file:\n",
" for index, row in dev_df.iterrows():\n",
" src_file.write(row[\"source_sentence\"]+\"\\n\")\n",
" trg_file.write(row[\"target_sentence\"]+\"\\n\")\n",
"\n",
"with open(\"test.\"+source_language, \"w\") as src_file, open(\"test.\"+target_language, \"w\") as trg_file:\n",
" for index, row in test_df.iterrows():\n",
" src_file.write(row[\"source_sentence\"]+\"\\n\")\n",
" trg_file.write(row[\"target_sentence\"]+\"\\n\")\n",
"\n",
"\n",
"#stripped[[\"source_sentence\"]].to_csv(\"train.\"+source_language, header=False, index=False) # Herman: Added `header=False` everywhere\n",
"#stripped[[\"target_sentence\"]].to_csv(\"train.\"+target_language, header=False, index=False) # Julia: Problematic handling of quotation marks.\n",
"\n",
"#dev[[\"source_sentence\"]].to_csv(\"dev.\"+source_language, header=False, index=False)\n",
"#dev[[\"target_sentence\"]].to_csv(\"dev.\"+target_language, header=False, index=False)\n",
"\n",
"\n",
"# TODO: Doublecheck the format below. There should be no extra quotation marks or weird characters. It should also not be empty.\n",
"! head train.*\n",
"! head dev.*\n",
"! head test.*"
],
"execution_count": 13,
"outputs": [
{
"output_type": "stream",
"text": [
"==> train.ddn <==\n",
"À kɑɑ hunu kɑ hɑndunyɑ dimi yom kɑ ǹ goono hɑndunyɑ cɛnjɛ tɑɑci gɑɑ dɛrɑndi, wɑtom Gɔgu ndɑ Mɑgɔgu. À gɑ ǹ meigu wɑngu tɛyom sɛ. Ǹ bɑyom bisɑ tɛku tɑɑsi.\n",
"Zɑngɑ Ikpɛ Sendi hɑntumɑntɛ cii: Ikpɛ nɑ ǹ nɑ birikɑyom biyɑ. À nɑ ǹ nɑ moo yom kɑ ǹ si di, ndɑ hɑngɑ yom kɑ ǹ si mɑɑ hɑli kɑ kɑɑ hɔ.\n",
"A mɑɑ jinde beeri fɔ kɑ ɑ̀ go hunu zɑ Ikpɛ goonoyom dɔ. À go cii Ikpɛ dɔntɔneize iye di sɛ: Wɑ kpei kɑ Ikpɛ binefute gɑɑsiɑ iye munu hɑndunyɑ bɔm.\n",
"Kɑnkɑmi kunɑ ɑ nɑ gbei futu yom tɛ. A zɑm jiibi ce boobo. A mɑɑ hɛrɛɛ. A mɑɑ jo. A nɑ meehɔ yom zɑɑ cɛrɛ bɔm. A mɑɑ yeeni. A gɔrɔ bumbum.\n",
"Ammɑ Piɛɛ nɑ Yesu ze kɑ cii: A si ɑ̀ bei. A si fɑhɑm mo ndɑ hɛ kɑ n gɑ cii. Piɛɛ hunu hundi bɑtumɑ kunɑ kɑ kpei kɑtɑ dɔ. À gɑɑ no, gɔrɔngɔ cɑ jinde fɔ.\n",
"Ammɑ sɑɑ kɑ i nɑ jiribi iye tɔnɑndi, i tunu kɑ dirɑ. Ǹ kulu ndɑ ǹ wɛndɛ yom ndɑ ǹ koo yom nɑ i dum kɑlɑ wɑngɑrɑ bɑndɑ. I sɔmbu tɛkuɑ mee gɑɑ kɑ ɑduwɑ tɛ.\n",
"Yesu cii ɑ̀ sɛ: A koo hundiyo, n lɑɑkɑli mɑ si tunu. N nɑɑne nɑ n no bɑɑni. Kpei ndɑ lɑɑkɑli kɑne.\n",
"Ǹ kɔmɑ hɑndunyɑ ziibi yom gɑɑ Kpe Yesu Mɛsiyɑ kɑ ɑ̀ ci Fɑɑbɑkɔ ɑ̀ beiyom dɔ. À bɑndɑ de ǹ kɑɑ yɑɑrɑ kɑ wuluwɑli hɑndunyɑ ziibi yom kunɑ, hɑndunyɑ wɔ gɑɑŋmɑɑ ǹ bɔm. Ǹ kɔkɔrɔ bɑndɑ goonoyom, ɑ̀ jɑɑsɑ sintine gɔrɛ.\n",
"Zɑngɑ koo yom go kɑ ngei bɑɑbɑ gɑnɑ, wɑ si wom bɔm no wom dom bineibɑɑi sɛ kɑ ɑ̀ kunɑ wom gɔrɔ sɑɑ fɔ zɑm kɑ bei kunɑ.\n",
"Ngɑ di no, Biyɑ Hɑlɑɑlɑ mo go tɛ sɛdɑ i sɛ ngɑ di bɔm. Sintine ɑ̀ cii:\n",
"\n",
"==> train.en <==\n",
"and shall come forth to deceive the nations which are in the four corners of the earth, Gog and Magog, to gather them together to the war: the number of whom is as the sand of the sea.\n",
"according as it is written, God gave them a spirit of stupor, eyes that they should not see, and ears that they should not hear, unto this very day.\n",
"And I heard a great voice out of the temple, saying to the seven angels, Go ye, and pour out the seven bowls of the wrath of God into the earth.\n",
"in labor and travail, in watchings often, in hunger and thirst, in fastings often, in cold and nakedness.\n",
"But he denied, saying, I neither know, nor understand what thou sayest: and he went out into the porch; and the cock crew.\n",
"And when it came to pass that we had accomplished the days, we departed and went on our journey; and they all, with wives and children, brought us on our way till we were out of the city: and kneeling down on the beach, we prayed, and bade each other farewell;\n",
"And he said unto her, Daughter, thy faith hath made thee whole; go in peace.\n",
"For if, after they have escaped the defilements of the world through the knowledge of the Lord and Saviour Jesus Christ, they are again entangled therein and overcome, the last state is become worse with them than the first.\n",
"as children of obedience, not fashioning yourselves according to your former lusts in the time of your ignorance:\n",
"And the Holy Spirit also beareth witness to us; for after he hath said,\n",
"==> dev.ddn <==\n",
"A go sɑɑbu i Kpe Yesu Mɛsiyɑ sɛ, ngɑ kɑ ɑ̀ nɑ ɑ no gɑɑbi. A gɑ kɑ ɑ̀ sɑɑbu domi ɑ̀ nɑ ɑ lɑsɑbu nɑɑnekpɛ kɑ ɑ dɑm ngɑ gbei kunɑ.\n",
"Mɑɑsɑnkulu Kpe, n mɑ tu n bɑnyɑ mɑ kpei ndɑ bɑɑni zɑngɑ n Sendɑ cii.\n",
"Ikpɛ fɔlɔnku yɑ gɑ bɑnguize yom cɛɑndi susu nɑɑne gɑɑ. À go zɑm kɑ dɑmbɑnguize yom mo cɛɑndi susu nɑɑne gɑɑ.\n",
"Wɑngɑrɑ ngɑ di, Sɑmɑriɑncɛ boobo nɑɑne Yesu gɑɑ weibɔrɔ di sendɑ sɑbu sɛ. Weibɔrɔ di tɛ sɛdɑ kɑ cii: Hɛ kulu kɑ ɑ jinɑ kɑ tɛ, ɑ̀ nɑ ɑ̀ cii ɑ sɛ.\n",
"Cɔfɔ ɑ̀ go cii: A fuu kɑ ɑ̀ kunɑ ɑ hunu no, ɑ kɑɑ ye. Sɑɑ kɑ hɔllɛ di ye fuu di, ɑ̀ gɑru hɛ fɔ kulu si ɑ̀ kunɑ. Ammɑ ǹ nɑ ɑ̀ hɑɑbu kɑ booriɑndi.\n",
"Kɑ Yesu ye kɑ huro hɑrihi ɑ̀ nɑ buulɑ dem kɑ kpei ngɑ kpɑɑrɑ.\n",
"Cɔfɔ jinde fɔ hunu zɑ bɛɛnɛ kɑ cii: Ni yɑ cii ɑ Ize Binegɑnji. N gɑɑ nɑ ɑ du ɑ binekɑɑne.\n",
"Yesu tu ǹ sɛ kɑ cii: Beerem kɑ ǹ gundɑ bɑɑni si bɑɑ lokotoro kɑlɑ beerem kɑ ǹ sindɑ bɑɑni.\n",
"Sɑɑ kɑ Pɔlu ndɑ Silɑ bisɑ Amfipoli wɑngɑrɑ ndɑ Apoloni wɑngɑrɑ ǹ kɑɑ Tesɑlonikɑ wɑngɑrɑ. Nungu di Yuifu yom mɑrgɑ fuu fɔ goono.\n",
"Ikpɛ mɑnɑ ɑ̀ nɑ gɑndɑ hɛ fɔ kulu ɑ̀ mɑ tubu, bɑ cee dɛcɛyom dɔ sɑrɑ. Ammɑ Ikpɛ nɑ ɑlikɑwɑli tɛ ɑ̀ sɛ kɑ cii ngɑ gɑ ɑ̀ no lɑɑbu ɑ̀ mɑ ci ɑ̀ ŋmɔne ndɑ ɑ̀ bɑndɑ yom ŋmɔne mo. Sɑɑ ngɑ di Abulɛmɑ sindɑ koo jinɑ.\n",
"\n",
"==> dev.en <==\n",
"I thank him that enabled me, even Christ Jesus our Lord, for that he counted me faithful, appointing me to his service;\n",
"Now lettest thou thy servant depart, Lord, According to thy word, in peace;\n",
"if so be that God is one, and he shall justify the circumcision by faith, and the uncircumcision through faith.\n",
"And from that city many of the Samaritans believed on him because of the word of the woman, who testified, He told me all things that ever I did.\n",
"Then he saith, I will return into my house whence I came out; and when he is come, he findeth it empty, swept, and garnished.\n",
"And he entered into a boat, and crossed over, and came into his own city.\n",
"and a voice came out of the heavens, Thou art my beloved Son, in thee I am well pleased.\n",
"And Jesus answering said unto them, They that are in health have no need of a physician; but they that are sick.\n",
"Now when they had passed through Amphipolis and Apollonia, they came to Thessalonica, where was a synagogue of the Jews:\n",
"and he gave him none inheritance in it, no, not so much as to set his foot on: and he promised that he would give it to him in possession, and to his seed after him, when as yet he had no child.\n",
"==> test.ddn <==\n",
"Abulɛmɑ bine hunu Kɑlɛdɑncei lɑɑbu kɑ kpei gɔrɔ Hɑrɑm lɑɑbu. Nungu di no ɑ̀ bɑɑbɑ bu. À bɑndɑ Ikpɛ kpeindɑ Abulɛmɑ lɑɑbu kɑ ɑ̀ kunɑ wom gɑ gɔrɔ hɑli mɑɑsɑ.\n",
"Cɔfɔ ɑ̀ nɑ ǹ moo yom hɑmɑ kɑ cii: À mɑ tɛ wom sɛ ndɑ zɑngɑ wom nɑɑne goono ndɑ.\n",
"Wom mɑ si ǹ gɑnɑ ndɑ ǹ moo diyom kɑ kɑɑni iburɑdɑm yom sɛ. Ammɑ wɑ ǹ gɑnɑ zɑngɑ Mɛsiyɑ tɑm yom kɑ ǹ gɑ kɑ Ikpɛ binebɑɑ tɛ ndɑ bine fɔ.\n",
"Ǹ mɑ si cɛyom susu fɔndɔ bei ɑ̀ bisɑ, de sɑɑ kɑ ǹ nɑ ɑ̀ bei, ɑ̀ bɑndɑ ǹ mɑ bɑndɑ bɛrɛ ɑ̀ gɑɑ ndɑ meire hɑlɑɑlɑ kɑ ǹ jinɑ kɑ no ǹ sɛ.\n",
"À nɑ ngɑ di tɛ zɑmɑ hɛ kɑ ɑndebi cii di mɑ tɔ sɛ kɑ ɑ̀ cii: A gɑ ɑ mee feeri ndɑ yɑɑse yom. A kɑɑ hɛ yom kɑɑtɛrɛ kɑ ǹ goono tugɑntɛ zɑ hɑndunyɑ sinjiyom.\n",
"Bɔrɔ mɑntɑm di cii Filipu sɛ: A gɑ n hã, mee bɔm nɑ ɑndebi go sendi yɑ wɔ dimi? À go sendi ngɑ bɔm nɑ dee, wɑlɑ bɔrɔ fɔ ŋmɑni bɔm no?\n",
"Beerem kɑ ǹ ci Mɛsiyɑ ŋmɔne yom ǹ nɑ ngei dulum hɑɑli kɑnji ndɑ ɑ̀ bɑɑyom futu yom ndɑ ɑ̀ bineibɑɑi.\n",
"Ǹ go kɑ ɑ bɛɛrɑndi no kɔnu zɑmɑ cɛbɛ yom kɑ ǹ go tɛ mo iburɑdɑm yom ɑlɑɑdɑ yom no.\n",
"Ngɑ di kulu tɛ zɑmɑ hɛ kɑ ɑndebi cii mɑ tɔ sɛ. À cii:\n",
"Zɑ Moisi gɑɑ kɑlɑ kɑ kpei ɑndebi yom kulu gɑɑ, ɑ̀ sinti kɑ fɑsɑli ǹ sɛ Ikpɛ Sendi hɑntumɑntɛ yom kulu kunɑ, hɛ yom kɑ ǹ goono kɑ simbɑ ndɑ ngɑ bumbum.\n",
"\n",
"==> test.en <==\n",
"Then came he out of the land of the Chaldæans, and dwelt in Haran: and from thence, when his father was dead, God removed him into this land, wherein ye now dwell:\n",
"Then touched he their eyes, saying, According to your faith be it done unto you.\n",
"not in the way of eyeservice, as men-pleasers; but as servants of Christ, doing the will of God from the heart;\n",
"For it were better for them not to have known the way of righteousness, than, after knowing it, to turn back from the holy commandment delivered unto them.\n",
"that it might be fulfilled which was spoken through the prophet, saying, I will open my mouth in parables; I will utter things hidden from the foundation of the world.\n",
"And the eunuch answered Philip, and said, I pray thee, of whom speaketh the prophet this? of himself, or of some other?\n",
"And they that are of Christ Jesus have crucified the flesh with the passions and the lusts thereof.\n",
"But in vain do they worship me, Teaching as their doctrines the precepts of men.\n",
"Now this is come to pass, that it might be fulfilled which was spoken through the prophet, saying,\n",
"And beginning from Moses and from all the prophets, he interpreted to them in all the scriptures the things concerning himself.\n"
],
"name": "stdout"
}
]
},
{
"cell_type": "code",
"metadata": {
"id": "gEDAsKXPw28d",
"colab_type": "code",
"colab": {}
},
"source": [
"stripped_df.to_csv('train.csv')\n",
"!cp train.csv \"/content/drive/My Drive/masakhane/$src-$tgt-$tag\""
],
"execution_count": 0,
"outputs": []
},
{
"cell_type": "code",
"metadata": {
"id": "_yGbVVjlw61I",
"colab_type": "code",
"colab": {}
},
"source": [
"test_df.to_csv('test.csv')\n",
"!cp test.csv \"/content/drive/My Drive/masakhane/$src-$tgt-$tag\""
],
"execution_count": 0,
"outputs": []
},
{
"cell_type": "code",
"metadata": {
"id": "f--enEIOw-2I",
"colab_type": "code",
"colab": {}
},
"source": [
"dev_df.to_csv('dev.csv')\n",
"!cp dev.csv \"/content/drive/My Drive/masakhane/$src-$tgt-$tag\""
],
"execution_count": 0,
"outputs": []
},
{
"cell_type": "markdown",
"metadata": {
"colab_type": "text",
"id": "epeCydmCyS8X"
},
"source": [
"\n",
"\n",
"---\n",
"\n",
"\n",
"## Installation of JoeyNMT\n",
"\n",
"JoeyNMT is a simple, minimalist NMT package which is useful for learning and teaching. Check out the documentation for JoeyNMT [here](https://joeynmt.readthedocs.io) "
]
},
{
"cell_type": "code",
"metadata": {
"colab_type": "code",
"id": "iBRMm4kMxZ8L",
"outputId": "dfaac3fd-7a64-4a05-d4b3-0c366ad2c28d",
"colab": {
"base_uri": "https://localhost:8080/",
"height": 1000
}
},
"source": [
"# Install JoeyNMT\n",
"! git clone https://github.com/joeynmt/joeynmt.git\n",
"! cd joeynmt; pip3 install ."
],
"execution_count": 17,
"outputs": [
{
"output_type": "stream",
"text": [
"Cloning into 'joeynmt'...\n",
"remote: Enumerating objects: 97, done.\u001b[K\n",
"remote: Counting objects: 1% (1/97)\u001b[K\rremote: Counting objects: 2% (2/97)\u001b[K\rremote: Counting objects: 3% (3/97)\u001b[K\rremote: Counting objects: 4% (4/97)\u001b[K\rremote: Counting objects: 5% (5/97)\u001b[K\rremote: Counting objects: 6% (6/97)\u001b[K\rremote: Counting objects: 7% (7/97)\u001b[K\rremote: Counting objects: 8% (8/97)\u001b[K\rremote: Counting objects: 9% (9/97)\u001b[K\rremote: Counting objects: 10% (10/97)\u001b[K\rremote: Counting objects: 11% (11/97)\u001b[K\rremote: Counting objects: 12% (12/97)\u001b[K\rremote: Counting objects: 13% (13/97)\u001b[K\rremote: Counting objects: 14% (14/97)\u001b[K\rremote: Counting objects: 15% (15/97)\u001b[K\rremote: Counting objects: 16% (16/97)\u001b[K\rremote: Counting objects: 17% (17/97)\u001b[K\rremote: Counting objects: 18% (18/97)\u001b[K\rremote: Counting objects: 19% (19/97)\u001b[K\rremote: Counting objects: 20% (20/97)\u001b[K\rremote: Counting objects: 21% (21/97)\u001b[K\rremote: Counting objects: 22% (22/97)\u001b[K\rremote: Counting objects: 23% (23/97)\u001b[K\rremote: Counting objects: 24% (24/97)\u001b[K\rremote: Counting objects: 25% (25/97)\u001b[K\rremote: Counting objects: 26% (26/97)\u001b[K\rremote: Counting objects: 27% (27/97)\u001b[K\rremote: Counting objects: 28% (28/97)\u001b[K\rremote: Counting objects: 29% (29/97)\u001b[K\rremote: Counting objects: 30% (30/97)\u001b[K\rremote: Counting objects: 31% (31/97)\u001b[K\rremote: Counting objects: 32% (32/97)\u001b[K\rremote: Counting objects: 34% (33/97)\u001b[K\rremote: Counting objects: 35% (34/97)\u001b[K\rremote: Counting objects: 36% (35/97)\u001b[K\rremote: Counting objects: 37% (36/97)\u001b[K\rremote: Counting objects: 38% (37/97)\u001b[K\rremote: Counting objects: 39% (38/97)\u001b[K\rremote: Counting objects: 40% (39/97)\u001b[K\rremote: Counting objects: 41% (40/97)\u001b[K\rremote: Counting objects: 42% (41/97)\u001b[K\rremote: Counting objects: 43% (42/97)\u001b[K\rremote: Counting objects: 44% (43/97)\u001b[K\rremote: Counting objects: 45% (44/97)\u001b[K\rremote: Counting objects: 46% (45/97)\u001b[K\rremote: Counting objects: 47% (46/97)\u001b[K\rremote: Counting objects: 48% (47/97)\u001b[K\rremote: Counting objects: 49% (48/97)\u001b[K\rremote: Counting objects: 50% (49/97)\u001b[K\rremote: Counting objects: 51% (50/97)\u001b[K\rremote: Counting objects: 52% (51/97)\u001b[K\rremote: Counting objects: 53% (52/97)\u001b[K\rremote: Counting objects: 54% (53/97)\u001b[K\rremote: Counting objects: 55% (54/97)\u001b[K\rremote: Counting objects: 56% (55/97)\u001b[K\rremote: Counting objects: 57% (56/97)\u001b[K\rremote: Counting objects: 58% (57/97)\u001b[K\rremote: Counting objects: 59% (58/97)\u001b[K\rremote: Counting objects: 60% (59/97)\u001b[K\rremote: Counting objects: 61% (60/97)\u001b[K\rremote: Counting objects: 62% (61/97)\u001b[K\rremote: Counting objects: 63% (62/97)\u001b[K\rremote: Counting objects: 64% (63/97)\u001b[K\rremote: Counting objects: 65% (64/97)\u001b[K\rremote: Counting objects: 67% (65/97)\u001b[K\rremote: Counting objects: 68% (66/97)\u001b[K\rremote: Counting objects: 69% (67/97)\u001b[K\rremote: Counting objects: 70% (68/97)\u001b[K\rremote: Counting objects: 71% (69/97)\u001b[K\rremote: Counting objects: 72% (70/97)\u001b[K\rremote: Counting objects: 73% (71/97)\u001b[K\rremote: Counting objects: 74% (72/97)\u001b[K\rremote: Counting objects: 75% (73/97)\u001b[K\rremote: Counting objects: 76% (74/97)\u001b[K\rremote: Counting objects: 77% (75/97)\u001b[K\rremote: Counting objects: 78% (76/97)\u001b[K\rremote: Counting objects: 79% (77/97)\u001b[K\rremote: Counting objects: 80% (78/97)\u001b[K\rremote: Counting objects: 81% (79/97)\u001b[K\rremote: Counting objects: 82% (80/97)\u001b[K\rremote: Counting objects: 83% (81/97)\u001b[K\rremote: Counting objects: 84% (82/97)\u001b[K\rremote: Counting objects: 85% (83/97)\u001b[K\rremote: Counting objects: 86% (84/97)\u001b[K\rremote: Counting objects: 87% (85/97)\u001b[K\rremote: Counting objects: 88% (86/97)\u001b[K\rremote: Counting objects: 89% (87/97)\u001b[K\rremote: Counting objects: 90% (88/97)\u001b[K\rremote: Counting objects: 91% (89/97)\u001b[K\rremote: Counting objects: 92% (90/97)\u001b[K\rremote: Counting objects: 93% (91/97)\u001b[K\rremote: Counting objects: 94% (92/97)\u001b[K\rremote: Counting objects: 95% (93/97)\u001b[K\rremote: Counting objects: 96% (94/97)\u001b[K\rremote: Counting objects: 97% (95/97)\u001b[K\rremote: Counting objects: 98% (96/97)\u001b[K\rremote: Counting objects: 100% (97/97)\u001b[K\rremote: Counting objects: 100% (97/97), done.\u001b[K\n",
"remote: Compressing objects: 100% (72/72), done.\u001b[K\n",
"remote: Total 2281 (delta 57), reused 46 (delta 25), pack-reused 2184\u001b[K\n",
"Receiving objects: 100% (2281/2281), 2.63 MiB | 15.58 MiB/s, done.\n",
"Resolving deltas: 100% (1578/1578), done.\n",
"Processing /content/joeynmt\n",
"Requirement already satisfied: future in /usr/local/lib/python3.6/dist-packages (from joeynmt==0.0.1) (0.16.0)\n",
"Requirement already satisfied: pillow in /usr/local/lib/python3.6/dist-packages (from joeynmt==0.0.1) (6.2.2)\n",
"Requirement already satisfied: numpy<2.0,>=1.14.5 in /usr/local/lib/python3.6/dist-packages (from joeynmt==0.0.1) (1.17.5)\n",
"Requirement already satisfied: setuptools>=41.0.0 in /usr/local/lib/python3.6/dist-packages (from joeynmt==0.0.1) (45.1.0)\n",
"Requirement already satisfied: torch>=1.1 in /usr/local/lib/python3.6/dist-packages (from joeynmt==0.0.1) (1.4.0)\n",
"Requirement already satisfied: tensorflow>=1.14 in /usr/local/lib/python3.6/dist-packages (from joeynmt==0.0.1) (1.15.0)\n",
"Requirement already satisfied: torchtext in /usr/local/lib/python3.6/dist-packages (from joeynmt==0.0.1) (0.3.1)\n",
"Collecting sacrebleu>=1.3.6\n",
" Downloading https://files.pythonhosted.org/packages/45/31/1a135b964c169984b27fb2f7a50280fa7f8e6d9d404d8a9e596180487fd1/sacrebleu-1.4.3-py3-none-any.whl\n",
"Collecting subword-nmt\n",
" Downloading https://files.pythonhosted.org/packages/74/60/6600a7bc09e7ab38bc53a48a20d8cae49b837f93f5842a41fe513a694912/subword_nmt-0.3.7-py2.py3-none-any.whl\n",
"Requirement already satisfied: matplotlib in /usr/local/lib/python3.6/dist-packages (from joeynmt==0.0.1) (3.1.3)\n",
"Requirement already satisfied: seaborn in /usr/local/lib/python3.6/dist-packages (from joeynmt==0.0.1) (0.10.0)\n",
"Collecting pyyaml>=5.1\n",
"\u001b[?25l Downloading https://files.pythonhosted.org/packages/3d/d9/ea9816aea31beeadccd03f1f8b625ecf8f645bd66744484d162d84803ce5/PyYAML-5.3.tar.gz (268kB)\n",
"\u001b[K |████████████████████████████████| 276kB 9.3MB/s \n",
"\u001b[?25hCollecting pylint\n",
"\u001b[?25l Downloading https://files.pythonhosted.org/packages/e9/59/43fc36c5ee316bb9aeb7cf5329cdbdca89e5749c34d5602753827c0aa2dc/pylint-2.4.4-py3-none-any.whl (302kB)\n",
"\u001b[K |████████████████████████████████| 307kB 41.1MB/s \n",
"\u001b[?25hRequirement already satisfied: six==1.12 in /usr/local/lib/python3.6/dist-packages (from joeynmt==0.0.1) (1.12.0)\n",
"Requirement already satisfied: opt-einsum>=2.3.2 in /usr/local/lib/python3.6/dist-packages (from tensorflow>=1.14->joeynmt==0.0.1) (3.1.0)\n",
"Requirement already satisfied: absl-py>=0.7.0 in /usr/local/lib/python3.6/dist-packages (from tensorflow>=1.14->joeynmt==0.0.1) (0.9.0)\n",
"Requirement already satisfied: grpcio>=1.8.6 in /usr/local/lib/python3.6/dist-packages (from tensorflow>=1.14->joeynmt==0.0.1) (1.15.0)\n",
"Requirement already satisfied: termcolor>=1.1.0 in /usr/local/lib/python3.6/dist-packages (from tensorflow>=1.14->joeynmt==0.0.1) (1.1.0)\n",
"Requirement already satisfied: keras-preprocessing>=1.0.5 in /usr/local/lib/python3.6/dist-packages (from tensorflow>=1.14->joeynmt==0.0.1) (1.1.0)\n",
"Requirement already satisfied: wheel>=0.26 in /usr/local/lib/python3.6/dist-packages (from tensorflow>=1.14->joeynmt==0.0.1) (0.34.2)\n",
"Requirement already satisfied: google-pasta>=0.1.6 in /usr/local/lib/python3.6/dist-packages (from tensorflow>=1.14->joeynmt==0.0.1) (0.1.8)\n",
"Requirement already satisfied: astor>=0.6.0 in /usr/local/lib/python3.6/dist-packages (from tensorflow>=1.14->joeynmt==0.0.1) (0.8.1)\n",
"Requirement already satisfied: wrapt>=1.11.1 in /usr/local/lib/python3.6/dist-packages (from tensorflow>=1.14->joeynmt==0.0.1) (1.11.2)\n",
"Requirement already satisfied: gast==0.2.2 in /usr/local/lib/python3.6/dist-packages (from tensorflow>=1.14->joeynmt==0.0.1) (0.2.2)\n",
"Requirement already satisfied: keras-applications>=1.0.8 in /usr/local/lib/python3.6/dist-packages (from tensorflow>=1.14->joeynmt==0.0.1) (1.0.8)\n",
"Requirement already satisfied: tensorboard<1.16.0,>=1.15.0 in /usr/local/lib/python3.6/dist-packages (from tensorflow>=1.14->joeynmt==0.0.1) (1.15.0)\n",
"Requirement already satisfied: tensorflow-estimator==1.15.1 in /usr/local/lib/python3.6/dist-packages (from tensorflow>=1.14->joeynmt==0.0.1) (1.15.1)\n",
"Requirement already satisfied: protobuf>=3.6.1 in /usr/local/lib/python3.6/dist-packages (from tensorflow>=1.14->joeynmt==0.0.1) (3.10.0)\n",
"Requirement already satisfied: tqdm in /usr/local/lib/python3.6/dist-packages (from torchtext->joeynmt==0.0.1) (4.28.1)\n",
"Requirement already satisfied: requests in /usr/local/lib/python3.6/dist-packages (from torchtext->joeynmt==0.0.1) (2.21.0)\n",
"Requirement already satisfied: typing in /usr/local/lib/python3.6/dist-packages (from sacrebleu>=1.3.6->joeynmt==0.0.1) (3.6.6)\n",
"Collecting portalocker\n",
" Downloading https://files.pythonhosted.org/packages/91/db/7bc703c0760df726839e0699b7f78a4d8217fdc9c7fcb1b51b39c5a22a4e/portalocker-1.5.2-py2.py3-none-any.whl\n",
"Requirement already satisfied: kiwisolver>=1.0.1 in /usr/local/lib/python3.6/dist-packages (from matplotlib->joeynmt==0.0.1) (1.1.0)\n",
"Requirement already satisfied: pyparsing!=2.0.4,!=2.1.2,!=2.1.6,>=2.0.1 in /usr/local/lib/python3.6/dist-packages (from matplotlib->joeynmt==0.0.1) (2.4.6)\n",
"Requirement already satisfied: python-dateutil>=2.1 in /usr/local/lib/python3.6/dist-packages (from matplotlib->joeynmt==0.0.1) (2.6.1)\n",
"Requirement already satisfied: cycler>=0.10 in /usr/local/lib/python3.6/dist-packages (from matplotlib->joeynmt==0.0.1) (0.10.0)\n",
"Requirement already satisfied: pandas>=0.22.0 in /usr/local/lib/python3.6/dist-packages (from seaborn->joeynmt==0.0.1) (0.25.3)\n",
"Requirement already satisfied: scipy>=1.0.1 in /usr/local/lib/python3.6/dist-packages (from seaborn->joeynmt==0.0.1) (1.4.1)\n",
"Collecting mccabe<0.7,>=0.6\n",
" Downloading https://files.pythonhosted.org/packages/87/89/479dc97e18549e21354893e4ee4ef36db1d237534982482c3681ee6e7b57/mccabe-0.6.1-py2.py3-none-any.whl\n",
"Collecting isort<5,>=4.2.5\n",
"\u001b[?25l Downloading https://files.pythonhosted.org/packages/e5/b0/c121fd1fa3419ea9bfd55c7f9c4fedfec5143208d8c7ad3ce3db6c623c21/isort-4.3.21-py2.py3-none-any.whl (42kB)\n",
"\u001b[K |████████████████████████████████| 51kB 8.5MB/s \n",
"\u001b[?25hCollecting astroid<2.4,>=2.3.0\n",
"\u001b[?25l Downloading https://files.pythonhosted.org/packages/ad/ae/86734823047962e7b8c8529186a1ac4a7ca19aaf1aa0c7713c022ef593fd/astroid-2.3.3-py3-none-any.whl (205kB)\n",
"\u001b[K |████████████████████████████████| 215kB 58.1MB/s \n",
"\u001b[?25hRequirement already satisfied: h5py in /usr/local/lib/python3.6/dist-packages (from keras-applications>=1.0.8->tensorflow>=1.14->joeynmt==0.0.1) (2.8.0)\n",
"Requirement already satisfied: markdown>=2.6.8 in /usr/local/lib/python3.6/dist-packages (from tensorboard<1.16.0,>=1.15.0->tensorflow>=1.14->joeynmt==0.0.1) (3.1.1)\n",
"Requirement already satisfied: werkzeug>=0.11.15 in /usr/local/lib/python3.6/dist-packages (from tensorboard<1.16.0,>=1.15.0->tensorflow>=1.14->joeynmt==0.0.1) (0.16.1)\n",
"Requirement already satisfied: certifi>=2017.4.17 in /usr/local/lib/python3.6/dist-packages (from requests->torchtext->joeynmt==0.0.1) (2019.11.28)\n",
"Requirement already satisfied: chardet<3.1.0,>=3.0.2 in /usr/local/lib/python3.6/dist-packages (from requests->torchtext->joeynmt==0.0.1) (3.0.4)\n",
"Requirement already satisfied: urllib3<1.25,>=1.21.1 in /usr/local/lib/python3.6/dist-packages (from requests->torchtext->joeynmt==0.0.1) (1.24.3)\n",
"Requirement already satisfied: idna<2.9,>=2.5 in /usr/local/lib/python3.6/dist-packages (from requests->torchtext->joeynmt==0.0.1) (2.8)\n",
"Requirement already satisfied: pytz>=2017.2 in /usr/local/lib/python3.6/dist-packages (from pandas>=0.22.0->seaborn->joeynmt==0.0.1) (2018.9)\n",
"Collecting typed-ast<1.5,>=1.4.0; implementation_name == \"cpython\" and python_version < \"3.8\"\n",
"\u001b[?25l Downloading https://files.pythonhosted.org/packages/90/ed/5459080d95eb87a02fe860d447197be63b6e2b5e9ff73c2b0a85622994f4/typed_ast-1.4.1-cp36-cp36m-manylinux1_x86_64.whl (737kB)\n",
"\u001b[K |████████████████████████████████| 747kB 69.7MB/s \n",
"\u001b[?25hCollecting lazy-object-proxy==1.4.*\n",
"\u001b[?25l Downloading https://files.pythonhosted.org/packages/0b/dd/b1e3407e9e6913cf178e506cd0dee818e58694d9a5cd1984e3f6a8b9a10f/lazy_object_proxy-1.4.3-cp36-cp36m-manylinux1_x86_64.whl (55kB)\n",
"\u001b[K |████████████████████████████████| 61kB 10.3MB/s \n",
"\u001b[?25hBuilding wheels for collected packages: joeynmt, pyyaml\n",
" Building wheel for joeynmt (setup.py) ... \u001b[?25l\u001b[?25hdone\n",
" Created wheel for joeynmt: filename=joeynmt-0.0.1-cp36-none-any.whl size=73054 sha256=1324e06966a9e79bc3d60e55f6a3f9a5cfa3c289d9af531a3cfb64f8ecacc06b\n",
" Stored in directory: /tmp/pip-ephem-wheel-cache-udwyeym6/wheels/db/01/db/751cc9f3e7f6faec127c43644ba250a3ea7ad200594aeda70a\n",
" Building wheel for pyyaml (setup.py) ... \u001b[?25l\u001b[?25hdone\n",
" Created wheel for pyyaml: filename=PyYAML-5.3-cp36-cp36m-linux_x86_64.whl size=44229 sha256=484cf5ff7c346bd5eaa30dfc8c1d62b918933e1c2aa37234280f1e1a4cbbc692\n",
" Stored in directory: /root/.cache/pip/wheels/e4/76/4d/a95b8dd7b452b69e8ed4f68b69e1b55e12c9c9624dd962b191\n",
"Successfully built joeynmt pyyaml\n",
"Installing collected packages: portalocker, sacrebleu, subword-nmt, pyyaml, mccabe, isort, typed-ast, lazy-object-proxy, astroid, pylint, joeynmt\n",
" Found existing installation: PyYAML 3.13\n",
" Uninstalling PyYAML-3.13:\n",
" Successfully uninstalled PyYAML-3.13\n",
"Successfully installed astroid-2.3.3 isort-4.3.21 joeynmt-0.0.1 lazy-object-proxy-1.4.3 mccabe-0.6.1 portalocker-1.5.2 pylint-2.4.4 pyyaml-5.3 sacrebleu-1.4.3 subword-nmt-0.3.7 typed-ast-1.4.1\n"
],
"name": "stdout"
}
]
},
{
"cell_type": "markdown",
"metadata": {
"colab_type": "text",
"id": "AaE77Tcppex9"
},
"source": [
"# Preprocessing the Data into Subword BPE Tokens\n",
"\n",
"- One of the most powerful improvements for agglutinative languages (a feature of most Bantu languages) is using BPE tokenization [ (Sennrich, 2015) ](https://arxiv.org/abs/1508.07909).\n",
"\n",
"- It was also shown that by optimizing the umber of BPE codes we significantly improve results for low-resourced languages [(Sennrich, 2019)](https://www.aclweb.org/anthology/P19-1021) [(Martinus, 2019)](https://arxiv.org/abs/1906.05685)\n",
"\n",
"- Below we have the scripts for doing BPE tokenization of our data. We use 4000 tokens as recommended by [(Sennrich, 2019)](https://www.aclweb.org/anthology/P19-1021). You do not need to change anything. Simply running the below will be suitable. "
]
},
{
"cell_type": "code",
"metadata": {
"colab_type": "code",
"id": "H-TyjtmXB1mL",
"outputId": "67528fd4-b111-461f-9a68-d05323d998a2",
"colab": {
"base_uri": "https://localhost:8080/",
"height": 416
}
},
"source": [
"# One of the huge boosts in NMT performance was to use a different method of tokenizing. \n",
"# Usually, NMT would tokenize by words. However, using a method called BPE gave amazing boosts to performance\n",
"\n",
"# Do subword NMT\n",
"from os import path\n",
"os.environ[\"src\"] = source_language # Sets them in bash as well, since we often use bash scripts\n",
"os.environ[\"tgt\"] = target_language\n",
"\n",
"# Learn BPEs on the training data.\n",
"os.environ[\"data_path\"] = path.join(\"joeynmt\", \"data\", source_language + target_language) # Herman! \n",
"! subword-nmt learn-joint-bpe-and-vocab --input train.$src train.$tgt -s 4000 -o bpe.codes.4000 --write-vocabulary vocab.$src vocab.$tgt\n",
"\n",
"# Apply BPE splits to the development and test data.\n",
"! subword-nmt apply-bpe -c bpe.codes.4000 --vocabulary vocab.$src < train.$src > train.bpe.$src\n",
"! subword-nmt apply-bpe -c bpe.codes.4000 --vocabulary vocab.$tgt < train.$tgt > train.bpe.$tgt\n",
"\n",
"! subword-nmt apply-bpe -c bpe.codes.4000 --vocabulary vocab.$src < dev.$src > dev.bpe.$src\n",
"! subword-nmt apply-bpe -c bpe.codes.4000 --vocabulary vocab.$tgt < dev.$tgt > dev.bpe.$tgt\n",
"! subword-nmt apply-bpe -c bpe.codes.4000 --vocabulary vocab.$src < test.$src > test.bpe.$src\n",
"! subword-nmt apply-bpe -c bpe.codes.4000 --vocabulary vocab.$tgt < test.$tgt > test.bpe.$tgt\n",
"\n",
"# Create directory, move everyone we care about to the correct location\n",
"! mkdir -p $data_path\n",
"! cp train.* $data_path\n",
"! cp test.* $data_path\n",
"! cp dev.* $data_path\n",
"! cp bpe.codes.4000 $data_path\n",
"! ls $data_path\n",
"\n",
"# Also move everything we care about to a mounted location in google drive (relevant if running in colab) at gdrive_path\n",
"! cp train.* \"$gdrive_path\"\n",
"! cp test.* \"$gdrive_path\"\n",
"! cp dev.* \"$gdrive_path\"\n",
"! cp bpe.codes.4000 \"$gdrive_path\"\n",
"! ls \"$gdrive_path\"\n",
"\n",
"# Create that vocab using build_vocab\n",
"! sudo chmod 777 joeynmt/scripts/build_vocab.py\n",
"! joeynmt/scripts/build_vocab.py joeynmt/data/$src$tgt/train.bpe.$src joeynmt/data/$src$tgt/train.bpe.$tgt --output_path joeynmt/data/$src$tgt/vocab.txt\n",
"\n",
"# Some output\n",
"! echo \"BPE Dendi Sentences\"\n",
"! tail -n 5 test.bpe.$tgt\n",
"! echo \"Combined BPE Vocab\"\n",
"! tail -n 10 joeynmt/data/$src$tgt/vocab.txt # Herman"
],
"execution_count": 18,
"outputs": [
{
"output_type": "stream",
"text": [
"bpe.codes.4000\tdev.csv test.bpe.ddn test.ddn train.bpe.en train.en\n",
"dev.bpe.ddn\tdev.ddn test.bpe.en test.en\t train.csv\n",
"dev.bpe.en\tdev.en\t test.csv train.bpe.ddn train.ddn\n",
"bpe.codes.4000\tdev.csv models test.csv train.bpe.ddn\ttrain.ddn\n",
"dev.bpe.ddn\tdev.ddn test.bpe.ddn test.ddn train.bpe.en\ttrain.en\n",
"dev.bpe.en\tdev.en\t test.bpe.en test.en\t train.csv\n",
"BPE Dendi Sentences\n",
"Nɑɑne gɑɑ no, Moisi nɑ Bɔmdɑɑrum jingɑru tɛ. À nɑ kuri se@@ es@@ ee hɑli hɑlɑci@@ kɔ kɑ ɑ̀ nɑ koo hɑibɔrɔ sintine yom hɑlɑci mɑ si kɑmbɛ dɛcɛ Isirɑilɑ ŋmɔne yom gɑɑ.\n",
"Bɔrɔ hin@@ no, ɑ̀ bine ji@@ si@@ ri hinno kunɑ no ɑ̀ gɑ ihinno yom kɑɑ tɛrɛ. Bɔrɔ lɑlɔ mo, ɑ̀ bine ji@@ si@@ ri lɑlɔ kunɑ no ɑ̀ gɑ ilɑlɔ yom kɑɑ tɛrɛ.\n",
"À nɑ ɑ dɑm gbei kunɑ bɑ kɑ ɑ ci Ikpɛ cɛn@@ ɑndikɔ ndɑ guruguz@@ ɑndikɔ ndɑ bɔrɔ fu@@ tu. Ammɑ ɑ du suuji domi zɑm kɑ bei kunɑ nɑ ɑ nɑ ɑ̀ tɛ zɑm kɑ nɑɑne kunɑ.\n",
"Wom kunɑ bɔrɔ fɔ kulu mɑ si lɑɑkɑli ndɑ ngɑ bɔm mur@@ ɑ@@ du yom hinn@@ e, ɑmmɑ ɑ̀ mɑ lɑɑkɑli mɑ ndɑ bɔrɔ fɔ yom ŋmɔne.\n",
"Kɑ wiciri kɑmbu bɑ tɔ ɑ̀ coobɑɑbɑize yom kɑɑ ɑ̀ dɔ kɑ cii: Nungu wɔ gɑnji no. Lɔkɑci mo moor@@ u. Jɑmɑ wɔ tɑm ǹ mɑ kpei kpɑɑrɑ yom kunɑ kɑ ngei ŋmɑɑri dei kɑ ŋmɑɑ.\n",
"Combined BPE Vocab\n",
"clai@@\n",
"ɑ̀@@\n",
"secu@@\n",
"doni\n",
"uda@@\n",
"Hol@@\n",
"Dɑfi@@\n",
"Æ@@\n",
"pos@@\n",
"ɔkɑci\n"
],
"name": "stdout"
}
]
},
{
"cell_type": "code",
"metadata": {
"colab_type": "code",
"id": "IlMitUHR8Qy-",
"outputId": "52358ed6-5169-43b4-9c2f-23c8b1351b1f",
"colab": {
"base_uri": "https://localhost:8080/",
"height": 69
}
},
"source": [
"# Also move everything we care about to a mounted location in google drive (relevant if running in colab) at gdrive_path\n",
"! cp train.* \"$gdrive_path\"\n",
"! cp test.* \"$gdrive_path\"\n",
"! cp dev.* \"$gdrive_path\"\n",
"! cp bpe.codes.4000 \"$gdrive_path\"\n",
"! ls \"$gdrive_path\""
],
"execution_count": 19,
"outputs": [
{
"output_type": "stream",
"text": [
"bpe.codes.4000\tdev.csv models test.csv train.bpe.ddn\ttrain.ddn\n",
"dev.bpe.ddn\tdev.ddn test.bpe.ddn test.ddn train.bpe.en\ttrain.en\n",
"dev.bpe.en\tdev.en\t test.bpe.en test.en\t train.csv\n"
],
"name": "stdout"
}
]
},
{
"cell_type": "markdown",
"metadata": {
"colab_type": "text",
"id": "Ixmzi60WsUZ8"
},
"source": [
"# Creating the JoeyNMT Config\n",
"\n",
"JoeyNMT requires a yaml config. We provide a template below. We've also set a number of defaults with it, that you may play with!\n",
"\n",
"- We used Transformer architecture \n",
"- We set our dropout to reasonably high: 0.3 (recommended in [(Sennrich, 2019)](https://www.aclweb.org/anthology/P19-1021))\n",
"\n",
"Things worth playing with:\n",
"- The batch size (also recommended to change for low-resourced languages)\n",
"- The number of epochs (we've set it at 30 just so it runs in about an hour, for testing purposes)\n",
"- The decoder options (beam_size, alpha)\n",
"- Evaluation metrics (BLEU versus Crhf4)"
]
},
{
"cell_type": "code",
"metadata": {
"colab_type": "code",
"id": "PIs1lY2hxMsl",
"colab": {}
},
"source": [
"# This creates the config file for our JoeyNMT system. It might seem overwhelming so we've provided a couple of useful parameters you'll need to update\n",
"# (You can of course play with all the parameters if you'd like!)\n",
"\n",
"name = '%s%s' % (source_language, target_language)\n",
"gdrive_path = os.environ[\"gdrive_path\"]\n",
"\n",
"# Create the config\n",
"config = \"\"\"\n",
"name: \"{name}_transformer\"\n",
"\n",
"data:\n",
" src: \"{source_language}\"\n",
" trg: \"{target_language}\"\n",
" train: \"data/{name}/train.bpe\"\n",
" dev: \"data/{name}/dev.bpe\"\n",
" test: \"data/{name}/test.bpe\"\n",
" level: \"bpe\"\n",
" lowercase: False\n",
" max_sent_length: 100\n",
" src_vocab: \"data/{name}/vocab.txt\"\n",
" trg_vocab: \"data/{name}/vocab.txt\"\n",
"\n",
"testing:\n",
" beam_size: 5\n",
" alpha: 1.0\n",
"\n",
"training:\n",
" #load_model: \"{gdrive_path}/models/{name}_transformer/1.ckpt\" # if uncommented, load a pre-trained model from this checkpoint\n",
" random_seed: 42\n",
" optimizer: \"adam\"\n",
" normalization: \"tokens\"\n",
" adam_betas: [0.9, 0.999] \n",
" scheduling: \"plateau\" # TODO: try switching from plateau to Noam scheduling\n",
" patience: 5 # For plateau: decrease learning rate by decrease_factor if validation score has not improved for this many validation rounds.\n",
" learning_rate_factor: 0.5 # factor for Noam scheduler (used with Transformer)\n",
" learning_rate_warmup: 1000 # warmup steps for Noam scheduler (used with Transformer)\n",
" decrease_factor: 0.7\n",
" loss: \"crossentropy\"\n",
" learning_rate: 0.0003\n",
" learning_rate_min: 0.00000001\n",
" weight_decay: 0.0\n",
" label_smoothing: 0.1\n",
" batch_size: 4096\n",
" batch_type: \"token\"\n",
" eval_batch_size: 3600\n",
" eval_batch_type: \"token\"\n",
" batch_multiplier: 1\n",
" early_stopping_metric: \"ppl\"\n",
" epochs: 100 # TODO: Decrease for when playing around and checking of working. Around 30 is sufficient to check if its working at all\n",
" validation_freq: 1000 # TODO: Set to at least once per epoch.\n",
" logging_freq: 100\n",
" eval_metric: \"bleu\"\n",
" model_dir: \"models/{name}_transformer\"\n",
" overwrite: False # TODO: Set to True if you want to overwrite possibly existing models. \n",
" shuffle: True\n",
" use_cuda: True\n",
" max_output_length: 100\n",
" print_valid_sents: [0, 1, 2, 3]\n",
" keep_last_ckpts: 3\n",
"\n",
"model:\n",
" initializer: \"xavier\"\n",
" bias_initializer: \"zeros\"\n",
" init_gain: 1.0\n",
" embed_initializer: \"xavier\"\n",
" embed_init_gain: 1.0\n",
" tied_embeddings: True\n",
" tied_softmax: True\n",
" encoder:\n",
" type: \"transformer\"\n",
" num_layers: 6\n",
" num_heads: 4 # TODO: Increase to 8 for larger data.\n",
" embeddings:\n",
" embedding_dim: 256 # TODO: Increase to 512 for larger data.\n",
" scale: True\n",
" dropout: 0.2\n",
" # typically ff_size = 4 x hidden_size\n",
" hidden_size: 256 # TODO: Increase to 512 for larger data.\n",
" ff_size: 1024 # TODO: Increase to 2048 for larger data.\n",
" dropout: 0.3\n",
" decoder:\n",
" type: \"transformer\"\n",
" num_layers: 6\n",
" num_heads: 4 # TODO: Increase to 8 for larger data.\n",
" embeddings:\n",
" embedding_dim: 256 # TODO: Increase to 512 for larger data.\n",
" scale: True\n",
" dropout: 0.2\n",
" # typically ff_size = 4 x hidden_size\n",
" hidden_size: 256 # TODO: Increase to 512 for larger data.\n",
" ff_size: 1024 # TODO: Increase to 2048 for larger data.\n",
" dropout: 0.3\n",
"\"\"\".format(name=name, gdrive_path=os.environ[\"gdrive_path\"], source_language=source_language, target_language=target_language)\n",
"with open(\"joeynmt/configs/transformer_{name}.yaml\".format(name=name),'w') as f:\n",
" f.write(config)"
],
"execution_count": 0,
"outputs": []
},
{
"cell_type": "markdown",
"metadata": {
"colab_type": "text",
"id": "pIifxE3Qzuvs"
},
"source": [
"# Train the Model\n",
"\n",
"This single line of joeynmt runs the training using the config we made above"
]
},
{
"cell_type": "code",
"metadata": {
"colab_type": "code",
"id": "6ZBPFwT94WpI",
"outputId": "2b84de93-977a-4dfa-e7c3-8a7266d93ce5",
"colab": {
"base_uri": "https://localhost:8080/",
"height": 1000
}
},
"source": [
"# Train the model\n",
"# You can press Ctrl-C to stop. And then run the next cell to save your checkpoints! \n",
"!cd joeynmt; python3 -m joeynmt train configs/transformer_$src$tgt.yaml"
],
"execution_count": 21,
"outputs": [
{
"output_type": "stream",
"text": [
"2020-02-12 07:57:25,866 Hello! This is Joey-NMT.\n",
"2020-02-12 07:57:27,117 Total params: 12102656\n",
"2020-02-12 07:57:27,118 Trainable parameters: ['decoder.layer_norm.bias', 'decoder.layer_norm.weight', 'decoder.layers.0.dec_layer_norm.bias', 'decoder.layers.0.dec_layer_norm.weight', 'decoder.layers.0.feed_forward.layer_norm.bias', 'decoder.layers.0.feed_forward.layer_norm.weight', 'decoder.layers.0.feed_forward.pwff_layer.0.bias', 'decoder.layers.0.feed_forward.pwff_layer.0.weight', 'decoder.layers.0.feed_forward.pwff_layer.3.bias', 'decoder.layers.0.feed_forward.pwff_layer.3.weight', 'decoder.layers.0.src_trg_att.k_layer.bias', 'decoder.layers.0.src_trg_att.k_layer.weight', 'decoder.layers.0.src_trg_att.output_layer.bias', 'decoder.layers.0.src_trg_att.output_layer.weight', 'decoder.layers.0.src_trg_att.q_layer.bias', 'decoder.layers.0.src_trg_att.q_layer.weight', 'decoder.layers.0.src_trg_att.v_layer.bias', 'decoder.layers.0.src_trg_att.v_layer.weight', 'decoder.layers.0.trg_trg_att.k_layer.bias', 'decoder.layers.0.trg_trg_att.k_layer.weight', 'decoder.layers.0.trg_trg_att.output_layer.bias', 'decoder.layers.0.trg_trg_att.output_layer.weight', 'decoder.layers.0.trg_trg_att.q_layer.bias', 'decoder.layers.0.trg_trg_att.q_layer.weight', 'decoder.layers.0.trg_trg_att.v_layer.bias', 'decoder.layers.0.trg_trg_att.v_layer.weight', 'decoder.layers.0.x_layer_norm.bias', 'decoder.layers.0.x_layer_norm.weight', 'decoder.layers.1.dec_layer_norm.bias', 'decoder.layers.1.dec_layer_norm.weight', 'decoder.layers.1.feed_forward.layer_norm.bias', 'decoder.layers.1.feed_forward.layer_norm.weight', 'decoder.layers.1.feed_forward.pwff_layer.0.bias', 'decoder.layers.1.feed_forward.pwff_layer.0.weight', 'decoder.layers.1.feed_forward.pwff_layer.3.bias', 'decoder.layers.1.feed_forward.pwff_layer.3.weight', 'decoder.layers.1.src_trg_att.k_layer.bias', 'decoder.layers.1.src_trg_att.k_layer.weight', 'decoder.layers.1.src_trg_att.output_layer.bias', 'decoder.layers.1.src_trg_att.output_layer.weight', 'decoder.layers.1.src_trg_att.q_layer.bias', 'decoder.layers.1.src_trg_att.q_layer.weight', 'decoder.layers.1.src_trg_att.v_layer.bias', 'decoder.layers.1.src_trg_att.v_layer.weight', 'decoder.layers.1.trg_trg_att.k_layer.bias', 'decoder.layers.1.trg_trg_att.k_layer.weight', 'decoder.layers.1.trg_trg_att.output_layer.bias', 'decoder.layers.1.trg_trg_att.output_layer.weight', 'decoder.layers.1.trg_trg_att.q_layer.bias', 'decoder.layers.1.trg_trg_att.q_layer.weight', 'decoder.layers.1.trg_trg_att.v_layer.bias', 'decoder.layers.1.trg_trg_att.v_layer.weight', 'decoder.layers.1.x_layer_norm.bias', 'decoder.layers.1.x_layer_norm.weight', 'decoder.layers.2.dec_layer_norm.bias', 'decoder.layers.2.dec_layer_norm.weight', 'decoder.layers.2.feed_forward.layer_norm.bias', 'decoder.layers.2.feed_forward.layer_norm.weight', 'decoder.layers.2.feed_forward.pwff_layer.0.bias', 'decoder.layers.2.feed_forward.pwff_layer.0.weight', 'decoder.layers.2.feed_forward.pwff_layer.3.bias', 'decoder.layers.2.feed_forward.pwff_layer.3.weight', 'decoder.layers.2.src_trg_att.k_layer.bias', 'decoder.layers.2.src_trg_att.k_layer.weight', 'decoder.layers.2.src_trg_att.output_layer.bias', 'decoder.layers.2.src_trg_att.output_layer.weight', 'decoder.layers.2.src_trg_att.q_layer.bias', 'decoder.layers.2.src_trg_att.q_layer.weight', 'decoder.layers.2.src_trg_att.v_layer.bias', 'decoder.layers.2.src_trg_att.v_layer.weight', 'decoder.layers.2.trg_trg_att.k_layer.bias', 'decoder.layers.2.trg_trg_att.k_layer.weight', 'decoder.layers.2.trg_trg_att.output_layer.bias', 'decoder.layers.2.trg_trg_att.output_layer.weight', 'decoder.layers.2.trg_trg_att.q_layer.bias', 'decoder.layers.2.trg_trg_att.q_layer.weight', 'decoder.layers.2.trg_trg_att.v_layer.bias', 'decoder.layers.2.trg_trg_att.v_layer.weight', 'decoder.layers.2.x_layer_norm.bias', 'decoder.layers.2.x_layer_norm.weight', 'decoder.layers.3.dec_layer_norm.bias', 'decoder.layers.3.dec_layer_norm.weight', 'decoder.layers.3.feed_forward.layer_norm.bias', 'decoder.layers.3.feed_forward.layer_norm.weight', 'decoder.layers.3.feed_forward.pwff_layer.0.bias', 'decoder.layers.3.feed_forward.pwff_layer.0.weight', 'decoder.layers.3.feed_forward.pwff_layer.3.bias', 'decoder.layers.3.feed_forward.pwff_layer.3.weight', 'decoder.layers.3.src_trg_att.k_layer.bias', 'decoder.layers.3.src_trg_att.k_layer.weight', 'decoder.layers.3.src_trg_att.output_layer.bias', 'decoder.layers.3.src_trg_att.output_layer.weight', 'decoder.layers.3.src_trg_att.q_layer.bias', 'decoder.layers.3.src_trg_att.q_layer.weight', 'decoder.layers.3.src_trg_att.v_layer.bias', 'decoder.layers.3.src_trg_att.v_layer.weight', 'decoder.layers.3.trg_trg_att.k_layer.bias', 'decoder.layers.3.trg_trg_att.k_layer.weight', 'decoder.layers.3.trg_trg_att.output_layer.bias', 'decoder.layers.3.trg_trg_att.output_layer.weight', 'decoder.layers.3.trg_trg_att.q_layer.bias', 'decoder.layers.3.trg_trg_att.q_layer.weight', 'decoder.layers.3.trg_trg_att.v_layer.bias', 'decoder.layers.3.trg_trg_att.v_layer.weight', 'decoder.layers.3.x_layer_norm.bias', 'decoder.layers.3.x_layer_norm.weight', 'decoder.layers.4.dec_layer_norm.bias', 'decoder.layers.4.dec_layer_norm.weight', 'decoder.layers.4.feed_forward.layer_norm.bias', 'decoder.layers.4.feed_forward.layer_norm.weight', 'decoder.layers.4.feed_forward.pwff_layer.0.bias', 'decoder.layers.4.feed_forward.pwff_layer.0.weight', 'decoder.layers.4.feed_forward.pwff_layer.3.bias', 'decoder.layers.4.feed_forward.pwff_layer.3.weight', 'decoder.layers.4.src_trg_att.k_layer.bias', 'decoder.layers.4.src_trg_att.k_layer.weight', 'decoder.layers.4.src_trg_att.output_layer.bias', 'decoder.layers.4.src_trg_att.output_layer.weight', 'decoder.layers.4.src_trg_att.q_layer.bias', 'decoder.layers.4.src_trg_att.q_layer.weight', 'decoder.layers.4.src_trg_att.v_layer.bias', 'decoder.layers.4.src_trg_att.v_layer.weight', 'decoder.layers.4.trg_trg_att.k_layer.bias', 'decoder.layers.4.trg_trg_att.k_layer.weight', 'decoder.layers.4.trg_trg_att.output_layer.bias', 'decoder.layers.4.trg_trg_att.output_layer.weight', 'decoder.layers.4.trg_trg_att.q_layer.bias', 'decoder.layers.4.trg_trg_att.q_layer.weight', 'decoder.layers.4.trg_trg_att.v_layer.bias', 'decoder.layers.4.trg_trg_att.v_layer.weight', 'decoder.layers.4.x_layer_norm.bias', 'decoder.layers.4.x_layer_norm.weight', 'decoder.layers.5.dec_layer_norm.bias', 'decoder.layers.5.dec_layer_norm.weight', 'decoder.layers.5.feed_forward.layer_norm.bias', 'decoder.layers.5.feed_forward.layer_norm.weight', 'decoder.layers.5.feed_forward.pwff_layer.0.bias', 'decoder.layers.5.feed_forward.pwff_layer.0.weight', 'decoder.layers.5.feed_forward.pwff_layer.3.bias', 'decoder.layers.5.feed_forward.pwff_layer.3.weight', 'decoder.layers.5.src_trg_att.k_layer.bias', 'decoder.layers.5.src_trg_att.k_layer.weight', 'decoder.layers.5.src_trg_att.output_layer.bias', 'decoder.layers.5.src_trg_att.output_layer.weight', 'decoder.layers.5.src_trg_att.q_layer.bias', 'decoder.layers.5.src_trg_att.q_layer.weight', 'decoder.layers.5.src_trg_att.v_layer.bias', 'decoder.layers.5.src_trg_att.v_layer.weight', 'decoder.layers.5.trg_trg_att.k_layer.bias', 'decoder.layers.5.trg_trg_att.k_layer.weight', 'decoder.layers.5.trg_trg_att.output_layer.bias', 'decoder.layers.5.trg_trg_att.output_layer.weight', 'decoder.layers.5.trg_trg_att.q_layer.bias', 'decoder.layers.5.trg_trg_att.q_layer.weight', 'decoder.layers.5.trg_trg_att.v_layer.bias', 'decoder.layers.5.trg_trg_att.v_layer.weight', 'decoder.layers.5.x_layer_norm.bias', 'decoder.layers.5.x_layer_norm.weight', 'encoder.layer_norm.bias', 'encoder.layer_norm.weight', 'encoder.layers.0.feed_forward.layer_norm.bias', 'encoder.layers.0.feed_forward.layer_norm.weight', 'encoder.layers.0.feed_forward.pwff_layer.0.bias', 'encoder.layers.0.feed_forward.pwff_layer.0.weight', 'encoder.layers.0.feed_forward.pwff_layer.3.bias', 'encoder.layers.0.feed_forward.pwff_layer.3.weight', 'encoder.layers.0.layer_norm.bias', 'encoder.layers.0.layer_norm.weight', 'encoder.layers.0.src_src_att.k_layer.bias', 'encoder.layers.0.src_src_att.k_layer.weight', 'encoder.layers.0.src_src_att.output_layer.bias', 'encoder.layers.0.src_src_att.output_layer.weight', 'encoder.layers.0.src_src_att.q_layer.bias', 'encoder.layers.0.src_src_att.q_layer.weight', 'encoder.layers.0.src_src_att.v_layer.bias', 'encoder.layers.0.src_src_att.v_layer.weight', 'encoder.layers.1.feed_forward.layer_norm.bias', 'encoder.layers.1.feed_forward.layer_norm.weight', 'encoder.layers.1.feed_forward.pwff_layer.0.bias', 'encoder.layers.1.feed_forward.pwff_layer.0.weight', 'encoder.layers.1.feed_forward.pwff_layer.3.bias', 'encoder.layers.1.feed_forward.pwff_layer.3.weight', 'encoder.layers.1.layer_norm.bias', 'encoder.layers.1.layer_norm.weight', 'encoder.layers.1.src_src_att.k_layer.bias', 'encoder.layers.1.src_src_att.k_layer.weight', 'encoder.layers.1.src_src_att.output_layer.bias', 'encoder.layers.1.src_src_att.output_layer.weight', 'encoder.layers.1.src_src_att.q_layer.bias', 'encoder.layers.1.src_src_att.q_layer.weight', 'encoder.layers.1.src_src_att.v_layer.bias', 'encoder.layers.1.src_src_att.v_layer.weight', 'encoder.layers.2.feed_forward.layer_norm.bias', 'encoder.layers.2.feed_forward.layer_norm.weight', 'encoder.layers.2.feed_forward.pwff_layer.0.bias', 'encoder.layers.2.feed_forward.pwff_layer.0.weight', 'encoder.layers.2.feed_forward.pwff_layer.3.bias', 'encoder.layers.2.feed_forward.pwff_layer.3.weight', 'encoder.layers.2.layer_norm.bias', 'encoder.layers.2.layer_norm.weight', 'encoder.layers.2.src_src_att.k_layer.bias', 'encoder.layers.2.src_src_att.k_layer.weight', 'encoder.layers.2.src_src_att.output_layer.bias', 'encoder.layers.2.src_src_att.output_layer.weight', 'encoder.layers.2.src_src_att.q_layer.bias', 'encoder.layers.2.src_src_att.q_layer.weight', 'encoder.layers.2.src_src_att.v_layer.bias', 'encoder.layers.2.src_src_att.v_layer.weight', 'encoder.layers.3.feed_forward.layer_norm.bias', 'encoder.layers.3.feed_forward.layer_norm.weight', 'encoder.layers.3.feed_forward.pwff_layer.0.bias', 'encoder.layers.3.feed_forward.pwff_layer.0.weight', 'encoder.layers.3.feed_forward.pwff_layer.3.bias', 'encoder.layers.3.feed_forward.pwff_layer.3.weight', 'encoder.layers.3.layer_norm.bias', 'encoder.layers.3.layer_norm.weight', 'encoder.layers.3.src_src_att.k_layer.bias', 'encoder.layers.3.src_src_att.k_layer.weight', 'encoder.layers.3.src_src_att.output_layer.bias', 'encoder.layers.3.src_src_att.output_layer.weight', 'encoder.layers.3.src_src_att.q_layer.bias', 'encoder.layers.3.src_src_att.q_layer.weight', 'encoder.layers.3.src_src_att.v_layer.bias', 'encoder.layers.3.src_src_att.v_layer.weight', 'encoder.layers.4.feed_forward.layer_norm.bias', 'encoder.layers.4.feed_forward.layer_norm.weight', 'encoder.layers.4.feed_forward.pwff_layer.0.bias', 'encoder.layers.4.feed_forward.pwff_layer.0.weight', 'encoder.layers.4.feed_forward.pwff_layer.3.bias', 'encoder.layers.4.feed_forward.pwff_layer.3.weight', 'encoder.layers.4.layer_norm.bias', 'encoder.layers.4.layer_norm.weight', 'encoder.layers.4.src_src_att.k_layer.bias', 'encoder.layers.4.src_src_att.k_layer.weight', 'encoder.layers.4.src_src_att.output_layer.bias', 'encoder.layers.4.src_src_att.output_layer.weight', 'encoder.layers.4.src_src_att.q_layer.bias', 'encoder.layers.4.src_src_att.q_layer.weight', 'encoder.layers.4.src_src_att.v_layer.bias', 'encoder.layers.4.src_src_att.v_layer.weight', 'encoder.layers.5.feed_forward.layer_norm.bias', 'encoder.layers.5.feed_forward.layer_norm.weight', 'encoder.layers.5.feed_forward.pwff_layer.0.bias', 'encoder.layers.5.feed_forward.pwff_layer.0.weight', 'encoder.layers.5.feed_forward.pwff_layer.3.bias', 'encoder.layers.5.feed_forward.pwff_layer.3.weight', 'encoder.layers.5.layer_norm.bias', 'encoder.layers.5.layer_norm.weight', 'encoder.layers.5.src_src_att.k_layer.bias', 'encoder.layers.5.src_src_att.k_layer.weight', 'encoder.layers.5.src_src_att.output_layer.bias', 'encoder.layers.5.src_src_att.output_layer.weight', 'encoder.layers.5.src_src_att.q_layer.bias', 'encoder.layers.5.src_src_att.q_layer.weight', 'encoder.layers.5.src_src_att.v_layer.bias', 'encoder.layers.5.src_src_att.v_layer.weight', 'src_embed.lut.weight']\n",
"2020-02-12 07:57:37,011 cfg.name : enddn_transformer\n",
"2020-02-12 07:57:37,011 cfg.data.src : en\n",
"2020-02-12 07:57:37,012 cfg.data.trg : ddn\n",
"2020-02-12 07:57:37,012 cfg.data.train : data/enddn/train.bpe\n",
"2020-02-12 07:57:37,012 cfg.data.dev : data/enddn/dev.bpe\n",
"2020-02-12 07:57:37,012 cfg.data.test : data/enddn/test.bpe\n",
"2020-02-12 07:57:37,012 cfg.data.level : bpe\n",
"2020-02-12 07:57:37,012 cfg.data.lowercase : False\n",
"2020-02-12 07:57:37,012 cfg.data.max_sent_length : 100\n",
"2020-02-12 07:57:37,012 cfg.data.src_vocab : data/enddn/vocab.txt\n",
"2020-02-12 07:57:37,012 cfg.data.trg_vocab : data/enddn/vocab.txt\n",
"2020-02-12 07:57:37,012 cfg.testing.beam_size : 5\n",
"2020-02-12 07:57:37,012 cfg.testing.alpha : 1.0\n",
"2020-02-12 07:57:37,012 cfg.training.random_seed : 42\n",
"2020-02-12 07:57:37,012 cfg.training.optimizer : adam\n",
"2020-02-12 07:57:37,013 cfg.training.normalization : tokens\n",
"2020-02-12 07:57:37,013 cfg.training.adam_betas : [0.9, 0.999]\n",
"2020-02-12 07:57:37,013 cfg.training.scheduling : plateau\n",
"2020-02-12 07:57:37,013 cfg.training.patience : 5\n",
"2020-02-12 07:57:37,013 cfg.training.learning_rate_factor : 0.5\n",
"2020-02-12 07:57:37,013 cfg.training.learning_rate_warmup : 1000\n",
"2020-02-12 07:57:37,013 cfg.training.decrease_factor : 0.7\n",
"2020-02-12 07:57:37,013 cfg.training.loss : crossentropy\n",
"2020-02-12 07:57:37,013 cfg.training.learning_rate : 0.0003\n",
"2020-02-12 07:57:37,013 cfg.training.learning_rate_min : 1e-08\n",
"2020-02-12 07:57:37,013 cfg.training.weight_decay : 0.0\n",
"2020-02-12 07:57:37,013 cfg.training.label_smoothing : 0.1\n",
"2020-02-12 07:57:37,013 cfg.training.batch_size : 4096\n",
"2020-02-12 07:57:37,013 cfg.training.batch_type : token\n",
"2020-02-12 07:57:37,013 cfg.training.eval_batch_size : 3600\n",
"2020-02-12 07:57:37,013 cfg.training.eval_batch_type : token\n",
"2020-02-12 07:57:37,013 cfg.training.batch_multiplier : 1\n",
"2020-02-12 07:57:37,013 cfg.training.early_stopping_metric : ppl\n",
"2020-02-12 07:57:37,013 cfg.training.epochs : 100\n",
"2020-02-12 07:57:37,013 cfg.training.validation_freq : 1000\n",
"2020-02-12 07:57:37,013 cfg.training.logging_freq : 100\n",
"2020-02-12 07:57:37,013 cfg.training.eval_metric : bleu\n",
"2020-02-12 07:57:37,014 cfg.training.model_dir : models/enddn_transformer\n",
"2020-02-12 07:57:37,014 cfg.training.overwrite : False\n",
"2020-02-12 07:57:37,014 cfg.training.shuffle : True\n",
"2020-02-12 07:57:37,014 cfg.training.use_cuda : True\n",
"2020-02-12 07:57:37,014 cfg.training.max_output_length : 100\n",
"2020-02-12 07:57:37,014 cfg.training.print_valid_sents : [0, 1, 2, 3]\n",
"2020-02-12 07:57:37,014 cfg.training.keep_last_ckpts : 3\n",
"2020-02-12 07:57:37,014 cfg.model.initializer : xavier\n",
"2020-02-12 07:57:37,014 cfg.model.bias_initializer : zeros\n",
"2020-02-12 07:57:37,014 cfg.model.init_gain : 1.0\n",
"2020-02-12 07:57:37,014 cfg.model.embed_initializer : xavier\n",
"2020-02-12 07:57:37,014 cfg.model.embed_init_gain : 1.0\n",
"2020-02-12 07:57:37,014 cfg.model.tied_embeddings : True\n",
"2020-02-12 07:57:37,014 cfg.model.tied_softmax : True\n",
"2020-02-12 07:57:37,014 cfg.model.encoder.type : transformer\n",
"2020-02-12 07:57:37,014 cfg.model.encoder.num_layers : 6\n",
"2020-02-12 07:57:37,014 cfg.model.encoder.num_heads : 4\n",
"2020-02-12 07:57:37,014 cfg.model.encoder.embeddings.embedding_dim : 256\n",
"2020-02-12 07:57:37,014 cfg.model.encoder.embeddings.scale : True\n",
"2020-02-12 07:57:37,014 cfg.model.encoder.embeddings.dropout : 0.2\n",
"2020-02-12 07:57:37,014 cfg.model.encoder.hidden_size : 256\n",
"2020-02-12 07:57:37,015 cfg.model.encoder.ff_size : 1024\n",
"2020-02-12 07:57:37,015 cfg.model.encoder.dropout : 0.3\n",
"2020-02-12 07:57:37,015 cfg.model.decoder.type : transformer\n",
"2020-02-12 07:57:37,015 cfg.model.decoder.num_layers : 6\n",
"2020-02-12 07:57:37,015 cfg.model.decoder.num_heads : 4\n",
"2020-02-12 07:57:37,015 cfg.model.decoder.embeddings.embedding_dim : 256\n",
"2020-02-12 07:57:37,015 cfg.model.decoder.embeddings.scale : True\n",
"2020-02-12 07:57:37,015 cfg.model.decoder.embeddings.dropout : 0.2\n",
"2020-02-12 07:57:37,015 cfg.model.decoder.hidden_size : 256\n",
"2020-02-12 07:57:37,015 cfg.model.decoder.ff_size : 1024\n",
"2020-02-12 07:57:37,015 cfg.model.decoder.dropout : 0.3\n",
"2020-02-12 07:57:37,015 Data set sizes: \n",
"\ttrain 6937,\n",
"\tvalid 1000,\n",
"\ttest 165\n",
"2020-02-12 07:57:37,015 First training example:\n",
"\t[SRC] and shall come forth to decei@@ ve the nations which are in the four cor@@ n@@ ers of the earth, Go@@ g and Ma@@ go@@ g@@ , to gather them together to the war@@ : the number of whom is as the sand of the sea@@ .\n",
"\t[TRG] À kɑɑ hunu kɑ hɑndunyɑ dimi yom kɑ ǹ goono hɑndunyɑ cɛn@@ jɛ tɑɑci gɑɑ dɛr@@ ɑndi, wɑtom G@@ ɔ@@ gu ndɑ Mɑ@@ g@@ ɔ@@ gu. À gɑ ǹ meigu wɑngu tɛyom sɛ. Ǹ bɑyom bisɑ tɛku tɑɑ@@ si.\n",
"2020-02-12 07:57:37,015 First 10 words (src): (0) <unk> (1) <pad> (2) <s> (3) </s> (4) kɑ (5) the (6) ɑ̀ (7) and (8) yom (9) of\n",
"2020-02-12 07:57:37,016 First 10 words (trg): (0) <unk> (1) <pad> (2) <s> (3) </s> (4) kɑ (5) the (6) ɑ̀ (7) and (8) yom (9) of\n",
"2020-02-12 07:57:37,016 Number of Src words (types): 4072\n",
"2020-02-12 07:57:37,016 Number of Trg words (types): 4072\n",
"2020-02-12 07:57:37,016 Model(\n",
"\tencoder=TransformerEncoder(num_layers=6, num_heads=4),\n",
"\tdecoder=TransformerDecoder(num_layers=6, num_heads=4),\n",
"\tsrc_embed=Embeddings(embedding_dim=256, vocab_size=4072),\n",
"\ttrg_embed=Embeddings(embedding_dim=256, vocab_size=4072))\n",
"2020-02-12 07:57:37,020 EPOCH 1\n",
"2020-02-12 07:57:49,851 Epoch 1: total training loss 466.71\n",
"2020-02-12 07:57:49,851 EPOCH 2\n",
"2020-02-12 07:57:52,016 Epoch 2 Step: 100 Batch Loss: 5.053507 Tokens per Sec: 16552, Lr: 0.000300\n",
"2020-02-12 07:58:02,209 Epoch 2: total training loss 427.56\n",
"2020-02-12 07:58:02,210 EPOCH 3\n",
"2020-02-12 07:58:06,583 Epoch 3 Step: 200 Batch Loss: 4.733194 Tokens per Sec: 16758, Lr: 0.000300\n",
"2020-02-12 07:58:14,748 Epoch 3: total training loss 401.30\n",
"2020-02-12 07:58:14,748 EPOCH 4\n",
"2020-02-12 07:58:21,509 Epoch 4 Step: 300 Batch Loss: 4.482025 Tokens per Sec: 15946, Lr: 0.000300\n",
"2020-02-12 07:58:27,645 Epoch 4: total training loss 376.97\n",
"2020-02-12 07:58:27,646 EPOCH 5\n",
"2020-02-12 07:58:36,667 Epoch 5 Step: 400 Batch Loss: 4.369053 Tokens per Sec: 16852, Lr: 0.000300\n",
"2020-02-12 07:58:40,237 Epoch 5: total training loss 357.45\n",
"2020-02-12 07:58:40,237 EPOCH 6\n",
"2020-02-12 07:58:51,728 Epoch 6 Step: 500 Batch Loss: 4.072609 Tokens per Sec: 16318, Lr: 0.000300\n",
"2020-02-12 07:58:53,063 Epoch 6: total training loss 350.58\n",
"2020-02-12 07:58:53,063 EPOCH 7\n",
"2020-02-12 07:59:06,112 Epoch 7: total training loss 343.65\n",
"2020-02-12 07:59:06,113 EPOCH 8\n",
"2020-02-12 07:59:06,921 Epoch 8 Step: 600 Batch Loss: 3.877546 Tokens per Sec: 15682, Lr: 0.000300\n",
"2020-02-12 07:59:19,489 Epoch 8: total training loss 333.49\n",
"2020-02-12 07:59:19,489 EPOCH 9\n",
"2020-02-12 07:59:22,533 Epoch 9 Step: 700 Batch Loss: 3.790495 Tokens per Sec: 15575, Lr: 0.000300\n",
"2020-02-12 07:59:32,708 Epoch 9: total training loss 323.89\n",
"2020-02-12 07:59:32,709 EPOCH 10\n",
"2020-02-12 07:59:37,884 Epoch 10 Step: 800 Batch Loss: 3.614108 Tokens per Sec: 15893, Lr: 0.000300\n",
"2020-02-12 07:59:45,831 Epoch 10: total training loss 311.51\n",
"2020-02-12 07:59:45,831 EPOCH 11\n",
"2020-02-12 07:59:53,157 Epoch 11 Step: 900 Batch Loss: 3.517627 Tokens per Sec: 16008, Lr: 0.000300\n",
"2020-02-12 07:59:58,929 Epoch 11: total training loss 303.86\n",
"2020-02-12 07:59:58,929 EPOCH 12\n",
"2020-02-12 08:00:08,729 Epoch 12 Step: 1000 Batch Loss: 3.723745 Tokens per Sec: 15648, Lr: 0.000300\n",
"2020-02-12 08:00:51,979 Hooray! New best validation result [ppl]!\n",
"2020-02-12 08:00:51,980 Saving new checkpoint.\n",
"2020-02-12 08:00:52,225 Example #0\n",
"2020-02-12 08:00:52,227 \tSource: I thank him that enabled me, even Christ Jesus our Lord, for that he counted me faithful, appointing me to his service;\n",
"2020-02-12 08:00:52,227 \tReference: A go sɑɑbu i Kpe Yesu Mɛsiyɑ sɛ, ngɑ kɑ ɑ̀ nɑ ɑ no gɑɑbi. A gɑ kɑ ɑ̀ sɑɑbu domi ɑ̀ nɑ ɑ lɑsɑbu nɑɑnekpɛ kɑ ɑ dɑm ngɑ gbei kunɑ.\n",
"2020-02-12 08:00:52,227 \tHypothesis: A go kɑ ɑ mɑɑ ɑ sɛ ɑ go kɑ ɑ mɑɑ ɑ sɛ ndɑ ɑ go kɑ ɑ̀ ci ɑ Bɑɑbɑ kɑ ɑ̀ go kɑ ɑ̀ go kɑ ɑ̀ go kɑ ɑ dɑm ɑ sɛ.\n",
"2020-02-12 08:00:52,227 Example #1\n",
"2020-02-12 08:00:52,228 \tSource: Now lettest thou thy servant depart, Lord, According to thy word, in peace;\n",
"2020-02-12 08:00:52,228 \tReference: Mɑɑsɑnkulu Kpe, n mɑ tu n bɑnyɑ mɑ kpei ndɑ bɑɑni zɑngɑ n Sendɑ cii.\n",
"2020-02-12 08:00:52,228 \tHypothesis: N mɑ n mɑ n mɑ n mɑ n mɑ n mɑ n mɑ n mɑ n mɑ n mɑ n mɑ n mɑ n mɑ n mɑ n mɑ n sɛ.\n",
"2020-02-12 08:00:52,228 Example #2\n",
"2020-02-12 08:00:52,228 \tSource: if so be that God is one, and he shall justify the circumcision by faith, and the uncircumcision through faith.\n",
"2020-02-12 08:00:52,229 \tReference: Ikpɛ fɔlɔnku yɑ gɑ bɑnguize yom cɛɑndi susu nɑɑne gɑɑ. À go zɑm kɑ dɑmbɑnguize yom mo cɛɑndi susu nɑɑne gɑɑ.\n",
"2020-02-12 08:00:52,229 \tHypothesis: Ikpɛ nɑ ɑ̀ tɛ ndɑ Ikpɛ nɑ ɑ̀ tɛ ndɑ ɑ̀ sɛ ndɑ ɑ̀ mɑ ci Ikpɛ dɔntɔneize yom kɑ ǹ go kɑ ɑ̀ ci Ikpɛ nɑ ɑ̀ tɛ ndɑ ɑ̀ sɛ.\n",
"2020-02-12 08:00:52,229 Example #3\n",
"2020-02-12 08:00:52,229 \tSource: And from that city many of the Samaritans believed on him because of the word of the woman, who testified, He told me all things that ever I did.\n",
"2020-02-12 08:00:52,229 \tReference: Wɑngɑrɑ ngɑ di, Sɑmɑriɑncɛ boobo nɑɑne Yesu gɑɑ weibɔrɔ di sendɑ sɑbu sɛ. Weibɔrɔ di tɛ sɛdɑ kɑ cii: Hɛ kulu kɑ ɑ jinɑ kɑ tɛ, ɑ̀ nɑ ɑ̀ cii ɑ sɛ.\n",
"2020-02-12 08:00:52,229 \tHypothesis: À nɑ ǹ dɑm ǹ mɑ kpei kɑ cii: A go kɑ ɑ̀ tɛ hɛ kɑ ɑ̀ go kɑ ɑ̀ go kɑ ɑ̀ go kɑ ɑ̀ dɑm ɑ sɛ.\n",
"2020-02-12 08:00:52,229 Validation result (greedy) at epoch 12, step 1000: bleu: 2.25, loss: 108241.0781, ppl: 33.3947, duration: 43.5003s\n",
"2020-02-12 08:00:55,834 Epoch 12: total training loss 301.16\n",
"2020-02-12 08:00:55,834 EPOCH 13\n",
"2020-02-12 08:01:07,754 Epoch 13 Step: 1100 Batch Loss: 3.373813 Tokens per Sec: 15904, Lr: 0.000300\n",
"2020-02-12 08:01:08,991 Epoch 13: total training loss 290.57\n",
"2020-02-12 08:01:08,991 EPOCH 14\n",
"2020-02-12 08:01:21,890 Epoch 14: total training loss 284.38\n",
"2020-02-12 08:01:21,890 EPOCH 15\n",
"2020-02-12 08:01:22,940 Epoch 15 Step: 1200 Batch Loss: 3.351792 Tokens per Sec: 15095, Lr: 0.000300\n",
"2020-02-12 08:01:34,859 Epoch 15: total training loss 283.04\n",
"2020-02-12 08:01:34,859 EPOCH 16\n",
"2020-02-12 08:01:38,137 Epoch 16 Step: 1300 Batch Loss: 3.275927 Tokens per Sec: 15668, Lr: 0.000300\n",
"2020-02-12 08:01:48,134 Epoch 16: total training loss 276.65\n",
"2020-02-12 08:01:48,134 EPOCH 17\n",
"2020-02-12 08:01:53,480 Epoch 17 Step: 1400 Batch Loss: 3.273901 Tokens per Sec: 16228, Lr: 0.000300\n",
"2020-02-12 08:02:01,271 Epoch 17: total training loss 271.29\n",
"2020-02-12 08:02:01,271 EPOCH 18\n",
"2020-02-12 08:02:08,967 Epoch 18 Step: 1500 Batch Loss: 3.121495 Tokens per Sec: 15736, Lr: 0.000300\n",
"2020-02-12 08:02:14,515 Epoch 18: total training loss 262.37\n",
"2020-02-12 08:02:14,515 EPOCH 19\n",
"2020-02-12 08:02:24,482 Epoch 19 Step: 1600 Batch Loss: 2.943789 Tokens per Sec: 15777, Lr: 0.000300\n",
"2020-02-12 08:02:27,735 Epoch 19: total training loss 256.87\n",
"2020-02-12 08:02:27,735 EPOCH 20\n",
"2020-02-12 08:02:39,900 Epoch 20 Step: 1700 Batch Loss: 3.001261 Tokens per Sec: 15690, Lr: 0.000300\n",
"2020-02-12 08:02:41,046 Epoch 20: total training loss 255.69\n",
"2020-02-12 08:02:41,047 EPOCH 21\n",
"2020-02-12 08:02:54,288 Epoch 21: total training loss 247.77\n",
"2020-02-12 08:02:54,288 EPOCH 22\n",
"2020-02-12 08:02:55,542 Epoch 22 Step: 1800 Batch Loss: 2.730506 Tokens per Sec: 15002, Lr: 0.000300\n",
"2020-02-12 08:03:07,423 Epoch 22: total training loss 246.18\n",
"2020-02-12 08:03:07,423 EPOCH 23\n",
"2020-02-12 08:03:10,863 Epoch 23 Step: 1900 Batch Loss: 2.849777 Tokens per Sec: 15479, Lr: 0.000300\n",
"2020-02-12 08:03:20,626 Epoch 23: total training loss 238.07\n",
"2020-02-12 08:03:20,626 EPOCH 24\n",
"2020-02-12 08:03:26,324 Epoch 24 Step: 2000 Batch Loss: 2.248133 Tokens per Sec: 15810, Lr: 0.000300\n",
"2020-02-12 08:03:49,547 Hooray! New best validation result [ppl]!\n",
"2020-02-12 08:03:49,547 Saving new checkpoint.\n",
"2020-02-12 08:03:49,797 Example #0\n",
"2020-02-12 08:03:49,798 \tSource: I thank him that enabled me, even Christ Jesus our Lord, for that he counted me faithful, appointing me to his service;\n",
"2020-02-12 08:03:49,798 \tReference: A go sɑɑbu i Kpe Yesu Mɛsiyɑ sɛ, ngɑ kɑ ɑ̀ nɑ ɑ no gɑɑbi. A gɑ kɑ ɑ̀ sɑɑbu domi ɑ̀ nɑ ɑ lɑsɑbu nɑɑnekpɛ kɑ ɑ dɑm ngɑ gbei kunɑ.\n",
"2020-02-12 08:03:49,798 \tHypothesis: A go kɑ ɑ ŋmɑɑrɛ ɑ sɛ kɑ ɑ nɑ ɑ no i Kpe Yesu Mɛsiyɑ sɑbu sɛ. À nɑ ɑ no himmɑ kɑ ɑ̀ ci ɑ sɛ ndɑ ɑ nyɑize yom.\n",
"2020-02-12 08:03:49,798 Example #1\n",
"2020-02-12 08:03:49,798 \tSource: Now lettest thou thy servant depart, Lord, According to thy word, in peace;\n",
"2020-02-12 08:03:49,799 \tReference: Mɑɑsɑnkulu Kpe, n mɑ tu n bɑnyɑ mɑ kpei ndɑ bɑɑni zɑngɑ n Sendɑ cii.\n",
"2020-02-12 08:03:49,799 \tHypothesis: N mɑ n ŋmɔne ibɛrɛ yom cɛɛ kɑ cii: N mɑ n cɛɛ n mɑ n cee yom tɛ n sɛ.\n",
"2020-02-12 08:03:49,799 Example #2\n",
"2020-02-12 08:03:49,799 \tSource: if so be that God is one, and he shall justify the circumcision by faith, and the uncircumcision through faith.\n",
"2020-02-12 08:03:49,799 \tReference: Ikpɛ fɔlɔnku yɑ gɑ bɑnguize yom cɛɑndi susu nɑɑne gɑɑ. À go zɑm kɑ dɑmbɑnguize yom mo cɛɑndi susu nɑɑne gɑɑ.\n",
"2020-02-12 08:03:49,799 \tHypothesis: De bɔrɔ kɑ ɑ̀ go nɑɑne Ikpɛ dɔ, ɑ̀ gɑ ɑ̀ cɛɑndi susu fɔndɑ cire ɑmmɑ ɑ̀ si nɑɑne gɑɑ.\n",
"2020-02-12 08:03:49,799 Example #3\n",
"2020-02-12 08:03:49,800 \tSource: And from that city many of the Samaritans believed on him because of the word of the woman, who testified, He told me all things that ever I did.\n",
"2020-02-12 08:03:49,800 \tReference: Wɑngɑrɑ ngɑ di, Sɑmɑriɑncɛ boobo nɑɑne Yesu gɑɑ weibɔrɔ di sendɑ sɑbu sɛ. Weibɔrɔ di tɛ sɛdɑ kɑ cii: Hɛ kulu kɑ ɑ jinɑ kɑ tɛ, ɑ̀ nɑ ɑ̀ cii ɑ sɛ.\n",
"2020-02-12 08:03:49,800 \tHypothesis: Sɑɑ kɑ ǹ nɑ gɑrɑndikɔ jinɑ yom di cɛɛ yom nɑ ǹ kulu tɛ kɑ cii: Bɔrɔ kulu kɑ ɑ̀ go mɑɑ ɑ go mɑɑ ngɑ di hɛ yom kulu kɑ ǹ go cii ɑ sɛ.\n",
"2020-02-12 08:03:49,800 Validation result (greedy) at epoch 24, step 2000: bleu: 6.63, loss: 93221.4844, ppl: 20.5235, duration: 23.4751s\n",
"2020-02-12 08:03:57,263 Epoch 24: total training loss 234.79\n",
"2020-02-12 08:03:57,263 EPOCH 25\n",
"2020-02-12 08:04:05,133 Epoch 25 Step: 2100 Batch Loss: 2.622887 Tokens per Sec: 16045, Lr: 0.000300\n",
"2020-02-12 08:04:10,346 Epoch 25: total training loss 233.20\n",
"2020-02-12 08:04:10,346 EPOCH 26\n",
"2020-02-12 08:04:20,603 Epoch 26 Step: 2200 Batch Loss: 2.758588 Tokens per Sec: 15640, Lr: 0.000300\n",
"2020-02-12 08:04:23,679 Epoch 26: total training loss 229.16\n",
"2020-02-12 08:04:23,679 EPOCH 27\n",
"2020-02-12 08:04:36,108 Epoch 27 Step: 2300 Batch Loss: 2.634450 Tokens per Sec: 15872, Lr: 0.000300\n",
"2020-02-12 08:04:36,885 Epoch 27: total training loss 221.73\n",
"2020-02-12 08:04:36,885 EPOCH 28\n",
"2020-02-12 08:04:50,022 Epoch 28: total training loss 218.73\n",
"2020-02-12 08:04:50,022 EPOCH 29\n",
"2020-02-12 08:04:51,624 Epoch 29 Step: 2400 Batch Loss: 2.472899 Tokens per Sec: 15732, Lr: 0.000300\n",
"2020-02-12 08:05:03,291 Epoch 29: total training loss 214.40\n",
"2020-02-12 08:05:03,292 EPOCH 30\n",
"2020-02-12 08:05:07,248 Epoch 30 Step: 2500 Batch Loss: 2.552207 Tokens per Sec: 15732, Lr: 0.000300\n",
"2020-02-12 08:05:16,515 Epoch 30: total training loss 211.05\n",
"2020-02-12 08:05:16,515 EPOCH 31\n",
"2020-02-12 08:05:22,742 Epoch 31 Step: 2600 Batch Loss: 2.506979 Tokens per Sec: 15792, Lr: 0.000300\n",
"2020-02-12 08:05:29,954 Epoch 31: total training loss 210.60\n",
"2020-02-12 08:05:29,954 EPOCH 32\n",
"2020-02-12 08:05:38,419 Epoch 32 Step: 2700 Batch Loss: 2.617370 Tokens per Sec: 15336, Lr: 0.000300\n",
"2020-02-12 08:05:43,472 Epoch 32: total training loss 209.21\n",
"2020-02-12 08:05:43,473 EPOCH 33\n",
"2020-02-12 08:05:54,031 Epoch 33 Step: 2800 Batch Loss: 2.787237 Tokens per Sec: 15432, Lr: 0.000300\n",
"2020-02-12 08:05:56,880 Epoch 33: total training loss 203.96\n",
"2020-02-12 08:05:56,881 EPOCH 34\n",
"2020-02-12 08:06:09,740 Epoch 34 Step: 2900 Batch Loss: 2.269294 Tokens per Sec: 15684, Lr: 0.000300\n",
"2020-02-12 08:06:10,197 Epoch 34: total training loss 198.12\n",
"2020-02-12 08:06:10,198 EPOCH 35\n",
"2020-02-12 08:06:23,531 Epoch 35: total training loss 196.95\n",
"2020-02-12 08:06:23,531 EPOCH 36\n",
"2020-02-12 08:06:25,268 Epoch 36 Step: 3000 Batch Loss: 2.253644 Tokens per Sec: 15860, Lr: 0.000300\n",
"2020-02-12 08:06:53,915 Hooray! New best validation result [ppl]!\n",
"2020-02-12 08:06:53,915 Saving new checkpoint.\n",
"2020-02-12 08:06:54,305 Example #0\n",
"2020-02-12 08:06:54,306 \tSource: I thank him that enabled me, even Christ Jesus our Lord, for that he counted me faithful, appointing me to his service;\n",
"2020-02-12 08:06:54,306 \tReference: A go sɑɑbu i Kpe Yesu Mɛsiyɑ sɛ, ngɑ kɑ ɑ̀ nɑ ɑ no gɑɑbi. A gɑ kɑ ɑ̀ sɑɑbu domi ɑ̀ nɑ ɑ lɑsɑbu nɑɑnekpɛ kɑ ɑ dɑm ngɑ gbei kunɑ.\n",
"2020-02-12 08:06:54,306 \tHypothesis: A go kɑ ɑ̀ dɑm ɑ bine yom kunɑ kɑ i Kpe Yesu Mɛsiyɑ nɑ ɑ no himmɑ kɑ ɑ̀ ci ɑ gbei yom kɑ ɑ̀ ci ɑ sɛ ndɑ ɑ nyɑize yom sɛ.\n",
"2020-02-12 08:06:54,306 Example #1\n",
"2020-02-12 08:06:54,306 \tSource: Now lettest thou thy servant depart, Lord, According to thy word, in peace;\n",
"2020-02-12 08:06:54,306 \tReference: Mɑɑsɑnkulu Kpe, n mɑ tu n bɑnyɑ mɑ kpei ndɑ bɑɑni zɑngɑ n Sendɑ cii.\n",
"2020-02-12 08:06:54,306 \tHypothesis: N mɑ n ŋmɔne ibɛrɛ bei. N mɑ n ŋmɔne ibɛrɛ bei kɑ n go kɑ n sifɑ. N mɑ n bine yom sɔlu.\n",
"2020-02-12 08:06:54,306 Example #2\n",
"2020-02-12 08:06:54,306 \tSource: if so be that God is one, and he shall justify the circumcision by faith, and the uncircumcision through faith.\n",
"2020-02-12 08:06:54,306 \tReference: Ikpɛ fɔlɔnku yɑ gɑ bɑnguize yom cɛɑndi susu nɑɑne gɑɑ. À go zɑm kɑ dɑmbɑnguize yom mo cɛɑndi susu nɑɑne gɑɑ.\n",
"2020-02-12 08:06:54,306 \tHypothesis: De bɔrɔ kɑ ɑ̀ go dulum tɛ, Ikpɛ gɑ ɑ̀ cɛɑndi susu cɛɑndi susu fɔndɑ gɑɑ, ɑ̀ gɑ ɑ̀ cɛɑndi susu fɔndɑ tɛgbei yom gɑɑ.\n",
"2020-02-12 08:06:54,306 Example #3\n",
"2020-02-12 08:06:54,306 \tSource: And from that city many of the Samaritans believed on him because of the word of the woman, who testified, He told me all things that ever I did.\n",
"2020-02-12 08:06:54,306 \tReference: Wɑngɑrɑ ngɑ di, Sɑmɑriɑncɛ boobo nɑɑne Yesu gɑɑ weibɔrɔ di sendɑ sɑbu sɛ. Weibɔrɔ di tɛ sɛdɑ kɑ cii: Hɛ kulu kɑ ɑ jinɑ kɑ tɛ, ɑ̀ nɑ ɑ̀ cii ɑ sɛ.\n",
"2020-02-12 08:06:54,307 \tHypothesis: Sɑɑ kɑ jiribi boobo goono Sɑmɑri lɑɑbu bɔrɔ boobo nɑɑne ɑ̀ gɑɑ. À nɑ ɑ̀ bei kɑ ɑ̀ nɑ ngɑ bɔm kɑɑtɛrɛ ɑ sɛ.\n",
"2020-02-12 08:06:54,307 Validation result (greedy) at epoch 36, step 3000: bleu: 9.22, loss: 87075.9375, ppl: 16.8168, duration: 29.0380s\n",
"2020-02-12 08:07:05,785 Epoch 36: total training loss 194.14\n",
"2020-02-12 08:07:05,785 EPOCH 37\n",
"2020-02-12 08:07:09,763 Epoch 37 Step: 3100 Batch Loss: 2.478496 Tokens per Sec: 15837, Lr: 0.000300\n",
"2020-02-12 08:07:18,983 Epoch 37: total training loss 186.80\n",
"2020-02-12 08:07:18,983 EPOCH 38\n",
"2020-02-12 08:07:25,326 Epoch 38 Step: 3200 Batch Loss: 2.459899 Tokens per Sec: 16005, Lr: 0.000300\n",
"2020-02-12 08:07:32,158 Epoch 38: total training loss 187.90\n",
"2020-02-12 08:07:32,158 EPOCH 39\n",
"2020-02-12 08:07:40,545 Epoch 39 Step: 3300 Batch Loss: 2.147654 Tokens per Sec: 16118, Lr: 0.000300\n",
"2020-02-12 08:07:45,210 Epoch 39: total training loss 183.65\n",
"2020-02-12 08:07:45,210 EPOCH 40\n",
"2020-02-12 08:07:55,968 Epoch 40 Step: 3400 Batch Loss: 2.215834 Tokens per Sec: 15900, Lr: 0.000300\n",
"2020-02-12 08:07:58,273 Epoch 40: total training loss 181.06\n",
"2020-02-12 08:07:58,273 EPOCH 41\n",
"2020-02-12 08:08:11,320 Epoch 41 Step: 3500 Batch Loss: 2.216592 Tokens per Sec: 15814, Lr: 0.000300\n",
"2020-02-12 08:08:11,477 Epoch 41: total training loss 179.41\n",
"2020-02-12 08:08:11,477 EPOCH 42\n",
"2020-02-12 08:08:24,532 Epoch 42: total training loss 176.67\n",
"2020-02-12 08:08:24,532 EPOCH 43\n",
"2020-02-12 08:08:26,580 Epoch 43 Step: 3600 Batch Loss: 2.267456 Tokens per Sec: 15997, Lr: 0.000300\n",
"2020-02-12 08:08:37,597 Epoch 43: total training loss 175.32\n",
"2020-02-12 08:08:37,597 EPOCH 44\n",
"2020-02-12 08:08:41,765 Epoch 44 Step: 3700 Batch Loss: 2.231358 Tokens per Sec: 15763, Lr: 0.000300\n",
"2020-02-12 08:08:50,648 Epoch 44: total training loss 170.17\n",
"2020-02-12 08:08:50,648 EPOCH 45\n",
"2020-02-12 08:08:56,997 Epoch 45 Step: 3800 Batch Loss: 1.962990 Tokens per Sec: 16110, Lr: 0.000300\n",
"2020-02-12 08:09:03,514 Epoch 45: total training loss 168.11\n",
"2020-02-12 08:09:03,514 EPOCH 46\n",
"2020-02-12 08:09:12,224 Epoch 46 Step: 3900 Batch Loss: 1.920840 Tokens per Sec: 16143, Lr: 0.000300\n",
"2020-02-12 08:09:16,514 Epoch 46: total training loss 164.80\n",
"2020-02-12 08:09:16,514 EPOCH 47\n",
"2020-02-12 08:09:27,503 Epoch 47 Step: 4000 Batch Loss: 2.051774 Tokens per Sec: 16163, Lr: 0.000300\n",
"2020-02-12 08:09:50,187 Hooray! New best validation result [ppl]!\n",
"2020-02-12 08:09:50,188 Saving new checkpoint.\n",
"2020-02-12 08:09:50,454 Example #0\n",
"2020-02-12 08:09:50,455 \tSource: I thank him that enabled me, even Christ Jesus our Lord, for that he counted me faithful, appointing me to his service;\n",
"2020-02-12 08:09:50,455 \tReference: A go sɑɑbu i Kpe Yesu Mɛsiyɑ sɛ, ngɑ kɑ ɑ̀ nɑ ɑ no gɑɑbi. A gɑ kɑ ɑ̀ sɑɑbu domi ɑ̀ nɑ ɑ lɑsɑbu nɑɑnekpɛ kɑ ɑ dɑm ngɑ gbei kunɑ.\n",
"2020-02-12 08:09:50,455 \tHypothesis: A go kɑ ɑ dɑm ɑ bɑndɑ kɑ ɑ nɑ ɑ hɑlɑɑlɑndi Kpe Yesu Mɛsiyɑ gɑɑ. À go kɑ ɑ cɛbɛ yɑ ci ɑ sɛ kɑ ɑ nɑ gbei tɛ ndɑ ɑ sɛ hinɑbunyɑ.\n",
"2020-02-12 08:09:50,455 Example #1\n",
"2020-02-12 08:09:50,455 \tSource: Now lettest thou thy servant depart, Lord, According to thy word, in peace;\n",
"2020-02-12 08:09:50,455 \tReference: Mɑɑsɑnkulu Kpe, n mɑ tu n bɑnyɑ mɑ kpei ndɑ bɑɑni zɑngɑ n Sendɑ cii.\n",
"2020-02-12 08:09:50,455 \tHypothesis: N go tirɑ wɔ hɑntum n sɛ kɑ cii: Kpe, n mɑ lɑɑkɑli ndɑ n gɔrɔkɑsine ndɑ n gɑɑbi kɑ ɑ̀ ci n nyɑize lɑɑkɑli kɑne.\n",
"2020-02-12 08:09:50,455 Example #2\n",
"2020-02-12 08:09:50,455 \tSource: if so be that God is one, and he shall justify the circumcision by faith, and the uncircumcision through faith.\n",
"2020-02-12 08:09:50,455 \tReference: Ikpɛ fɔlɔnku yɑ gɑ bɑnguize yom cɛɑndi susu nɑɑne gɑɑ. À go zɑm kɑ dɑmbɑnguize yom mo cɛɑndi susu nɑɑne gɑɑ.\n",
"2020-02-12 08:09:50,455 \tHypothesis: Zɑngɑ yɑ no Ikpɛ go bɔrɔ cɛɑndi susu cɛɑndi susu. À gɑ cɛɑndiyom susu cɛɑndi susu gbei tɛyom gɑɑ, nɑɑne kɑ ɑ̀ go cɛɑndiyom susu tɛ cɛɑndiyom susu.\n",
"2020-02-12 08:09:50,455 Example #3\n",
"2020-02-12 08:09:50,456 \tSource: And from that city many of the Samaritans believed on him because of the word of the woman, who testified, He told me all things that ever I did.\n",
"2020-02-12 08:09:50,456 \tReference: Wɑngɑrɑ ngɑ di, Sɑmɑriɑncɛ boobo nɑɑne Yesu gɑɑ weibɔrɔ di sendɑ sɑbu sɛ. Weibɔrɔ di tɛ sɛdɑ kɑ cii: Hɛ kulu kɑ ɑ jinɑ kɑ tɛ, ɑ̀ nɑ ɑ̀ cii ɑ sɛ.\n",
"2020-02-12 08:09:50,456 \tHypothesis: Wɑngɑrɑ boobo kɑ ǹ nɑɑne Sɑmɑriɑncɛ yom gɑɑ nɑɑne ɑ̀ gɑɑ. À gɑɑ no bɔrɔ kulu kɑ ɑ̀ go sendi ɑ sɛ ndɑ zɑngɑ ɑ̀ cii ɑ sɛ hɛ kulu kɑ ɑ̀ tɛ.\n",
"2020-02-12 08:09:50,456 Validation result (greedy) at epoch 47, step 4000: bleu: 11.29, loss: 85277.0312, ppl: 15.8643, duration: 22.9526s\n",
"2020-02-12 08:09:52,574 Epoch 47: total training loss 163.93\n",
"2020-02-12 08:09:52,574 EPOCH 48\n",
"2020-02-12 08:10:05,768 Epoch 48 Step: 4100 Batch Loss: 1.702314 Tokens per Sec: 15861, Lr: 0.000300\n",
"2020-02-12 08:10:05,768 Epoch 48: total training loss 162.85\n",
"2020-02-12 08:10:05,769 EPOCH 49\n",
"2020-02-12 08:10:18,843 Epoch 49: total training loss 160.63\n",
"2020-02-12 08:10:18,843 EPOCH 50\n",
"2020-02-12 08:10:21,067 Epoch 50 Step: 4200 Batch Loss: 1.834686 Tokens per Sec: 15999, Lr: 0.000300\n",
"2020-02-12 08:10:32,003 Epoch 50: total training loss 155.13\n",
"2020-02-12 08:10:32,003 EPOCH 51\n",
"2020-02-12 08:10:36,505 Epoch 51 Step: 4300 Batch Loss: 2.050732 Tokens per Sec: 15220, Lr: 0.000300\n",
"2020-02-12 08:10:45,399 Epoch 51: total training loss 155.59\n",
"2020-02-12 08:10:45,399 EPOCH 52\n",
"2020-02-12 08:10:52,175 Epoch 52 Step: 4400 Batch Loss: 1.790398 Tokens per Sec: 15697, Lr: 0.000300\n",
"2020-02-12 08:10:58,800 Epoch 52: total training loss 152.99\n",
"2020-02-12 08:10:58,800 EPOCH 53\n",
"2020-02-12 08:11:07,604 Epoch 53 Step: 4500 Batch Loss: 1.742444 Tokens per Sec: 15682, Lr: 0.000300\n",
"2020-02-12 08:11:12,077 Epoch 53: total training loss 150.35\n",
"2020-02-12 08:11:12,077 EPOCH 54\n",
"2020-02-12 08:11:23,061 Epoch 54 Step: 4600 Batch Loss: 1.742742 Tokens per Sec: 16035, Lr: 0.000300\n",
"2020-02-12 08:11:25,161 Epoch 54: total training loss 147.54\n",
"2020-02-12 08:11:25,161 EPOCH 55\n",
"2020-02-12 08:11:38,167 Epoch 55: total training loss 145.17\n",
"2020-02-12 08:11:38,167 EPOCH 56\n",
"2020-02-12 08:11:38,322 Epoch 56 Step: 4700 Batch Loss: 1.371213 Tokens per Sec: 14813, Lr: 0.000300\n",
"2020-02-12 08:11:51,342 Epoch 56: total training loss 145.02\n",
"2020-02-12 08:11:51,342 EPOCH 57\n",
"2020-02-12 08:11:53,589 Epoch 57 Step: 4800 Batch Loss: 0.818968 Tokens per Sec: 15337, Lr: 0.000300\n",
"2020-02-12 08:12:04,549 Epoch 57: total training loss 140.81\n",
"2020-02-12 08:12:04,549 EPOCH 58\n",
"2020-02-12 08:12:09,119 Epoch 58 Step: 4900 Batch Loss: 1.726804 Tokens per Sec: 16059, Lr: 0.000300\n",
"2020-02-12 08:12:17,724 Epoch 58: total training loss 139.84\n",
"2020-02-12 08:12:17,724 EPOCH 59\n",
"2020-02-12 08:12:24,476 Epoch 59 Step: 5000 Batch Loss: 1.663464 Tokens per Sec: 16112, Lr: 0.000300\n",
"2020-02-12 08:12:44,550 Example #0\n",
"2020-02-12 08:12:44,550 \tSource: I thank him that enabled me, even Christ Jesus our Lord, for that he counted me faithful, appointing me to his service;\n",
"2020-02-12 08:12:44,550 \tReference: A go sɑɑbu i Kpe Yesu Mɛsiyɑ sɛ, ngɑ kɑ ɑ̀ nɑ ɑ no gɑɑbi. A gɑ kɑ ɑ̀ sɑɑbu domi ɑ̀ nɑ ɑ lɑsɑbu nɑɑnekpɛ kɑ ɑ dɑm ngɑ gbei kunɑ.\n",
"2020-02-12 08:12:44,550 \tHypothesis: A go kɑ ɑ̀ dɑm ɑ bɑndɑ Mɛsiyɑ Yesu sɑbu sɛ. A go kɑ ɑ cɛbɛ yɑ nɑɑnekpɛ no zɑmɑ ngɑ yɑ ci ɑ tɑm yom gbei yom sɛ.\n",
"2020-02-12 08:12:44,550 Example #1\n",
"2020-02-12 08:12:44,550 \tSource: Now lettest thou thy servant depart, Lord, According to thy word, in peace;\n",
"2020-02-12 08:12:44,551 \tReference: Mɑɑsɑnkulu Kpe, n mɑ tu n bɑnyɑ mɑ kpei ndɑ bɑɑni zɑngɑ n Sendɑ cii.\n",
"2020-02-12 08:12:44,551 \tHypothesis: A nyɑizei, n mɑ wɔne cii ɑ sɛ, Kpei, n mɑ kpei kɑ n bine yeenɑndi.\n",
"2020-02-12 08:12:44,551 Example #2\n",
"2020-02-12 08:12:44,551 \tSource: if so be that God is one, and he shall justify the circumcision by faith, and the uncircumcision through faith.\n",
"2020-02-12 08:12:44,551 \tReference: Ikpɛ fɔlɔnku yɑ gɑ bɑnguize yom cɛɑndi susu nɑɑne gɑɑ. À go zɑm kɑ dɑmbɑnguize yom mo cɛɑndi susu nɑɑne gɑɑ.\n",
"2020-02-12 08:12:44,551 \tHypothesis: Zɑngɑ yɑ no Ikpɛ go bɔrɔ fɔ ŋmɑni tɛ, ɑ̀ gɑ kɑ ɑ̀ cɛɑndi susu. À gɑ nɑɑne cini. À gɑ nɑɑne mo cɛyom susu zɑm kɑ nɑɑne cini.\n",
"2020-02-12 08:12:44,551 Example #3\n",
"2020-02-12 08:12:44,551 \tSource: And from that city many of the Samaritans believed on him because of the word of the woman, who testified, He told me all things that ever I did.\n",
"2020-02-12 08:12:44,551 \tReference: Wɑngɑrɑ ngɑ di, Sɑmɑriɑncɛ boobo nɑɑne Yesu gɑɑ weibɔrɔ di sendɑ sɑbu sɛ. Weibɔrɔ di tɛ sɛdɑ kɑ cii: Hɛ kulu kɑ ɑ jinɑ kɑ tɛ, ɑ̀ nɑ ɑ̀ cii ɑ sɛ.\n",
"2020-02-12 08:12:44,551 \tHypothesis: Yude lɑɑbu bɔrɔ boobo nɑɑne kɑ ǹ nɑɑne ɑ̀ gɑɑ zɑmɑ ǹ nɑɑne ɑ̀ gɑɑ no ɑ̀ cii ɑ̀ sɛ ndɑ bɔrɔ kulu kɑ ɑ̀ cii ɑ sɛ.\n",
"2020-02-12 08:12:44,551 Validation result (greedy) at epoch 59, step 5000: bleu: 12.00, loss: 85901.3047, ppl: 16.1885, duration: 20.0748s\n",
"2020-02-12 08:12:50,706 Epoch 59: total training loss 137.53\n",
"2020-02-12 08:12:50,706 EPOCH 60\n",
"2020-02-12 08:12:59,895 Epoch 60 Step: 5100 Batch Loss: 1.482252 Tokens per Sec: 15654, Lr: 0.000300\n",
"2020-02-12 08:13:04,077 Epoch 60: total training loss 137.19\n",
"2020-02-12 08:13:04,077 EPOCH 61\n",
"2020-02-12 08:13:15,535 Epoch 61 Step: 5200 Batch Loss: 1.831912 Tokens per Sec: 15724, Lr: 0.000300\n",
"2020-02-12 08:13:17,416 Epoch 61: total training loss 133.84\n",
"2020-02-12 08:13:17,416 EPOCH 62\n",
"2020-02-12 08:13:30,686 Epoch 62: total training loss 132.52\n",
"2020-02-12 08:13:30,686 EPOCH 63\n",
"2020-02-12 08:13:31,028 Epoch 63 Step: 5300 Batch Loss: 1.674448 Tokens per Sec: 15683, Lr: 0.000300\n",
"2020-02-12 08:13:43,747 Epoch 63: total training loss 130.11\n",
"2020-02-12 08:13:43,747 EPOCH 64\n",
"2020-02-12 08:13:46,363 Epoch 64 Step: 5400 Batch Loss: 1.587212 Tokens per Sec: 15789, Lr: 0.000300\n",
"2020-02-12 08:13:56,888 Epoch 64: total training loss 128.50\n",
"2020-02-12 08:13:56,888 EPOCH 65\n",
"2020-02-12 08:14:01,749 Epoch 65 Step: 5500 Batch Loss: 1.394756 Tokens per Sec: 16017, Lr: 0.000300\n",
"2020-02-12 08:14:10,042 Epoch 65: total training loss 127.63\n",
"2020-02-12 08:14:10,042 EPOCH 66\n",
"2020-02-12 08:14:17,078 Epoch 66 Step: 5600 Batch Loss: 1.455463 Tokens per Sec: 16081, Lr: 0.000300\n",
"2020-02-12 08:14:23,112 Epoch 66: total training loss 124.27\n",
"2020-02-12 08:14:23,112 EPOCH 67\n",
"2020-02-12 08:14:32,570 Epoch 67 Step: 5700 Batch Loss: 1.391649 Tokens per Sec: 16040, Lr: 0.000300\n",
"2020-02-12 08:14:36,154 Epoch 67: total training loss 121.23\n",
"2020-02-12 08:14:36,154 EPOCH 68\n",
"2020-02-12 08:14:47,781 Epoch 68 Step: 5800 Batch Loss: 1.611635 Tokens per Sec: 16005, Lr: 0.000300\n",
"2020-02-12 08:14:49,192 Epoch 68: total training loss 121.93\n",
"2020-02-12 08:14:49,193 EPOCH 69\n",
"2020-02-12 08:15:02,240 Epoch 69: total training loss 119.52\n",
"2020-02-12 08:15:02,240 EPOCH 70\n",
"2020-02-12 08:15:03,184 Epoch 70 Step: 5900 Batch Loss: 1.386215 Tokens per Sec: 16172, Lr: 0.000300\n",
"2020-02-12 08:15:15,354 Epoch 70: total training loss 119.11\n",
"2020-02-12 08:15:15,354 EPOCH 71\n",
"2020-02-12 08:15:18,488 Epoch 71 Step: 6000 Batch Loss: 1.360763 Tokens per Sec: 15807, Lr: 0.000300\n",
"2020-02-12 08:15:43,518 Example #0\n",
"2020-02-12 08:15:43,519 \tSource: I thank him that enabled me, even Christ Jesus our Lord, for that he counted me faithful, appointing me to his service;\n",
"2020-02-12 08:15:43,519 \tReference: A go sɑɑbu i Kpe Yesu Mɛsiyɑ sɛ, ngɑ kɑ ɑ̀ nɑ ɑ no gɑɑbi. A gɑ kɑ ɑ̀ sɑɑbu domi ɑ̀ nɑ ɑ lɑsɑbu nɑɑnekpɛ kɑ ɑ dɑm ngɑ gbei kunɑ.\n",
"2020-02-12 08:15:43,519 \tHypothesis: A go kɑ ɑ hɔngɑndi kɑ Yesu Mɛsiyɑ nɑ ɑ no ngɑ suuji sɑbu sɛ. À go kɑ ɑ cɛbɛ no tɑlikɑ yom sɛ kɑ ǹ ci ɑ sɛ hinɑbunutɛrɛ hɛ kɑ ɑ gundɑ ɑ sɛ ndɑ.\n",
"2020-02-12 08:15:43,519 Example #1\n",
"2020-02-12 08:15:43,519 \tSource: Now lettest thou thy servant depart, Lord, According to thy word, in peace;\n",
"2020-02-12 08:15:43,519 \tReference: Mɑɑsɑnkulu Kpe, n mɑ tu n bɑnyɑ mɑ kpei ndɑ bɑɑni zɑngɑ n Sendɑ cii.\n",
"2020-02-12 08:15:43,519 \tHypothesis: A nyɑizei, n mɑ wɔne cii ɑ sɛ, Kpei, Setɑm. N mɑ n bine yeenɑndi kɑ n bine yom kɔnkɔm.\n",
"2020-02-12 08:15:43,519 Example #2\n",
"2020-02-12 08:15:43,519 \tSource: if so be that God is one, and he shall justify the circumcision by faith, and the uncircumcision through faith.\n",
"2020-02-12 08:15:43,519 \tReference: Ikpɛ fɔlɔnku yɑ gɑ bɑnguize yom cɛɑndi susu nɑɑne gɑɑ. À go zɑm kɑ dɑmbɑnguize yom mo cɛɑndi susu nɑɑne gɑɑ.\n",
"2020-02-12 08:15:43,519 \tHypothesis: Zɑngɑ yɑ no Ikpɛ go hungu, ngɑ kɑ ɑ̀ gɑ cɛɑndi susu. À gɑ bɔrɔ cɛɑndi susu. À gɑ nɑɑne nɑɑne gɑɑ nɑɑne gɑɑ, nɑɑne kɑ ɑ̀ gɑ nɑɑne cini.\n",
"2020-02-12 08:15:43,519 Example #3\n",
"2020-02-12 08:15:43,519 \tSource: And from that city many of the Samaritans believed on him because of the word of the woman, who testified, He told me all things that ever I did.\n",
"2020-02-12 08:15:43,520 \tReference: Wɑngɑrɑ ngɑ di, Sɑmɑriɑncɛ boobo nɑɑne Yesu gɑɑ weibɔrɔ di sendɑ sɑbu sɛ. Weibɔrɔ di tɛ sɛdɑ kɑ cii: Hɛ kulu kɑ ɑ jinɑ kɑ tɛ, ɑ̀ nɑ ɑ̀ cii ɑ sɛ.\n",
"2020-02-12 08:15:43,520 \tHypothesis: Zɑ Sɑmɑri lɑɑbu bɔrɔ boobo nɑɑne ɑ̀ gɑɑ kɑ Yesu mɑɑ sendɑ sɑbu sɛ. À nɑɑne ɑ̀ gɑɑ no ɑ̀ cii bɔrɔ kulu kɑ ɑ̀ sɛ ɑ go sendi hɛ kulu kɑ ɑ̀ sɛ ndɑ hɛ kulu kɑ ɑ̀ ci lɑɑli li boobo.\n",
"2020-02-12 08:15:43,520 Validation result (greedy) at epoch 71, step 6000: bleu: 12.57, loss: 87502.0469, ppl: 17.0506, duration: 25.0314s\n",
"2020-02-12 08:15:53,449 Epoch 71: total training loss 117.19\n",
"2020-02-12 08:15:53,449 EPOCH 72\n",
"2020-02-12 08:15:58,872 Epoch 72 Step: 6100 Batch Loss: 1.318082 Tokens per Sec: 15817, Lr: 0.000300\n",
"2020-02-12 08:16:06,526 Epoch 72: total training loss 116.32\n",
"2020-02-12 08:16:06,526 EPOCH 73\n",
"2020-02-12 08:16:14,045 Epoch 73 Step: 6200 Batch Loss: 1.606343 Tokens per Sec: 15923, Lr: 0.000300\n",
"2020-02-12 08:16:19,546 Epoch 73: total training loss 113.52\n",
"2020-02-12 08:16:19,546 EPOCH 74\n",
"2020-02-12 08:16:29,348 Epoch 74 Step: 6300 Batch Loss: 1.334043 Tokens per Sec: 16390, Lr: 0.000300\n",
"2020-02-12 08:16:32,383 Epoch 74: total training loss 110.36\n",
"2020-02-12 08:16:32,383 EPOCH 75\n",
"2020-02-12 08:16:44,515 Epoch 75 Step: 6400 Batch Loss: 1.328613 Tokens per Sec: 15922, Lr: 0.000300\n",
"2020-02-12 08:16:45,472 Epoch 75: total training loss 111.58\n",
"2020-02-12 08:16:45,472 EPOCH 76\n",
"2020-02-12 08:16:58,446 Epoch 76: total training loss 109.24\n",
"2020-02-12 08:16:58,447 EPOCH 77\n",
"2020-02-12 08:16:59,907 Epoch 77 Step: 6500 Batch Loss: 1.263935 Tokens per Sec: 15999, Lr: 0.000300\n",
"2020-02-12 08:17:11,608 Epoch 77: total training loss 108.91\n",
"2020-02-12 08:17:11,609 EPOCH 78\n",
"2020-02-12 08:17:15,134 Epoch 78 Step: 6600 Batch Loss: 1.015139 Tokens per Sec: 15818, Lr: 0.000300\n",
"2020-02-12 08:17:24,678 Epoch 78: total training loss 106.83\n",
"2020-02-12 08:17:24,678 EPOCH 79\n",
"2020-02-12 08:17:30,369 Epoch 79 Step: 6700 Batch Loss: 1.263142 Tokens per Sec: 16083, Lr: 0.000300\n",
"2020-02-12 08:17:37,741 Epoch 79: total training loss 104.67\n",
"2020-02-12 08:17:37,742 EPOCH 80\n",
"2020-02-12 08:17:45,888 Epoch 80 Step: 6800 Batch Loss: 1.249294 Tokens per Sec: 16000, Lr: 0.000300\n",
"2020-02-12 08:17:50,719 Epoch 80: total training loss 103.46\n",
"2020-02-12 08:17:50,719 EPOCH 81\n",
"2020-02-12 08:18:01,082 Epoch 81 Step: 6900 Batch Loss: 1.248681 Tokens per Sec: 16417, Lr: 0.000300\n",
"2020-02-12 08:18:03,519 Epoch 81: total training loss 102.05\n",
"2020-02-12 08:18:03,520 EPOCH 82\n",
"2020-02-12 08:18:16,247 Epoch 82 Step: 7000 Batch Loss: 0.890814 Tokens per Sec: 16235, Lr: 0.000300\n",
"2020-02-12 08:18:35,052 Example #0\n",
"2020-02-12 08:18:35,053 \tSource: I thank him that enabled me, even Christ Jesus our Lord, for that he counted me faithful, appointing me to his service;\n",
"2020-02-12 08:18:35,053 \tReference: A go sɑɑbu i Kpe Yesu Mɛsiyɑ sɛ, ngɑ kɑ ɑ̀ nɑ ɑ no gɑɑbi. A gɑ kɑ ɑ̀ sɑɑbu domi ɑ̀ nɑ ɑ lɑsɑbu nɑɑnekpɛ kɑ ɑ dɑm ngɑ gbei kunɑ.\n",
"2020-02-12 08:18:35,053 \tHypothesis: A go kɑ ɑ dɔntɔm mɑɑsɑ. À gɑ kɑ ɑ Kpe Yesu Mɛsiyɑ cɛbɛ yɑ nɑɑnekpɛ no. À nɑ ɑ cɛbɛ yɑ gbei hinno yom tɛ ɑ sɛ. A go kɑ ɑ nɑ ɑ bɔm no himɑndi ndɑ himmɑ.\n",
"2020-02-12 08:18:35,053 Example #1\n",
"2020-02-12 08:18:35,053 \tSource: Now lettest thou thy servant depart, Lord, According to thy word, in peace;\n",
"2020-02-12 08:18:35,053 \tReference: Mɑɑsɑnkulu Kpe, n mɑ tu n bɑnyɑ mɑ kpei ndɑ bɑɑni zɑngɑ n Sendɑ cii.\n",
"2020-02-12 08:18:35,053 \tHypothesis: A nyɑizei, n mɑ wɔne cii n sɛ, Kpei, n mɑ lɑɑkɑli tunɑndi kɑ dimi dɑm n lɑɑkɑli kɑne.\n",
"2020-02-12 08:18:35,053 Example #2\n",
"2020-02-12 08:18:35,053 \tSource: if so be that God is one, and he shall justify the circumcision by faith, and the uncircumcision through faith.\n",
"2020-02-12 08:18:35,053 \tReference: Ikpɛ fɔlɔnku yɑ gɑ bɑnguize yom cɛɑndi susu nɑɑne gɑɑ. À go zɑm kɑ dɑmbɑnguize yom mo cɛɑndi susu nɑɑne gɑɑ.\n",
"2020-02-12 08:18:35,053 \tHypothesis: Zɑngɑ yɑ no Ikpɛ go bɔrɔ cɛɑndi susu. Bɔrɔ kɑ ɑ̀ gɑ nɑɑne gɑ ɑ̀ cɛɑndi susu. À gɑ nɑɑne nɑɑne hinnɑ. À gɑ nɑɑne nɑɑne nɑɑne cini.\n",
"2020-02-12 08:18:35,053 Example #3\n",
"2020-02-12 08:18:35,053 \tSource: And from that city many of the Samaritans believed on him because of the word of the woman, who testified, He told me all things that ever I did.\n",
"2020-02-12 08:18:35,053 \tReference: Wɑngɑrɑ ngɑ di, Sɑmɑriɑncɛ boobo nɑɑne Yesu gɑɑ weibɔrɔ di sendɑ sɑbu sɛ. Weibɔrɔ di tɛ sɛdɑ kɑ cii: Hɛ kulu kɑ ɑ jinɑ kɑ tɛ, ɑ̀ nɑ ɑ̀ cii ɑ sɛ.\n",
"2020-02-12 08:18:35,053 \tHypothesis: Yude lɑɑbu bɔrɔ boobo nɑɑne ɑ̀ gɑɑ. Ǹ nɑ Yesu nɑɑne ɑ̀ gɑɑ zɑmɑ ɑ̀ cii bɔrɔ kulu kɑ ɑ̀ mɑɑ ɑ sɛ.\n",
"2020-02-12 08:18:35,053 Validation result (greedy) at epoch 82, step 7000: bleu: 13.65, loss: 89457.6172, ppl: 18.1664, duration: 18.8061s\n",
"2020-02-12 08:18:35,212 Epoch 82: total training loss 99.90\n",
"2020-02-12 08:18:35,212 EPOCH 83\n",
"2020-02-12 08:18:48,109 Epoch 83: total training loss 99.90\n",
"2020-02-12 08:18:48,109 EPOCH 84\n",
"2020-02-12 08:18:50,306 Epoch 84 Step: 7100 Batch Loss: 1.299865 Tokens per Sec: 15861, Lr: 0.000300\n",
"2020-02-12 08:19:00,884 Epoch 84: total training loss 98.65\n",
"2020-02-12 08:19:00,884 EPOCH 85\n",
"2020-02-12 08:19:05,137 Epoch 85 Step: 7200 Batch Loss: 0.877816 Tokens per Sec: 15843, Lr: 0.000300\n",
"2020-02-12 08:19:13,810 Epoch 85: total training loss 97.33\n",
"2020-02-12 08:19:13,810 EPOCH 86\n",
"2020-02-12 08:19:20,507 Epoch 86 Step: 7300 Batch Loss: 1.287703 Tokens per Sec: 16485, Lr: 0.000300\n",
"2020-02-12 08:19:26,654 Epoch 86: total training loss 95.47\n",
"2020-02-12 08:19:26,655 EPOCH 87\n",
"2020-02-12 08:19:35,599 Epoch 87 Step: 7400 Batch Loss: 1.237134 Tokens per Sec: 15999, Lr: 0.000300\n",
"2020-02-12 08:19:39,705 Epoch 87: total training loss 96.01\n",
"2020-02-12 08:19:39,705 EPOCH 88\n",
"2020-02-12 08:19:50,814 Epoch 88 Step: 7500 Batch Loss: 1.328148 Tokens per Sec: 16186, Lr: 0.000300\n",
"2020-02-12 08:19:52,727 Epoch 88: total training loss 95.81\n",
"2020-02-12 08:19:52,728 EPOCH 89\n",
"2020-02-12 08:20:05,885 Epoch 89: total training loss 92.46\n",
"2020-02-12 08:20:05,885 EPOCH 90\n",
"2020-02-12 08:20:06,204 Epoch 90 Step: 7600 Batch Loss: 0.852934 Tokens per Sec: 16006, Lr: 0.000300\n",
"2020-02-12 08:20:18,856 Epoch 90: total training loss 91.59\n",
"2020-02-12 08:20:18,856 EPOCH 91\n",
"2020-02-12 08:20:21,463 Epoch 91 Step: 7700 Batch Loss: 1.099604 Tokens per Sec: 16478, Lr: 0.000300\n",
"2020-02-12 08:20:31,836 Epoch 91: total training loss 90.21\n",
"2020-02-12 08:20:31,836 EPOCH 92\n",
"2020-02-12 08:20:36,833 Epoch 92 Step: 7800 Batch Loss: 1.154287 Tokens per Sec: 16331, Lr: 0.000300\n",
"2020-02-12 08:20:44,719 Epoch 92: total training loss 89.19\n",
"2020-02-12 08:20:44,719 EPOCH 93\n",
"2020-02-12 08:20:51,703 Epoch 93 Step: 7900 Batch Loss: 1.021082 Tokens per Sec: 16284, Lr: 0.000300\n",
"2020-02-12 08:20:57,555 Epoch 93: total training loss 89.00\n",
"2020-02-12 08:20:57,555 EPOCH 94\n",
"2020-02-12 08:21:06,806 Epoch 94 Step: 8000 Batch Loss: 1.096427 Tokens per Sec: 16372, Lr: 0.000300\n",
"2020-02-12 08:21:25,191 Example #0\n",
"2020-02-12 08:21:25,191 \tSource: I thank him that enabled me, even Christ Jesus our Lord, for that he counted me faithful, appointing me to his service;\n",
"2020-02-12 08:21:25,191 \tReference: A go sɑɑbu i Kpe Yesu Mɛsiyɑ sɛ, ngɑ kɑ ɑ̀ nɑ ɑ no gɑɑbi. A gɑ kɑ ɑ̀ sɑɑbu domi ɑ̀ nɑ ɑ lɑsɑbu nɑɑnekpɛ kɑ ɑ dɑm ngɑ gbei kunɑ.\n",
"2020-02-12 08:21:25,191 \tHypothesis: A go kɑ ɑ dɔntɔm ɑ̀ mɑ ɑ dii kɑ cii Mɛsiyɑ yɑ Kpe no. A go kɑ ɑ cɛbɛ yɑ nɑɑnekpɛ yom no zɑmɑ ngɑ gbei yom kɑ ɑ gundɑ ɑ sɛ yɑ ɑ himmɑ.\n",
"2020-02-12 08:21:25,191 Example #1\n",
"2020-02-12 08:21:25,191 \tSource: Now lettest thou thy servant depart, Lord, According to thy word, in peace;\n",
"2020-02-12 08:21:25,192 \tReference: Mɑɑsɑnkulu Kpe, n mɑ tu n bɑnyɑ mɑ kpei ndɑ bɑɑni zɑngɑ n Sendɑ cii.\n",
"2020-02-12 08:21:25,192 \tHypothesis: A nyɑizei, n mɑ wɔne tɑm tɑm yɑ ci Kpe n nyɑize kɑ ɑ̀ goono ndɑ lɑɑkɑli kɑne.\n",
"2020-02-12 08:21:25,192 Example #2\n",
"2020-02-12 08:21:25,192 \tSource: if so be that God is one, and he shall justify the circumcision by faith, and the uncircumcision through faith.\n",
"2020-02-12 08:21:25,192 \tReference: Ikpɛ fɔlɔnku yɑ gɑ bɑnguize yom cɛɑndi susu nɑɑne gɑɑ. À go zɑm kɑ dɑmbɑnguize yom mo cɛɑndi susu nɑɑne gɑɑ.\n",
"2020-02-12 08:21:25,192 \tHypothesis: De Ikpɛ go bɔrɔ fɔ ŋmɑni tɛ, ɑkpɛ mo Ikpɛ gɑ cɛɑndi susu. À gɑ bɔrɔ cɛɑndi susu nɑɑne gɑɑ, nɑɑne gɑ ɑ̀ cɛɑndi susu.\n",
"2020-02-12 08:21:25,192 Example #3\n",
"2020-02-12 08:21:25,192 \tSource: And from that city many of the Samaritans believed on him because of the word of the woman, who testified, He told me all things that ever I did.\n",
"2020-02-12 08:21:25,192 \tReference: Wɑngɑrɑ ngɑ di, Sɑmɑriɑncɛ boobo nɑɑne Yesu gɑɑ weibɔrɔ di sendɑ sɑbu sɛ. Weibɔrɔ di tɛ sɛdɑ kɑ cii: Hɛ kulu kɑ ɑ jinɑ kɑ tɛ, ɑ̀ nɑ ɑ̀ cii ɑ sɛ.\n",
"2020-02-12 08:21:25,192 \tHypothesis: Yude lɑɑbu bɔrɔ boobo nɑɑne ɑ̀ gɑɑ kɑ Yesu mɑɑ bɑɑru zɑmɑ ǹ nɑ ɑ̀ sendɑ nɑɑne ɑ̀ gɑɑ kɑ cii mɔngɔlɔ di sɛ: Bɔrɔ kulu kɑ ɑ̀ go kɑ ɑ ze ndɑ hɛ kulu kɑ ɑ̀ ci lɑɑbuyom.\n",
"2020-02-12 08:21:25,192 Validation result (greedy) at epoch 94, step 8000: bleu: 14.18, loss: 91254.2891, ppl: 19.2557, duration: 18.3859s\n",
"2020-02-12 08:21:28,745 Epoch 94: total training loss 87.77\n",
"2020-02-12 08:21:28,745 EPOCH 95\n",
"2020-02-12 08:21:40,211 Epoch 95 Step: 8100 Batch Loss: 1.297292 Tokens per Sec: 16383, Lr: 0.000300\n",
"2020-02-12 08:21:41,572 Epoch 95: total training loss 87.34\n",
"2020-02-12 08:21:41,572 EPOCH 96\n",
"2020-02-12 08:21:54,274 Epoch 96: total training loss 86.27\n",
"2020-02-12 08:21:54,275 EPOCH 97\n",
"2020-02-12 08:21:55,049 Epoch 97 Step: 8200 Batch Loss: 1.032753 Tokens per Sec: 16466, Lr: 0.000300\n",
"2020-02-12 08:22:07,257 Epoch 97: total training loss 84.80\n",
"2020-02-12 08:22:07,258 EPOCH 98\n",
"2020-02-12 08:22:10,303 Epoch 98 Step: 8300 Batch Loss: 0.992160 Tokens per Sec: 15828, Lr: 0.000300\n",
"2020-02-12 08:22:20,378 Epoch 98: total training loss 83.56\n",
"2020-02-12 08:22:20,378 EPOCH 99\n",
"2020-02-12 08:22:25,811 Epoch 99 Step: 8400 Batch Loss: 0.987172 Tokens per Sec: 15959, Lr: 0.000300\n",
"2020-02-12 08:22:33,492 Epoch 99: total training loss 83.05\n",
"2020-02-12 08:22:33,492 EPOCH 100\n",
"2020-02-12 08:22:41,229 Epoch 100 Step: 8500 Batch Loss: 0.951234 Tokens per Sec: 15873, Lr: 0.000300\n",
"2020-02-12 08:22:46,610 Epoch 100: total training loss 83.42\n",
"2020-02-12 08:22:46,610 Training ended after 100 epochs.\n",
"2020-02-12 08:22:46,610 Best validation result (greedy) at step 4000: 15.86 ppl.\n",
"2020-02-12 08:23:15,974 dev bleu: 13.32 [Beam search decoding with beam size = 5 and alpha = 1.0]\n",
"2020-02-12 08:23:15,975 Translations saved to: models/enddn_transformer/00004000.hyps.dev\n",
"2020-02-12 08:23:20,504 test bleu: 22.30 [Beam search decoding with beam size = 5 and alpha = 1.0]\n",
"2020-02-12 08:23:20,504 Translations saved to: models/enddn_transformer/00004000.hyps.test\n"
],
"name": "stdout"
}
]
},
{
"cell_type": "code",
"metadata": {
"id": "nJHT-J8tU56N",
"colab_type": "code",
"outputId": "65d0e7ba-2d23-47ea-ff15-32f1414d2501",
"colab": {
"base_uri": "https://localhost:8080/",
"height": 86
}
},
"source": [
"!ls joeynmt/models/${src}${tgt}_transformer"
],
"execution_count": 22,
"outputs": [
{
"output_type": "stream",
"text": [
"00004000.hyps.dev 2000.hyps 4000.hyps 8000.hyps\t tensorboard\n",
"00004000.hyps.test 3000.ckpt 5000.hyps best.ckpt\t train.log\n",
"1000.hyps\t 3000.hyps 6000.hyps config.yaml\t trg_vocab.txt\n",
"2000.ckpt\t 4000.ckpt 7000.hyps src_vocab.txt validations.txt\n"
],
"name": "stdout"
}
]
},
{
"cell_type": "code",
"metadata": {
"colab_type": "code",
"id": "MBoDS09JM807",
"outputId": "f4ed8475-4759-4f2e-fcb0-ba90a59c07c9",
"colab": {
"base_uri": "https://localhost:8080/",
"height": 34
}
},
"source": [
"# Copy the created models from the notebook storage to google drive for persistant storage \n",
"!cp -r joeynmt/models/${src}${tgt}_transformer/* \"$gdrive_path/models/${src}${tgt}_transformer/\""
],
"execution_count": 23,
"outputs": [
{
"output_type": "stream",
"text": [
"cp: cannot create symbolic link '/content/drive/My Drive/masakhane/en-ddn-baseline/models/enddn_transformer/best.ckpt': Operation not supported\n"
],
"name": "stdout"
}
]
},
{
"cell_type": "code",
"metadata": {
"id": "VNBlLPMFVKc2",
"colab_type": "code",
"colab": {}
},
"source": [
"# Copy the created models from the notebook storage to google drive for persistant storage \n",
"!cp joeynmt/models/${src}${tgt}_transformer/best.ckpt \"$gdrive_path/models/${src}${tgt}_transformer/\""
],
"execution_count": 0,
"outputs": []
},
{
"cell_type": "code",
"metadata": {
"colab_type": "code",
"id": "n94wlrCjVc17",
"outputId": "37d6339f-1136-4e11-e0f7-8837ccdf6b3e",
"colab": {
"base_uri": "https://localhost:8080/",
"height": 156
}
},
"source": [
"# Output our validation accuracy\n",
"! cat \"$gdrive_path/models/${src}${tgt}_transformer/validations.txt\""
],
"execution_count": 25,
"outputs": [
{
"output_type": "stream",
"text": [
"Steps: 1000\tLoss: 108241.07812\tPPL: 33.39471\tbleu: 2.25322\tLR: 0.00030000\t*\n",
"Steps: 2000\tLoss: 93221.48438\tPPL: 20.52349\tbleu: 6.63362\tLR: 0.00030000\t*\n",
"Steps: 3000\tLoss: 87075.93750\tPPL: 16.81676\tbleu: 9.22080\tLR: 0.00030000\t*\n",
"Steps: 4000\tLoss: 85277.03125\tPPL: 15.86425\tbleu: 11.29147\tLR: 0.00030000\t*\n",
"Steps: 5000\tLoss: 85901.30469\tPPL: 16.18852\tbleu: 12.00153\tLR: 0.00030000\t\n",
"Steps: 6000\tLoss: 87502.04688\tPPL: 17.05063\tbleu: 12.57401\tLR: 0.00030000\t\n",
"Steps: 7000\tLoss: 89457.61719\tPPL: 18.16638\tbleu: 13.65009\tLR: 0.00030000\t\n",
"Steps: 8000\tLoss: 91254.28906\tPPL: 19.25571\tbleu: 14.18309\tLR: 0.00030000\t\n"
],
"name": "stdout"
}
]
},
{
"cell_type": "code",
"metadata": {
"colab_type": "code",
"id": "66WhRE9lIhoD",
"outputId": "46270930-9553-4917-c55a-9b1d6fd6cafd",
"colab": {
"base_uri": "https://localhost:8080/",
"height": 69
}
},
"source": [
"# Test our model\n",
"! cd joeynmt; python3 -m joeynmt test \"$gdrive_path/models/${src}${tgt}_transformer/config.yaml\""
],
"execution_count": 26,
"outputs": [
{
"output_type": "stream",
"text": [
"2020-02-12 08:23:33,730 Hello! This is Joey-NMT.\n",
"2020-02-12 08:24:08,045 dev bleu: 13.32 [Beam search decoding with beam size = 5 and alpha = 1.0]\n",
"2020-02-12 08:24:12,709 test bleu: 22.30 [Beam search decoding with beam size = 5 and alpha = 1.0]\n"
],
"name": "stdout"
}
]
}
]
} |