File size: 53,118 Bytes
78aa4ee
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
211
212
213
214
215
216
217
218
219
220
221
222
223
224
225
226
227
228
229
230
231
232
233
234
235
236
237
238
239
240
241
242
243
244
245
246
247
248
249
250
251
252
253
254
255
256
257
258
259
260
261
262
263
264
265
266
267
268
269
270
271
272
273
274
275
276
277
278
279
280
281
282
283
284
285
286
287
288
289
290
291
292
293
294
295
296
297
298
299
300
301
302
303
304
305
306
307
308
309
310
311
312
313
314
315
316
317
318
319
320
321
322
323
324
325
326
327
328
329
330
331
332
333
334
335
336
337
338
339
340
341
342
343
344
345
346
347
348
349
350
351
352
353
354
355
356
357
358
359
360
361
362
363
364
365
366
367
368
369
370
371
372
373
374
375
376
377
378
379
380
381
382
383
384
385
386
387
388
389
390
391
392
393
394
395
396
397
398
399
400
401
402
403
404
405
406
407
408
409
410
411
412
413
414
415
416
417
418
419
420
421
422
423
424
425
426
427
428
429
430
431
432
433
434
435
436
437
438
439
440
441
442
443
444
445
446
447
448
449
450
451
452
453
454
455
456
457
458
459
460
461
462
463
464
465
466
467
468
469
470
471
472
473
474
475
476
477
478
479
480
481
482
483
484
485
486
487
488
489
490
491
492
493
494
495
496
497
498
499
500
501
502
503
504
505
506
507
508
509
510
511
512
513
514
515
516
517
518
519
520
521
522
523
524
525
526
527
528
529
530
531
532
533
534
535
536
537
538
539
540
541
542
543
544
545
546
547
548
549
550
551
552
553
554
555
556
557
558
559
560
561
562
563
564
565
566
567
568
569
570
571
572
573
574
575
576
577
578
579
580
581
582
583
584
585
586
587
588
589
590
591
592
593
594
595
596
597
598
599
600
601
602
603
604
605
606
607
608
609
610
611
612
613
614
615
616
617
618
619
620
621
622
623
624
625
626
627
628
629
630
631
632
633
634
635
636
637
638
639
640
641
642
643
644
645
646
647
648
649
650
651
652
653
654
655
656
657
658
659
660
661
662
663
664
665
666
667
668
669
670
671
672
673
674
675
676
677
678
679
680
681
682
683
684
685
686
687
688
689
690
691
692
693
694
695
696
697
698
699
700
701
702
703
704
705
706
707
708
709
710
711
712
713
714
715
716
717
718
719
720
721
722
723
724
725
726
727
728
729
730
731
732
733
734
735
736
737
738
739
740
741
742
743
744
745
746
747
748
749
750
751
752
753
754
755
756
757
758
759
760
761
762
763
764
765
766
767
768
769
770
771
772
773
774
775
776
777
778
779
780
781
782
783
784
785
786
787
788
789
790
791
792
793
794
795
796
797
798
799
800
801
802
803
804
805
806
807
808
809
810
811
812
813
814
815
816
817
818
819
820
821
822
823
824
825
826
827
828
829
830
831
832
833
834
835
836
837
838
839
840
841
842
843
844
845
846
847
848
849
850
851
852
853
854
855
856
857
858
859
860
861
862
863
864
865
866
867
868
869
870
871
872
873
874
875
876
877
878
879
880
881
882
883
884
885
886
887
888
889
890
891
892
893
894
895
896
897
898
899
900
901
902
903
904
905
906
907
908
909
910
911
912
913
914
915
916
917
918
919
920
921
922
923
924
925
926
927
928
929
930
931
932
933
934
935
936
937
938
939
940
941
942
943
944
945
946
947
948
949
950
951
952
953
954
955
956
957
958
959
960
961
962
963
964
965
966
967
968
969
970
971
972
973
974
975
976
977
978
979
980
981
982
983
984
985
986
987
988
989
990
991
992
993
994
995
996
997
998
999
1000
1001
1002
1003
1004
1005
1006
1007
1008
1009
1010
1011
1012
1013
1014
1015
1016
1017
1018
1019
1020
1021
1022
1023
1024
1025
1026
1027
1028
1029
1030
{
  "nbformat": 4,
  "nbformat_minor": 0,
  "metadata": {
    "accelerator": "GPU",
    "colab": {
      "name": "elan_en_af_masakhane.ipynb",
      "provenance": [],
      "collapsed_sections": [],
      "toc_visible": true
    },
    "kernelspec": {
      "display_name": "Python 3",
      "name": "python3"
    }
  },
  "cells": [
    {
      "cell_type": "markdown",
      "metadata": {
        "colab_type": "text",
        "id": "Igc5itf-xMGj"
      },
      "source": [
        "# Masakhane - Machine Translation for African Languages (Using JoeyNMT)"
      ]
    },
    {
      "cell_type": "markdown",
      "metadata": {
        "colab_type": "text",
        "id": "x4fXCKCf36IK"
      },
      "source": [
        "## Note before beginning:\n",
        "### - The idea is that you should be able to make minimal changes to this in order to get SOME result for your own translation corpus. \n",
        "\n",
        "### - The tl;dr: Go to the **\"TODO\"** comments which will tell you what to update to get up and running\n",
        "\n",
        "### - If you actually want to have a clue what you're doing, read the text and peek at the links\n",
        "\n",
        "### - With 100 epochs, it should take around 7 hours to run in Google Colab\n",
        "\n",
        "### - Once you've gotten a result for your language, please attach and email your notebook that generated it to [email protected]\n",
        "\n",
        "### - If you care enough and get a chance, doing a brief background on your language would be amazing. See examples in  [(Martinus, 2019)](https://arxiv.org/abs/1906.05685)"
      ]
    },
    {
      "cell_type": "markdown",
      "metadata": {
        "colab_type": "text",
        "id": "l929HimrxS0a"
      },
      "source": [
        "## Retrieve your data & make a parallel corpus\n",
        "\n",
        "If you are wanting to use the JW300 data referenced on the Masakhane website or in our GitHub repo, you can use `opus-tools` to convert the data into a convenient format. `opus_read` from that package provides a convenient tool for reading the native aligned XML files and to convert them to TMX format. The tool can also be used to fetch relevant files from OPUS on the fly and to filter the data as necessary. [Read the documentation](https://pypi.org/project/opustools-pkg/) for more details.\n",
        "\n",
        "Once you have your corpus files in TMX format (an xml structure which will include the sentences in your target language and your source language in a single file), we recommend reading them into a pandas dataframe. Thankfully, Jade wrote a silly `tmx2dataframe` package which converts your tmx file to a pandas dataframe. "
      ]
    },
    {
      "cell_type": "code",
      "metadata": {
        "colab_type": "code",
        "id": "oGRmDELn7Az0",
        "outputId": "e4cf5e6a-6683-4011-c4bf-9db4355b1774",
        "colab": {
          "base_uri": "https://localhost:8080/",
          "height": 122
        }
      },
      "source": [
        "from google.colab import drive\n",
        "drive.mount('/content/drive')\n",
        "\n",
        "# ! echo \"4/sAFT6Lt4k6urQdvj0H6vghJt7kl6X9dCG0gd-XY_1mMDstx7QiAJ0qM\" | python -c \"from google.colab import drive; drive.mount('/content/drive')\""
      ],
      "execution_count": 1,
      "outputs": [
        {
          "output_type": "stream",
          "text": [
            "Go to this URL in a browser: https://accounts.google.com/o/oauth2/auth?client_id=947318989803-6bn6qk8qdgf4n4g3pfee6491hc0brc4i.apps.googleusercontent.com&redirect_uri=urn%3Aietf%3Awg%3Aoauth%3A2.0%3Aoob&scope=email%20https%3A%2F%2Fwww.googleapis.com%2Fauth%2Fdocs.test%20https%3A%2F%2Fwww.googleapis.com%2Fauth%2Fdrive%20https%3A%2F%2Fwww.googleapis.com%2Fauth%2Fdrive.photos.readonly%20https%3A%2F%2Fwww.googleapis.com%2Fauth%2Fpeopleapi.readonly&response_type=code\n",
            "\n",
            "Enter your authorization code:\n",
            "Β·Β·Β·Β·Β·Β·Β·Β·Β·Β·\n",
            "Mounted at /content/drive\n"
          ],
          "name": "stdout"
        }
      ]
    },
    {
      "cell_type": "code",
      "metadata": {
        "colab_type": "code",
        "id": "Cn3tgQLzUxwn",
        "colab": {}
      },
      "source": [
        "# TODO: Set your source and target languages. Keep in mind, these traditionally use language codes as found here:\n",
        "# These will also become the suffix's of all vocab and corpus files used throughout\n",
        "import os\n",
        "source_language = \"en\"\n",
        "target_language = \"af\"\n",
        "tag = \"baseline\" # Give a unique name to your folder - this is to ensure you don't rewrite any models you've already submitted\n",
        "\n",
        "os.environ[\"src\"] = source_language # Sets them in bash as well, since we often use bash scripts\n",
        "os.environ[\"tgt\"] = target_language\n",
        "os.environ[\"tag\"] = tag\n",
        "\n",
        "# This will save it to a folder in our gdrive instead!\n",
        "gdrive_path = \"/content/drive/My Drive/masakhane/%s-%s-%s\" % (source_language, target_language, tag)\n",
        "os.environ[\"gdrive_path\"] = gdrive_path\n",
        "!mkdir -p \"$gdrive_path\"\n",
        "# !mkdir -p \"/content/drive/My Drive/masakhane/$src-$tgt-$tag\""
      ],
      "execution_count": 0,
      "outputs": []
    },
    {
      "cell_type": "code",
      "metadata": {
        "colab_type": "code",
        "id": "kBSgJHEw7Nvx",
        "outputId": "ab1167ec-3654-4667-af5a-57f4ed16aca5",
        "colab": {
          "base_uri": "https://localhost:8080/",
          "height": 34
        }
      },
      "source": [
        "!echo $gdrive_path\n",
        "# !ls $gdrive_path"
      ],
      "execution_count": 3,
      "outputs": [
        {
          "output_type": "stream",
          "text": [
            "/content/drive/My Drive/masakhane/en-af-baseline\n"
          ],
          "name": "stdout"
        }
      ]
    },
    {
      "cell_type": "code",
      "metadata": {
        "colab_type": "code",
        "id": "gA75Fs9ys8Y9",
        "outputId": "ab59d363-609c-4a36-b3aa-e9e0f5de80e4",
        "colab": {
          "base_uri": "https://localhost:8080/",
          "height": 102
        }
      },
      "source": [
        "# Install opus-tools\n",
        "! pip install opustools-pkg"
      ],
      "execution_count": 4,
      "outputs": [
        {
          "output_type": "stream",
          "text": [
            "Collecting opustools-pkg\n",
            "\u001b[?25l  Downloading https://files.pythonhosted.org/packages/05/e7/005433050cf3d76bca0fbbc59631ce493fdabb029bbd795a08f26003a6bd/opustools_pkg-0.0.50-py3-none-any.whl (49kB)\n",
            "\r\u001b[K     |β–ˆβ–ˆβ–ˆβ–ˆβ–ˆβ–ˆβ–‹                         | 10kB 17.4MB/s eta 0:00:01\r\u001b[K     |β–ˆβ–ˆβ–ˆβ–ˆβ–ˆβ–ˆβ–ˆβ–ˆβ–ˆβ–ˆβ–ˆβ–ˆβ–ˆβ–                  | 20kB 1.8MB/s eta 0:00:01\r\u001b[K     |β–ˆβ–ˆβ–ˆβ–ˆβ–ˆβ–ˆβ–ˆβ–ˆβ–ˆβ–ˆβ–ˆβ–ˆβ–ˆβ–ˆβ–ˆβ–ˆβ–ˆβ–ˆβ–ˆβ–‰            | 30kB 2.6MB/s eta 0:00:01\r\u001b[K     |β–ˆβ–ˆβ–ˆβ–ˆβ–ˆβ–ˆβ–ˆβ–ˆβ–ˆβ–ˆβ–ˆβ–ˆβ–ˆβ–ˆβ–ˆβ–ˆβ–ˆβ–ˆβ–ˆβ–ˆβ–ˆβ–ˆβ–ˆβ–ˆβ–ˆβ–ˆβ–     | 40kB 1.7MB/s eta 0:00:01\r\u001b[K     |β–ˆβ–ˆβ–ˆβ–ˆβ–ˆβ–ˆβ–ˆβ–ˆβ–ˆβ–ˆβ–ˆβ–ˆβ–ˆβ–ˆβ–ˆβ–ˆβ–ˆβ–ˆβ–ˆβ–ˆβ–ˆβ–ˆβ–ˆβ–ˆβ–ˆβ–ˆβ–ˆβ–ˆβ–ˆβ–ˆβ–ˆβ–ˆ| 51kB 2.0MB/s \n",
            "\u001b[?25hInstalling collected packages: opustools-pkg\n",
            "Successfully installed opustools-pkg-0.0.50\n"
          ],
          "name": "stdout"
        }
      ]
    },
    {
      "cell_type": "code",
      "metadata": {
        "colab_type": "code",
        "id": "xq-tDZVks7ZD",
        "outputId": "1b6f3ba5-a887-4753-d0f7-630a5cd75b20",
        "colab": {
          "base_uri": "https://localhost:8080/",
          "height": 51
        }
      },
      "source": [
        "# change working directory\n",
        "os.chdir(gdrive_path)\n",
        "\n",
        "# Download our corpus\n",
        "! if ! (( test -f jw300.$src ) && ( test -f jw300.$tgt )); then opus_read -d JW300 -s $src -t $tgt -wm moses -w jw300.$src jw300.$tgt -q; else echo \"Opus files are already present, skipping download.\"; fi\n",
        "\n",
        "# extract the corpus file\n",
        "! if test -f JW300_latest_xml_$src-$tgt.xml.gz; then gunzip JW300_latest_xml_$src-$tgt.xml.gz; elif test -f JW300_latest_xml_$tgt-$src.xml.gz; then gunzip JW300_latest_xml_$tgt-$src.xml.gz; else echo \"ERROR: missing corpus file!\"; fi"
      ],
      "execution_count": 5,
      "outputs": [
        {
          "output_type": "stream",
          "text": [
            "Opus files are already present, skipping download.\n",
            "ERROR: missing corpus file!\n"
          ],
          "name": "stdout"
        }
      ]
    },
    {
      "cell_type": "code",
      "metadata": {
        "colab_type": "code",
        "id": "3CNdwLBCfSIl",
        "colab": {
          "base_uri": "https://localhost:8080/",
          "height": 142
        },
        "outputId": "a442231a-8f44-4d68-98bb-f7fb9cd98c5b"
      },
      "source": [
        "import pandas as pd\n",
        "\n",
        "# TMX file to dataframe\n",
        "source_file = 'jw300.' + source_language\n",
        "target_file = 'jw300.' + target_language\n",
        "\n",
        "source = []\n",
        "target = []\n",
        "with open(source_file) as f:\n",
        "  for _, line in enumerate(f):\n",
        "    source.append(line)\n",
        "with open(target_file) as f:\n",
        "  for _, line in enumerate(f):\n",
        "    target.append(line)\n",
        "\n",
        "df = pd.DataFrame(zip(source, target), columns=['source_sentence', 'target_sentence'])\n",
        "df.head(3)"
      ],
      "execution_count": 6,
      "outputs": [
        {
          "output_type": "execute_result",
          "data": {
            "text/html": [
              "<div>\n",
              "<style scoped>\n",
              "    .dataframe tbody tr th:only-of-type {\n",
              "        vertical-align: middle;\n",
              "    }\n",
              "\n",
              "    .dataframe tbody tr th {\n",
              "        vertical-align: top;\n",
              "    }\n",
              "\n",
              "    .dataframe thead th {\n",
              "        text-align: right;\n",
              "    }\n",
              "</style>\n",
              "<table border=\"1\" class=\"dataframe\">\n",
              "  <thead>\n",
              "    <tr style=\"text-align: right;\">\n",
              "      <th></th>\n",
              "      <th>source_sentence</th>\n",
              "      <th>target_sentence</th>\n",
              "    </tr>\n",
              "  </thead>\n",
              "  <tbody>\n",
              "    <tr>\n",
              "      <th>0</th>\n",
              "      <td>β€˜ They Lifted Me Out of Deep Depression ’\\n</td>\n",
              "      <td>β€˜ Hulle het my uit diep depressie gehelp ’\\n</td>\n",
              "    </tr>\n",
              "    <tr>\n",
              "      <th>1</th>\n",
              "      <td>A woman from England wrote :\\n</td>\n",
              "      <td>’ n Vrou van Engeland het geskryf :\\n</td>\n",
              "    </tr>\n",
              "    <tr>\n",
              "      <th>2</th>\n",
              "      <td>β€œ Dear Sir :\\n</td>\n",
              "      <td>β€œ Geagte Meneer :\\n</td>\n",
              "    </tr>\n",
              "  </tbody>\n",
              "</table>\n",
              "</div>"
            ],
            "text/plain": [
              "                               source_sentence                               target_sentence\n",
              "0  β€˜ They Lifted Me Out of Deep Depression ’\\n  β€˜ Hulle het my uit diep depressie gehelp ’\\n\n",
              "1               A woman from England wrote :\\n         ’ n Vrou van Engeland het geskryf :\\n\n",
              "2                               β€œ Dear Sir :\\n                           β€œ Geagte Meneer :\\n"
            ]
          },
          "metadata": {
            "tags": []
          },
          "execution_count": 6
        }
      ]
    },
    {
      "cell_type": "markdown",
      "metadata": {
        "colab_type": "text",
        "id": "YkuK3B4p2AkN"
      },
      "source": [
        "## Pre-processing and export\n",
        "\n",
        "It is generally a good idea to remove duplicate translations and conflicting translations from the corpus. In practice, these public corpora include some number of these that need to be cleaned.\n",
        "\n",
        "In addition we will split our data into dev/test/train and export to the filesystem."
      ]
    },
    {
      "cell_type": "code",
      "metadata": {
        "colab_type": "code",
        "id": "M_2ouEOH1_1q",
        "colab": {
          "base_uri": "https://localhost:8080/",
          "height": 187
        },
        "outputId": "9606b898-616a-4c0b-eeb3-658828253a73"
      },
      "source": [
        "# drop duplicate translations\n",
        "df_pp = df.drop_duplicates()\n",
        "\n",
        "# drop conflicting translations\n",
        "df_pp.drop_duplicates(subset='source_sentence', inplace=True)\n",
        "df_pp.drop_duplicates(subset='target_sentence', inplace=True)"
      ],
      "execution_count": 7,
      "outputs": [
        {
          "output_type": "stream",
          "text": [
            "/usr/local/lib/python3.6/dist-packages/ipykernel_launcher.py:4: SettingWithCopyWarning: \n",
            "A value is trying to be set on a copy of a slice from a DataFrame\n",
            "\n",
            "See the caveats in the documentation: http://pandas.pydata.org/pandas-docs/stable/indexing.html#indexing-view-versus-copy\n",
            "  after removing the cwd from sys.path.\n",
            "/usr/local/lib/python3.6/dist-packages/ipykernel_launcher.py:5: SettingWithCopyWarning: \n",
            "A value is trying to be set on a copy of a slice from a DataFrame\n",
            "\n",
            "See the caveats in the documentation: http://pandas.pydata.org/pandas-docs/stable/indexing.html#indexing-view-versus-copy\n",
            "  \"\"\"\n"
          ],
          "name": "stderr"
        }
      ]
    },
    {
      "cell_type": "code",
      "metadata": {
        "colab_type": "code",
        "id": "hxxBOCA-xXhy",
        "colab": {
          "base_uri": "https://localhost:8080/",
          "height": 221
        },
        "outputId": "7b4a4141-be14-4c89-9e81-627b6d164717"
      },
      "source": [
        "# This section does the split between train/test/dev for the parallel corpora then saves them as separate files\n",
        "# We use 1000 dev test and 1000 test set. In practice, it's useful to use an external test set\n",
        "\n",
        "# Do the split between dev/test/train and create parallel corpora\n",
        "num_dev_patterns = 1000\n",
        "num_test_patterns = 1000\n",
        "\n",
        "# Lower case the corpora\n",
        "df_pp[\"source_sentence\"] = df_pp[\"source_sentence\"].str.lower()\n",
        "df_pp[\"target_sentence\"] = df_pp[\"target_sentence\"].str.lower()\n",
        "\n",
        "devtest = df_pp.tail(num_dev_patterns + num_test_patterns)\n",
        "test = devtest.tail(num_test_patterns) # Herman\n",
        "dev = devtest.head(num_dev_patterns)  # Herman: Error in original\n",
        "stripped = df_pp.drop(df_pp.tail(num_dev_patterns + num_test_patterns).index)\n",
        "\n",
        "stripped[[\"source_sentence\"]].to_csv(\"train.en\", index=False)\n",
        "stripped[[\"target_sentence\"]].to_csv(\"train.af\", index=False)\n",
        "\n",
        "dev[[\"source_sentence\"]].to_csv(\"dev.en\", index=False)\n",
        "dev[[\"target_sentence\"]].to_csv(\"dev.af\", index=False)\n",
        "\n",
        "test[[\"source_sentence\"]].to_csv(\"test.en\", index=False)\n",
        "test[[\"target_sentence\"]].to_csv(\"test.af\", index=False)"
      ],
      "execution_count": 8,
      "outputs": [
        {
          "output_type": "stream",
          "text": [
            "/usr/local/lib/python3.6/dist-packages/ipykernel_launcher.py:5: SettingWithCopyWarning: \n",
            "A value is trying to be set on a copy of a slice from a DataFrame.\n",
            "Try using .loc[row_indexer,col_indexer] = value instead\n",
            "\n",
            "See the caveats in the documentation: http://pandas.pydata.org/pandas-docs/stable/indexing.html#indexing-view-versus-copy\n",
            "  \"\"\"\n",
            "/usr/local/lib/python3.6/dist-packages/ipykernel_launcher.py:6: SettingWithCopyWarning: \n",
            "A value is trying to be set on a copy of a slice from a DataFrame.\n",
            "Try using .loc[row_indexer,col_indexer] = value instead\n",
            "\n",
            "See the caveats in the documentation: http://pandas.pydata.org/pandas-docs/stable/indexing.html#indexing-view-versus-copy\n",
            "  \n"
          ],
          "name": "stderr"
        }
      ]
    },
    {
      "cell_type": "markdown",
      "metadata": {
        "colab_type": "text",
        "id": "epeCydmCyS8X"
      },
      "source": [
        "\n",
        "\n",
        "---\n",
        "\n",
        "\n",
        "## Installation of JoeyNMT\n",
        "\n",
        "JoeyNMT is a simple, minimalist NMT package which is useful for learning and teaching. Check out the documentation for JoeyNMT [here](https://joeynmt.readthedocs.io)  "
      ]
    },
    {
      "cell_type": "code",
      "metadata": {
        "colab_type": "code",
        "id": "iBRMm4kMxZ8L",
        "colab": {
          "base_uri": "https://localhost:8080/",
          "height": 1000
        },
        "outputId": "6fc6dbc6-99a3-4ac2-f3b4-eb4e543954c0"
      },
      "source": [
        "# Install JoeyNMT\n",
        "! git clone https://github.com/joeynmt/joeynmt.git\n",
        "\n",
        "# swap to branch that has the \"ElanScheduler\"! and install that :D\n",
        "# ! cd joeynmt; git checkout scheduler; git pull --all; pip3 install . # pip install --upgrade --force-reinstall --no-deps <package>\n",
        "! cd joeynmt; git checkout symlink; git pull --all; pip3 install . # pip install --upgrade --force-reinstall --no-deps <package>\n",
        "\n",
        "# perform default installation\n",
        "# ! cd joeynmt; git checkout master; git pull --all; pip3 install ."
      ],
      "execution_count": 9,
      "outputs": [
        {
          "output_type": "stream",
          "text": [
            "fatal: destination path 'joeynmt' already exists and is not an empty directory.\n",
            "M\tscripts/generate_copy_task.py\n",
            "M\tscripts/generate_reverse_task.py\n",
            "M\tscripts/get_iwslt14_bpe.sh\n",
            "M\tscripts/get_iwslt15_envi.sh\n",
            "M\tscripts/plot_validations.py\n",
            "Already on 'symlink'\n",
            "Your branch is up to date with 'origin/symlink'.\n",
            "Fetching origin\n",
            "Already up to date.\n",
            "Processing /content/drive/My Drive/masakhane/en-af-baseline/joeynmt\n",
            "Requirement already satisfied: future in /usr/local/lib/python3.6/dist-packages (from joeynmt==0.0.1) (0.16.0)\n",
            "Requirement already satisfied: pillow in /usr/local/lib/python3.6/dist-packages (from joeynmt==0.0.1) (4.3.0)\n",
            "Requirement already satisfied: numpy<2.0,>=1.14.5 in /usr/local/lib/python3.6/dist-packages (from joeynmt==0.0.1) (1.16.5)\n",
            "Requirement already satisfied: setuptools>=41.0.0 in /usr/local/lib/python3.6/dist-packages (from joeynmt==0.0.1) (41.2.0)\n",
            "Requirement already satisfied: torch>=1.1 in /usr/local/lib/python3.6/dist-packages (from joeynmt==0.0.1) (1.2.0)\n",
            "Requirement already satisfied: tensorflow>=1.14 in /usr/local/lib/python3.6/dist-packages (from joeynmt==0.0.1) (1.15.0rc3)\n",
            "Requirement already satisfied: torchtext in /usr/local/lib/python3.6/dist-packages (from joeynmt==0.0.1) (0.3.1)\n",
            "Collecting sacrebleu>=1.3.6 (from joeynmt==0.0.1)\n",
            "  Downloading https://files.pythonhosted.org/packages/0e/e5/93d252182f7cbd4b59bb3ec5797e2ce33cfd6f5aadaf327db170cf4b7887/sacrebleu-1.4.2-py3-none-any.whl\n",
            "Collecting subword-nmt (from joeynmt==0.0.1)\n",
            "  Downloading https://files.pythonhosted.org/packages/26/08/58267cb3ac00f5f895457777ed9e0d106dbb5e6388fa7923d8663b04b849/subword_nmt-0.3.6-py2.py3-none-any.whl\n",
            "Requirement already satisfied: matplotlib in /usr/local/lib/python3.6/dist-packages (from joeynmt==0.0.1) (3.0.3)\n",
            "Requirement already satisfied: seaborn in /usr/local/lib/python3.6/dist-packages (from joeynmt==0.0.1) (0.9.0)\n",
            "Collecting pyyaml>=5.1 (from joeynmt==0.0.1)\n",
            "\u001b[?25l  Downloading https://files.pythonhosted.org/packages/e3/e8/b3212641ee2718d556df0f23f78de8303f068fe29cdaa7a91018849582fe/PyYAML-5.1.2.tar.gz (265kB)\n",
            "\u001b[K     |β–ˆβ–ˆβ–ˆβ–ˆβ–ˆβ–ˆβ–ˆβ–ˆβ–ˆβ–ˆβ–ˆβ–ˆβ–ˆβ–ˆβ–ˆβ–ˆβ–ˆβ–ˆβ–ˆβ–ˆβ–ˆβ–ˆβ–ˆβ–ˆβ–ˆβ–ˆβ–ˆβ–ˆβ–ˆβ–ˆβ–ˆβ–ˆ| 266kB 7.5MB/s \n",
            "\u001b[?25hCollecting pylint (from joeynmt==0.0.1)\n",
            "\u001b[?25l  Downloading https://files.pythonhosted.org/packages/ef/ed/1cb8e7b85a31807aa0bff8b3e60935370bed7e141df8b530aac6352bddff/pylint-2.4.2-py3-none-any.whl (302kB)\n",
            "\u001b[K     |β–ˆβ–ˆβ–ˆβ–ˆβ–ˆβ–ˆβ–ˆβ–ˆβ–ˆβ–ˆβ–ˆβ–ˆβ–ˆβ–ˆβ–ˆβ–ˆβ–ˆβ–ˆβ–ˆβ–ˆβ–ˆβ–ˆβ–ˆβ–ˆβ–ˆβ–ˆβ–ˆβ–ˆβ–ˆβ–ˆβ–ˆβ–ˆ| 307kB 39.8MB/s \n",
            "\u001b[?25hRequirement already satisfied: six>=1.12 in /usr/local/lib/python3.6/dist-packages (from joeynmt==0.0.1) (1.12.0)\n",
            "Requirement already satisfied: olefile in /usr/local/lib/python3.6/dist-packages (from pillow->joeynmt==0.0.1) (0.46)\n",
            "Requirement already satisfied: wrapt>=1.11.1 in /usr/local/lib/python3.6/dist-packages (from tensorflow>=1.14->joeynmt==0.0.1) (1.11.2)\n",
            "Requirement already satisfied: gast==0.2.2 in /usr/local/lib/python3.6/dist-packages (from tensorflow>=1.14->joeynmt==0.0.1) (0.2.2)\n",
            "Requirement already satisfied: absl-py>=0.7.0 in /usr/local/lib/python3.6/dist-packages (from tensorflow>=1.14->joeynmt==0.0.1) (0.8.0)\n",
            "Requirement already satisfied: grpcio>=1.8.6 in /usr/local/lib/python3.6/dist-packages (from tensorflow>=1.14->joeynmt==0.0.1) (1.15.0)\n",
            "Requirement already satisfied: protobuf>=3.6.1 in /usr/local/lib/python3.6/dist-packages (from tensorflow>=1.14->joeynmt==0.0.1) (3.7.1)\n",
            "Requirement already satisfied: termcolor>=1.1.0 in /usr/local/lib/python3.6/dist-packages (from tensorflow>=1.14->joeynmt==0.0.1) (1.1.0)\n",
            "Requirement already satisfied: keras-applications>=1.0.8 in /usr/local/lib/python3.6/dist-packages (from tensorflow>=1.14->joeynmt==0.0.1) (1.0.8)\n",
            "Requirement already satisfied: opt-einsum>=2.3.2 in /usr/local/lib/python3.6/dist-packages (from tensorflow>=1.14->joeynmt==0.0.1) (3.1.0)\n",
            "Requirement already satisfied: tensorflow-estimator==1.15.1 in /usr/local/lib/python3.6/dist-packages (from tensorflow>=1.14->joeynmt==0.0.1) (1.15.1)\n",
            "Requirement already satisfied: tensorboard<1.16.0,>=1.15.0 in /usr/local/lib/python3.6/dist-packages (from tensorflow>=1.14->joeynmt==0.0.1) (1.15.0)\n",
            "Requirement already satisfied: wheel>=0.26 in /usr/local/lib/python3.6/dist-packages (from tensorflow>=1.14->joeynmt==0.0.1) (0.33.6)\n",
            "Requirement already satisfied: astor>=0.6.0 in /usr/local/lib/python3.6/dist-packages (from tensorflow>=1.14->joeynmt==0.0.1) (0.8.0)\n",
            "Requirement already satisfied: keras-preprocessing>=1.0.5 in /usr/local/lib/python3.6/dist-packages (from tensorflow>=1.14->joeynmt==0.0.1) (1.1.0)\n",
            "Requirement already satisfied: google-pasta>=0.1.6 in /usr/local/lib/python3.6/dist-packages (from tensorflow>=1.14->joeynmt==0.0.1) (0.1.7)\n",
            "Requirement already satisfied: requests in /usr/local/lib/python3.6/dist-packages (from torchtext->joeynmt==0.0.1) (2.21.0)\n",
            "Requirement already satisfied: tqdm in /usr/local/lib/python3.6/dist-packages (from torchtext->joeynmt==0.0.1) (4.28.1)\n",
            "Collecting portalocker (from sacrebleu>=1.3.6->joeynmt==0.0.1)\n",
            "  Downloading https://files.pythonhosted.org/packages/60/ec/836a494dbaa72541f691ec4e66f29fdc8db9bcc7f49e1c2d457ba13ced42/portalocker-1.5.1-py2.py3-none-any.whl\n",
            "Collecting typing (from sacrebleu>=1.3.6->joeynmt==0.0.1)\n",
            "  Downloading https://files.pythonhosted.org/packages/fe/2e/b480ee1b75e6d17d2993738670e75c1feeb9ff7f64452153cf018051cc92/typing-3.7.4.1-py3-none-any.whl\n",
            "Requirement already satisfied: kiwisolver>=1.0.1 in /usr/local/lib/python3.6/dist-packages (from matplotlib->joeynmt==0.0.1) (1.1.0)\n",
            "Requirement already satisfied: cycler>=0.10 in /usr/local/lib/python3.6/dist-packages (from matplotlib->joeynmt==0.0.1) (0.10.0)\n",
            "Requirement already satisfied: python-dateutil>=2.1 in /usr/local/lib/python3.6/dist-packages (from matplotlib->joeynmt==0.0.1) (2.5.3)\n",
            "Requirement already satisfied: pyparsing!=2.0.4,!=2.1.2,!=2.1.6,>=2.0.1 in /usr/local/lib/python3.6/dist-packages (from matplotlib->joeynmt==0.0.1) (2.4.2)\n",
            "Requirement already satisfied: scipy>=0.14.0 in /usr/local/lib/python3.6/dist-packages (from seaborn->joeynmt==0.0.1) (1.3.1)\n",
            "Requirement already satisfied: pandas>=0.15.2 in /usr/local/lib/python3.6/dist-packages (from seaborn->joeynmt==0.0.1) (0.24.2)\n",
            "Collecting isort<5,>=4.2.5 (from pylint->joeynmt==0.0.1)\n",
            "\u001b[?25l  Downloading https://files.pythonhosted.org/packages/e5/b0/c121fd1fa3419ea9bfd55c7f9c4fedfec5143208d8c7ad3ce3db6c623c21/isort-4.3.21-py2.py3-none-any.whl (42kB)\n",
            "\u001b[K     |β–ˆβ–ˆβ–ˆβ–ˆβ–ˆβ–ˆβ–ˆβ–ˆβ–ˆβ–ˆβ–ˆβ–ˆβ–ˆβ–ˆβ–ˆβ–ˆβ–ˆβ–ˆβ–ˆβ–ˆβ–ˆβ–ˆβ–ˆβ–ˆβ–ˆβ–ˆβ–ˆβ–ˆβ–ˆβ–ˆβ–ˆβ–ˆ| 51kB 21.8MB/s \n",
            "\u001b[?25hCollecting mccabe<0.7,>=0.6 (from pylint->joeynmt==0.0.1)\n",
            "  Downloading https://files.pythonhosted.org/packages/87/89/479dc97e18549e21354893e4ee4ef36db1d237534982482c3681ee6e7b57/mccabe-0.6.1-py2.py3-none-any.whl\n",
            "Collecting astroid<2.4,>=2.3.0 (from pylint->joeynmt==0.0.1)\n",
            "\u001b[?25l  Downloading https://files.pythonhosted.org/packages/13/e1/74a63c85c501c29c52da5be604c025e368f4dd77daf1fa13c878a33e5a36/astroid-2.3.1-py3-none-any.whl (205kB)\n",
            "\u001b[K     |β–ˆβ–ˆβ–ˆβ–ˆβ–ˆβ–ˆβ–ˆβ–ˆβ–ˆβ–ˆβ–ˆβ–ˆβ–ˆβ–ˆβ–ˆβ–ˆβ–ˆβ–ˆβ–ˆβ–ˆβ–ˆβ–ˆβ–ˆβ–ˆβ–ˆβ–ˆβ–ˆβ–ˆβ–ˆβ–ˆβ–ˆβ–ˆ| 215kB 41.4MB/s \n",
            "\u001b[?25hRequirement already satisfied: h5py in /usr/local/lib/python3.6/dist-packages (from keras-applications>=1.0.8->tensorflow>=1.14->joeynmt==0.0.1) (2.8.0)\n",
            "Requirement already satisfied: werkzeug>=0.11.15 in /usr/local/lib/python3.6/dist-packages (from tensorboard<1.16.0,>=1.15.0->tensorflow>=1.14->joeynmt==0.0.1) (0.16.0)\n",
            "Requirement already satisfied: markdown>=2.6.8 in /usr/local/lib/python3.6/dist-packages (from tensorboard<1.16.0,>=1.15.0->tensorflow>=1.14->joeynmt==0.0.1) (3.1.1)\n",
            "Requirement already satisfied: idna<2.9,>=2.5 in /usr/local/lib/python3.6/dist-packages (from requests->torchtext->joeynmt==0.0.1) (2.8)\n",
            "Requirement already satisfied: certifi>=2017.4.17 in /usr/local/lib/python3.6/dist-packages (from requests->torchtext->joeynmt==0.0.1) (2019.9.11)\n",
            "Requirement already satisfied: urllib3<1.25,>=1.21.1 in /usr/local/lib/python3.6/dist-packages (from requests->torchtext->joeynmt==0.0.1) (1.24.3)\n",
            "Requirement already satisfied: chardet<3.1.0,>=3.0.2 in /usr/local/lib/python3.6/dist-packages (from requests->torchtext->joeynmt==0.0.1) (3.0.4)\n",
            "Requirement already satisfied: pytz>=2011k in /usr/local/lib/python3.6/dist-packages (from pandas>=0.15.2->seaborn->joeynmt==0.0.1) (2018.9)\n",
            "Collecting typed-ast<1.5,>=1.4.0; implementation_name == \"cpython\" and python_version < \"3.8\" (from astroid<2.4,>=2.3.0->pylint->joeynmt==0.0.1)\n",
            "\u001b[?25l  Downloading https://files.pythonhosted.org/packages/31/d3/9d1802c161626d0278bafb1ffb32f76b9d01e123881bbf9d91e8ccf28e18/typed_ast-1.4.0-cp36-cp36m-manylinux1_x86_64.whl (736kB)\n",
            "\u001b[K     |β–ˆβ–ˆβ–ˆβ–ˆβ–ˆβ–ˆβ–ˆβ–ˆβ–ˆβ–ˆβ–ˆβ–ˆβ–ˆβ–ˆβ–ˆβ–ˆβ–ˆβ–ˆβ–ˆβ–ˆβ–ˆβ–ˆβ–ˆβ–ˆβ–ˆβ–ˆβ–ˆβ–ˆβ–ˆβ–ˆβ–ˆβ–ˆ| 737kB 41.6MB/s \n",
            "\u001b[?25hCollecting lazy-object-proxy==1.4.* (from astroid<2.4,>=2.3.0->pylint->joeynmt==0.0.1)\n",
            "\u001b[?25l  Downloading https://files.pythonhosted.org/packages/0e/26/534a6d32572a9dbca11619321535c0a7ab34688545d9d67c2c204b9e3a3d/lazy_object_proxy-1.4.2-cp36-cp36m-manylinux1_x86_64.whl (49kB)\n",
            "\u001b[K     |β–ˆβ–ˆβ–ˆβ–ˆβ–ˆβ–ˆβ–ˆβ–ˆβ–ˆβ–ˆβ–ˆβ–ˆβ–ˆβ–ˆβ–ˆβ–ˆβ–ˆβ–ˆβ–ˆβ–ˆβ–ˆβ–ˆβ–ˆβ–ˆβ–ˆβ–ˆβ–ˆβ–ˆβ–ˆβ–ˆβ–ˆβ–ˆ| 51kB 13.9MB/s \n",
            "\u001b[?25hBuilding wheels for collected packages: joeynmt, pyyaml\n",
            "  Building wheel for joeynmt (setup.py) ... \u001b[?25l\u001b[?25hdone\n",
            "  Created wheel for joeynmt: filename=joeynmt-0.0.1-cp36-none-any.whl size=69462 sha256=2eb100ac13e868b7e68943631f0ba842d5d081a3f1dee88932c5fd0189fd4217\n",
            "  Stored in directory: /tmp/pip-ephem-wheel-cache-8heq9clf/wheels/4c/ba/65/529ea2efaa773ebbedd9df75a20586f3366c4efa375e38c09c\n",
            "  Building wheel for pyyaml (setup.py) ... \u001b[?25l\u001b[?25hdone\n",
            "  Created wheel for pyyaml: filename=PyYAML-5.1.2-cp36-cp36m-linux_x86_64.whl size=44104 sha256=e97131de73fdca9b5d0c399df8ab27c8ccfaababae68ad7562d7cdb481e12cce\n",
            "  Stored in directory: /root/.cache/pip/wheels/d9/45/dd/65f0b38450c47cf7e5312883deb97d065e030c5cca0a365030\n",
            "Successfully built joeynmt pyyaml\n",
            "Installing collected packages: portalocker, typing, sacrebleu, subword-nmt, pyyaml, isort, mccabe, typed-ast, lazy-object-proxy, astroid, pylint, joeynmt\n",
            "  Found existing installation: PyYAML 3.13\n",
            "    Uninstalling PyYAML-3.13:\n",
            "      Successfully uninstalled PyYAML-3.13\n",
            "Successfully installed astroid-2.3.1 isort-4.3.21 joeynmt-0.0.1 lazy-object-proxy-1.4.2 mccabe-0.6.1 portalocker-1.5.1 pylint-2.4.2 pyyaml-5.1.2 sacrebleu-1.4.2 subword-nmt-0.3.6 typed-ast-1.4.0 typing-3.7.4.1\n"
          ],
          "name": "stdout"
        }
      ]
    },
    {
      "cell_type": "markdown",
      "metadata": {
        "colab_type": "text",
        "id": "AaE77Tcppex9"
      },
      "source": [
        "# Preprocessing the Data into Subword BPE Tokens\n",
        "\n",
        "- One of the most powerful improvements for agglutinative languages (a feature of most Bantu languages) is using BPE tokenization [ (Sennrich, 2015) ](https://arxiv.org/abs/1508.07909).\n",
        "\n",
        "- It was also shown that by optimizing the umber of BPE codes we significantly improve results for low-resourced languages [(Sennrich, 2019)](https://www.aclweb.org/anthology/P19-1021) [(Martinus, 2019)](https://arxiv.org/abs/1906.05685)\n",
        "\n",
        "- Below we have the scripts for doing BPE tokenization of our data. We use 4000 tokens as recommended by [(Sennrich, 2019)](https://www.aclweb.org/anthology/P19-1021). You do not need to change anything. Simply running the below will be suitable. "
      ]
    },
    {
      "cell_type": "code",
      "metadata": {
        "colab_type": "code",
        "id": "H-TyjtmXB1mL",
        "colab": {
          "base_uri": "https://localhost:8080/",
          "height": 561
        },
        "outputId": "fe8692cb-96d2-4a5f-dc36-48d2607bbbf7"
      },
      "source": [
        "# One of the huge boosts in NMT performance was to use a different method of tokenizing. \n",
        "# Usually, NMT would tokenize by words. However, using a method called BPE gave amazing boosts to performance\n",
        "\n",
        "# Do subword NMT\n",
        "# from os import path\n",
        "\n",
        "os.environ[\"data_path\"] = path.join(\"joeynmt\", \"data\", source_language + target_language) # Herman!\n",
        "\n",
        "! if ! (( test -f vocab.$src ) && ( test -f vocab.$tgt )); then subword-nmt learn-joint-bpe-and-vocab --input train.$src train.$tgt -s 4000 -o bpe.codes.4000 --write-vocabulary vocab.$src vocab.$tgt; else echo \"BPE vocab files already present...\"; fi\n",
        "\n",
        "! if ! test -f train.bpe.$src; then subword-nmt apply-bpe -c bpe.codes.4000 --vocabulary vocab.$src < train.$src > train.bpe.$src; else echo \"train.bpe.$src already present...\"; fi\n",
        "! if ! test -f train.bpe.$tgt; then subword-nmt apply-bpe -c bpe.codes.4000 --vocabulary vocab.$tgt < train.$tgt > train.bpe.$tgt; else echo \"train.bpe.$tgt already present...\"; fi\n",
        "\n",
        "! if ! test -f dev.bpe.$src; then subword-nmt apply-bpe -c bpe.codes.4000 --vocabulary vocab.$src < dev.$src > dev.bpe.$src; else echo \"dev.bpe.$src already present...\"; fi\n",
        "! if ! test -f dev.bpe.$tgt; then subword-nmt apply-bpe -c bpe.codes.4000 --vocabulary vocab.$tgt < dev.$tgt > dev.bpe.$tgt; else echo \"dev.bpe.$tgt already present...\"; fi\n",
        "\n",
        "! if ! test -f test.bpe.$src; then subword-nmt apply-bpe -c bpe.codes.4000 --vocabulary vocab.$src < test.$src > test.bpe.$src; else echo \"test.bpe.$src already present...\"; fi\n",
        "! if ! test -f test.bpe.$tgt; then subword-nmt apply-bpe -c bpe.codes.4000 --vocabulary vocab.$tgt < test.$tgt > test.bpe.$tgt; else echo \"test.bpe.$tgt already present...\"; fi\n",
        "\n",
        "# Create directory, move everyone we care about to the correct location\n",
        "! mkdir -p $data_path\n",
        "! if ! test $(ls -l $data_path | grep train | wc -l) -gt 0; then cp train.* $data_path; else echo \"train files already in data directory...\"; fi\n",
        "! if ! test $(ls -l $data_path | grep test | wc -l) -gt 0; then cp test.* $data_path; else echo \"test files already in data directory...\"; fi\n",
        "! if ! test $(ls -l $data_path | grep dev | wc -l) -gt 0; then cp dev.* $data_path; else echo \"dev files already in data directory...\"; fi\n",
        "! if ! test -f $data_path/bpe.codes.4000; then cp bpe.codes.4000 $data_path ; else echo \"bpe.codes.4000 already in data directory...\"; fi\n",
        "! ls $data_path\n",
        "\n",
        "# Create that vocab using build_vocab\n",
        "! sudo chmod 777 joeynmt/scripts/build_vocab.py\n",
        "! if ! test -f joeynmt/data/$src$tgt/vocab.txt; then joeynmt/scripts/build_vocab.py joeynmt/data/$src$tgt/train.bpe.$src joeynmt/data/$src$tgt/train.bpe.$tgt --output_path joeynmt/data/$src$tgt/vocab.txt ; else echo \"vocab.txt already in data directory...\"; fi\n",
        "\n",
        "# Some output\n",
        "! echo \"BPE Afrikaans Sentences\"\n",
        "! tail -n 5 test.bpe.$tgt\n",
        "! echo \"Combined BPE Vocab\"\n",
        "! tail -n 10 joeynmt/data/$src$tgt/vocab.txt"
      ],
      "execution_count": 30,
      "outputs": [
        {
          "output_type": "stream",
          "text": [
            "BPE vocab files already present...\n",
            "train.bpe.en already present...\n",
            "train.bpe.af already present...\n",
            "dev.bpe.en already present...\n",
            "dev.bpe.af already present...\n",
            "test.bpe.en already present...\n",
            "test.bpe.af already present...\n",
            "train files already in data directory...\n",
            "test files already in data directory...\n",
            "dev files already in data directory...\n",
            "bpe.codes.4000 already in data directory...\n",
            "bpe.codes.4000\tdev.bpe.en  test.bpe.af  train.af      train.en\n",
            "dev.af\t\tdev.en\t    test.bpe.en  train.bpe.af  vocab.txt\n",
            "dev.bpe.af\ttest.af     test.en\t train.bpe.en\n",
            "vocab.txt already in data directory...\n",
            "BPE Afrikaans Sentences\n",
            "\"\n",
            "\"maar ons kan daarvan seker wees dat ons eer@@ likheid en ander goeie eienskappe vir ons hemelse vader baie ko@@ sb@@ aar@@ der is as enige ed@@ el@@ ste@@ en !\n",
            "\"\n",
            "\"as ons eer@@ lik is , het ons ’ n sk@@ oon gewe@@ te en vryheid van spraak in die bediening\n",
            "\"\n",
            "Combined BPE Vocab\n",
            "Ξ‡@@\n",
            "Μ£@@\n",
            "̈@@\n",
            "Β§\n",
            "Χ–@@\n",
            "inst\n",
            "˜\n",
            ";@@\n",
            "αΈ₯\n",
            "saja\n"
          ],
          "name": "stdout"
        }
      ]
    },
    {
      "cell_type": "markdown",
      "metadata": {
        "colab_type": "text",
        "id": "Ixmzi60WsUZ8"
      },
      "source": [
        "# Creating the JoeyNMT Config\n",
        "\n",
        "JoeyNMT requires a yaml config. We provide a template below. We've also set a number of defaults with it, that you may play with!\n",
        "\n",
        "- We used Transformer architecture \n",
        "- We set our dropout to reasonably high: 0.3 (recommended in  [(Sennrich, 2019)](https://www.aclweb.org/anthology/P19-1021))\n",
        "\n",
        "Things worth playing with:\n",
        "- The batch size (also recommended to change for low-resourced languages)\n",
        "- The number of epochs (we've set it at 30 just so it runs in about an hour, for testing purposes)\n",
        "- The decoder options (beam_size, alpha)\n",
        "- Evaluation metrics (BLEU versus Crhf4)"
      ]
    },
    {
      "cell_type": "code",
      "metadata": {
        "colab_type": "code",
        "id": "PIs1lY2hxMsl",
        "colab": {}
      },
      "source": [
        "# # This creates the config file for our JoeyNMT system. It might seem overwhelming so we've provided a couple of useful parameters you'll need to update\n",
        "# # (You can of course play with all the parameters if you'd like!)\n",
        "\n",
        "# name = '%s%s' % (source_language, target_language)\n",
        "# gdrive_path = os.environ[\"gdrive_path\"]\n",
        "\n",
        "# # Create the config\n",
        "# config = \"\"\"\n",
        "# name: \"{name}_transformer\"\n",
        "\n",
        "# data:\n",
        "#     src: \"{source_language}\"\n",
        "#     trg: \"{target_language}\"\n",
        "#     train: \"data/{name}/train.bpe\"\n",
        "#     dev:   \"data/{name}/dev.bpe\"\n",
        "#     test:  \"data/{name}/test.bpe\"\n",
        "#     level: \"bpe\"\n",
        "#     lowercase: False\n",
        "#     max_sent_length: 100\n",
        "#     src_vocab: \"data/{name}/vocab.txt\"\n",
        "#     trg_vocab: \"data/{name}/vocab.txt\"\n",
        "\n",
        "# testing:\n",
        "#     beam_size: 5\n",
        "#     alpha: 1.0\n",
        "\n",
        "# training:\n",
        "#     #load_model: \"{gdrive_path}/models/{name}_transformer/1.ckpt\" # if uncommented, load a pre-trained model from this checkpoint\n",
        "#     random_seed: 42\n",
        "#     optimizer: \"adam\"\n",
        "#     normalization: \"tokens\"\n",
        "#     adam_betas: [0.9, 0.999] \n",
        "#     scheduling: \"elan\"            # Try switching to Elan scheduling\n",
        "#     learning_rate_decay_length: 5000 # number of steps to reduce by the decay factor for Elan method\n",
        "#     learning_rate_peak: 0.002  # peak for Elan scheduler (default: 1)\n",
        "#     learning_rate_warmup: 2000  # warmup steps for Elan scheduler\n",
        "#     learning_rate_factor: 0.5       # factor for Noam scheduler (used with Transformer)\n",
        "#     learning_rate_warmup: 1000      # warmup steps for Noam scheduler (used with Transformer)\n",
        "#     patience: 8\n",
        "#     decrease_factor: 0.7\n",
        "#     loss: \"crossentropy\"\n",
        "#     learning_rate: 0.0002\n",
        "#     learning_rate_min: 0.00000001\n",
        "#     weight_decay: 0.0\n",
        "#     label_smoothing: 0.1\n",
        "#     batch_size: 4096\n",
        "#     batch_type: \"token\"\n",
        "#     eval_batch_size: 3600\n",
        "#     eval_batch_type: \"token\"\n",
        "#     batch_multiplier: 1\n",
        "#     early_stopping_metric: \"ppl\"\n",
        "#     epochs: 30 # TODO: Decrease for when playing around and checking of working. Around 30 is sufficient to check if its working at all\n",
        "#     validation_freq: 500 # 4000 # Decrease this for testing\n",
        "#     logging_freq: 100\n",
        "#     eval_metric: \"bleu\"\n",
        "#     model_dir: \"models/{name}_transformer\"\n",
        "#     overwrite: True\n",
        "#     shuffle: True\n",
        "#     use_cuda: True\n",
        "#     max_output_length: 100\n",
        "#     print_valid_sents: [0, 1, 2, 3]\n",
        "#     keep_last_ckpts: 3\n",
        "\n",
        "# model:\n",
        "#     initializer: \"xavier\"\n",
        "#     bias_initializer: \"zeros\"\n",
        "#     init_gain: 1.0\n",
        "#     embed_initializer: \"xavier\"\n",
        "#     embed_init_gain: 1.0\n",
        "#     tied_embeddings: True\n",
        "#     tied_softmax: True\n",
        "#     encoder:\n",
        "#         type: \"transformer\"\n",
        "#         num_layers: 3\n",
        "#         num_heads: 8\n",
        "#         embeddings:\n",
        "#             embedding_dim: 512\n",
        "#             scale: True\n",
        "#             dropout: 0.\n",
        "#         # typically ff_size = 4 x hidden_size\n",
        "#         hidden_size: 512\n",
        "#         ff_size: 2048\n",
        "#         dropout: 0.3\n",
        "#     decoder:\n",
        "#         type: \"transformer\"\n",
        "#         num_layers: 3\n",
        "#         num_heads: 8\n",
        "#         embeddings:\n",
        "#             embedding_dim: 512\n",
        "#             scale: True\n",
        "#             dropout: 0.\n",
        "#         # typically ff_size = 4 x hidden_size\n",
        "#         hidden_size: 512\n",
        "#         ff_size: 2048\n",
        "#         dropout: 0.25\n",
        "# \"\"\".format(name=name, gdrive_path=os.environ[\"gdrive_path\"], source_language=source_language, target_language=target_language)\n",
        "# with open(\"joeynmt/configs/transformer_{name}.yaml\".format(name=name),'w') as f:\n",
        "#     f.write(config)"
      ],
      "execution_count": 0,
      "outputs": []
    },
    {
      "cell_type": "code",
      "metadata": {
        "colab_type": "code",
        "id": "luNmAL42JDd7",
        "colab": {}
      },
      "source": [
        "# This creates the config file for our JoeyNMT system. It might seem overwhelming so we've provided a couple of useful parameters you'll need to update\n",
        "# (You can of course play with all the parameters if you'd like!)\n",
        "\n",
        "name = '%s%s' % (source_language, target_language)\n",
        "gdrive_path = os.environ[\"gdrive_path\"]\n",
        "\n",
        "# Create the config\n",
        "config = \"\"\"\n",
        "name: \"{name}_transformer\"\n",
        "\n",
        "data:\n",
        "    src: \"{source_language}\"\n",
        "    trg: \"{target_language}\"\n",
        "    train: \"data/{name}/train.bpe\"\n",
        "    dev:   \"data/{name}/dev.bpe\"\n",
        "    test:  \"data/{name}/test.bpe\"\n",
        "    level: \"bpe\"\n",
        "    lowercase: False\n",
        "    max_sent_length: 100\n",
        "    src_vocab: \"data/{name}/vocab.txt\"\n",
        "    trg_vocab: \"data/{name}/vocab.txt\"\n",
        "\n",
        "testing:\n",
        "    beam_size: 5\n",
        "    alpha: 1.0\n",
        "\n",
        "training:\n",
        "    #load_model: \"{gdrive_path}/models/{name}_transformer/1.ckpt\" # if uncommented, load a pre-trained model from this checkpoint\n",
        "    #load_model: \"{gdrive_path}/joeynmt/models/{name}_transformer/3500.ckpt\" # if uncommented, load a pre-trained model from this checkpoint\n",
        "    load_model: \"{gdrive_path}/Backup_models/Copy of best.ckpt\" # if uncommented, load a pre-trained model from this checkpoint\n",
        "    random_seed: 42\n",
        "    optimizer: \"adam\"\n",
        "    normalization: \"tokens\"\n",
        "    adam_betas: [0.9, 0.999] \n",
        "    scheduling: \"noam\"            # Try switching to Elan scheduling\n",
        "    learning_rate_decay_length: 5000 # number of steps to reduce by the decay factor for Elan method\n",
        "    learning_rate_peak: 0.002  # peak for Elan scheduler (default: 1)\n",
        "    learning_rate_warmup: 2000  # warmup steps for Elan scheduler\n",
        "    learning_rate_factor: 1       # factor for Noam scheduler (used with Transformer)\n",
        "    learning_rate_warmup: 1000      # warmup steps for Noam scheduler (used with Transformer)\n",
        "    patience: 8\n",
        "    decrease_factor: 0.7\n",
        "    loss: \"crossentropy\"\n",
        "    learning_rate: 0.0002\n",
        "    learning_rate_min: 0.00000001\n",
        "    weight_decay: 0.0\n",
        "    label_smoothing: 0.1\n",
        "    batch_size: 4096\n",
        "    batch_type: \"token\"\n",
        "    eval_batch_size: 3600\n",
        "    eval_batch_type: \"token\"\n",
        "    batch_multiplier: 1\n",
        "    early_stopping_metric: \"ppl\"\n",
        "    epochs: 30 # TODO: Decrease for when playing around and checking of working. Around 30 is sufficient to check if its working at all\n",
        "    validation_freq: 500 # 4000 # Decrease this for testing\n",
        "    logging_freq: 100\n",
        "    eval_metric: \"bleu\"\n",
        "    model_dir: \"models/{name}_transformer\"\n",
        "    overwrite: True\n",
        "    shuffle: True\n",
        "    use_cuda: True\n",
        "    max_output_length: 100\n",
        "    print_valid_sents: [0, 1, 2, 3]\n",
        "    keep_last_ckpts: 3\n",
        "\n",
        "model:\n",
        "    initializer: \"xavier\"\n",
        "    bias_initializer: \"zeros\"\n",
        "    init_gain: 1.0\n",
        "    embed_initializer: \"xavier\"\n",
        "    embed_init_gain: 1.0\n",
        "    tied_embeddings: True\n",
        "    tied_softmax: True\n",
        "    encoder:\n",
        "        type: \"transformer\"\n",
        "        num_layers: 3\n",
        "        num_heads: 8\n",
        "        embeddings:\n",
        "            embedding_dim: 512\n",
        "            scale: True\n",
        "            dropout: 0.\n",
        "        # typically ff_size = 4 x hidden_size\n",
        "        hidden_size: 512\n",
        "        ff_size: 2048\n",
        "        dropout: 0.3\n",
        "    decoder:\n",
        "        type: \"transformer\"\n",
        "        num_layers: 3\n",
        "        num_heads: 8\n",
        "        embeddings:\n",
        "            embedding_dim: 512\n",
        "            scale: True\n",
        "            dropout: 0.\n",
        "        # typically ff_size = 4 x hidden_size\n",
        "        hidden_size: 512\n",
        "        ff_size: 2048\n",
        "        dropout: 0.25\n",
        "\"\"\".format(name=name, gdrive_path=os.environ[\"gdrive_path\"], source_language=source_language, target_language=target_language)\n",
        "with open(os.path.join(gdrive_path, f\"joeynmt/configs/transformer_{name}.yaml\"),'w') as f:\n",
        "    f.write(config)"
      ],
      "execution_count": 0,
      "outputs": []
    },
    {
      "cell_type": "markdown",
      "metadata": {
        "colab_type": "text",
        "id": "pIifxE3Qzuvs"
      },
      "source": [
        "# Train the Model\n",
        "\n",
        "This single line of joeynmt runs the training using the config we made above"
      ]
    },
    {
      "cell_type": "code",
      "metadata": {
        "colab_type": "code",
        "id": "6ZBPFwT94WpI",
        "colab": {}
      },
      "source": [
        "# # Train the model\n",
        "# # You can press Ctrl-C to stop. And then run the next cell to save your checkpoints! \n",
        "\n",
        "# os.chdir(os.path.join(gdrive_path, \"joeynmt\"))\n",
        "\n",
        "# ! python3 joeynmt/__main__.py train configs/transformer_$src$tgt.yaml\n",
        "# # !cd joeynmt; python3 -m joeynmt train configs/transformer_$src$tgt.yaml"
      ],
      "execution_count": 0,
      "outputs": []
    },
    {
      "cell_type": "code",
      "metadata": {
        "colab_type": "code",
        "id": "MBoDS09JM807",
        "colab": {}
      },
      "source": [
        "# Copy the created models from the notebook storage to google drive for persistant storage \n",
        "# !cp -r joeynmt/models/${src}${tgt}_transformer/* \"$gdrive_path/models/${src}${tgt}_transformer/\"\n",
        "! mv \"$gdrive_path/../../masakhane_models_backup/models\" \"$gdrive_path/joeynmt\""
      ],
      "execution_count": 0,
      "outputs": []
    },
    {
      "cell_type": "code",
      "metadata": {
        "colab_type": "code",
        "id": "n94wlrCjVc17",
        "colab": {
          "base_uri": "https://localhost:8080/",
          "height": 408
        },
        "outputId": "72875a99-fbd7-4518-9d7d-a7deda40f3fc"
      },
      "source": [
        "# Output our validation accuracy\n",
        "! cat \"$gdrive_path/models/${src}${tgt}_transformer/validations.txt\""
      ],
      "execution_count": 19,
      "outputs": [
        {
          "output_type": "stream",
          "text": [
            "Steps: 500\tLoss: 90178.07812\tPPL: 37.62176\tbleu: 0.90432\tLR: 0.00069877\t*\n",
            "Steps: 1000\tLoss: 73574.21094\tPPL: 19.29143\tbleu: 2.83208\tLR: 0.00139754\t*\n",
            "Steps: 1500\tLoss: 67591.24219\tPPL: 15.16492\tbleu: 4.42870\tLR: 0.00114109\t*\n",
            "Steps: 2000\tLoss: 63030.15234\tPPL: 12.62282\tbleu: 5.49023\tLR: 0.00098821\t*\n",
            "Steps: 2500\tLoss: 58729.75781\tPPL: 10.61762\tbleu: 7.85880\tLR: 0.00088388\t*\n",
            "Steps: 3000\tLoss: 54868.16016\tPPL: 9.09000\tbleu: 10.19263\tLR: 0.00080687\t*\n",
            "Steps: 3500\tLoss: 51913.49219\tPPL: 8.07133\tbleu: 11.93531\tLR: 0.00074702\t*\n",
            "Steps: 4000\tLoss: 48699.18750\tPPL: 7.09235\tbleu: 15.10315\tLR: 0.00069877\t*\n",
            "Steps: 4500\tLoss: 46169.38281\tPPL: 6.40610\tbleu: 17.91368\tLR: 0.00065881\t*\n",
            "Steps: 5000\tLoss: 43576.91016\tPPL: 5.77168\tbleu: 21.04279\tLR: 0.00062500\t*\n",
            "Steps: 5500\tLoss: 40994.23438\tPPL: 5.20214\tbleu: 23.94864\tLR: 0.00059591\t*\n",
            "Steps: 6000\tLoss: 38960.73438\tPPL: 4.79354\tbleu: 26.45850\tLR: 0.00057054\t*\n",
            "Steps: 6500\tLoss: 36407.32422\tPPL: 4.32561\tbleu: 30.21616\tLR: 0.00054816\t*\n",
            "Steps: 7000\tLoss: 34931.22266\tPPL: 4.07624\tbleu: 31.84504\tLR: 0.00052822\t*\n",
            "Steps: 7500\tLoss: 33079.28125\tPPL: 3.78360\tbleu: 34.36116\tLR: 0.00051031\t*\n",
            "Steps: 8000\tLoss: 31651.22070\tPPL: 3.57237\tbleu: 35.70833\tLR: 0.00049411\t*\n",
            "Steps: 8500\tLoss: 30685.96289\tPPL: 3.43632\tbleu: 37.68450\tLR: 0.00047935\t*\n",
            "Steps: 9000\tLoss: 29720.62891\tPPL: 3.30544\tbleu: 38.99970\tLR: 0.00046585\t*\n",
            "Steps: 9500\tLoss: 28773.71875\tPPL: 3.18189\tbleu: 41.25283\tLR: 0.00045342\t*\n",
            "Steps: 10000\tLoss: 28502.89258\tPPL: 3.14742\tbleu: 40.88431\tLR: 0.00044194\t*\n",
            "Steps: 10500\tLoss: 28264.90039\tPPL: 3.11743\tbleu: 41.76735\tLR: 0.00043129\t*\n",
            "Steps: 11000\tLoss: 27241.58398\tPPL: 2.99171\tbleu: 43.46731\tLR: 0.00042137\t*\n",
            "Steps: 11500\tLoss: 26806.92188\tPPL: 2.93985\tbleu: 43.37800\tLR: 0.00041211\t*\n"
          ],
          "name": "stdout"
        }
      ]
    },
    {
      "cell_type": "code",
      "metadata": {
        "colab_type": "code",
        "id": "66WhRE9lIhoD",
        "colab": {
          "base_uri": "https://localhost:8080/",
          "height": 51
        },
        "outputId": "c139f283-db05-404d-c239-87d68bb46595"
      },
      "source": [
        "# Test our model\n",
        "! cd joeynmt; python3 -m joeynmt test \"$gdrive_path/models/${src}${tgt}_transformer/config.yaml\""
      ],
      "execution_count": 22,
      "outputs": [
        {
          "output_type": "stream",
          "text": [
            "2019-10-16 13:50:44,139 -  dev bleu:  45.10 [Beam search decoding with beam size = 5 and alpha = 1.0]\n",
            "2019-10-16 13:51:41,319 - test bleu:  45.48 [Beam search decoding with beam size = 5 and alpha = 1.0]\n"
          ],
          "name": "stdout"
        }
      ]
    }
  ]
}