--- tags: - generated_from_trainer metrics: - rouge model-index: - name: pegasus-newsroom-headline_writer_57k results: [] --- # pegasus-newsroom-headline_writer_57k This model is a fine-tuned version of [google/pegasus-newsroom](https://huggingface.co/google/pegasus-newsroom) on an unknown dataset. It achieves the following results on the evaluation set: - Loss: 1.3599 - Rouge1: 42.2586 - Rouge2: 23.2731 - Rougel: 35.8685 - Rougelsum: 36.0581 - Gen Len: 34.3651 ## Model description More information needed ## Intended uses & limitations More information needed ## Training and evaluation data More information needed ## Training procedure ### Training hyperparameters The following hyperparameters were used during training: - learning_rate: 2e-05 - train_batch_size: 8 - eval_batch_size: 8 - seed: 42 - optimizer: Adam with betas=(0.9,0.999) and epsilon=1e-08 - lr_scheduler_type: linear - num_epochs: 3 - mixed_precision_training: Native AMP ### Training results | Training Loss | Epoch | Step | Validation Loss | Rouge1 | Rouge2 | Rougel | Rougelsum | Gen Len | |:-------------:|:-----:|:-----:|:---------------:|:-------:|:-------:|:-------:|:---------:|:-------:| | 1.5213 | 1.0 | 5670 | 1.4040 | 41.8648 | 22.8205 | 35.3983 | 35.535 | 34.8817 | | 1.4171 | 2.0 | 11340 | 1.3672 | 42.26 | 23.2611 | 35.8016 | 35.9753 | 34.3492 | | 1.3722 | 3.0 | 17010 | 1.3599 | 42.2586 | 23.2731 | 35.8685 | 36.0581 | 34.3651 | ### Framework versions - Transformers 4.23.1 - Pytorch 1.12.1+cu113 - Datasets 2.6.0 - Tokenizers 0.13.1