chillies commited on
Commit
8d6b5f7
1 Parent(s): 9ce7a01

Create README.md

Browse files
Files changed (1) hide show
  1. README.md +142 -0
README.md ADDED
@@ -0,0 +1,142 @@
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
1
+ ---
2
+ license: apache-2.0
3
+ datasets:
4
+ - chillies/IELTS-writing-task-2-evaluation
5
+ language:
6
+ - en
7
+ metrics:
8
+ - bleu
9
+ ---
10
+
11
+ # mistral-7b-ielts-evaluator
12
+
13
+ [![Model Card](https://img.shields.io/badge/Hugging%20Face-Model%20Card-blue)](https://huggingface.co/username/mistral-7b-ielts-evaluator)
14
+
15
+ ## Description
16
+
17
+ **mistral-7b-ielts-evaluator** is a fine-tuned version of Mistral 7B, specifically trained for evaluating IELTS Writing Task 2 essays. This model provides detailed feedback and scoring for IELTS essays, helping students improve their writing skills.
18
+
19
+ ## Installation
20
+
21
+ To use this model, you will need to install the following dependencies:
22
+
23
+ ```bash
24
+ pip install transformers
25
+ pip install torch # or tensorflow depending on your preference
26
+ ```
27
+
28
+ ## Usage
29
+
30
+ Here is how you can load and use the model in your code:
31
+
32
+ ```python
33
+ from transformers import AutoTokenizer, AutoModelForSequenceClassification
34
+
35
+ tokenizer = AutoTokenizer.from_pretrained("username/mistral-7b-ielts-evaluator")
36
+ model = AutoModelForSequenceClassification.from_pretrained("username/mistral-7b-ielts-evaluator")
37
+
38
+ # Example usage
39
+ essay = "Some people believe that it is better to live in a city while others argue that living in the countryside is preferable. Discuss both views and give your own opinion."
40
+
41
+ inputs = tokenizer(essay, return_tensors="pt", padding=True, truncation=True)
42
+ outputs = model(**inputs)
43
+
44
+ # Assuming the model outputs a score
45
+ score = outputs.logits.argmax(dim=-1).item()
46
+
47
+ print(f"IELTS Task 2 Evaluation Score: {score}")
48
+ ```
49
+
50
+ ### Inference
51
+
52
+ Provide example code for performing inference with your model:
53
+
54
+ ```python
55
+ # Example inference
56
+ essay = "Some people believe that it is better to live in a city while others argue that living in the countryside is preferable. Discuss both views and give your own opinion."
57
+
58
+ inputs = tokenizer(essay, return_tensors="pt", padding=True, truncation=True)
59
+ outputs = model(**inputs)
60
+
61
+ # Assuming the model outputs a score
62
+ score = outputs.logits.argmax(dim=-1).item()
63
+
64
+ print(f"IELTS Task 2 Evaluation Score: {score}")
65
+ ```
66
+
67
+ ### Training
68
+
69
+ If your model can be trained further, provide instructions for training:
70
+
71
+ ```python
72
+ # Example training code
73
+ from transformers import Trainer, TrainingArguments
74
+
75
+ training_args = TrainingArguments(
76
+ output_dir="./results",
77
+ evaluation_strategy="epoch",
78
+ per_device_train_batch_size=8,
79
+ per_device_eval_batch_size=8,
80
+ num_train_epochs=3,
81
+ weight_decay=0.01,
82
+ )
83
+
84
+ trainer = Trainer(
85
+ model=model,
86
+ args=training_args,
87
+ train_dataset=train_dataset,
88
+ eval_dataset=eval_dataset,
89
+ )
90
+
91
+ trainer.train()
92
+ ```
93
+
94
+ ## Training Details
95
+
96
+ ### Training Data
97
+
98
+ The model was fine-tuned on a dataset of IELTS Writing Task 2 essays, which includes a diverse range of topics and responses. The dataset is labeled with scores and feedback to train the model effectively.
99
+
100
+ ### Training Procedure
101
+
102
+ The model was fine-tuned using a standard training approach, optimizing for accurate scoring and feedback generation. Training was conducted on [describe hardware, e.g., GPUs, TPUs] over [number of epochs] epochs with [any relevant hyperparameters].
103
+
104
+ ## Evaluation
105
+
106
+ ### Metrics
107
+
108
+ The model was evaluated using the following metrics:
109
+
110
+ - **Accuracy**: X%
111
+ - **Precision**: Y%
112
+ - **Recall**: Z%
113
+ - **F1 Score**: W%
114
+
115
+ ### Comparison
116
+
117
+ The performance of mistral-7b-ielts-evaluator was benchmarked against other essay evaluation models, demonstrating superior accuracy and feedback quality in the IELTS Writing Task 2 domain.
118
+
119
+ ## Limitations and Biases
120
+
121
+ While mistral-7b-ielts-evaluator is highly effective, it may have limitations in the following areas:
122
+ - It may not capture the full complexity of human scoring.
123
+ - There may be biases present in the training data that could affect responses.
124
+
125
+ ## How to Contribute
126
+
127
+ We welcome contributions! Please see our [contributing guidelines](link_to_contributing_guidelines) for more information on how to contribute to this project.
128
+
129
+ ## License
130
+
131
+ This model is licensed under the [MIT License](LICENSE).
132
+
133
+ ## Acknowledgements
134
+
135
+ We would like to thank the contributors and the creators of the datasets used for training this model.
136
+ ```
137
+
138
+ ### Tips for Completing the Template
139
+
140
+ 1. **Replace placeholders** (like `username`, `training data`, `evaluation metrics`) with your actual data.
141
+ 2. **Include any additional information** specific to your model or training process.
142
+ 3. **Keep the document updated** as the model evolves or more information becomes available.