chestnutlzj commited on
Commit
a6f5d3d
1 Parent(s): 0011d8a

Upload 9 files

Browse files
.gitattributes CHANGED
@@ -33,3 +33,4 @@ saved_model/**/* filter=lfs diff=lfs merge=lfs -text
33
  *.zip filter=lfs diff=lfs merge=lfs -text
34
  *.zst filter=lfs diff=lfs merge=lfs -text
35
  *tfevents* filter=lfs diff=lfs merge=lfs -text
 
 
33
  *.zip filter=lfs diff=lfs merge=lfs -text
34
  *.zst filter=lfs diff=lfs merge=lfs -text
35
  *tfevents* filter=lfs diff=lfs merge=lfs -text
36
+ loss_plot.png filter=lfs diff=lfs merge=lfs -text
README.md ADDED
@@ -0,0 +1,30 @@
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
1
+ # 4x1.8B MoE Qwen Ckpt 18000
2
+
3
+ This is a MoE model project constructed based on the Qwen 1.8B model. In this project, we concatenated 4 original models and trained them using special training methods.
4
+
5
+ This model is a checkpoint model for the continue pretraining stage.
6
+
7
+ ![](loss_plot.png)
8
+
9
+ # Evaluations
10
+
11
+ | Groups | Metric |Value | |Stderr|
12
+ |-----------|--------|-----:|---|-----:|
13
+ |boolq |acc |0.6502|± |0.0083|
14
+ |ceval-valid|acc |0.5171|± |0.1872|
15
+ | |acc_norm|0.5171|± |0.1872|
16
+ |cmmlu |acc |0.5041|± |0.1222|
17
+ | |acc_norm|0.5041|± |0.1222|
18
+ |mathqa |acc |0.2693|± |0.0081|
19
+ | |acc_norm|0.2693|± |0.0081|
20
+
21
+ # Acknowledgements
22
+
23
+ + [Qwen](https://github.com/QwenLM/Qwen)
24
+ + [mistral.ai](https://mistral.ai)
25
+
26
+ # License Agreement
27
+
28
+ This project is open source under the Tongyi Qianwen Research License Agreement. You can view the complete license agreement in this link: [https://github.com/QwenLM/Qwen/blob/main/Tongyi%20Qianwen%20RESEARCH%20LICENSE%20AGREEMENT].
29
+
30
+ During the use of this project, please ensure that your usage behavior complies with the terms and conditions of the license agreement.
config.json ADDED
@@ -0,0 +1,31 @@
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
1
+ {
2
+ "_name_or_path": "MoeChatlaw-checkpoint-13500",
3
+ "architectures": [
4
+ "MixtralForCausalLM"
5
+ ],
6
+ "attention_bias": true,
7
+ "attention_dropout": 0.0,
8
+ "bos_token_id": 1,
9
+ "eos_token_id": 2,
10
+ "hidden_act": "silu",
11
+ "hidden_size": 2048,
12
+ "initializer_range": 0.02,
13
+ "intermediate_size": 5504,
14
+ "max_position_embeddings": 8192,
15
+ "model_type": "mixtral",
16
+ "num_attention_heads": 16,
17
+ "num_experts_per_tok": 2,
18
+ "num_hidden_layers": 24,
19
+ "num_key_value_heads": 16,
20
+ "num_local_experts": 4,
21
+ "output_router_logits": true,
22
+ "rms_norm_eps": 1e-06,
23
+ "rope_theta": 10000.0,
24
+ "router_aux_loss_coef": 0.001,
25
+ "sliding_window": 4096,
26
+ "tie_word_embeddings": false,
27
+ "torch_dtype": "bfloat16",
28
+ "transformers_version": "4.36.2",
29
+ "use_cache": true,
30
+ "vocab_size": 151936
31
+ }
generation_config.json ADDED
@@ -0,0 +1,6 @@
 
 
 
 
 
 
 
1
+ {
2
+ "_from_model_config": true,
3
+ "bos_token_id": 1,
4
+ "eos_token_id": 2,
5
+ "transformers_version": "4.36.2"
6
+ }
loss_plot.png ADDED

Git LFS Details

  • SHA256: 01f29637b42071f138d65b19652f4ce840b03351d280821c73b43da0ecb813ad
  • Pointer size: 132 Bytes
  • Size of remote file: 1.07 MB
model.safetensors.index.json ADDED
@@ -0,0 +1,466 @@
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
1
+ {
2
+ "metadata": {
3
+ "total_size": 8543543296
4
+ },
5
+ "weight_map": {
6
+ "lm_head.weight": "model-00002-of-00002.safetensors",
7
+ "model.embed_tokens.weight": "model-00001-of-00002.safetensors",
8
+ "model.layers.0.block_sparse_moe.experts.0.w1.weight": "model-00001-of-00002.safetensors",
9
+ "model.layers.0.block_sparse_moe.experts.0.w2.weight": "model-00001-of-00002.safetensors",
10
+ "model.layers.0.block_sparse_moe.experts.0.w3.weight": "model-00001-of-00002.safetensors",
11
+ "model.layers.0.block_sparse_moe.experts.1.w1.weight": "model-00001-of-00002.safetensors",
12
+ "model.layers.0.block_sparse_moe.experts.1.w2.weight": "model-00001-of-00002.safetensors",
13
+ "model.layers.0.block_sparse_moe.experts.1.w3.weight": "model-00001-of-00002.safetensors",
14
+ "model.layers.0.block_sparse_moe.experts.2.w1.weight": "model-00001-of-00002.safetensors",
15
+ "model.layers.0.block_sparse_moe.experts.2.w2.weight": "model-00001-of-00002.safetensors",
16
+ "model.layers.0.block_sparse_moe.experts.2.w3.weight": "model-00001-of-00002.safetensors",
17
+ "model.layers.0.block_sparse_moe.experts.3.w1.weight": "model-00001-of-00002.safetensors",
18
+ "model.layers.0.block_sparse_moe.experts.3.w2.weight": "model-00001-of-00002.safetensors",
19
+ "model.layers.0.block_sparse_moe.experts.3.w3.weight": "model-00001-of-00002.safetensors",
20
+ "model.layers.0.block_sparse_moe.gate.weight": "model-00001-of-00002.safetensors",
21
+ "model.layers.0.input_layernorm.weight": "model-00001-of-00002.safetensors",
22
+ "model.layers.0.post_attention_layernorm.weight": "model-00001-of-00002.safetensors",
23
+ "model.layers.0.self_attn.k_proj.weight": "model-00001-of-00002.safetensors",
24
+ "model.layers.0.self_attn.o_proj.weight": "model-00001-of-00002.safetensors",
25
+ "model.layers.0.self_attn.q_proj.weight": "model-00001-of-00002.safetensors",
26
+ "model.layers.0.self_attn.v_proj.weight": "model-00001-of-00002.safetensors",
27
+ "model.layers.1.block_sparse_moe.experts.0.w1.weight": "model-00001-of-00002.safetensors",
28
+ "model.layers.1.block_sparse_moe.experts.0.w2.weight": "model-00001-of-00002.safetensors",
29
+ "model.layers.1.block_sparse_moe.experts.0.w3.weight": "model-00001-of-00002.safetensors",
30
+ "model.layers.1.block_sparse_moe.experts.1.w1.weight": "model-00001-of-00002.safetensors",
31
+ "model.layers.1.block_sparse_moe.experts.1.w2.weight": "model-00001-of-00002.safetensors",
32
+ "model.layers.1.block_sparse_moe.experts.1.w3.weight": "model-00001-of-00002.safetensors",
33
+ "model.layers.1.block_sparse_moe.experts.2.w1.weight": "model-00001-of-00002.safetensors",
34
+ "model.layers.1.block_sparse_moe.experts.2.w2.weight": "model-00001-of-00002.safetensors",
35
+ "model.layers.1.block_sparse_moe.experts.2.w3.weight": "model-00001-of-00002.safetensors",
36
+ "model.layers.1.block_sparse_moe.experts.3.w1.weight": "model-00001-of-00002.safetensors",
37
+ "model.layers.1.block_sparse_moe.experts.3.w2.weight": "model-00001-of-00002.safetensors",
38
+ "model.layers.1.block_sparse_moe.experts.3.w3.weight": "model-00001-of-00002.safetensors",
39
+ "model.layers.1.block_sparse_moe.gate.weight": "model-00001-of-00002.safetensors",
40
+ "model.layers.1.input_layernorm.weight": "model-00001-of-00002.safetensors",
41
+ "model.layers.1.post_attention_layernorm.weight": "model-00001-of-00002.safetensors",
42
+ "model.layers.1.self_attn.k_proj.weight": "model-00001-of-00002.safetensors",
43
+ "model.layers.1.self_attn.o_proj.weight": "model-00001-of-00002.safetensors",
44
+ "model.layers.1.self_attn.q_proj.weight": "model-00001-of-00002.safetensors",
45
+ "model.layers.1.self_attn.v_proj.weight": "model-00001-of-00002.safetensors",
46
+ "model.layers.10.block_sparse_moe.experts.0.w1.weight": "model-00001-of-00002.safetensors",
47
+ "model.layers.10.block_sparse_moe.experts.0.w2.weight": "model-00001-of-00002.safetensors",
48
+ "model.layers.10.block_sparse_moe.experts.0.w3.weight": "model-00001-of-00002.safetensors",
49
+ "model.layers.10.block_sparse_moe.experts.1.w1.weight": "model-00001-of-00002.safetensors",
50
+ "model.layers.10.block_sparse_moe.experts.1.w2.weight": "model-00001-of-00002.safetensors",
51
+ "model.layers.10.block_sparse_moe.experts.1.w3.weight": "model-00001-of-00002.safetensors",
52
+ "model.layers.10.block_sparse_moe.experts.2.w1.weight": "model-00001-of-00002.safetensors",
53
+ "model.layers.10.block_sparse_moe.experts.2.w2.weight": "model-00001-of-00002.safetensors",
54
+ "model.layers.10.block_sparse_moe.experts.2.w3.weight": "model-00001-of-00002.safetensors",
55
+ "model.layers.10.block_sparse_moe.experts.3.w1.weight": "model-00001-of-00002.safetensors",
56
+ "model.layers.10.block_sparse_moe.experts.3.w2.weight": "model-00001-of-00002.safetensors",
57
+ "model.layers.10.block_sparse_moe.experts.3.w3.weight": "model-00001-of-00002.safetensors",
58
+ "model.layers.10.block_sparse_moe.gate.weight": "model-00001-of-00002.safetensors",
59
+ "model.layers.10.input_layernorm.weight": "model-00001-of-00002.safetensors",
60
+ "model.layers.10.post_attention_layernorm.weight": "model-00001-of-00002.safetensors",
61
+ "model.layers.10.self_attn.k_proj.weight": "model-00001-of-00002.safetensors",
62
+ "model.layers.10.self_attn.o_proj.weight": "model-00001-of-00002.safetensors",
63
+ "model.layers.10.self_attn.q_proj.weight": "model-00001-of-00002.safetensors",
64
+ "model.layers.10.self_attn.v_proj.weight": "model-00001-of-00002.safetensors",
65
+ "model.layers.11.block_sparse_moe.experts.0.w1.weight": "model-00001-of-00002.safetensors",
66
+ "model.layers.11.block_sparse_moe.experts.0.w2.weight": "model-00001-of-00002.safetensors",
67
+ "model.layers.11.block_sparse_moe.experts.0.w3.weight": "model-00001-of-00002.safetensors",
68
+ "model.layers.11.block_sparse_moe.experts.1.w1.weight": "model-00001-of-00002.safetensors",
69
+ "model.layers.11.block_sparse_moe.experts.1.w2.weight": "model-00001-of-00002.safetensors",
70
+ "model.layers.11.block_sparse_moe.experts.1.w3.weight": "model-00001-of-00002.safetensors",
71
+ "model.layers.11.block_sparse_moe.experts.2.w1.weight": "model-00001-of-00002.safetensors",
72
+ "model.layers.11.block_sparse_moe.experts.2.w2.weight": "model-00001-of-00002.safetensors",
73
+ "model.layers.11.block_sparse_moe.experts.2.w3.weight": "model-00001-of-00002.safetensors",
74
+ "model.layers.11.block_sparse_moe.experts.3.w1.weight": "model-00001-of-00002.safetensors",
75
+ "model.layers.11.block_sparse_moe.experts.3.w2.weight": "model-00001-of-00002.safetensors",
76
+ "model.layers.11.block_sparse_moe.experts.3.w3.weight": "model-00001-of-00002.safetensors",
77
+ "model.layers.11.block_sparse_moe.gate.weight": "model-00001-of-00002.safetensors",
78
+ "model.layers.11.input_layernorm.weight": "model-00001-of-00002.safetensors",
79
+ "model.layers.11.post_attention_layernorm.weight": "model-00001-of-00002.safetensors",
80
+ "model.layers.11.self_attn.k_proj.weight": "model-00001-of-00002.safetensors",
81
+ "model.layers.11.self_attn.o_proj.weight": "model-00001-of-00002.safetensors",
82
+ "model.layers.11.self_attn.q_proj.weight": "model-00001-of-00002.safetensors",
83
+ "model.layers.11.self_attn.v_proj.weight": "model-00001-of-00002.safetensors",
84
+ "model.layers.12.block_sparse_moe.experts.0.w1.weight": "model-00001-of-00002.safetensors",
85
+ "model.layers.12.block_sparse_moe.experts.0.w2.weight": "model-00001-of-00002.safetensors",
86
+ "model.layers.12.block_sparse_moe.experts.0.w3.weight": "model-00001-of-00002.safetensors",
87
+ "model.layers.12.block_sparse_moe.experts.1.w1.weight": "model-00001-of-00002.safetensors",
88
+ "model.layers.12.block_sparse_moe.experts.1.w2.weight": "model-00001-of-00002.safetensors",
89
+ "model.layers.12.block_sparse_moe.experts.1.w3.weight": "model-00001-of-00002.safetensors",
90
+ "model.layers.12.block_sparse_moe.experts.2.w1.weight": "model-00001-of-00002.safetensors",
91
+ "model.layers.12.block_sparse_moe.experts.2.w2.weight": "model-00001-of-00002.safetensors",
92
+ "model.layers.12.block_sparse_moe.experts.2.w3.weight": "model-00001-of-00002.safetensors",
93
+ "model.layers.12.block_sparse_moe.experts.3.w1.weight": "model-00001-of-00002.safetensors",
94
+ "model.layers.12.block_sparse_moe.experts.3.w2.weight": "model-00001-of-00002.safetensors",
95
+ "model.layers.12.block_sparse_moe.experts.3.w3.weight": "model-00001-of-00002.safetensors",
96
+ "model.layers.12.block_sparse_moe.gate.weight": "model-00001-of-00002.safetensors",
97
+ "model.layers.12.input_layernorm.weight": "model-00001-of-00002.safetensors",
98
+ "model.layers.12.post_attention_layernorm.weight": "model-00001-of-00002.safetensors",
99
+ "model.layers.12.self_attn.k_proj.weight": "model-00001-of-00002.safetensors",
100
+ "model.layers.12.self_attn.o_proj.weight": "model-00001-of-00002.safetensors",
101
+ "model.layers.12.self_attn.q_proj.weight": "model-00001-of-00002.safetensors",
102
+ "model.layers.12.self_attn.v_proj.weight": "model-00001-of-00002.safetensors",
103
+ "model.layers.13.block_sparse_moe.experts.0.w1.weight": "model-00001-of-00002.safetensors",
104
+ "model.layers.13.block_sparse_moe.experts.0.w2.weight": "model-00001-of-00002.safetensors",
105
+ "model.layers.13.block_sparse_moe.experts.0.w3.weight": "model-00001-of-00002.safetensors",
106
+ "model.layers.13.block_sparse_moe.experts.1.w1.weight": "model-00001-of-00002.safetensors",
107
+ "model.layers.13.block_sparse_moe.experts.1.w2.weight": "model-00001-of-00002.safetensors",
108
+ "model.layers.13.block_sparse_moe.experts.1.w3.weight": "model-00001-of-00002.safetensors",
109
+ "model.layers.13.block_sparse_moe.experts.2.w1.weight": "model-00001-of-00002.safetensors",
110
+ "model.layers.13.block_sparse_moe.experts.2.w2.weight": "model-00001-of-00002.safetensors",
111
+ "model.layers.13.block_sparse_moe.experts.2.w3.weight": "model-00001-of-00002.safetensors",
112
+ "model.layers.13.block_sparse_moe.experts.3.w1.weight": "model-00001-of-00002.safetensors",
113
+ "model.layers.13.block_sparse_moe.experts.3.w2.weight": "model-00001-of-00002.safetensors",
114
+ "model.layers.13.block_sparse_moe.experts.3.w3.weight": "model-00001-of-00002.safetensors",
115
+ "model.layers.13.block_sparse_moe.gate.weight": "model-00001-of-00002.safetensors",
116
+ "model.layers.13.input_layernorm.weight": "model-00001-of-00002.safetensors",
117
+ "model.layers.13.post_attention_layernorm.weight": "model-00001-of-00002.safetensors",
118
+ "model.layers.13.self_attn.k_proj.weight": "model-00001-of-00002.safetensors",
119
+ "model.layers.13.self_attn.o_proj.weight": "model-00001-of-00002.safetensors",
120
+ "model.layers.13.self_attn.q_proj.weight": "model-00001-of-00002.safetensors",
121
+ "model.layers.13.self_attn.v_proj.weight": "model-00001-of-00002.safetensors",
122
+ "model.layers.14.block_sparse_moe.experts.0.w1.weight": "model-00001-of-00002.safetensors",
123
+ "model.layers.14.block_sparse_moe.experts.0.w2.weight": "model-00001-of-00002.safetensors",
124
+ "model.layers.14.block_sparse_moe.experts.0.w3.weight": "model-00001-of-00002.safetensors",
125
+ "model.layers.14.block_sparse_moe.experts.1.w1.weight": "model-00002-of-00002.safetensors",
126
+ "model.layers.14.block_sparse_moe.experts.1.w2.weight": "model-00002-of-00002.safetensors",
127
+ "model.layers.14.block_sparse_moe.experts.1.w3.weight": "model-00002-of-00002.safetensors",
128
+ "model.layers.14.block_sparse_moe.experts.2.w1.weight": "model-00002-of-00002.safetensors",
129
+ "model.layers.14.block_sparse_moe.experts.2.w2.weight": "model-00002-of-00002.safetensors",
130
+ "model.layers.14.block_sparse_moe.experts.2.w3.weight": "model-00002-of-00002.safetensors",
131
+ "model.layers.14.block_sparse_moe.experts.3.w1.weight": "model-00002-of-00002.safetensors",
132
+ "model.layers.14.block_sparse_moe.experts.3.w2.weight": "model-00002-of-00002.safetensors",
133
+ "model.layers.14.block_sparse_moe.experts.3.w3.weight": "model-00002-of-00002.safetensors",
134
+ "model.layers.14.block_sparse_moe.gate.weight": "model-00001-of-00002.safetensors",
135
+ "model.layers.14.input_layernorm.weight": "model-00002-of-00002.safetensors",
136
+ "model.layers.14.post_attention_layernorm.weight": "model-00002-of-00002.safetensors",
137
+ "model.layers.14.self_attn.k_proj.weight": "model-00001-of-00002.safetensors",
138
+ "model.layers.14.self_attn.o_proj.weight": "model-00001-of-00002.safetensors",
139
+ "model.layers.14.self_attn.q_proj.weight": "model-00001-of-00002.safetensors",
140
+ "model.layers.14.self_attn.v_proj.weight": "model-00001-of-00002.safetensors",
141
+ "model.layers.15.block_sparse_moe.experts.0.w1.weight": "model-00002-of-00002.safetensors",
142
+ "model.layers.15.block_sparse_moe.experts.0.w2.weight": "model-00002-of-00002.safetensors",
143
+ "model.layers.15.block_sparse_moe.experts.0.w3.weight": "model-00002-of-00002.safetensors",
144
+ "model.layers.15.block_sparse_moe.experts.1.w1.weight": "model-00002-of-00002.safetensors",
145
+ "model.layers.15.block_sparse_moe.experts.1.w2.weight": "model-00002-of-00002.safetensors",
146
+ "model.layers.15.block_sparse_moe.experts.1.w3.weight": "model-00002-of-00002.safetensors",
147
+ "model.layers.15.block_sparse_moe.experts.2.w1.weight": "model-00002-of-00002.safetensors",
148
+ "model.layers.15.block_sparse_moe.experts.2.w2.weight": "model-00002-of-00002.safetensors",
149
+ "model.layers.15.block_sparse_moe.experts.2.w3.weight": "model-00002-of-00002.safetensors",
150
+ "model.layers.15.block_sparse_moe.experts.3.w1.weight": "model-00002-of-00002.safetensors",
151
+ "model.layers.15.block_sparse_moe.experts.3.w2.weight": "model-00002-of-00002.safetensors",
152
+ "model.layers.15.block_sparse_moe.experts.3.w3.weight": "model-00002-of-00002.safetensors",
153
+ "model.layers.15.block_sparse_moe.gate.weight": "model-00002-of-00002.safetensors",
154
+ "model.layers.15.input_layernorm.weight": "model-00002-of-00002.safetensors",
155
+ "model.layers.15.post_attention_layernorm.weight": "model-00002-of-00002.safetensors",
156
+ "model.layers.15.self_attn.k_proj.weight": "model-00002-of-00002.safetensors",
157
+ "model.layers.15.self_attn.o_proj.weight": "model-00002-of-00002.safetensors",
158
+ "model.layers.15.self_attn.q_proj.weight": "model-00002-of-00002.safetensors",
159
+ "model.layers.15.self_attn.v_proj.weight": "model-00002-of-00002.safetensors",
160
+ "model.layers.16.block_sparse_moe.experts.0.w1.weight": "model-00002-of-00002.safetensors",
161
+ "model.layers.16.block_sparse_moe.experts.0.w2.weight": "model-00002-of-00002.safetensors",
162
+ "model.layers.16.block_sparse_moe.experts.0.w3.weight": "model-00002-of-00002.safetensors",
163
+ "model.layers.16.block_sparse_moe.experts.1.w1.weight": "model-00002-of-00002.safetensors",
164
+ "model.layers.16.block_sparse_moe.experts.1.w2.weight": "model-00002-of-00002.safetensors",
165
+ "model.layers.16.block_sparse_moe.experts.1.w3.weight": "model-00002-of-00002.safetensors",
166
+ "model.layers.16.block_sparse_moe.experts.2.w1.weight": "model-00002-of-00002.safetensors",
167
+ "model.layers.16.block_sparse_moe.experts.2.w2.weight": "model-00002-of-00002.safetensors",
168
+ "model.layers.16.block_sparse_moe.experts.2.w3.weight": "model-00002-of-00002.safetensors",
169
+ "model.layers.16.block_sparse_moe.experts.3.w1.weight": "model-00002-of-00002.safetensors",
170
+ "model.layers.16.block_sparse_moe.experts.3.w2.weight": "model-00002-of-00002.safetensors",
171
+ "model.layers.16.block_sparse_moe.experts.3.w3.weight": "model-00002-of-00002.safetensors",
172
+ "model.layers.16.block_sparse_moe.gate.weight": "model-00002-of-00002.safetensors",
173
+ "model.layers.16.input_layernorm.weight": "model-00002-of-00002.safetensors",
174
+ "model.layers.16.post_attention_layernorm.weight": "model-00002-of-00002.safetensors",
175
+ "model.layers.16.self_attn.k_proj.weight": "model-00002-of-00002.safetensors",
176
+ "model.layers.16.self_attn.o_proj.weight": "model-00002-of-00002.safetensors",
177
+ "model.layers.16.self_attn.q_proj.weight": "model-00002-of-00002.safetensors",
178
+ "model.layers.16.self_attn.v_proj.weight": "model-00002-of-00002.safetensors",
179
+ "model.layers.17.block_sparse_moe.experts.0.w1.weight": "model-00002-of-00002.safetensors",
180
+ "model.layers.17.block_sparse_moe.experts.0.w2.weight": "model-00002-of-00002.safetensors",
181
+ "model.layers.17.block_sparse_moe.experts.0.w3.weight": "model-00002-of-00002.safetensors",
182
+ "model.layers.17.block_sparse_moe.experts.1.w1.weight": "model-00002-of-00002.safetensors",
183
+ "model.layers.17.block_sparse_moe.experts.1.w2.weight": "model-00002-of-00002.safetensors",
184
+ "model.layers.17.block_sparse_moe.experts.1.w3.weight": "model-00002-of-00002.safetensors",
185
+ "model.layers.17.block_sparse_moe.experts.2.w1.weight": "model-00002-of-00002.safetensors",
186
+ "model.layers.17.block_sparse_moe.experts.2.w2.weight": "model-00002-of-00002.safetensors",
187
+ "model.layers.17.block_sparse_moe.experts.2.w3.weight": "model-00002-of-00002.safetensors",
188
+ "model.layers.17.block_sparse_moe.experts.3.w1.weight": "model-00002-of-00002.safetensors",
189
+ "model.layers.17.block_sparse_moe.experts.3.w2.weight": "model-00002-of-00002.safetensors",
190
+ "model.layers.17.block_sparse_moe.experts.3.w3.weight": "model-00002-of-00002.safetensors",
191
+ "model.layers.17.block_sparse_moe.gate.weight": "model-00002-of-00002.safetensors",
192
+ "model.layers.17.input_layernorm.weight": "model-00002-of-00002.safetensors",
193
+ "model.layers.17.post_attention_layernorm.weight": "model-00002-of-00002.safetensors",
194
+ "model.layers.17.self_attn.k_proj.weight": "model-00002-of-00002.safetensors",
195
+ "model.layers.17.self_attn.o_proj.weight": "model-00002-of-00002.safetensors",
196
+ "model.layers.17.self_attn.q_proj.weight": "model-00002-of-00002.safetensors",
197
+ "model.layers.17.self_attn.v_proj.weight": "model-00002-of-00002.safetensors",
198
+ "model.layers.18.block_sparse_moe.experts.0.w1.weight": "model-00002-of-00002.safetensors",
199
+ "model.layers.18.block_sparse_moe.experts.0.w2.weight": "model-00002-of-00002.safetensors",
200
+ "model.layers.18.block_sparse_moe.experts.0.w3.weight": "model-00002-of-00002.safetensors",
201
+ "model.layers.18.block_sparse_moe.experts.1.w1.weight": "model-00002-of-00002.safetensors",
202
+ "model.layers.18.block_sparse_moe.experts.1.w2.weight": "model-00002-of-00002.safetensors",
203
+ "model.layers.18.block_sparse_moe.experts.1.w3.weight": "model-00002-of-00002.safetensors",
204
+ "model.layers.18.block_sparse_moe.experts.2.w1.weight": "model-00002-of-00002.safetensors",
205
+ "model.layers.18.block_sparse_moe.experts.2.w2.weight": "model-00002-of-00002.safetensors",
206
+ "model.layers.18.block_sparse_moe.experts.2.w3.weight": "model-00002-of-00002.safetensors",
207
+ "model.layers.18.block_sparse_moe.experts.3.w1.weight": "model-00002-of-00002.safetensors",
208
+ "model.layers.18.block_sparse_moe.experts.3.w2.weight": "model-00002-of-00002.safetensors",
209
+ "model.layers.18.block_sparse_moe.experts.3.w3.weight": "model-00002-of-00002.safetensors",
210
+ "model.layers.18.block_sparse_moe.gate.weight": "model-00002-of-00002.safetensors",
211
+ "model.layers.18.input_layernorm.weight": "model-00002-of-00002.safetensors",
212
+ "model.layers.18.post_attention_layernorm.weight": "model-00002-of-00002.safetensors",
213
+ "model.layers.18.self_attn.k_proj.weight": "model-00002-of-00002.safetensors",
214
+ "model.layers.18.self_attn.o_proj.weight": "model-00002-of-00002.safetensors",
215
+ "model.layers.18.self_attn.q_proj.weight": "model-00002-of-00002.safetensors",
216
+ "model.layers.18.self_attn.v_proj.weight": "model-00002-of-00002.safetensors",
217
+ "model.layers.19.block_sparse_moe.experts.0.w1.weight": "model-00002-of-00002.safetensors",
218
+ "model.layers.19.block_sparse_moe.experts.0.w2.weight": "model-00002-of-00002.safetensors",
219
+ "model.layers.19.block_sparse_moe.experts.0.w3.weight": "model-00002-of-00002.safetensors",
220
+ "model.layers.19.block_sparse_moe.experts.1.w1.weight": "model-00002-of-00002.safetensors",
221
+ "model.layers.19.block_sparse_moe.experts.1.w2.weight": "model-00002-of-00002.safetensors",
222
+ "model.layers.19.block_sparse_moe.experts.1.w3.weight": "model-00002-of-00002.safetensors",
223
+ "model.layers.19.block_sparse_moe.experts.2.w1.weight": "model-00002-of-00002.safetensors",
224
+ "model.layers.19.block_sparse_moe.experts.2.w2.weight": "model-00002-of-00002.safetensors",
225
+ "model.layers.19.block_sparse_moe.experts.2.w3.weight": "model-00002-of-00002.safetensors",
226
+ "model.layers.19.block_sparse_moe.experts.3.w1.weight": "model-00002-of-00002.safetensors",
227
+ "model.layers.19.block_sparse_moe.experts.3.w2.weight": "model-00002-of-00002.safetensors",
228
+ "model.layers.19.block_sparse_moe.experts.3.w3.weight": "model-00002-of-00002.safetensors",
229
+ "model.layers.19.block_sparse_moe.gate.weight": "model-00002-of-00002.safetensors",
230
+ "model.layers.19.input_layernorm.weight": "model-00002-of-00002.safetensors",
231
+ "model.layers.19.post_attention_layernorm.weight": "model-00002-of-00002.safetensors",
232
+ "model.layers.19.self_attn.k_proj.weight": "model-00002-of-00002.safetensors",
233
+ "model.layers.19.self_attn.o_proj.weight": "model-00002-of-00002.safetensors",
234
+ "model.layers.19.self_attn.q_proj.weight": "model-00002-of-00002.safetensors",
235
+ "model.layers.19.self_attn.v_proj.weight": "model-00002-of-00002.safetensors",
236
+ "model.layers.2.block_sparse_moe.experts.0.w1.weight": "model-00001-of-00002.safetensors",
237
+ "model.layers.2.block_sparse_moe.experts.0.w2.weight": "model-00001-of-00002.safetensors",
238
+ "model.layers.2.block_sparse_moe.experts.0.w3.weight": "model-00001-of-00002.safetensors",
239
+ "model.layers.2.block_sparse_moe.experts.1.w1.weight": "model-00001-of-00002.safetensors",
240
+ "model.layers.2.block_sparse_moe.experts.1.w2.weight": "model-00001-of-00002.safetensors",
241
+ "model.layers.2.block_sparse_moe.experts.1.w3.weight": "model-00001-of-00002.safetensors",
242
+ "model.layers.2.block_sparse_moe.experts.2.w1.weight": "model-00001-of-00002.safetensors",
243
+ "model.layers.2.block_sparse_moe.experts.2.w2.weight": "model-00001-of-00002.safetensors",
244
+ "model.layers.2.block_sparse_moe.experts.2.w3.weight": "model-00001-of-00002.safetensors",
245
+ "model.layers.2.block_sparse_moe.experts.3.w1.weight": "model-00001-of-00002.safetensors",
246
+ "model.layers.2.block_sparse_moe.experts.3.w2.weight": "model-00001-of-00002.safetensors",
247
+ "model.layers.2.block_sparse_moe.experts.3.w3.weight": "model-00001-of-00002.safetensors",
248
+ "model.layers.2.block_sparse_moe.gate.weight": "model-00001-of-00002.safetensors",
249
+ "model.layers.2.input_layernorm.weight": "model-00001-of-00002.safetensors",
250
+ "model.layers.2.post_attention_layernorm.weight": "model-00001-of-00002.safetensors",
251
+ "model.layers.2.self_attn.k_proj.weight": "model-00001-of-00002.safetensors",
252
+ "model.layers.2.self_attn.o_proj.weight": "model-00001-of-00002.safetensors",
253
+ "model.layers.2.self_attn.q_proj.weight": "model-00001-of-00002.safetensors",
254
+ "model.layers.2.self_attn.v_proj.weight": "model-00001-of-00002.safetensors",
255
+ "model.layers.20.block_sparse_moe.experts.0.w1.weight": "model-00002-of-00002.safetensors",
256
+ "model.layers.20.block_sparse_moe.experts.0.w2.weight": "model-00002-of-00002.safetensors",
257
+ "model.layers.20.block_sparse_moe.experts.0.w3.weight": "model-00002-of-00002.safetensors",
258
+ "model.layers.20.block_sparse_moe.experts.1.w1.weight": "model-00002-of-00002.safetensors",
259
+ "model.layers.20.block_sparse_moe.experts.1.w2.weight": "model-00002-of-00002.safetensors",
260
+ "model.layers.20.block_sparse_moe.experts.1.w3.weight": "model-00002-of-00002.safetensors",
261
+ "model.layers.20.block_sparse_moe.experts.2.w1.weight": "model-00002-of-00002.safetensors",
262
+ "model.layers.20.block_sparse_moe.experts.2.w2.weight": "model-00002-of-00002.safetensors",
263
+ "model.layers.20.block_sparse_moe.experts.2.w3.weight": "model-00002-of-00002.safetensors",
264
+ "model.layers.20.block_sparse_moe.experts.3.w1.weight": "model-00002-of-00002.safetensors",
265
+ "model.layers.20.block_sparse_moe.experts.3.w2.weight": "model-00002-of-00002.safetensors",
266
+ "model.layers.20.block_sparse_moe.experts.3.w3.weight": "model-00002-of-00002.safetensors",
267
+ "model.layers.20.block_sparse_moe.gate.weight": "model-00002-of-00002.safetensors",
268
+ "model.layers.20.input_layernorm.weight": "model-00002-of-00002.safetensors",
269
+ "model.layers.20.post_attention_layernorm.weight": "model-00002-of-00002.safetensors",
270
+ "model.layers.20.self_attn.k_proj.weight": "model-00002-of-00002.safetensors",
271
+ "model.layers.20.self_attn.o_proj.weight": "model-00002-of-00002.safetensors",
272
+ "model.layers.20.self_attn.q_proj.weight": "model-00002-of-00002.safetensors",
273
+ "model.layers.20.self_attn.v_proj.weight": "model-00002-of-00002.safetensors",
274
+ "model.layers.21.block_sparse_moe.experts.0.w1.weight": "model-00002-of-00002.safetensors",
275
+ "model.layers.21.block_sparse_moe.experts.0.w2.weight": "model-00002-of-00002.safetensors",
276
+ "model.layers.21.block_sparse_moe.experts.0.w3.weight": "model-00002-of-00002.safetensors",
277
+ "model.layers.21.block_sparse_moe.experts.1.w1.weight": "model-00002-of-00002.safetensors",
278
+ "model.layers.21.block_sparse_moe.experts.1.w2.weight": "model-00002-of-00002.safetensors",
279
+ "model.layers.21.block_sparse_moe.experts.1.w3.weight": "model-00002-of-00002.safetensors",
280
+ "model.layers.21.block_sparse_moe.experts.2.w1.weight": "model-00002-of-00002.safetensors",
281
+ "model.layers.21.block_sparse_moe.experts.2.w2.weight": "model-00002-of-00002.safetensors",
282
+ "model.layers.21.block_sparse_moe.experts.2.w3.weight": "model-00002-of-00002.safetensors",
283
+ "model.layers.21.block_sparse_moe.experts.3.w1.weight": "model-00002-of-00002.safetensors",
284
+ "model.layers.21.block_sparse_moe.experts.3.w2.weight": "model-00002-of-00002.safetensors",
285
+ "model.layers.21.block_sparse_moe.experts.3.w3.weight": "model-00002-of-00002.safetensors",
286
+ "model.layers.21.block_sparse_moe.gate.weight": "model-00002-of-00002.safetensors",
287
+ "model.layers.21.input_layernorm.weight": "model-00002-of-00002.safetensors",
288
+ "model.layers.21.post_attention_layernorm.weight": "model-00002-of-00002.safetensors",
289
+ "model.layers.21.self_attn.k_proj.weight": "model-00002-of-00002.safetensors",
290
+ "model.layers.21.self_attn.o_proj.weight": "model-00002-of-00002.safetensors",
291
+ "model.layers.21.self_attn.q_proj.weight": "model-00002-of-00002.safetensors",
292
+ "model.layers.21.self_attn.v_proj.weight": "model-00002-of-00002.safetensors",
293
+ "model.layers.22.block_sparse_moe.experts.0.w1.weight": "model-00002-of-00002.safetensors",
294
+ "model.layers.22.block_sparse_moe.experts.0.w2.weight": "model-00002-of-00002.safetensors",
295
+ "model.layers.22.block_sparse_moe.experts.0.w3.weight": "model-00002-of-00002.safetensors",
296
+ "model.layers.22.block_sparse_moe.experts.1.w1.weight": "model-00002-of-00002.safetensors",
297
+ "model.layers.22.block_sparse_moe.experts.1.w2.weight": "model-00002-of-00002.safetensors",
298
+ "model.layers.22.block_sparse_moe.experts.1.w3.weight": "model-00002-of-00002.safetensors",
299
+ "model.layers.22.block_sparse_moe.experts.2.w1.weight": "model-00002-of-00002.safetensors",
300
+ "model.layers.22.block_sparse_moe.experts.2.w2.weight": "model-00002-of-00002.safetensors",
301
+ "model.layers.22.block_sparse_moe.experts.2.w3.weight": "model-00002-of-00002.safetensors",
302
+ "model.layers.22.block_sparse_moe.experts.3.w1.weight": "model-00002-of-00002.safetensors",
303
+ "model.layers.22.block_sparse_moe.experts.3.w2.weight": "model-00002-of-00002.safetensors",
304
+ "model.layers.22.block_sparse_moe.experts.3.w3.weight": "model-00002-of-00002.safetensors",
305
+ "model.layers.22.block_sparse_moe.gate.weight": "model-00002-of-00002.safetensors",
306
+ "model.layers.22.input_layernorm.weight": "model-00002-of-00002.safetensors",
307
+ "model.layers.22.post_attention_layernorm.weight": "model-00002-of-00002.safetensors",
308
+ "model.layers.22.self_attn.k_proj.weight": "model-00002-of-00002.safetensors",
309
+ "model.layers.22.self_attn.o_proj.weight": "model-00002-of-00002.safetensors",
310
+ "model.layers.22.self_attn.q_proj.weight": "model-00002-of-00002.safetensors",
311
+ "model.layers.22.self_attn.v_proj.weight": "model-00002-of-00002.safetensors",
312
+ "model.layers.23.block_sparse_moe.experts.0.w1.weight": "model-00002-of-00002.safetensors",
313
+ "model.layers.23.block_sparse_moe.experts.0.w2.weight": "model-00002-of-00002.safetensors",
314
+ "model.layers.23.block_sparse_moe.experts.0.w3.weight": "model-00002-of-00002.safetensors",
315
+ "model.layers.23.block_sparse_moe.experts.1.w1.weight": "model-00002-of-00002.safetensors",
316
+ "model.layers.23.block_sparse_moe.experts.1.w2.weight": "model-00002-of-00002.safetensors",
317
+ "model.layers.23.block_sparse_moe.experts.1.w3.weight": "model-00002-of-00002.safetensors",
318
+ "model.layers.23.block_sparse_moe.experts.2.w1.weight": "model-00002-of-00002.safetensors",
319
+ "model.layers.23.block_sparse_moe.experts.2.w2.weight": "model-00002-of-00002.safetensors",
320
+ "model.layers.23.block_sparse_moe.experts.2.w3.weight": "model-00002-of-00002.safetensors",
321
+ "model.layers.23.block_sparse_moe.experts.3.w1.weight": "model-00002-of-00002.safetensors",
322
+ "model.layers.23.block_sparse_moe.experts.3.w2.weight": "model-00002-of-00002.safetensors",
323
+ "model.layers.23.block_sparse_moe.experts.3.w3.weight": "model-00002-of-00002.safetensors",
324
+ "model.layers.23.block_sparse_moe.gate.weight": "model-00002-of-00002.safetensors",
325
+ "model.layers.23.input_layernorm.weight": "model-00002-of-00002.safetensors",
326
+ "model.layers.23.post_attention_layernorm.weight": "model-00002-of-00002.safetensors",
327
+ "model.layers.23.self_attn.k_proj.weight": "model-00002-of-00002.safetensors",
328
+ "model.layers.23.self_attn.o_proj.weight": "model-00002-of-00002.safetensors",
329
+ "model.layers.23.self_attn.q_proj.weight": "model-00002-of-00002.safetensors",
330
+ "model.layers.23.self_attn.v_proj.weight": "model-00002-of-00002.safetensors",
331
+ "model.layers.3.block_sparse_moe.experts.0.w1.weight": "model-00001-of-00002.safetensors",
332
+ "model.layers.3.block_sparse_moe.experts.0.w2.weight": "model-00001-of-00002.safetensors",
333
+ "model.layers.3.block_sparse_moe.experts.0.w3.weight": "model-00001-of-00002.safetensors",
334
+ "model.layers.3.block_sparse_moe.experts.1.w1.weight": "model-00001-of-00002.safetensors",
335
+ "model.layers.3.block_sparse_moe.experts.1.w2.weight": "model-00001-of-00002.safetensors",
336
+ "model.layers.3.block_sparse_moe.experts.1.w3.weight": "model-00001-of-00002.safetensors",
337
+ "model.layers.3.block_sparse_moe.experts.2.w1.weight": "model-00001-of-00002.safetensors",
338
+ "model.layers.3.block_sparse_moe.experts.2.w2.weight": "model-00001-of-00002.safetensors",
339
+ "model.layers.3.block_sparse_moe.experts.2.w3.weight": "model-00001-of-00002.safetensors",
340
+ "model.layers.3.block_sparse_moe.experts.3.w1.weight": "model-00001-of-00002.safetensors",
341
+ "model.layers.3.block_sparse_moe.experts.3.w2.weight": "model-00001-of-00002.safetensors",
342
+ "model.layers.3.block_sparse_moe.experts.3.w3.weight": "model-00001-of-00002.safetensors",
343
+ "model.layers.3.block_sparse_moe.gate.weight": "model-00001-of-00002.safetensors",
344
+ "model.layers.3.input_layernorm.weight": "model-00001-of-00002.safetensors",
345
+ "model.layers.3.post_attention_layernorm.weight": "model-00001-of-00002.safetensors",
346
+ "model.layers.3.self_attn.k_proj.weight": "model-00001-of-00002.safetensors",
347
+ "model.layers.3.self_attn.o_proj.weight": "model-00001-of-00002.safetensors",
348
+ "model.layers.3.self_attn.q_proj.weight": "model-00001-of-00002.safetensors",
349
+ "model.layers.3.self_attn.v_proj.weight": "model-00001-of-00002.safetensors",
350
+ "model.layers.4.block_sparse_moe.experts.0.w1.weight": "model-00001-of-00002.safetensors",
351
+ "model.layers.4.block_sparse_moe.experts.0.w2.weight": "model-00001-of-00002.safetensors",
352
+ "model.layers.4.block_sparse_moe.experts.0.w3.weight": "model-00001-of-00002.safetensors",
353
+ "model.layers.4.block_sparse_moe.experts.1.w1.weight": "model-00001-of-00002.safetensors",
354
+ "model.layers.4.block_sparse_moe.experts.1.w2.weight": "model-00001-of-00002.safetensors",
355
+ "model.layers.4.block_sparse_moe.experts.1.w3.weight": "model-00001-of-00002.safetensors",
356
+ "model.layers.4.block_sparse_moe.experts.2.w1.weight": "model-00001-of-00002.safetensors",
357
+ "model.layers.4.block_sparse_moe.experts.2.w2.weight": "model-00001-of-00002.safetensors",
358
+ "model.layers.4.block_sparse_moe.experts.2.w3.weight": "model-00001-of-00002.safetensors",
359
+ "model.layers.4.block_sparse_moe.experts.3.w1.weight": "model-00001-of-00002.safetensors",
360
+ "model.layers.4.block_sparse_moe.experts.3.w2.weight": "model-00001-of-00002.safetensors",
361
+ "model.layers.4.block_sparse_moe.experts.3.w3.weight": "model-00001-of-00002.safetensors",
362
+ "model.layers.4.block_sparse_moe.gate.weight": "model-00001-of-00002.safetensors",
363
+ "model.layers.4.input_layernorm.weight": "model-00001-of-00002.safetensors",
364
+ "model.layers.4.post_attention_layernorm.weight": "model-00001-of-00002.safetensors",
365
+ "model.layers.4.self_attn.k_proj.weight": "model-00001-of-00002.safetensors",
366
+ "model.layers.4.self_attn.o_proj.weight": "model-00001-of-00002.safetensors",
367
+ "model.layers.4.self_attn.q_proj.weight": "model-00001-of-00002.safetensors",
368
+ "model.layers.4.self_attn.v_proj.weight": "model-00001-of-00002.safetensors",
369
+ "model.layers.5.block_sparse_moe.experts.0.w1.weight": "model-00001-of-00002.safetensors",
370
+ "model.layers.5.block_sparse_moe.experts.0.w2.weight": "model-00001-of-00002.safetensors",
371
+ "model.layers.5.block_sparse_moe.experts.0.w3.weight": "model-00001-of-00002.safetensors",
372
+ "model.layers.5.block_sparse_moe.experts.1.w1.weight": "model-00001-of-00002.safetensors",
373
+ "model.layers.5.block_sparse_moe.experts.1.w2.weight": "model-00001-of-00002.safetensors",
374
+ "model.layers.5.block_sparse_moe.experts.1.w3.weight": "model-00001-of-00002.safetensors",
375
+ "model.layers.5.block_sparse_moe.experts.2.w1.weight": "model-00001-of-00002.safetensors",
376
+ "model.layers.5.block_sparse_moe.experts.2.w2.weight": "model-00001-of-00002.safetensors",
377
+ "model.layers.5.block_sparse_moe.experts.2.w3.weight": "model-00001-of-00002.safetensors",
378
+ "model.layers.5.block_sparse_moe.experts.3.w1.weight": "model-00001-of-00002.safetensors",
379
+ "model.layers.5.block_sparse_moe.experts.3.w2.weight": "model-00001-of-00002.safetensors",
380
+ "model.layers.5.block_sparse_moe.experts.3.w3.weight": "model-00001-of-00002.safetensors",
381
+ "model.layers.5.block_sparse_moe.gate.weight": "model-00001-of-00002.safetensors",
382
+ "model.layers.5.input_layernorm.weight": "model-00001-of-00002.safetensors",
383
+ "model.layers.5.post_attention_layernorm.weight": "model-00001-of-00002.safetensors",
384
+ "model.layers.5.self_attn.k_proj.weight": "model-00001-of-00002.safetensors",
385
+ "model.layers.5.self_attn.o_proj.weight": "model-00001-of-00002.safetensors",
386
+ "model.layers.5.self_attn.q_proj.weight": "model-00001-of-00002.safetensors",
387
+ "model.layers.5.self_attn.v_proj.weight": "model-00001-of-00002.safetensors",
388
+ "model.layers.6.block_sparse_moe.experts.0.w1.weight": "model-00001-of-00002.safetensors",
389
+ "model.layers.6.block_sparse_moe.experts.0.w2.weight": "model-00001-of-00002.safetensors",
390
+ "model.layers.6.block_sparse_moe.experts.0.w3.weight": "model-00001-of-00002.safetensors",
391
+ "model.layers.6.block_sparse_moe.experts.1.w1.weight": "model-00001-of-00002.safetensors",
392
+ "model.layers.6.block_sparse_moe.experts.1.w2.weight": "model-00001-of-00002.safetensors",
393
+ "model.layers.6.block_sparse_moe.experts.1.w3.weight": "model-00001-of-00002.safetensors",
394
+ "model.layers.6.block_sparse_moe.experts.2.w1.weight": "model-00001-of-00002.safetensors",
395
+ "model.layers.6.block_sparse_moe.experts.2.w2.weight": "model-00001-of-00002.safetensors",
396
+ "model.layers.6.block_sparse_moe.experts.2.w3.weight": "model-00001-of-00002.safetensors",
397
+ "model.layers.6.block_sparse_moe.experts.3.w1.weight": "model-00001-of-00002.safetensors",
398
+ "model.layers.6.block_sparse_moe.experts.3.w2.weight": "model-00001-of-00002.safetensors",
399
+ "model.layers.6.block_sparse_moe.experts.3.w3.weight": "model-00001-of-00002.safetensors",
400
+ "model.layers.6.block_sparse_moe.gate.weight": "model-00001-of-00002.safetensors",
401
+ "model.layers.6.input_layernorm.weight": "model-00001-of-00002.safetensors",
402
+ "model.layers.6.post_attention_layernorm.weight": "model-00001-of-00002.safetensors",
403
+ "model.layers.6.self_attn.k_proj.weight": "model-00001-of-00002.safetensors",
404
+ "model.layers.6.self_attn.o_proj.weight": "model-00001-of-00002.safetensors",
405
+ "model.layers.6.self_attn.q_proj.weight": "model-00001-of-00002.safetensors",
406
+ "model.layers.6.self_attn.v_proj.weight": "model-00001-of-00002.safetensors",
407
+ "model.layers.7.block_sparse_moe.experts.0.w1.weight": "model-00001-of-00002.safetensors",
408
+ "model.layers.7.block_sparse_moe.experts.0.w2.weight": "model-00001-of-00002.safetensors",
409
+ "model.layers.7.block_sparse_moe.experts.0.w3.weight": "model-00001-of-00002.safetensors",
410
+ "model.layers.7.block_sparse_moe.experts.1.w1.weight": "model-00001-of-00002.safetensors",
411
+ "model.layers.7.block_sparse_moe.experts.1.w2.weight": "model-00001-of-00002.safetensors",
412
+ "model.layers.7.block_sparse_moe.experts.1.w3.weight": "model-00001-of-00002.safetensors",
413
+ "model.layers.7.block_sparse_moe.experts.2.w1.weight": "model-00001-of-00002.safetensors",
414
+ "model.layers.7.block_sparse_moe.experts.2.w2.weight": "model-00001-of-00002.safetensors",
415
+ "model.layers.7.block_sparse_moe.experts.2.w3.weight": "model-00001-of-00002.safetensors",
416
+ "model.layers.7.block_sparse_moe.experts.3.w1.weight": "model-00001-of-00002.safetensors",
417
+ "model.layers.7.block_sparse_moe.experts.3.w2.weight": "model-00001-of-00002.safetensors",
418
+ "model.layers.7.block_sparse_moe.experts.3.w3.weight": "model-00001-of-00002.safetensors",
419
+ "model.layers.7.block_sparse_moe.gate.weight": "model-00001-of-00002.safetensors",
420
+ "model.layers.7.input_layernorm.weight": "model-00001-of-00002.safetensors",
421
+ "model.layers.7.post_attention_layernorm.weight": "model-00001-of-00002.safetensors",
422
+ "model.layers.7.self_attn.k_proj.weight": "model-00001-of-00002.safetensors",
423
+ "model.layers.7.self_attn.o_proj.weight": "model-00001-of-00002.safetensors",
424
+ "model.layers.7.self_attn.q_proj.weight": "model-00001-of-00002.safetensors",
425
+ "model.layers.7.self_attn.v_proj.weight": "model-00001-of-00002.safetensors",
426
+ "model.layers.8.block_sparse_moe.experts.0.w1.weight": "model-00001-of-00002.safetensors",
427
+ "model.layers.8.block_sparse_moe.experts.0.w2.weight": "model-00001-of-00002.safetensors",
428
+ "model.layers.8.block_sparse_moe.experts.0.w3.weight": "model-00001-of-00002.safetensors",
429
+ "model.layers.8.block_sparse_moe.experts.1.w1.weight": "model-00001-of-00002.safetensors",
430
+ "model.layers.8.block_sparse_moe.experts.1.w2.weight": "model-00001-of-00002.safetensors",
431
+ "model.layers.8.block_sparse_moe.experts.1.w3.weight": "model-00001-of-00002.safetensors",
432
+ "model.layers.8.block_sparse_moe.experts.2.w1.weight": "model-00001-of-00002.safetensors",
433
+ "model.layers.8.block_sparse_moe.experts.2.w2.weight": "model-00001-of-00002.safetensors",
434
+ "model.layers.8.block_sparse_moe.experts.2.w3.weight": "model-00001-of-00002.safetensors",
435
+ "model.layers.8.block_sparse_moe.experts.3.w1.weight": "model-00001-of-00002.safetensors",
436
+ "model.layers.8.block_sparse_moe.experts.3.w2.weight": "model-00001-of-00002.safetensors",
437
+ "model.layers.8.block_sparse_moe.experts.3.w3.weight": "model-00001-of-00002.safetensors",
438
+ "model.layers.8.block_sparse_moe.gate.weight": "model-00001-of-00002.safetensors",
439
+ "model.layers.8.input_layernorm.weight": "model-00001-of-00002.safetensors",
440
+ "model.layers.8.post_attention_layernorm.weight": "model-00001-of-00002.safetensors",
441
+ "model.layers.8.self_attn.k_proj.weight": "model-00001-of-00002.safetensors",
442
+ "model.layers.8.self_attn.o_proj.weight": "model-00001-of-00002.safetensors",
443
+ "model.layers.8.self_attn.q_proj.weight": "model-00001-of-00002.safetensors",
444
+ "model.layers.8.self_attn.v_proj.weight": "model-00001-of-00002.safetensors",
445
+ "model.layers.9.block_sparse_moe.experts.0.w1.weight": "model-00001-of-00002.safetensors",
446
+ "model.layers.9.block_sparse_moe.experts.0.w2.weight": "model-00001-of-00002.safetensors",
447
+ "model.layers.9.block_sparse_moe.experts.0.w3.weight": "model-00001-of-00002.safetensors",
448
+ "model.layers.9.block_sparse_moe.experts.1.w1.weight": "model-00001-of-00002.safetensors",
449
+ "model.layers.9.block_sparse_moe.experts.1.w2.weight": "model-00001-of-00002.safetensors",
450
+ "model.layers.9.block_sparse_moe.experts.1.w3.weight": "model-00001-of-00002.safetensors",
451
+ "model.layers.9.block_sparse_moe.experts.2.w1.weight": "model-00001-of-00002.safetensors",
452
+ "model.layers.9.block_sparse_moe.experts.2.w2.weight": "model-00001-of-00002.safetensors",
453
+ "model.layers.9.block_sparse_moe.experts.2.w3.weight": "model-00001-of-00002.safetensors",
454
+ "model.layers.9.block_sparse_moe.experts.3.w1.weight": "model-00001-of-00002.safetensors",
455
+ "model.layers.9.block_sparse_moe.experts.3.w2.weight": "model-00001-of-00002.safetensors",
456
+ "model.layers.9.block_sparse_moe.experts.3.w3.weight": "model-00001-of-00002.safetensors",
457
+ "model.layers.9.block_sparse_moe.gate.weight": "model-00001-of-00002.safetensors",
458
+ "model.layers.9.input_layernorm.weight": "model-00001-of-00002.safetensors",
459
+ "model.layers.9.post_attention_layernorm.weight": "model-00001-of-00002.safetensors",
460
+ "model.layers.9.self_attn.k_proj.weight": "model-00001-of-00002.safetensors",
461
+ "model.layers.9.self_attn.o_proj.weight": "model-00001-of-00002.safetensors",
462
+ "model.layers.9.self_attn.q_proj.weight": "model-00001-of-00002.safetensors",
463
+ "model.layers.9.self_attn.v_proj.weight": "model-00001-of-00002.safetensors",
464
+ "model.norm.weight": "model-00002-of-00002.safetensors"
465
+ }
466
+ }
qwen.tiktoken ADDED
The diff for this file is too large to render. See raw diff
 
special_tokens_map.json ADDED
@@ -0,0 +1,3 @@
 
 
 
 
1
+ {
2
+ "pad_token": "<|endoftext|>"
3
+ }
tokenization_qwen.py ADDED
@@ -0,0 +1,276 @@
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
1
+ # Copyright (c) Alibaba Cloud.
2
+ #
3
+ # This source code is licensed under the license found in the
4
+ # LICENSE file in the root directory of this source tree.
5
+
6
+ """Tokenization classes for QWen."""
7
+
8
+ import base64
9
+ import logging
10
+ import os
11
+ import unicodedata
12
+ from typing import Collection, Dict, List, Set, Tuple, Union
13
+
14
+ import tiktoken
15
+ from transformers import PreTrainedTokenizer, AddedToken
16
+
17
+ logger = logging.getLogger(__name__)
18
+
19
+
20
+ VOCAB_FILES_NAMES = {"vocab_file": "qwen.tiktoken"}
21
+
22
+ PAT_STR = r"""(?i:'s|'t|'re|'ve|'m|'ll|'d)|[^\r\n\p{L}\p{N}]?\p{L}+|\p{N}| ?[^\s\p{L}\p{N}]+[\r\n]*|\s*[\r\n]+|\s+(?!\S)|\s+"""
23
+ ENDOFTEXT = "<|endoftext|>"
24
+ IMSTART = "<|im_start|>"
25
+ IMEND = "<|im_end|>"
26
+ # as the default behavior is changed to allow special tokens in
27
+ # regular texts, the surface forms of special tokens need to be
28
+ # as different as possible to minimize the impact
29
+ EXTRAS = tuple((f"<|extra_{i}|>" for i in range(205)))
30
+ # changed to use actual index to avoid misconfiguration with vocabulary expansion
31
+ SPECIAL_START_ID = 151643
32
+ SPECIAL_TOKENS = tuple(
33
+ enumerate(
34
+ (
35
+ (
36
+ ENDOFTEXT,
37
+ IMSTART,
38
+ IMEND,
39
+ )
40
+ + EXTRAS
41
+ ),
42
+ start=SPECIAL_START_ID,
43
+ )
44
+ )
45
+ SPECIAL_TOKENS_SET = set(t for i, t in SPECIAL_TOKENS)
46
+
47
+
48
+ def _load_tiktoken_bpe(tiktoken_bpe_file: str) -> Dict[bytes, int]:
49
+ with open(tiktoken_bpe_file, "rb") as f:
50
+ contents = f.read()
51
+ return {
52
+ base64.b64decode(token): int(rank)
53
+ for token, rank in (line.split() for line in contents.splitlines() if line)
54
+ }
55
+
56
+
57
+ class QWenTokenizer(PreTrainedTokenizer):
58
+ """QWen tokenizer."""
59
+
60
+ vocab_files_names = VOCAB_FILES_NAMES
61
+
62
+ def __init__(
63
+ self,
64
+ vocab_file,
65
+ errors="replace",
66
+ extra_vocab_file=None,
67
+ **kwargs,
68
+ ):
69
+ super().__init__(**kwargs)
70
+
71
+ # how to handle errors in decoding UTF-8 byte sequences
72
+ # use ignore if you are in streaming inference
73
+ self.errors = errors
74
+
75
+ self.mergeable_ranks = _load_tiktoken_bpe(vocab_file) # type: Dict[bytes, int]
76
+ self.special_tokens = {
77
+ token: index
78
+ for index, token in SPECIAL_TOKENS
79
+ }
80
+
81
+ # try load extra vocab from file
82
+ if extra_vocab_file is not None:
83
+ used_ids = set(self.mergeable_ranks.values()) | set(self.special_tokens.values())
84
+ extra_mergeable_ranks = _load_tiktoken_bpe(extra_vocab_file)
85
+ for token, index in extra_mergeable_ranks.items():
86
+ if token in self.mergeable_ranks:
87
+ logger.info(f"extra token {token} exists, skipping")
88
+ continue
89
+ if index in used_ids:
90
+ logger.info(f'the index {index} for extra token {token} exists, skipping')
91
+ continue
92
+ self.mergeable_ranks[token] = index
93
+ # the index may be sparse after this, but don't worry tiktoken.Encoding will handle this
94
+
95
+ enc = tiktoken.Encoding(
96
+ "Qwen",
97
+ pat_str=PAT_STR,
98
+ mergeable_ranks=self.mergeable_ranks,
99
+ special_tokens=self.special_tokens,
100
+ )
101
+ assert (
102
+ len(self.mergeable_ranks) + len(self.special_tokens) == enc.n_vocab
103
+ ), f"{len(self.mergeable_ranks) + len(self.special_tokens)} != {enc.n_vocab} in encoding"
104
+
105
+ self.decoder = {
106
+ v: k for k, v in self.mergeable_ranks.items()
107
+ } # type: dict[int, bytes|str]
108
+ self.decoder.update({v: k for k, v in self.special_tokens.items()})
109
+
110
+ self.tokenizer = enc # type: tiktoken.Encoding
111
+
112
+ self.eod_id = self.tokenizer.eot_token
113
+ self.im_start_id = self.special_tokens[IMSTART]
114
+ self.im_end_id = self.special_tokens[IMEND]
115
+
116
+ def __getstate__(self):
117
+ # for pickle lovers
118
+ state = self.__dict__.copy()
119
+ del state["tokenizer"]
120
+ return state
121
+
122
+ def __setstate__(self, state):
123
+ # tokenizer is not python native; don't pass it; rebuild it
124
+ self.__dict__.update(state)
125
+ enc = tiktoken.Encoding(
126
+ "Qwen",
127
+ pat_str=PAT_STR,
128
+ mergeable_ranks=self.mergeable_ranks,
129
+ special_tokens=self.special_tokens,
130
+ )
131
+ self.tokenizer = enc
132
+
133
+ def __len__(self) -> int:
134
+ return self.tokenizer.n_vocab
135
+
136
+ def get_vocab(self) -> Dict[bytes, int]:
137
+ return self.mergeable_ranks
138
+
139
+ def convert_tokens_to_ids(
140
+ self, tokens: Union[bytes, str, List[Union[bytes, str]]]
141
+ ) -> List[int]:
142
+ ids = []
143
+ if isinstance(tokens, (str, bytes)):
144
+ if tokens in self.special_tokens:
145
+ return self.special_tokens[tokens]
146
+ else:
147
+ return self.mergeable_ranks.get(tokens)
148
+ for token in tokens:
149
+ if token in self.special_tokens:
150
+ ids.append(self.special_tokens[token])
151
+ else:
152
+ ids.append(self.mergeable_ranks.get(token))
153
+ return ids
154
+
155
+ def _add_tokens(
156
+ self,
157
+ new_tokens: Union[List[str], List[AddedToken]],
158
+ special_tokens: bool = False,
159
+ ) -> int:
160
+ if not special_tokens and new_tokens:
161
+ raise ValueError("Adding regular tokens is not supported")
162
+ for token in new_tokens:
163
+ surface_form = token.content if isinstance(token, AddedToken) else token
164
+ if surface_form not in SPECIAL_TOKENS_SET:
165
+ raise ValueError("Adding unknown special tokens is not supported")
166
+ return 0
167
+
168
+ def save_vocabulary(self, save_directory: str, **kwargs) -> Tuple[str]:
169
+ """
170
+ Save only the vocabulary of the tokenizer (vocabulary).
171
+
172
+ Returns:
173
+ `Tuple(str)`: Paths to the files saved.
174
+ """
175
+ file_path = os.path.join(save_directory, "qwen.tiktoken")
176
+ with open(file_path, "w", encoding="utf8") as w:
177
+ for k, v in self.mergeable_ranks.items():
178
+ line = base64.b64encode(k).decode("utf8") + " " + str(v) + "\n"
179
+ w.write(line)
180
+ return (file_path,)
181
+
182
+ def tokenize(
183
+ self,
184
+ text: str,
185
+ allowed_special: Union[Set, str] = "all",
186
+ disallowed_special: Union[Collection, str] = (),
187
+ **kwargs,
188
+ ) -> List[Union[bytes, str]]:
189
+ """
190
+ Converts a string in a sequence of tokens.
191
+
192
+ Args:
193
+ text (`str`):
194
+ The sequence to be encoded.
195
+ allowed_special (`Literal["all"]` or `set`):
196
+ The surface forms of the tokens to be encoded as special tokens in regular texts.
197
+ Default to "all".
198
+ disallowed_special (`Literal["all"]` or `Collection`):
199
+ The surface forms of the tokens that should not be in regular texts and trigger errors.
200
+ Default to an empty tuple.
201
+
202
+ kwargs (additional keyword arguments, *optional*):
203
+ Will be passed to the underlying model specific encode method.
204
+
205
+ Returns:
206
+ `List[bytes|str]`: The list of tokens.
207
+ """
208
+ tokens = []
209
+ text = unicodedata.normalize("NFC", text)
210
+
211
+ # this implementation takes a detour: text -> token id -> token surface forms
212
+ for t in self.tokenizer.encode(
213
+ text, allowed_special=allowed_special, disallowed_special=disallowed_special
214
+ ):
215
+ tokens.append(self.decoder[t])
216
+ return tokens
217
+
218
+ def convert_tokens_to_string(self, tokens: List[Union[bytes, str]]) -> str:
219
+ """
220
+ Converts a sequence of tokens in a single string.
221
+ """
222
+ text = ""
223
+ temp = b""
224
+ for t in tokens:
225
+ if isinstance(t, str):
226
+ if temp:
227
+ text += temp.decode("utf-8", errors=self.errors)
228
+ temp = b""
229
+ text += t
230
+ elif isinstance(t, bytes):
231
+ temp += t
232
+ else:
233
+ raise TypeError("token should only be of type types or str")
234
+ if temp:
235
+ text += temp.decode("utf-8", errors=self.errors)
236
+ return text
237
+
238
+ @property
239
+ def vocab_size(self):
240
+ return self.tokenizer.n_vocab
241
+
242
+ def _convert_id_to_token(self, index: int) -> Union[bytes, str]:
243
+ """Converts an id to a token, special tokens included"""
244
+ if index in self.decoder:
245
+ return self.decoder[index]
246
+ raise ValueError("unknown ids")
247
+
248
+ def _convert_token_to_id(self, token: Union[bytes, str]) -> int:
249
+ """Converts a token to an id using the vocab, special tokens included"""
250
+ if token in self.special_tokens:
251
+ return self.special_tokens[token]
252
+ if token in self.mergeable_ranks:
253
+ return self.mergeable_ranks[token]
254
+ raise ValueError("unknown token")
255
+
256
+ def _tokenize(self, text: str, **kwargs):
257
+ """
258
+ Converts a string in a sequence of tokens (string), using the tokenizer. Split in words for word-based
259
+ vocabulary or sub-words for sub-word-based vocabularies (BPE/SentencePieces/WordPieces).
260
+
261
+ Do NOT take care of added tokens.
262
+ """
263
+ raise NotImplementedError
264
+
265
+ def _decode(
266
+ self,
267
+ token_ids: Union[int, List[int]],
268
+ skip_special_tokens: bool = False,
269
+ errors: str = None,
270
+ **kwargs,
271
+ ) -> str:
272
+ if isinstance(token_ids, int):
273
+ token_ids = [token_ids]
274
+ if skip_special_tokens:
275
+ token_ids = [i for i in token_ids if i < self.eod_id]
276
+ return self.tokenizer.decode(token_ids, errors=errors or self.errors)
tokenizer_config.json ADDED
@@ -0,0 +1,14 @@
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
1
+ {
2
+ "added_tokens_decoder": {},
3
+ "auto_map": {
4
+ "AutoTokenizer": [
5
+ "tokenization_qwen.QWenTokenizer",
6
+ null
7
+ ]
8
+ },
9
+ "clean_up_tokenization_spaces": true,
10
+ "model_max_length": 8192,
11
+ "pad_token": "<|endoftext|>",
12
+ "tokenizer_class": "QWenTokenizer",
13
+ "use_fast": false
14
+ }