cheesyFishes
commited on
Commit
•
81bb72e
1
Parent(s):
646ee65
Upload run_airbench.py
Browse files- run_airbench.py +105 -0
run_airbench.py
ADDED
@@ -0,0 +1,105 @@
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
1 |
+
from typing import Any, Callable, Dict, List, Optional
|
2 |
+
|
3 |
+
from air_benchmark import AIRBench, Retriever
|
4 |
+
from llama_index.core import VectorStoreIndex
|
5 |
+
from llama_index.core.node_parser import SentenceSplitter
|
6 |
+
from llama_index.embeddings.openai import OpenAIEmbedding
|
7 |
+
from llama_index.llms.openai import OpenAI
|
8 |
+
from llama_index.retrievers.bm25 import BM25Retriever
|
9 |
+
from llama_index.core.retrievers import QueryFusionRetriever
|
10 |
+
from llama_index.core.schema import Document, NodeWithScore
|
11 |
+
|
12 |
+
|
13 |
+
def create_retriever_fn(documents: List[Document], top_k: int) -> Callable[[str], List[NodeWithScore]]:
|
14 |
+
# IMPORTANT: if you don't use a llama-index node parser/splitter, you need to ensure
|
15 |
+
# that node.ref_doc_id points to the correct parent document id.
|
16 |
+
# This is used to line up the corpus document id for evaluation
|
17 |
+
nodes = SentenceSplitter(chunk_size=1024, chunk_overlap=128)(documents)
|
18 |
+
|
19 |
+
vector_index = VectorStoreIndex(
|
20 |
+
nodes=nodes,
|
21 |
+
embed_model=OpenAIEmbedding(model_name="text-embedding-ada-002")
|
22 |
+
)
|
23 |
+
vector_retriever = vector_index.as_retriever(similarity_top_k=top_k)
|
24 |
+
bm25_retriever = BM25Retriever.from_defaults(nodes=nodes, similarity_top_k=top_k)
|
25 |
+
|
26 |
+
retriever = QueryFusionRetriever(
|
27 |
+
[vector_retriever, bm25_retriever],
|
28 |
+
similarity_top_k=top_k,
|
29 |
+
num_queries=3,
|
30 |
+
mode="dist_based_score",
|
31 |
+
llm=OpenAI(model="gpt-3.5-turbo", temperature=0.1)
|
32 |
+
)
|
33 |
+
|
34 |
+
def _retriever(query: str) -> List[NodeWithScore]:
|
35 |
+
return retriever.retrieve(query)
|
36 |
+
|
37 |
+
return _retriever
|
38 |
+
|
39 |
+
|
40 |
+
|
41 |
+
class LlamaRetriever(Retriever):
|
42 |
+
def __init__(
|
43 |
+
self,
|
44 |
+
name: str,
|
45 |
+
create_retriever_fn: Callable[[List[Document], int], Callable[[str], List[NodeWithScore]]],
|
46 |
+
search_top_k: int = 1000,
|
47 |
+
) -> None:
|
48 |
+
self.name = name
|
49 |
+
self.search_top_k
|
50 |
+
self.create_retriever_fn = create_retriever_fn
|
51 |
+
|
52 |
+
def __str__(self):
|
53 |
+
return self.name
|
54 |
+
|
55 |
+
def __call__(
|
56 |
+
self,
|
57 |
+
corpus: Dict[str, Dict[str, Any]],
|
58 |
+
queries: Dict[str, str],
|
59 |
+
**kwargs,
|
60 |
+
) -> Dict[str, Dict[str, float]]:
|
61 |
+
"""
|
62 |
+
Retrieve relevant documents for each query
|
63 |
+
"""
|
64 |
+
|
65 |
+
documents = []
|
66 |
+
for doc_id, doc in corpus.items():
|
67 |
+
text = doc.pop("text")
|
68 |
+
assert text is not None
|
69 |
+
documents.append(Document(id_=doc_id, text=text, metadata={**doc}))
|
70 |
+
|
71 |
+
retriever = self.create_retriever_fn(documents)
|
72 |
+
|
73 |
+
query_ids = list(queries.keys())
|
74 |
+
results = {qid: {} for qid in query_ids}
|
75 |
+
for qid in query_ids:
|
76 |
+
query = queries[qid]
|
77 |
+
if isinstance(query, list):
|
78 |
+
# take from mteb:
|
79 |
+
# https://github.com/embeddings-benchmark/mteb/blob/main/mteb/evaluation/evaluators/RetrievalEvaluator.py#L403
|
80 |
+
query = "; ".join(query)
|
81 |
+
|
82 |
+
nodes = retriever(query)
|
83 |
+
for node in nodes:
|
84 |
+
# ref_doc_id should point to corpus document id
|
85 |
+
results[qid][node.node.ref_doc_id] = node.score
|
86 |
+
|
87 |
+
return results
|
88 |
+
|
89 |
+
|
90 |
+
|
91 |
+
retriever = LlamaRetriever("vector_bm25_fusion", create_retriever_fn)
|
92 |
+
|
93 |
+
evaluation = AIRBench(
|
94 |
+
benchmark_version="AIR-Bench_24.04",
|
95 |
+
task_types=["long-doc"], # remove this line if you want to evaluate on all tasks
|
96 |
+
domains=["arxiv"], # remove this line if you want to evaluate on all domains
|
97 |
+
languages=["en"], # remove this line if you want to evaluate on all languages
|
98 |
+
# cache_dir="~/.air_bench/" # path to the cache directory (**NEED ~52GB FOR FULL BENCHMARK**)
|
99 |
+
)
|
100 |
+
|
101 |
+
evaluation.run(
|
102 |
+
retriever,
|
103 |
+
output_dir="./llama_results", # path to the output directory, default is "./search_results"
|
104 |
+
overwrite=True # set to True if you want to overwrite the existing results
|
105 |
+
)
|