ceyda commited on
Commit
36f87fd
1 Parent(s): a7c4225

Update README.md

Browse files
Files changed (1) hide show
  1. README.md +17 -17
README.md CHANGED
@@ -26,7 +26,7 @@ model-index:
26
  value: 30.91
27
  ---
28
 
29
- # Wav2Vec2-Large-XLSR-53-{language} #TODO: replace language with your {language}, *e.g.* French
30
 
31
  Fine-tuned [facebook/wav2vec2-large-xlsr-53](https://huggingface.co/facebook/wav2vec2-large-xlsr-53) on Turkish using the [Common Voice](https://huggingface.co/datasets/common_voice)
32
  When using this model, make sure that your speech input is sampled at 16kHz.
@@ -51,15 +51,15 @@ resampler = torchaudio.transforms.Resample(48_000, 16_000)
51
  # Preprocessing the datasets.
52
  # We need to read the aduio files as arrays
53
  def speech_file_to_array_fn(batch):
54
- speech_array, sampling_rate = torchaudio.load(batch["path"])
55
- batch["speech"] = resampler(speech_array).squeeze().numpy()
56
- return batch
57
 
58
  test_dataset = test_dataset.map(speech_file_to_array_fn)
59
  inputs = processor(test_dataset["speech"][:2], sampling_rate=16_000, return_tensors="pt", padding=True)
60
 
61
  with torch.no_grad():
62
- logits = model(inputs.input_values, attention_mask=inputs.attention_mask).logits
63
 
64
  predicted_ids = torch.argmax(logits, dim=-1)
65
 
@@ -86,31 +86,31 @@ processor = Wav2Vec2Processor.from_pretrained("ceyda/wav2vec2-large-xlsr-turkish
86
  model = Wav2Vec2ForCTC.from_pretrained("ceyda/wav2vec2-large-xlsr-turkish")
87
  model.to("cuda")
88
 
89
- # chars_to_ignore_regex = '[\,\?\.\!\-\;\:\"\“]'
90
- chars_to_ignore_regex = '[\,\?\.\!\-\;\:\"\“\%\‘\”\�\'\`]'
91
  resampler = torchaudio.transforms.Resample(48_000, 16_000)
92
 
93
  # Preprocessing the datasets.
94
  # We need to read the audio files as arrays
95
  def speech_file_to_array_fn(batch):
96
- batch["sentence"] = re.sub(chars_to_ignore_regex, '', batch["sentence"]).lower()
97
- speech_array, sampling_rate = torchaudio.load(batch["path"])
98
- batch["speech"] = resampler(speech_array).squeeze().numpy()
99
- return batch
100
 
101
  test_dataset = test_dataset.map(speech_file_to_array_fn)
102
 
103
  # Preprocessing the datasets.
104
  # We need to read the aduio files as arrays
105
  def evaluate(batch):
106
- inputs = processor(batch["speech"], sampling_rate=16_000, return_tensors="pt", padding=True)
107
 
108
- with torch.no_grad():
109
- logits = model(inputs.input_values.to("cuda"), attention_mask=inputs.attention_mask.to("cuda")).logits
110
 
111
- pred_ids = torch.argmax(logits, dim=-1)
112
- batch["pred_strings"] = processor.batch_decode(pred_ids)
113
- return batch
114
 
115
  result = test_dataset.map(evaluate, batched=True, batch_size=8)
116
 
 
26
  value: 30.91
27
  ---
28
 
29
+ # Wav2Vec2-Large-XLSR-53-Turkish
30
 
31
  Fine-tuned [facebook/wav2vec2-large-xlsr-53](https://huggingface.co/facebook/wav2vec2-large-xlsr-53) on Turkish using the [Common Voice](https://huggingface.co/datasets/common_voice)
32
  When using this model, make sure that your speech input is sampled at 16kHz.
 
51
  # Preprocessing the datasets.
52
  # We need to read the aduio files as arrays
53
  def speech_file_to_array_fn(batch):
54
+ \tspeech_array, sampling_rate = torchaudio.load(batch["path"])
55
+ \tbatch["speech"] = resampler(speech_array).squeeze().numpy()
56
+ \treturn batch
57
 
58
  test_dataset = test_dataset.map(speech_file_to_array_fn)
59
  inputs = processor(test_dataset["speech"][:2], sampling_rate=16_000, return_tensors="pt", padding=True)
60
 
61
  with torch.no_grad():
62
+ \tlogits = model(inputs.input_values, attention_mask=inputs.attention_mask).logits
63
 
64
  predicted_ids = torch.argmax(logits, dim=-1)
65
 
 
86
  model = Wav2Vec2ForCTC.from_pretrained("ceyda/wav2vec2-large-xlsr-turkish")
87
  model.to("cuda")
88
 
89
+ # chars_to_ignore_regex = '[\\,\\?\\.\\!\\-\\;\\:\\"\\“]'
90
+ chars_to_ignore_regex = '[\\,\\?\\.\\!\\-\\;\\:\\"\\“\\%\\‘\\”\\�\\'\\`]'
91
  resampler = torchaudio.transforms.Resample(48_000, 16_000)
92
 
93
  # Preprocessing the datasets.
94
  # We need to read the audio files as arrays
95
  def speech_file_to_array_fn(batch):
96
+ \tbatch["sentence"] = re.sub(chars_to_ignore_regex, '', batch["sentence"]).lower()
97
+ \tspeech_array, sampling_rate = torchaudio.load(batch["path"])
98
+ \tbatch["speech"] = resampler(speech_array).squeeze().numpy()
99
+ \treturn batch
100
 
101
  test_dataset = test_dataset.map(speech_file_to_array_fn)
102
 
103
  # Preprocessing the datasets.
104
  # We need to read the aduio files as arrays
105
  def evaluate(batch):
106
+ \tinputs = processor(batch["speech"], sampling_rate=16_000, return_tensors="pt", padding=True)
107
 
108
+ \twith torch.no_grad():
109
+ \t\tlogits = model(inputs.input_values.to("cuda"), attention_mask=inputs.attention_mask.to("cuda")).logits
110
 
111
+ \tpred_ids = torch.argmax(logits, dim=-1)
112
+ \tbatch["pred_strings"] = processor.batch_decode(pred_ids)
113
+ \treturn batch
114
 
115
  result = test_dataset.map(evaluate, batched=True, batch_size=8)
116