--- base_model: meta-llama/Meta-Llama-3.1-8B-Instruct library_name: peft license: llama3.1 tags: - trl - sft - generated_from_trainer model-index: - name: Llama3.1-8b-instruct-SFT-2024-09-04 results: [] --- # Llama3.1-8b-instruct-SFT-2024-09-04 This model is a fine-tuned version of [meta-llama/Meta-Llama-3.1-8B-Instruct](https://huggingface.co/meta-llama/Meta-Llama-3.1-8B-Instruct) on an unknown dataset. It achieves the following results on the evaluation set: - Loss: 0.7816 ## Model description More information needed ## Intended uses & limitations More information needed ## Training and evaluation data More information needed ## Training procedure ### Training hyperparameters The following hyperparameters were used during training: - learning_rate: 0.0002 - train_batch_size: 4 - eval_batch_size: 1 - seed: 42 - optimizer: Adam with betas=(0.9,0.999) and epsilon=1e-08 - lr_scheduler_type: cosine - lr_scheduler_warmup_ratio: 0.03 - num_epochs: 1.5 ### Training results | Training Loss | Epoch | Step | Validation Loss | |:-------------:|:------:|:-----:|:---------------:| | 1.4731 | 0.0586 | 1000 | 1.3818 | | 1.3159 | 0.1171 | 2000 | 1.2533 | | 1.2472 | 0.1757 | 3000 | 1.1814 | | 1.2053 | 0.2342 | 4000 | 1.1296 | | 1.165 | 0.2928 | 5000 | 1.0964 | | 1.1603 | 0.3514 | 6000 | 1.0608 | | 1.1854 | 0.4099 | 7000 | 1.0294 | | 1.0564 | 0.4685 | 8000 | 1.0074 | | 0.9583 | 0.5271 | 9000 | 0.9807 | | 1.0542 | 0.5856 | 10000 | 0.9559 | | 0.9881 | 0.6442 | 11000 | 0.9371 | | 0.9607 | 0.7027 | 12000 | 0.9125 | | 1.0272 | 0.7613 | 13000 | 0.8907 | | 0.9374 | 0.8199 | 14000 | 0.8739 | | 0.9506 | 0.8784 | 15000 | 0.8549 | | 0.8963 | 0.9370 | 16000 | 0.8389 | | 0.8529 | 0.9955 | 17000 | 0.8225 | | 0.6032 | 1.0541 | 18000 | 0.8162 | | 0.5758 | 1.1127 | 19000 | 0.8079 | | 0.6367 | 1.1712 | 20000 | 0.7976 | | 0.5814 | 1.2298 | 21000 | 0.7917 | | 0.5761 | 1.2884 | 22000 | 0.7873 | | 0.618 | 1.3469 | 23000 | 0.7840 | | 0.5374 | 1.4055 | 24000 | 0.7826 | | 0.6227 | 1.4640 | 25000 | 0.7816 | ### Framework versions - PEFT 0.12.0 - Transformers 4.44.2 - Pytorch 2.0.1+cu118 - Datasets 2.21.0 - Tokenizers 0.19.1